
pylablib Documentation
Release 1.4.2

Alexey Shkarin

Oct 08, 2023

CONTENTS:

1 Related projects 3

2 Citation 5
2.1 Installation . 5
2.2 Devices overview . 8
2.3 Data processing . 106
2.4 Data storage . 110
2.5 Various utilities . 114
2.6 Change log . 117
2.7 pylablib . 125

3 Indices and tables 1001

Python Module Index 1003

Index 1007

i

ii

pylablib Documentation, Release 1.4.2

PyLabLib aims to provide support for device control and experiment automation. It interfaces with lots of different
devices, including several different camera interfaces, translational stages, oscilloscopes, AWGs, sensors, and more.
The interface is implemented in a natural way through Python objects, and is easy to understand. For example, here
is a complete script which steps Thorlabs KDC101 stage by 10000 steps ten times, and each time grabs a frame with
Andor iXon camera:

from pylablib.devices import Thorlabs, Andor # import the device libraries
import numpy as np # import numpy for saving

connect to the devices
with Thorlabs.KinesisMotor("27000000") as stage, Andor.AndorSDK2Camera() as cam:
change some camera parameters
cam.set_exposure(50E-3)
cam.set_roi(0, 128, 0, 128, hbin=2, vbin=2)
start the stepping loop
images = []
for _ in range(10):

stage.move_by(10000) # initiate a move
stage.wait_move() # wait until it's done
img = cam.snap() # grab a single frame
images.append(img)

np.array(images).astype("<u2").tofile("frames.bin") # save frames as raw binary

The list of the devices is constantly expanding.

Additional utilities are added to simplify data acquisition, storage, and processing:

• Simplified data processing utilities: convenient fitting, filtering, feature detection, FFT (mostly wrappers around
NumPy and SciPy).

• Universal multi-level dictionaries which are convenient for storing heterogeneous data and settings in human-
readable format.

• Assorted functions for dealing with file system (creating, moving and removing folders, zipping/unzipping, path
normalization), network (simplified interface for client and server sockets), strings (conversion of various Python
objects to and from string), and more.

• Tools for GUI generation and advanced multi-threading built on top of Qt5 (still in development stage: the
documentation is incomplete, and the interfaces can change in later versions)

The library only works on Python 3, and has been most extensively tested on Windows 10 with 64-bit Python. Linux is,
in principle, supported, but devices which require manufacturer-provided DLLs (mostly cameras) might, potentially,
have problems.

Note: This is documentation for the newer 1.x version of the library. The older 0.x documentation can be found at
https://pylablib-v0.readthedocs.io/en/latest/ .

CONTENTS: 1

https://pylablib-v0.readthedocs.io/en/latest/

pylablib Documentation, Release 1.4.2

2 CONTENTS:

CHAPTER

ONE

RELATED PROJECTS

Pylablib cam-control - software for universal camera control and camera data acquisition.

3

https://github.com/AlexShkarin/pylablib-cam-control

pylablib Documentation, Release 1.4.2

4 Chapter 1. Related projects

CHAPTER

TWO

CITATION

If you found this package useful in your scientific work, you can cite via Zenodo either referencing to the package in
general using the DOI 10.5281/zenodo.7324875, or to a specific version, as found on the Zenodo page.

2.1 Installation

2.1.1 Standard install

You can install the library from PyPi:

pip install pylablib

If you already have it installed, you can upgrade it to get the newest version:

pip install -U pylablib

This will install the full set of dependencies: basic dependencies and computing packages (numpy, scipy,
pandas, numba, rpyc), basic device communication packages (pyft232, pyvisa, pyserial, pyusb), and PyQt5-
based GUI (pyqt5 and pyqtgraph). You can also install additional device library dependencies (nidaqmx and
websocket-client) using the extra requirements feature of pip:

pip install -U pylablib[devio-full]

2.1.2 Minimal install

In case you do not want some of these packages installed, or they are unavailable on your platform, you can install a
lightweight version of pylablib called pylablib-lightweight. It contains exactly the same code, but has only the
most basic dependencies (numpy, scipy, and pandas):

pip install -U pylablib-lightweight

With this, the basic functionality (such as data processing or file IO) will work, but more advanced features such as
device communication and GUI, will require additional packages. In most cases, the raised errors will notify which
packages are missing. These can be installed either manually, or using the extra requirements:

• [extra] extra packages used in some situations: numba (speeds up some data processing) and rpyc (commu-
nication between different PCs)

• [devio] basic devio packages: pyft232, pyvisa, pyserial, and pyusb

• [devio-extra] additional devio packages: nidaqmx and websocket-client

5

https://doi.org/10.5281/zenodo.7324875
https://doi.org/10.5281/zenodo.7324875

pylablib Documentation, Release 1.4.2

• [gui-pyqt5] PyQt5-based GUI: pyqt5 and pyqtgraph. Should not be used together with [gui-pyside2]

• [gui-pyside2] PySide2-based GUI: pyside2 and pyqtgraph. Should not be used together with
[gui-pyqt5]

The options can be combined. For example,

pip install pylablib-lightweight[extra,devio,gui-pyside2]

installs the dependencies as the usual pylablib distribution, but with PySide2 Qt5 backend instead of PyQt5.

2.1.3 Anaconda install

The package is also available on Anaconda via conda-forge channel. To install it, run

conda install -c conda-forge pylablib

in the Anaconda prompt.

The Anaconda version of pylablib comes with all the standard dependencies except for pyft232 , nidaqmx and
websocket-client, which are not available on conda-forge channel. This means, that Thorlabs APT/Kinesis,
NI DAQs, and some functionality of M2 Solstis laser are not accessible. To use those, it is recommended to either
install those packages explicitly via pip (keep in mind that it can break Anaconda environment), or use a standalone
Python distribution.

2.1.4 Usage

To access to the most common features simply import the library:

import pylablib as pll
Create a parameter dictionary (e.g., for some processing script)
parameters = pll.Dictionary({"par/x":1, "par/y":2, "par/z":[3,4,5], "out":"result"})
pll.save_dict(parameters, "parameters.dat") # save parameters to a text file

More advanced features (e.g., device communication) should be imported directly:

from pylablib.devices import Andor # import Andor devices module
cam = Andor.AndorSDK2Camera() # connect to Andor SDK2 camera (e.g., iXon)
cam.set_exposure(0.1) # set exposure to 100ms
frame = cam.snap() # grab a single frame
cam.close() # close the connection

2.1.5 Dependencies and requirements

The basic package dependencies are NumPy for basic computations and overall array interface, SciPy for advanced
computations (interpolation, optimization, special functions), and pandas for heterogeneous tables (DataFrame). In
addition, it is recommended to have Numba package to speed up some computations. Finally, if you use options for
remote computing and communication between different PCs, you need to install RPyC. Note that when installed
directly from pip, numpy comes with the OpenBLAS version of the linear algebra library; if other version (e.g., Intel
MKL) is preferred, it is a good idea to have numpy already installed before installing pylablib.

The main device communication packages are PyVISA and pySerial, which cover the majority of devices. Several
devices (e.g., Thorlabs Kinesis and Attocube ANC 350) require additional communication packages: pyft232 and

6 Chapter 2. Citation

https://www.riverbankcomputing.com/software/pyqt/
https://www.pyside.org/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/scipy/reference/
https://pandas.pydata.org/
https://numba.pydata.org/
https://rpyc.readthedocs.io/en/latest/
https://pyvisa.readthedocs.io/en/master/
https://pythonhosted.org/pyserial/
https://github.com/lsgunth/pyft232

pylablib Documentation, Release 1.4.2

PyUSB. Finally, some particular devices completely or partially rely on specific packages: NI-DAQmx for NIDAQ
and websocket-client for additional M2 Solstis functionality.

Finally, GUI and advanced multi-threading relies on Qt5, which has two possible options. The first (default) option is
PyQt5 with sip for some memory management functionality. Note that while newer PyQt5 versions >=5.11 already
come with PyQt5-sip, older versions require a separate sip installation. Hence, if you use an older PyQt5 version,
you need to install sip separately. The second possible Qt5 option is PySide2 with shiboken2. Both PyQt5 and PySide2
should work equally well, and the choice mostly depends on what is already installed, because having both PyQt5 and
PySide2 might lead to conflicts. Finally, plotting relies on pyqtgraph, which, starting with version 0.11m is compatible
with both PySide2 and PyQt5.

The package has been tested with Python 3.6 through 3.9, and is incompatible with Python 2. The last version officially
supporting Python 2.7 is 0.4.0. Furthermore, testing has been mostly performed on 64-bit Python. This is the recom-
mended option, as 32-bit version limitations (most notably, limited amount of accessible RAM) mean that it should
only be used when absolutely necessary, e.g., when some required packages or libraries are only available in 32-bit
version.

2.1.6 Installing from GitHub

The most recent and extensive, but less tested and documented, version of this library is available on GitHub at https:
//github.com/AlexShkarin/pyLabLib/. There are several versions of installing it:

• Install using pip using GitHub as a library source:

pip install -U git+https://github.com/AlexShkarin/pyLabLib.git

• Download it as a zip-file and unpack it into any appropriate place (can be folder of the project you’re working
on, Python site-packages folder, or any folder added to PATH or PYTHONPATH variable).

To download the code of a specific version, you can choose it in the dropdown Branch menu under Tags tab. This
is the same code as available on PyPi.

Keep in mind that, unlike the first method, the required packages will not be automatically installed, so this has
to be done manually:

pip install numpy scipy pandas numba rpyc
pip install pyft232 pyvisa pyserial pyusb nidaqmx websocket-client
pip install pyqt5 pyqtgraph

• Clone the repository to your computer In order to easily get updates in order to easily get updates. For that, you
need to install Git (https://git-scm.com/), and use the following commands in the command line (in the folder
where you want to store the library):

git clone https://github.com/AlexShkarin/pyLabLib
cd ./pyLabLib

Whenever you want to update to the most recent version, simply type

git pull

in the library folder. Keep in mind that any changes that you make to the library code might conflict with the
new version that you pull from GitHub, so you should not modify anything in this folder if possible.

2.1. Installation 7

https://pyusb.github.io/pyusb/
https://nidaqmx-python.readthedocs.io/en/latest/
https://websocket-client.readthedocs.io/en/latest/
https://www.riverbankcomputing.com/software/pyqt/
https://www.riverbankcomputing.com/software/sip/
https://www.pyside.org/
https://wiki.qt.io/Qt_for_Python/Shiboken
http://www.pyqtgraph.org/
https://github.com/AlexShkarin/pyLabLib/
https://github.com/AlexShkarin/pyLabLib/
https://git-scm.com/

pylablib Documentation, Release 1.4.2

2.1.7 Support and feedback

If you have any issues, suggestions, or feedback, you can either raise an issue on GitHub at https://github.com/
AlexShkarin/pyLabLib/issues, or send an e-mail to pylablib@gmail.com.

2.2 Devices overview

Basic concepts are described at the general device communication page.

Currently supported devices:

• Cameras

– Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested
with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

– Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI
IMAQ frame grabber.

– Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

– BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together
with PhotonFocus MV-D1024E camera.

– DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

– NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers
together with PhotonFocus MV-D1024E camera.

– NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFo-
cus HD1-D1312 camera.

– Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected
through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEn-
able IV AD4-CL).

– PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces,
and with pco.pixelfly usb cameras.

– Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

– PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

– Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers
together with PhotonFocus MV-D1024E camera.

– Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

– Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS
SC2592R12M and Thorlabs DCC1545M.

– Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series
cameras.

• Stages

– Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with
Ethernet and USB connection for ANC300, and USB connection for ANC350.

– Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101,
K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102
(described at a different page)

8 Chapter 2. Citation

https://github.com/AlexShkarin/pyLabLib/issues
https://github.com/AlexShkarin/pyLabLib/issues
mailto:pylablib@gmail.com

pylablib Documentation, Release 1.4.2

– Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational
mounts.

– Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport
8742 Picomotor driver using Ethernet or USB connection.

– Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands:
Arcus, Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

– Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with
USB connection.

– Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25
stepper motor stage.

– SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 con-
trollers are supported. Tested with a standard HCU controller unit and an MCS2 controller with several
SLx stages.

– Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

• Basic sensors

– HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

– Ophir: optical power and energy meters. Tested with Ophir Vega.

– Thorlabs: optical power and energy meters. Tested with PM160.

– Lakeshore: temperature sensors. Tested with Lakeshore 218.

– Cryocon: temperature sensors. Tested with CryoCon 14C.

– Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

– Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

– Leybold: pressure gauges. Tested with ITR90 gauge.

– Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

– Thorlabs quadrature detector controller. Tested with TPA101.

– Keithley multimeters. Tested with model 2110.

– Voltcraft multimeters. Tested with VC-7055BT and VC880.

• Lasers

– Basic lasers

∗ Lighthouse Photonics SproutG

∗ Laser Quantum Finesse

– M2 Solstis laser and external mixing module

– Toptica iBeam Smart laser

– Sirah Matisse laser

– NKT Photonics lasers

• Tektronix oscilloscopes. Tested with TDS2002B, TDS2004B, and DPO2004B.

• NI DAQs. Tested with NI USB-6008, NI USB-6343, and NI PCIe-6323.

• Generic AWGs. Tested with Agilent 33500 and 33220A, Rigol DG1022, Tektronix AFG1022, GW Instek
AFG2225 and AFG2115, and RS Comp AFG21005.

2.2. Devices overview 9

pylablib Documentation, Release 1.4.2

• Andor spectrographs. Tested with Kymera 328i spectrograph connected via an Andor Newton camera through
I2C interface.

• Miscellaneous Thorlabs devices: MFF101/102 motorized flip mirror mount, FW102/212 motorized filter wheel,
and MDT693/694 high-voltage source.

• Miscellaneous OZOptics devices: EPC04 fiber polarization controller, DD100 motorized fiber attenuator, and
TF100 motorized fiber filter.

• Lumel devices: RE72 temperature controller

• Miscellaneous devices

– Conrad relay board

– Basic Arduino communication

– ElektroAutomatik power supplies

– Rigol power supplies

• Mid-level protocols

– Modbus

2.2.1 Basics of device communication

The devices are represented as Python objects. In most cases, one object controls one device, although sometimes one
object can be responsible for multiple interconnected devices (e.g., when daisy-chaining of several devices is used, as
in Picomotor stage). All the device control functions are contained within the class. Occasionally, there are auxiliary
function present for listing available devices, dealing with data generated by the device, or adjusting global parameters.

Note: Some specific devices functionality might not be completely covered in the current release. If this is the
case for your device, you can let the developers know by raising an issue on GitHub, or sending an e-mail to py-
lablib@gmail.com.

Connection

The device identifier or address needs to be provided upon the device object creation, after which it is automatically
connected. Getting the address usually depends on the kind of device:

• Simple message-style devices, such as AWG, oscilloscopes, sensors and gauges, require an address which
depends on the exact connection protocol. For example, serial devices addresses look like "COM1" (or "/
dev/ttyUSB0" or Linux), Visa addresses as "USB0::0x1313::0x8070::000000::INSTR", and network ad-
dresses take IP and, possibly, port "192.168.1.3:7230". To get the list of all connected devices, you can run
comm_backend.list_backend_resources():

>> import pylablib as pll
>> pll.list_backend_resources("serial") # list serial port resources
['COM38', 'COM1', 'COM36', 'COM3']
>> pll.list_backend_resources("visa") # note that, by default, visa also includes␣
→˓all the COM ports
('USB0::0x1313::0x8070::000000::INSTR',
'ASRL1::INSTR',
'ASRL3::INSTR',
'ASRL10::INSTR',

(continues on next page)

10 Chapter 2. Citation

https://github.com/AlexShkarin/pyLabLib/issues
mailto:pylablib@gmail.com
mailto:pylablib@gmail.com

pylablib Documentation, Release 1.4.2

(continued from previous page)

'ASRL36::INSTR',
'ASRL38::INSTR')

Network devices do not easily provide such functionality (and there are, in principle, many unrelated devices
connected to the network), so you might need to learn the device IP elsewhere. Usually, it is set on the device
front panel or using some kind of configuration tool and a different connection, such as serial or USB.

In most cases, the connection address is all you need. However, sometimes the connection might require some
additional information. The most common situations are ports for the network connection and baud rates for
the serial connections. Ports can be supplied either as a part of the string "192.168.1.3:7230", or as a tuple
("192.168.1.3", 7230). The baud rates are, similarly, provided as a tuple: ("COM1", 19200). By default,
the devices would use the baud rate which is most common for them, but in some cases (e.g., if the device baud
rate can be changed), you might need to provide it explicitly. If it is provided incorrectly, then no communication
can be done, and requests will typically return a timeout error:

>> from pylablib.devices import Ophir
>> meter = Ophir.VegaPowerMeter("COM3") # for this power meter 9600 baud are used␣
→˓by default
>> meter.get_power() # let us assume that the devices is currently set up with␣
→˓38400 baud
...
OphirBackendError: backend exception: 'timeout during read'
>> meter.close() # need to close the connection before reopening
>> meter = Ophir.VegaPowerMeter(("COM3",38400)) # explicitly specifying the␣
→˓correct baud rate
>> meter.get_power()
1E-6

• More complicated devices using custom DLLs (usually cameras or some translation stages) will have more unique
methods of addressing individual devices: serial number, device index, device ID, etc. In most cases such devices
come with list_devices or get_devices_number functions, which give the necessary information.

After communication is done, the connection needs to be closed, since in most cases it can only be opened in one
program or part of the script at a time. It also implies that usually it’s impossible to connect to the device while its
manufacturer software is still running.

The devices have open and close methods, but they can also work in together with Python with statements:

import Thorlabs device classes
from pylablib.devices import Thorlabs

connect to FW102 motorized filter wheel
wheel = Thorlabs.FW("COM1")
set the position
wheel.set_position(1)
close the connection (until that it's impossible to establish a different connection to␣
→˓this device)
wheel.close()

a better approach
with Thorlabs.FW("COM1") as wheel: # connection is closed automatically when leaving the␣
→˓with-block

wheel.set_position(1)

Because the devices are automatically connected on creation, open method is almost never called explicitly. It is

2.2. Devices overview 11

pylablib Documentation, Release 1.4.2

generally only used to reconnect to the device after the connection has been previously closed, although in this case
creating a new device object would work just as well.

Operation

The devices are controlled by calling their methods; attributes and properties are very rarely used. Effort is made to
maintain consistent naming conventions, e.g., most getter-methods will start with get_ and setter methods with set_
or setup_ (depending on the complexity of the method). It is also common for setter methods to return the new value
as a result, which is useful in CLI operation and debugging. Devices of the same kind have the same names for similar
or identical functions: most stages have move_by, jog and stop methods, and cameras have wait_for_frame and
read_multiple_images methods. Whenever it makes sense, these methods will also have the same signatures.

Asynchronous operation and multi-threading

For simplicity of usage and construction, devices interfaces are designed to be synchronous and single-threaded. Asyn-
chronous operation can be achieved by explicit usage of Python multi-threading. Furthermore, the device classes are
not designed to be thread safe, i.e., it is not recommended to use the same device simultaneously from two separate
threads. However, non-simultaneous calling of device methods from different threads (synchronized, e.g., using locks)
or simultaneous usage of several separate devices of the same class is supported.

Error handling

Errors raised by the devices are usually specific to the device and manufacturer, e.g., AttocubeError or
TrinamicError. These can be obtained from the module containing the device class, or from the class itself as
Error attribute:

>> from pylablib.devices import Attocube
>> atc = Attocube.ANC300("192.168.1.1")
>> atc.disable_axis(1)
>> atc.move_by(1,10) # move on a disabled axis raises an error for ANC300
...
AttocubeError: Axis in wrong mode
>> try:
.. atc.move_by(1,10)
.. except atc.Error: # could also write "except Attocube.AttocubeError"
.. print("Can not move")
Can not move

All of the device errors inherit from DeviceError, which in turn is a subclass of RuntimeError. Therefore, one can
also use those exception classes instead:

>> import pylablib as pll
>> try:
.. atc.move_by(1,10)
.. except pll.DeviceError:
.. print("Can not move")
Can not move

12 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#RuntimeError

pylablib Documentation, Release 1.4.2

Getting more information

A lot of information about the devices can be gained just from their method names and descriptions (docstrings). There
are several ways of getting these:

• In many cases your IDE (PyCharm, Spyder, VS Code with installed Python extension) supports code inspection.
In this case, the list of methods will usually pop up after you time the device object name and a dot (such as cam.),
and the method docstring will show up after you type the method name and parenthesis (such as cam.get_roi().
However, sometimes it might take a while for these pop-ups to show up.

• You can use console, such as Jupyter QtConsole, Jupyter Notebook, or a similar console built into the IDE. Here
the list of methods can be obtained using the autocomplete feature: type name of the class or object with a dot
(such as cam.) and then press Tab. The list of all methods should appear. To get the description of a particular
class or method, type it with a question mark (such as cam? or cam.get_roi?) and execute the result (Enter
or Shift-Enter, depending on the console). A description should appear with the argument names and the
description.

• You can also use the auto-generated documentation within this manual through the search bar: simply type the
name of the class or the method (such as AndorSDK3Camera or AndorSDK3Camera.get_roi) and look through
the results. However, the formatting of the auto-generated documentation might be a bit overwhelming.

Universal settings access

All devices have get_settings and apply_settings methods which, correspondingly, return Python dictionaries
with the most common settings or take these dictionaries and apply the contained settings. These can be used to easily
store and re-apply device configuration within a script.

Additionally, there is get_full_info method, which returns as complete information as possible. It is particularly
useful to check the device status and see if it is connected and working properly, and to save the devices configuration
when acquiring the data. Finally, the settings can also be accessed through .dv attribute, which provides dictionary-like
interface:

>>> wheel = Thorlabs.FW("COM1") # connect to FW102 motorized filter wheel
>>> wheel.get_position()
1
>>> wheel.get_settings()
{'pcount': 6,
'pos': 1,
'sensors_mode': 'off',
'speed_mode': 'high',
'trigger_mode': 'in'}
>>> wheel.dv["pos"]
1
>>> wheel.apply_settings({"pos":2})
>>> wheel.get_position()
2
>>> wheel.dv["pos"] = 3
>>> wheel.get_position()
3
>>> wheel.close()

By default not all information is shown, as it can take long time (up to several seconds) to obtain it, and it takes a lot of
space on the screen. To get a full set of parameters, you can call get_full_info("all"):

2.2. Devices overview 13

pylablib Documentation, Release 1.4.2

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_full_info()
{ 'roi': (0, 1312, 0, 1082),

'acquisition_in_progress': False,
'frames_status': TFramesStatus(acquired=0, unread=0, skipped=0, buffer_size=0),
'cls': 'IMAQdxCamera',
'conn': 'cam0',
'detector_size': (1312, 1082),
'device_info': TDeviceInfo(vendor='Photonfocus AG', model='HD1-D1312-80-G2-12',␣

→˓serial_number='0000000000000000', bus_type='Ethernet') }
>>
>> cam.get_full_info("all")
{ 'roi': (0, 1312, 0, 1082),

'acquisition_in_progress': False,
'frames_status': TFramesStatus(acquired=0, unread=0, skipped=0, buffer_size=0),
'camera_attributes': Dictionary('AcquisitionAttributes/AdvancedEthernet/

→˓BandwidthControl/ActualPeakBandwidth': 1000.0
... lots and lots of attributes

'OffsetX': 0
'OffsetY': 0
'PayloadSize': 1419584
'PixelFormat': Mono8
'Width': 1312),
'cls': 'IMAQdxCamera',
'conn': 'cam0',
'detector_size': (1312, 1082),
'device_info': TDeviceInfo(vendor='Photonfocus AG', model='HD1-D1312-80-G2-12',␣

→˓serial_number='0000000000000000', bus_type='Ethernet') }

Dependencies and external software

Many devices require external software not provided with this package.

The simpler devices using serial connection (either with an external USB-to-Serial adapter, or with a similar built-in
chip) only need the corresponding drivers: either standard adapter drivers or the ones supplied by the manufacturer,
e.g., via Thorlabs APT software. If the device already shows up as a serial communication port in the OS, no additional
software is normally needed. Similarly, devices using Ethernet connection do not need any external software, as long
as they are properly connected to the network. Finally, devices using Visa connection require NI VISA Runtime, which
is freely available from the National Instruments website. See also PyVISA documentation for details.

Devices which require manufacturer DLLs are harder to set up. For most of them, at the very least, you need to
install the manufacturer-provided software for communication. Frequently it already includes the necessary libraries,
which means that nothing else is required. However, sometimes you would need to download either an additional SDK
package, or DLLs directly from the website. Since these libraries take a lot of space and are often proprietary, they are
not distributed with the pylablib.

Note that DLLs can have 32-bit and 64-bit version, and this version should agree with the Python version that you use.
Unless you have a really good reason to do otherwise, it is strongly recommended to use 64-bit Python, which means
that you would need 64-bit DLLs, which is the standard in most cases these days. To check your Python bitness, you
can read the prompt when running the Python console, or run python -c "import platform; print(platform.
architecture()[0])" in the command line.

In addition, you need to provide pylablib with the path to the DLLs. In many cases it checks the standard locations such
as the default System32 folder (used, e.g., in DCAM or IMAQ cameras), paths contained on the PATH environment

14 Chapter 2. Citation

https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html
https://pyvisa.readthedocs.io/en/master/

pylablib Documentation, Release 1.4.2

variable, or defaults paths for manufacturer software (such as C:/Program Files/Andor SOLIS for Andor cameras).
If the software path is different, or if you choose to obtain DLLs elsewhere, you can also explicitly provide path by
setting the library parameter:

import pylablib as pll
pll.par["devices/dlls/andor_sdk3"] = "D:/Program Files/Andor SOLIS"
from pylablib.devices import Andor
cam = Andor.AndorSDK3Camera()

All of these requirements are described in detail for the specific devices.

Starting from Python 3.8 the DLL search path is changed to not include the files contained in PATH environment
variable and in the script folder. By default, this behavior is still emulated when pylablib searches for the DLLs, since
it is required in some cases (e.g., Photon Focus pfcam interface). If needed, it can be turned off (i.e., switched to the
new default behavior of Python 3.8+) by setting pll.par["devices/dlls/add_environ_paths"]=False.

Advanced examples

Connecting to a Cryomagnetics LM500 level meter and reading out the level at the first channel:

from pylablib.devices import Cryomagnetics # import the device library
with Cryomagnetics.LM500("COM1") as lm:

level = lm.get_level(1) # read the level

Stepping the M Squared laser wavelength and recording an image from the Andor iXon camera at each step:

with M2.Solstis("192.168.1.2", 34567) as laser, Andor.AndorSDK2Camera() as cam: #␣
→˓connect to the devices
change some camera parameters
cam.set_exposure(50E-3)
cam.set_roi(0, 128, 0, 128, hbin=2, vbin=2)
cam.setup_shutter("open")
start camera acquisition
wavelength = 770E-9 # initial wavelength (in meters)
images = []
cam.start_acquisition()
while wavelength < 780E-9:

laser.coarse_tune_wavelength(wavelength) # tune the laser frequency (using␣
→˓coarse tuning)

time.sleep(0.5) # wait until the laser stabilizes
cam.wait_for_frame() # ensure that there's a frame in the camera queue
img = cam.read_newest_image()
images.append(img)
wavelength += 0.5E-9

2.2. Devices overview 15

pylablib Documentation, Release 1.4.2

Available devices

• Cameras

– Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested
with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

– Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI
IMAQ frame grabber.

– Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

– BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together
with PhotonFocus MV-D1024E camera.

– DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

– NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers
together with PhotonFocus MV-D1024E camera.

– NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFo-
cus HD1-D1312 camera.

– Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected
through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEn-
able IV AD4-CL).

– PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces,
and with pco.pixelfly usb cameras.

– Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

– PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

– Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers
together with PhotonFocus MV-D1024E camera.

– Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

– Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS
SC2592R12M and Thorlabs DCC1545M.

– Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series
cameras.

• Stages

– Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with
Ethernet and USB connection for ANC300, and USB connection for ANC350.

– Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101,
K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102
(described at a different page)

– Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational
mounts.

– Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport
8742 Picomotor driver using Ethernet or USB connection.

– Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands:
Arcus, Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

– Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with
USB connection.

16 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

– Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25
stepper motor stage.

– SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 con-
trollers are supported. Tested with a standard HCU controller unit and an MCS2 controller with several
SLx stages.

– Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

• Basic sensors

– HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

– Ophir: optical power and energy meters. Tested with Ophir Vega.

– Thorlabs: optical power and energy meters. Tested with PM160.

– Lakeshore: temperature sensors. Tested with Lakeshore 218.

– Cryocon: temperature sensors. Tested with CryoCon 14C.

– Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

– Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

– Leybold: pressure gauges. Tested with ITR90 gauge.

– Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

– Thorlabs quadrature detector controller. Tested with TPA101.

– Keithley multimeters. Tested with model 2110.

– Voltcraft multimeters. Tested with VC-7055BT and VC880.

• Lasers

– Basic lasers

∗ Lighthouse Photonics SproutG

∗ Laser Quantum Finesse

– M2 Solstis laser and external mixing module

– Toptica iBeam Smart laser

– Sirah Matisse laser

– NKT Photonics lasers

• Tektronix oscilloscopes. Tested with TDS2002B, TDS2004B, and DPO2004B.

• NI DAQs. Tested with NI USB-6008, NI USB-6343, and NI PCIe-6323.

• Generic AWGs. Tested with Agilent 33500 and 33220A, Rigol DG1022, Tektronix AFG1022, GW Instek
AFG2225 and AFG2115, and RS Comp AFG21005.

• Andor spectrographs. Tested with Kymera 328i spectrograph connected via an Andor Newton camera through
I2C interface.

• Miscellaneous Thorlabs devices: MFF101/102 motorized flip mirror mount, FW102/212 motorized filter wheel,
and MDT693/694 high-voltage source.

• Miscellaneous OZOptics devices: EPC04 fiber polarization controller, DD100 motorized fiber attenuator, and
TF100 motorized fiber filter.

• Lumel devices: RE72 temperature controller

2.2. Devices overview 17

pylablib Documentation, Release 1.4.2

• Miscellaneous devices

– Conrad relay board

– Basic Arduino communication

– ElektroAutomatik power supplies

– Rigol power supplies

• Mid-level protocols

– Modbus

2.2.2 Cameras

Basic concepts are described at the cameras communication page.

Currently supported cameras:

• Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with
Andor iXon, Luca, Newton, Zyla, Neo and Marana.

• Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ
frame grabber.

• Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

• BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with
PhotonFocus MV-D1024E camera.

• DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

• NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together
with PhotonFocus MV-D1024E camera.

• NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus
HD1-D1312 camera.

• Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through
either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-
CL).

• PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and
with pco.pixelfly usb cameras.

• Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

• PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

• Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers to-
gether with PhotonFocus MV-D1024E camera.

• Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

• Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M
and Thorlabs DCC1545M.

• Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series
cameras.

Note: General device communication concepts are described on the corresponding page.

18 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Cameras control basics

Basic examples

Basic camera usage is fairly straightforward:

from pylablib import Andor
cam = Andor.AndorSDK3Camera() # connect to the camera
cam.set_exposure(10E-3) # set 10ms exposure
cam.set_roi(0,128,0,128) # set 128x128px ROI in the upper left corner
images = cam.grab(10) # grab 10 frames
cam.close()

In case you need to grab and process frames continuously, the example is a bit more complicated:

with Andor.AndorSDK2Camera() as cam: # to close the camera automatically
cam.start_acquisition() # start acquisition (automatically sets it up as well)
while True: # acquisition loop

cam.wait_for_frame() # wait for the next available frame
frame=cam.read_oldest_image() # get the oldest image which hasn't been read yet
... process frame ...

Some concepts are explained below in more detail.

Basic concepts

Frames buffer

In most cases, the frames acquired by the camera are first temporarily stored in the local camera and / or frame grabber
memory, from which they are transferred to the PC RAM by the camera drivers. Afterwards, this memory is made
available to all other applications. In principle, it should be enough to store only the most recent frame in RAM, and
for the user software to continuously wait for a new frame, immediately read it from RAM and process it. However,
such approach is very demanding to the user code: if the new frame is acquired before the previous one is processed
or copied, then the RAM data is overwritten, and the old frame is lost. Hence, it is more practical to have a buffer of
several most recently acquired frames to account for inevitable interruptions in the user wait-read-process loop caused
by OS scheduling and by other jobs. In this case, the frames get lost only when the buffer is completely filled, and the
oldest frames starts getting overwritten.

When using the camera classes provided by pylablib, you do not need to worry about setting up the buffer yourself,
since it is done behind the scene either by the manufacturer’s code or by the device class. However, it is important to
keep in mind the existence of the buffer when setting up the acquisition, interpreting the buffer and acquired frames
status, or identifying the skipped frames.

The size of the buffer can almost always be selected by the user. Typically it is a good idea to have at least 100ms worth
of frames there, although, depending on the other jobs performed by the software, it can be larger.

2.2. Devices overview 19

pylablib Documentation, Release 1.4.2

Acquisition setup

Setting up an acquisition process might take a lot of time (up to 10s in more extreme cases). This happens mostly
because of the buffer allocation and setting up internal API structures; initiating the acquisition process itself is fairly
fast. Hence, it is useful to separate setting up / cleaning up and starting / stopping.

The first two procedures correspond to setup_acquisition and clear_acquisition method, which are slow, but
rarely called. Usually, they only need to be invoked right after connecting to the camera, or when the acquired image
size is changed (e.g., due to a change in binning or ROI). Since these methods deal with buffer allocation, in almost all
cases they take a parameter specifying buffer size (typically called nframes).

The other two procedures correspond to start_acquisition and stop_acquisition methods. These try to be as
fast as possible, as they need to be called any time the acquisition is started or stopped, or when minor parameters
(frame rate, exposure, trigger mode) are called.

Region of interest (ROI) and binning

Most cameras allow the user to select only a part of the whole sensor for readout and transfer. Since the readout speed
is usually the factor limiting the frame rate, selecting smaller ROI frequently lets you achieve higher frame rate. In
addition, it also reduces the size of the frame buffer and the data transfer load. Same goes for binning: many cameras
can combine values of several consecutive pixels in the same row or column (or both), which results in smaller images
and, depending on the camera architecture, higher signal-to-noise ratio compared to binning in post-processing. Much
less frequently you can set up subsampling instead of binning, which skips pixels instead of averaging them together.

Both operations depend very strongly on the exact hardware, so there are typically many associated restriction. The
most common are minimal sizes in width and height, positions and sizes being factors of some power of 2 (up to 32
for some cameras), or equal binning for both axes. Device classes will typically round the ROI to the nearest allowed
value. Furthermore, the scaling of the maximal frame rate with the ROI size is also hardware-dependent; for example,
in many sCMOS chips readout speed only depends on the vertical extent, since the readout is done simultaneously for
the whole row. In most cases, it takes some experiments to get a hang of the camera behavior.

Exposure and frame rate

Almost all scientific cameras let user change the exposure, typically in a wide range (down to sub-ms). Frequently
they also allow to separately change the frame period (inverse of the frame rate). Usually (but not always) the minimal
frame period is set by the exposure plus some readout time, which depends on the ROI and some additional parameters
such as pixel clock or simultaneous readout mode. Usually exposure takes priority over the frame period, i.e., if the
frame period is set too short, it is automatically adjusted. Notable exception from this rule is Uc480 interface, where
this dependence in reversed.

Triggering

Usually the cameras will have several different options for triggering, i.e., choosing when to start acquiring a new frame
or a new batch of frames. The default option is the internal trigger, which means that the internal timer generates trigger
event at a constant rate (frame rate). Many cameras will also take an external trigger signal to synchronize acquisition
to external events or other cameras. Typically, a rising edge from 0 to 5V on the input will initiate the frame acquisition,
but more exotic options (different polarities or levels, exposure control with pulse width, line-readout trigger) can be
present.

20 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Application notes and examples

Here we talk more practically about performing tasks common to most cameras.

Simple acquisition

Frame acquisition is, understandably, the most important part of the camera. Basic acquisition can be done without
explicitly setting up the acquisition loop, simply by using ICamera.snap() and ICamera.grab() methods which,
correspondingly, grab a single frame or a given number of frames:

from pylablib import Andor
cam = Andor.AndorSDK3Camera() # connect to the camera
img = cam.snap() # grab a single frame
images = cam.grab(10) # grab 10 frames (return a list of frames)
cam.close()

These allow for quick tests of whether the camera works properly, and for occasional frames acquisition. However,
these methods have to start and stop acquisition every time they are called, which for some cameras can take about a
second. Hence, if continuous acquisition and high frame rate are required, you would need to set up the acquisition
loop.

Acquisition loop

A typical simple acquisition loop has already been shown above:

nframes=100 relates to the size of the frame buffer; the acquisition will continue␣
→˓indefinitely
cam.setup_acquisition(mode="sequence", nframes=100) # could be combined with start_
→˓acquisition, or kept separate
cam.start_acquisition()
while True: # acquisition loop

cam.wait_for_frame() # wait for the next available frame
frame = cam.read_oldest_image() # get the oldest image which hasn't been read yet
... process frame ...
if time_to_stop:

break
cam.stop_acquisition()

It relies on 3 sets of methods. First, starting and stopping acquisition using start_acquisition and
stop_acquisition. As explained above, one also has an option to setup the acquisition first using
setup_acquisition, which makes the subsequent start_acquisition call faster. However, one can also sup-
ply the same setup parameters to start_acquisition method, which automatically sets up the acquisition if it is not
set up yet, or if any parameters are different from the current ones.

Second are the methods for checking on the acquisition process. The method used above is wait_for_frame, which
by default waits until there is at least one unread frame in the buffer (i.e., it exits immediately if there is already a frame
available). Its arguments modify this behavior by changing the point from which the new frame is acquired (e.g., from
the current call), or the minimal required number of frames. Alternatively, there is a method get_new_images_range,
which returns a range of the frame indices which have been acquired but not read. This method allows for a quick check
of a number of unread frames without pausing the acquisition.

Finally, there are methods for reading out the frames. The simplest method is read_oldest_image, which return
the oldest image which hasn’t been read yet, and marks it as read. A more powerful is the read_multiple_images

2.2. Devices overview 21

pylablib Documentation, Release 1.4.2

method, which can return a range of images (by default, all unread images). Both of these methods also take a peek
argument, which allows one to read the frames without marking them as read.

Returned frame format

ICamera.read_multiple_images()method described above has several different formats for returning the frames,
which can be controlled using ICamera.set_frame_format() and checked ICamera.get_frame_format(). The
default format is "list", which returns a list of individual frames. The second possibility is "array", which returns
a single 3D numpy array with all the frames. Finally, "chunks" returns a list of 3D arrays, each containing several
consecutive frames.

While "chunks" format is the hardest to work with, it provides the best performance. First, it does not require any extra
memory copies, which negatively affect performance at very high data rates, above ~1Gb/s. Second, it can combine
multiple small frames together into a single array, which makes further processing faster, as it does require explicit
Python loop over every frame. This usually becomes important at frames rates above ~10kFPS, where treating each
frame as an individual 2D array leads to significant overhead.

Frame indexing

Different areas and libraries adopt different indexing convention for 2D arrays. The two most common ones are
coordinate-like xy (the first index is the x coordinate, the second is y coordinate, and the origin is in the lower left
corner) and matrix-like ij (the first index is row, the second index is column, the origin is int the upper right corner).
Almost all cameras adopt the ij convention. The only exception is Andor SDK2, which uses similar row-column
indexing, but counting from the bottom.

By default, the frames returned by the camera are indexed in the preferred convention, to reduce the overhead on
re-indexing the frames. It is possible to check and change it using ICamera.get_image_indexing() and ICamera.
set_image_indexing() methods:

>> cam.set_roi(0,256,0,128) # 256px horizontally, 128 vertically
>> cam.snap().shape # 128 rows, 256 columns
(128, 256)
>> cam.set_image_indexing("xyb") # standard xy indexing, starting from the bottom
>> cam.snap().shape
(256, 128)

ROI, detector size and frame shape

Both ROI and binning are controlled by one pair of methods get_roi and set_roi which, depending on whether
camera supports binning, take (and return) 4 or 6 arguments: start and stop positions of ROI along both axes and,
optionally, binning along the axes:

cam.set_roi(0,128,0,256) # set 128x256px (width x height) ROI in the (typically) upper␣
→˓left controller
cam.set_roi(0,128) # set roi with 128px width and full height (non-supplied arguments␣
→˓take extreme values)
cam.set_roi(0,128,0,128,2,2) # set 128x128px ROI with 2x2 binning; the resulting image␣
→˓size is 64x64

Regardless of the frame indexing, the first pair of arguments always controls horizontal span, the second pair controls
vertical span, and the last pair controls horizontal and vertical binning (if applicable).

22 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

In addition, there is a couple of methods to acquire the detector and frame size. The first method is
get_detector_size. It always returns the full camera detector size as a tuple (width, height) and, therefore,
is not affected by ROI, binning, and indexing. The second method is get_data_dimensions, which returns the shape
of the returned frame given the currently set up indexing. The results of this method do depend on the ROI, binning,
and indexing:

>> cam.get_detector_size() # (width, height)
(2560, 1920)
>> cam.get_data_dimensions() # (rows, columns), i.e., (height, width)
(1920, 2560)

>> cam.set_roi(0,256,0,128,2,2) # 256px horizontally, 128 vertically, 2x2 binning
>> cam.get_detector_size() # unaffected
(2560, 1920)
>> cam.get_data_dimensions() # depends on ROI
(64, 128)

>> cam.set_image_indexing("xyb")
>> cam.get_detector_size() # unaffected
(2560, 1920)
>> cam.get_data_dimensions() # depends on indexing
(128, 64)

Exposure and frame period

In pylablib these parameters are normally controlled by get_exposure/set_exposure and, correspondingly
get_frame_period/set_frame_period methods. In addition, get_frame_timings method provides an overview
of all the relevant times. Exposure typically takes priority over frame period: if the frame period is set too small, it
becomes the smallest possible for the given exposure; at the same time, if the exposure is set too big, it is still applied,
and the frame period becomes the smallest possible with this exposure:

>> cam.get_frame_timings() # frame period is a usually bit larger due to the readout␣
→˓time
TAcqTimings(exposure=0.1, frame_period=0.12)

>> cam.set_exposure(0.01)
>> cam.get_frame_timings() # smaller exposure is still compatible with this frame period
TAcqTimings(exposure=0.01, frame_period=0.12)

>> cam.set_frame_period(0) # effectively means "set the highest possible frame rate"
>> cam.get_frame_timings()
TAcqTimings(exposure=0.01, frame_period=0.03)

>> cam.set_exposure(0.2)
>> cam.get_frame_timings() # frame period is increased accordingly
TAcqTimings(exposure=0.2, frame_period=0.22)

There are exceptions for some camera types, which are discussed separately.

2.2. Devices overview 23

pylablib Documentation, Release 1.4.2

Camera attributes

Some camera interfaces, e.g., Thorlabs Scientific Cameras, PCO SC2, or NI IMAQ are fairly specific, and only apply
to a handful of devices with very similar capabilities. In this case, pylablib usually attempts to implement as much of
the functionality as possible given the available hardware, and to present it via the camera object methods.

In other cases, e.g., NI IMAQdx, Andor SDK3, or DCAM, the same interface deals with many fairly different cameras.
This is especially true for IMAQdx, which covers hundreds of cameras from dozens of manufacturers, all with very
different capabilities and purpose. Since managing such cameras can not usually be conformed to a small set of func-
tions, it is implemented through camera attributes mechanism. That is, for each camera the interface defines a set of
attributes (sometimes also called properties or features), which can be queried or set by their names, and whose exact
meaning and possible values depend on the specific camera.

Typically, cameras dealing with attributes will implement IAttributeCamera.get_attribute_value() and
IAttributeCamera.set_attribute_value() for querying and setting the attributes, as well as dictionary-like .
cav (stands for “camera attribute value”) interface to do the same thing:

>> cam = Andor.AndorSDK3Camera()
>> cam.get_attribute_value("CameraAcquiring") # check if the camera is acquiring
0
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_value(
→˓"ExposureTime")
0.1

Additionally, there are IAttributeCamera.get_all_attribute_values() and IAttributeCamera.
set_all_attribute_values() which get and set all camera attributes (possibly only within the given
branch, if camera attributes form a hierarchy). Finally, methods IAttributeCamera.get_attribute() and
IAttributeCamera.get_all_attributes(), together with the corresponding .ca interface, allow to query
specific attribute objects, which provide additional information about the attributes: whether they are writable or
readable, their range, description, possible values, types, etc.:

>> cam = DCAM.DCAMCamera()
>> attr=cam.ca["EXPOSURE TIME"] # get the exposure attribute
DCAMAttribute(name='EXPOSURE TIME', id=2031888, min=0.001, max=10.0, unit=1)
>> attr.max
10.0
>> attr.set_value(0.1) # same as cam.set_attribute_value("EXPOSURE TIME", 0.1)

Note that, depending on the camera, the attribute properties (especially minimal and maximal value) can depend on
the other camera attributes. For example, minimal exposure can depend on the frame size:

>> cam = DCAM.DCAMCamera()
>> attr=cam.ca["EXPOSURE TIME"] # get the exposure attribute
DCAMAttribute(name='EXPOSURE TIME', id=2031888, min=0.001, max=10.0, unit=1)
>> attr.min
0.001
>> cam.set_roi(0, 0, 0, 0) # set the minimal possible ROI
(0, 4, 0, 4, 1, 1)
>> attr.min # minimal value hasn't been updated yet
0.001
>> attr.update_limits() # update the property limits
>> attr.min # now the minimal possible exposure is smaller
7.795e-05

24 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

If the documentation is not available (as is the case for, e.g., some IMAQdx cameras), the best way to learn about the
attributes is to use the native software (whenever available) to modify camera settings and then check how the attributes
change. Besides that, it is always useful to check attribute description (available for IMAQdx parameter), their range,
and the available values for enum attributes.

Trigger setup

The trigger is usually set up using set_trigger_mode method, although it might be different if more specialized
modes are used. When external trigger is involved, most of the code (such as acquisition set up and start) stays the
same. The only difference is the rate at which the frames are generated:

frame = cam.snap() # starts acquiring immediately, returns after a single frame
cam.set_trigger_mode("ext") # set up the trigger mode
frame = cam.snap()
after cam.snap() is called, the execution will wait
for an external trigger pulse to acquire the frame and return

Frame metainfo

Many cameras supply additional information together with the frames. Most frequently it contains the internal frames-
tamp and timestamp (which are useful for tracking missing frames), but sometimes it also includes additional informa-
tion such as frame size or location, status, or auxiliary input bits. To get this information, you can supply the argument
return_info=True to the read_multiple_images method. In this case, instead of a single list of frames, it will
return a tuple of two lists, where the second list contains this metainfo.

There are several slightly different metainfo formats, which can be set using ICamera.set_frame_info_format()
method. The default representation is a (possibly nested) named tuple, but it is also possible to represent it as a flat list,
flat dictionary, or a numpy array. The exact structure and values depend on the camera.

Keep in mind, that for some camera interfaces (e.g., Uc480 or Silicon Software) obtaining the additional information
might take relatively long, even longer than the proper frame readout. Hence, at higher frame rates it might become a
bottleneck, and would need to be turned off.

Related projects

Pylablib cam-control is a standalone software package which builds on camera classes included in pylablib. It provides
an easy way to detect and control many different cameras and acquire their data. In addition, it supports custom on-line
image processing, flexible data acquisition, and control by external software using a TCP/IP server.

Currently supported cameras

• Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with
Andor iXon, Luca, Newton, Zyla, Neo and Marana.

• Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ
frame grabber.

• Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

• BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with
PhotonFocus MV-D1024E camera.

• DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

2.2. Devices overview 25

https://github.com/AlexShkarin/pylablib-cam-control

pylablib Documentation, Release 1.4.2

• NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together
with PhotonFocus MV-D1024E camera.

• NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus
HD1-D1312 camera.

• Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through
either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-
CL).

• PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and
with pco.pixelfly usb cameras.

• Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

• PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

• Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers to-
gether with PhotonFocus MV-D1024E camera.

• Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

• Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M
and Thorlabs DCC1545M.

• Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series
cameras.

Note: General camera communication concepts are described on the corresponding page

Andor cameras

Andor implements two completely separate interfaces for different cameras. The older one, called SDK2, or simply
SDK, provides interface for the older cameras: iXon, iKon, iStart, iDus, iVac, Luca, Newton. The details of this SDK
are available in the manual.

The newer SDK, called SDK3, covers newer cameras: Zyla, Neo, Apogee, Sona, Marana, and Balor. The manual
describes the cameras and capabilities in more details.

The required DLLs are distributed with Andor Solis or the corresponding Andor SKD. In most cases, you have Andor
Solis already installed to provide the drivers and to communicate with the cameras to begin with.

Andor SDK 2

This is an older SDK, which mainly involves older cameras. It has been tested with Andor iXon, Luca, and Newton.

The code is located in pylablib.devices.Andor, and the main camera class is pylablib.devices.Andor.
AndorSDK2Camera.

26 Chapter 2. Citation

https://andor.oxinst.com/downloads/uploads/Andor_Software_Development_Kit_2.pdf
https://andor.oxinst.com/downloads/uploads/Andor_SDK3_Manual.pdf
https://andor.oxinst.com/products/solis-software/
https://andor.oxinst.com/products/software-development-kit/

pylablib Documentation, Release 1.4.2

Software requirements

The required DLL can have different names depending on the Solis version and SDK bitness. For 64-bit version it
will be called atmcd64d.dll or atmcd64d_legacy.dll. For 32-bit version, correspondingly, atmcd32d.dll or
atmcd32d_legacy.dll. By default, library searches for DLLs in Andor Solis and Andor SDK folder in Program
Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing
the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/
andor_sdk2:

import pylablib as pll
pll.par["devices/dlls/andor_sdk2"] = "path/to/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK2Camera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run Andor.
get_cameras_number_SDK2:

>> from pylablib.devices import Andor
>> Andor.get_cameras_number_SDK2()
2
>> cam1 = Andor.AndorSDK2Camera(idx=0)
>> cam2 = Andor.AndorSDK2Camera(idx=1)
>> cam1.close()
>> cam2.close()

Warning: It is important to close all camera connections before finishing your script. Otherwise, DLL resources
might become permanently blocked, and the only way to solve it would be to restart the PC.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI
and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of
differences from the standard libraries worth highlighting:

• Since the manufacturer DLLs do not provide methods to get most of the camera parameters (such as exposure
or ROI), it is impossible to know them when connecting the camera. To get around it, the camera is put into a
“default” state any time the connection is opened.

• When applicable, it is important to properly set the cooling setpoint and the fan mode. By default, the fan is
turned off, and the cooling is set to the 20’th percentile of the whole range (e.g., -80C for Andor iXon). It is
possible to pass these parameters on camera creation:

cam = Andor.AndorSDK2Camera(temperature=-50, fan_mode="on")

• Often cameras have a lot of different readout parameters: channel, amplifier, vertical and horizontal scan speed,
etc. These parameters greatly affect the camera sensitivity and readout speed. Upon the connection, the pa-
rameter are typically set to the slowest mode. To get the list of all possible parameter combinations, you can
use AndorSDK2Camera.get_all_amp_modes() and AndorSDK2Camera.get_max_vsspeed(). Afterwards,
you can set them using AndorSDK2Camera.set_amp_mode() and AndorSDK2Camera.set_vsspeed().

2.2. Devices overview 27

pylablib Documentation, Release 1.4.2

• The default shutter parameter is "closed". This preserves camera from possible high illumination, but can lead
to confusion, if you expect to see some image.

• This SDK does not allow for specifying number of frames in the frames buffer. However, the parameters chosen
by the SDK are usually reasonable (at least a second worth of acquisition).

• Some cameras (e.g., iXon) have lots of readout (full frame, ROI, full vertical binning, etc.) and acquisition modes
(single, continuous, accumulating, kinetic cycle, etc.). They are described in details in the manual.

Andor SDK 3

This is a newer SDK, which covers the newer cameras. It has been tested with Andor Zyla, Neo and Marana.

The code is located in pylablib.devices.Andor, and the main camera class is pylablib.devices.Andor.
AndorSDK3Camera.

Software requirements

This library requires several DLLs all located in the same folder: atcore.dll, atblkbx.dll, atcl_bitflow.dll,
atdevapogee.dll, atdevregcam.dll, atusb_libusb.dll, atusb_libusb10.dll. Same as for SDK2, pylablib
looks for DLLs in Andor Solis and Andor SDK3 folders in Program Files folder (or Program files (x86), if
32-bit version of Python is running), as well as in the folder containing the script. A custom DLLs path can be specified
using the library parameter devices/dlls/andor_sdk3:

import pylablib as pll
pll.par["devices/dlls/andor_sdk3"] = "path/to/SDK3/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK3Camera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run Andor.
get_cameras_number_SDK3:

>> from pylablib.devices import Andor
>> Andor.get_cameras_number_SDK3()
2
>> cam1 = Andor.AndorSDK3Camera(idx=0)
>> cam2 = Andor.AndorSDK3Camera(idx=1)
>> cam1.close()
>> cam2.close()

28 Chapter 2. Citation

https://andor.oxinst.com/downloads/uploads/Andor_Software_Development_Kit_2.pdf

pylablib Documentation, Release 1.4.2

Operation

The operation of these cameras is also relatively standard. They support all the standard methods for dealing with ROI
and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of
differences from the standard libraries worth highlighting:

• The SDK also provides a universal interface for getting and setting various camera attributes (called “fea-
tures” in the documentation) using their name. You can use AndorSDK3Camera.get_attribute_value()
and AndorSDK3Camera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-
like access:

>> cam = Andor.AndorSDK3Camera()
>> cam.get_attribute_value("CameraAcquiring") # check if the camera is acquiring
0
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_
→˓value("ExposureTime")
0.1

Some values serve as commands; these can be invoked using AndorSDK3Camera.call_command()method. To
see all available attributes, you can call AndorSDK3Camera.get_all_attributes() to get a dictionary with
attribute objects, and AndorSDK3Camera.get_all_attribute_values() to get the dictionary of attribute
values. The attribute objects provide additional information: their kind, whether they are implemented, readable,
or writable, what are their limits or possible values, etc:

>> cam = Andor.AndorSDK3Camera()
>> attr = cam.get_attribute("SensorTemperature")
>> attr.readable
True
>> attr.writable
False
>> (attr.min, attr.max)
(-100.0, 50.0)

The description of the attributes is given in manual.

• USB cameras can, in principle, generate data at higher rate than about 320Mb/s that the USB3 bus supports.
For example, Andor Zyla with 16 bit readout has a single full frame size of 8Mb, which puts the maximal USB
throughput at about 40FPS. At the same time, the camera itself is capable of reading up to 100FPS at the full
frame. Hence, it is possible to overflow the camera internal buffer (size on the order of 1Gb) regardless of the
PC performance. If this happens, the acquisition process halts and needs to be restarted. You can check the
number of buffer overflows using AndorSDK3Camera.get_missed_frames_status(), and reset this counter
using AndorSDK3Camera.reset_overflows_counter(); the counter is also automatically resets on acquisi-
tion clearing, but not stopping.

Furthermore, the class implements different strategies when encountering overflow while waiting for a new frame.
The specific strategy is selected using AndorSDK3Camera.set_overflow_behavior(), and it can be "error"
(raise AndorFrameTransferError, which is the default behavior), "restart" (restart the acquisition and
immediately raise timeout error), or "ignore" (ignore the overflow, which will eventually lead to a timeout
error, as the new frames are no longer generated).

Note: General camera communication concepts are described on the corresponding page.

2.2. Devices overview 29

https://andor.oxinst.com/downloads/uploads/Andor_SDK3_Manual.pdf

pylablib Documentation, Release 1.4.2

Allied Vision Bonito cameras

Allied Vision manufactures a variety of cameras with different interfaces: USB, GigE, and CameraLink. Currently,
only CameraLink Bonito cameras using NI IMAQ frame grabber are supported. It has been tested with Bonito CL-
400B/C and NI IMAQ frame grabber.

The code is located in pylablib.devices.AlliedVision, and the main camera class is pylablib.devices.
AlliedVision.BonitoIMAQCamera.

Software requirements

Since the camera control is done purely through the frame grabber interface, the requirements are the same as for
generic IMAQ cameras. However, the correct camera file still needs to be specified to determine the correct serial
communication parameters (especially the termination character)

Connection

The cameras are identified by their name, which usually looks like "img0". To get the list of all cameras, you can use
NI MAX (Measurement and Automation Explorer), or IMAQ.list_cameras():

>> from pylablib.devices import IMAQ, AlliedVision
>> IMAQ.list_cameras()
['img0']
>> cam = AlliedVision.BonitoIMAQCamera('img0')
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI
and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of
differences from the standard libraries worth highlighting:

• Bonito.BonitoIMAQCamera supports all of IMAQ.IMAQCamera features, such as trigger control and fast
buffer acquisition. Some methods have been modified to make them more convenient: e.g., Bonito.
BonitoIMAQCamera.set_roi()method sets the camera ROI and automatically adjusts the frame grabber ROI
to match.

• Internally the camera only supports vertical ROI (number of rows), so the horizontal ROI is set via the frame
grabber. This means that regardless of the horizontal ROI settings the whole rows are always transmitted between
the camera and the frame grabber, so it does not affect, e.g., the maximal frame rate.

• The camera supports a status line, which replaces the first 8 pixels in the upper row encoded frame number. You
can use AlliedVision.Bonito.get_status_lines() function to identify and extract the data in the status
lines from the supplied frames. Note that due to the full row transfer mentioned earlier, the status line is only
available if the horizontal ROI span starts from zero; otherwise, it will be partially or completely cut off.

• You can use the function AlliedVision.Bonito.check_grabber_association() to check if the given
IMAQ camera is a Bonito model by sending several standard Bonito commands and checking replies.

Note: General camera communication concepts are described on the corresponding page

30 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Basler cameras interface

Basler manufactures a wide variety of cameras, which implement GenICam-based interface through its pylon API. It
has been tested with pylon-provided emulated camera.

The code is located in pylablib.devices.Basler, and the main camera class is pylablib.devices.Basler.
BaslerPylonCamera.

Software requirements

These cameras require PylonC_vX_Y.dll (where X and Y is the pylon version, e.g., PylonC_V7_1.dll), which is
installed with the freely available upon registration Basler pylon Camera Software Suite (the current latest version is
7.1.0). After installation, the path to the DLL (for pylon 7.1.0 located by default in Basler/pylon 7/Runtime/x64
folder in Program Files) is automatically added to system PATH variable, which is one of the places where pylablib
looks for it by default. If the DLLs are located elsewhere, the path (either to the DLL file, or to the containing folder)
can be specified using the library parameter devices/dlls/basler_pylon:

import pylablib as pll
pll.par["devices/dlls/basler_pylon"] = "path/to/dlls"
from pylablib.devices import Basler
cam = Basler.BaslerPylonCamera()

Connection

The cameras are identified either by their index among the present cameras (starting from 0), or by their name. To get
the list of all cameras, you can use pylon Viewer, or Basler.list_cameras:

>> from pylablib.devices import Basler
>> Basler.list_cameras()
[TCameraInfo(name='Emulation (0815-0000)', model='Emulation', serial='0815-0000',␣
→˓devclass='BaslerCamEmu', devversion='', vendor='Basler', friendly_name='Basler␣
→˓Emulation (0815-0000)', user_name='', props={'DeviceFactory': 'CamEmu/BaslerCamEmu 7.1.
→˓0.19126', 'InterfaceID': 'DefaultInterface', 'TLType': 'CamEmu'})]
>> cam = Basler.BaslerPylonCamera() # by default, connect to the first available camera
>> cam.close()
>> cam = Basler.BaslerPylonCamera(name="Emulation (0815-0000)")
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI,
starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal in-
terface for getting and setting various camera attributes using their name. You can use BaslerPylonCamera.
get_attribute_value() and BaslerPylonCamera.set_attribute_value() for that, as well as .cav attribute
which gives a dictionary-like access:

>> cam = Basler.BaslerPylonCamera()
>> cam.get_attribute_value("StatusInformation/AcqInProgress") # check if the camera is␣
→˓acquiring
0

(continues on next page)

2.2. Devices overview 31

https://www.baslerweb.com/en/downloads/software-downloads/
https://www.baslerweb.com/en/downloads/software-downloads/software-pylon-7-1-0-windows/

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> cam.set_attribute_value("Width", 512) # set the ROI width to 512px
>> cam.cav["Width"] # get the exposure; could also use cam.get_attribute_value("Width")
512

To see all available attributes, you can call BaslerPylonCamera.get_all_attributes() to get a dictionary with
attribute objects, and BaslerPylonCamera.get_all_attribute_values() to get the dictionary of attribute values.
The attribute objects provide additional information: attribute kind (integer, enum, string, etc.), range (either numerical
range, or selection of values for enum attributes), description string, etc.:

>> cam = Basler.BaslerPylonCamera()
>> attr = cam.get_attribute("Width")
>> attr.description
'This value sets the width of the area of interest in pixels.'
>> attr.writable
True
>> (attr.min, attr.max)
(1, 4096)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a
large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI
(without binning), acquisition status, and exposure (if present). For many specific cameras you might need to explore
the attributes tree (either using the Python class and, e.g., a console, or via pylon Viewer) and operate them directly in
your code.

Known issues

• Currently only the basic unpacked monochrome pixel formats are supported: Mono8, Mono10, Mono12, Mono16,
and Mono32. The reason is that even nominally well-defined types (e.g., Mono12Packed) have different formats
for different cameras. Currently any unsupported format will raise an error on readout by default. It it still
possible to read these out as raw frame data in the form of 1D or 2D numpy 'u1' array by enabling raw frame
readout using BaslerPylonCamera.enable_raw_readout() method:

>> cam = Basler.BaslerPylonCamera()
>> cam.get_detector_size() # 1024px x 1024px frame
(1024, 1024)
>> cam.set_attribute_value("PixelFormat", "BGRA8Packed") # unsupported format
>> cam.snap().shape
...
BaslerError: pixel format BGRA8Packed is not supported
>> cam.enable_raw_readout("frame") # frame data is returned as a flat array
>> cam.snap().shape # 1024 * 1024 * 4 = 4194304 bytes
(1, 4194304)

Note: General camera communication concepts are described on the corresponding page

32 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

BitFlow Axion frame grabbers interface

BitFlow manufacturers several kinds of camera interface cards, including CameraLink. Currently, only newer Camer-
aLink Axion family is supported. It has been tested with NI BitFlow Axion 1xB frame grabbers together with Photon-
Focus MV-D1024E camera.

The code is located in pylablib.devices.BitFlow, and the main camera class is pylablib.devices.BitFlow.
BitFlowCamera.

Software requirements

This interfaces requires two pieces of software, both freely available on the BitFlow website. First, you need BitFlow
SDK 6.5, which also includes all the necessary drivers. The free version does not provide any headers and documen-
tation to the DLLs, so yo use it you also need to install the manufacturer-provided Python packages, either for Python
3.6.6, or for Python 3.8.10. Note that only these two Python versions are officially supported.

After installation, the DLL locations are automatically added to the PATH environment variable. To facilitate proper
package import and DLL loading on Python 3.8, it is recommended to install BitFlow SDK into its default library, or
at least leave BitFlow in the folder name.

Connection

The cameras are identified by their index, starting from 0. To get the list of all cameras, you can use BitFlow.
list_cameras():

>> from pylablib.devices import BitFlow
>> cam = BitFlow.BitFlowCamera(bitflow_idx=0)
>> cam.close()

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the
PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame
rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

• ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if
the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512.
Any attempts to set it higher result in the frozen acquisition, as the frame grabber expects a larger frame than it
receives, and waits forever to get the rest.

Fast buffer readout and frames merging

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there
is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating
the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations
(resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame
rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using BitFlowCamera.set_frame_format()method to set frames format to
"chunks". In this case, instead of a list of individual frames (which is the standard behavior), the method returns list
of chunks of varying size, which contain several consecutive frames.

2.2. Devices overview 33

https://www.bitflow.com/current-downloads/
https://www.bitflow.com/downloads/bfsdk65.zip
https://www.bitflow.com/downloads/bfsdk65.zip
https://www.bitflow.com/downloads/BFPython36_Release.zip
https://www.bitflow.com/downloads/BFPython36_Release.zip
https://www.bitflow.com/downloads/BFPython38_Release.zip

pylablib Documentation, Release 1.4.2

On top of that, due to unavoidable Python loop required by the BitFlow Python interface, the frame rate is usually
limited to about 2-4kFPS. However, there is a way to overcome this by merging n consecutive frames to a single “super-
frame” with n times larger height. This merging can be specified by frame_merge parameter in the BitFlowCamera.
setup_acquisition() or BitFlowCamera.start_acquisition() methods (by default it is 1, meaning no merg-
ing). Adjusting the frame grabber ROI and splitting the resulting files is done transparently for the user; the only
difference is that frames always arrive in batches, e.g., with frame_merge=10 and 10FPS rate the frames will arrive
once a second in batches of 10. Therefore, it makes sense to adjust the merging to keep the “merged” frame rate high
enough for real-time operations but lower than the 2kFPS limit (e.g., around 100FPS).

Communication with the camera and camera files

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts,
aux lines mapping, etc. This information is contained in the so-called camera files, which for Axion cameras have .
bfml extension. These files can be assigned to cameras using SysReg utility located in the Bin64 folder of your
BitFlow installation (by default, C:\BitFlow SDK 6.5\Bin64).

In addition, due to limitations of the provided Python interfaces, some operations such as changing ROI and bitness
can only be done by altering the camera file. Hence, there is an option to create a temporary camera file and alter it
to control these parameters. However, it needs the original camera file to serve as a template (this original file is only
used as source and not modified). Since there is no possibility to get a path to this file within the Python interface, it
should be provided using camfile parameter upon creation.

Known issues

• As mentioned above, ROI is defined within a frame transferred by the camera. Hence, if it includes pixels with
positions outside of the transferred frame, the acquisition will time out. For example, suppose the camera sensor
is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber is
concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI (i.e.,
512x512 starting at 256,256), it will expect at least 768x768px frame. Since the frame is, actually, 512x512px,
the acquisition will time out. The correct solution is to set frame grabber ROI from 0 to 512px on both axes. In
general, it is a good idea to always follow this pattern: control ROI only on camera, and always set frame grabber
ROI to cover the whole transfer frame.

Note: General camera communication concepts are described on the corresponding page.

DCAM cameras interface

DCAM is the interface used in Hamamatsu cameras. It has been tested with Hamamatsu Orca Flash and ImagEM.

The code is located in pylablib.devices.DCAM , and the main camera class is pylablib.devices.DCAM.
DCAMCamera.

34 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Software requirements

These cameras require dcamapi.dll, which is installed with most of Hamamatsu software (such as HoKaWo or HiPic),
as well as with the freely available DCAM API, which also includes all the necessary drivers. Keep in mind, that you
also need to install the drivers for required corresponding camera type (USB, Ethernet, IEEE 1394). These drivers are
in the same installer, but need to be installed separately. You should also pay attention to the cameras supported by
the given DCAM driver version, since newer version do not support older cameras (e.g., ImageEM C9100 cameras are
only supported up to version 15). After installation, the DLL is automatically added to the System32 folder, where
pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter
devices/dlls/dcamapi:

import pylablib as pll
pll.par["devices/dlls/dcamapi"] = "path/to/dlls"
from pylablib.devices import DCAM
cam = DCAM.DCAMCamera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run DCAM.
get_cameras_number():

>> from pylablib.devices import DCAM
>> DCAM.get_cameras_number()
2
>> cam1 = DCAM.DCAMCamera(idx=0)
>> cam2 = DCAM.DCAMCamera(idx=1)
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and
exposure, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal
interface for getting and setting various camera attributes (called “properties” in the documentation) using their name.
You can use DCAMCamera.get_attribute_value() and DCAMCamera.set_attribute_value() for that, as well
as .cav attribute which gives a dictionary-like access:

>> cam = DCAM.DCAMCamera()
>> cam.get_attribute_value("BINNING") # get the camera binning (no binning, by default)
1
>> cam.set_attribute_value("EXPOSURE TIME", 0.1) # set the exposure to 100ms
>> cam.cav["EXPOSURE TIME"] # get the exposure; could also use cam.get_attribute_value(
→˓"EXPOSURE TIME")
0.1

To see all available attributes, you can call DCAMCamera.get_all_attributes() to get a dictionary with attribute
objects, and DCAMCamera.get_all_attribute_values() to get the dictionary of attribute values, with an option
of representing enum attributes either as text or as integer values. The attribute objects provide additional information:
attribute range, step, and units:

2.2. Devices overview 35

https://dcam-api.com/

pylablib Documentation, Release 1.4.2

>> cam = DCAM.DCAMCamera()
>> attr = cam.get_attribute("EXPOSURE TIME")
>> (attr.min, attr.max)
(0.001, 10.0)

Additionally, there’s a couple of differences from the standard libraries worth highlighting:

• The library supports only symmetric binning, i.e., the binning factor is the same in both directions. For compat-
ibility DCAMCamera.get_roi() and DCAMCamera.set_roi() still return and accept both binning parameters
independently, but they are always the same when returned, and vbin is ignored when set.

• By default, the SDK does not provide independent control of the frame period and the exposure. Hence,
set_frame_period method is unavailable, and the frame rate is defined solely by the exposure.

Note: General camera communication concepts are described on the corresponding page

NI IMAQ frame grabbers interface

NI IMAQ is the interface from National Instruments, which is used in a variety of frame grabbers. It has been tested
with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

The code is located in pylablib.devices.IMAQ , and the main camera class is pylablib.devices.IMAQ.
IMAQCamera.

Software requirements

This interfaces requires imaq.dll, which is installed with the freely available Vision Acquisition Software, which also
includes all the necessary drivers. After installation, the DLL is automatically added to the System32 folder, where
pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter
devices/dlls/niimaq:

import pylablib as pll
pll.par["devices/dlls/niimaq"] = "path/to/dlls"
from pylablib.devices import IMAQ
cam = IMAQ.IMAQCamera()

Connection

The cameras are identified by their name, which usually looks like "img0". To get the list of all cameras, you can use
NI MAX (Measurement and Automation Explorer), or IMAQ.list_cameras():

>> from pylablib.devices import IMAQ
>> IMAQ.list_cameras()
['img0', 'img1']
>> cam1 = IMAQ.IMAQCamera('img0')
>> cam2 = IMAQ.IMAQCamera('img1')
>> cam1.close()
>> cam2.close()

36 Chapter 2. Citation

https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html

pylablib Documentation, Release 1.4.2

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the
PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame
rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

• External trigger controls frame transfer, not frame acquisition, which is defined by the camera. By default, when
the internal frame grabber trigger is used, the frame grabber transfer rate is synchronized to the camera, so every
frame gets transferred. However, if the external transfer trigger is used and it is out of sync with the camera, it
can result in duplicate or missing frames.

• ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if
the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512.
Any attempts to set it higher result in the frozen acquisition, as the frame grabber expects a larger frame than it
receives, and waits forever to get the rest.

The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can
use IMAQCamera.get_grabber_attribute_value() and IMAQCamera.set_grabber_attribute_value() for
that:

>> cam = IMAQ.IMAQCamera()
>> cam.get_grabber_attribute_value("FRAMEWAIT_MSEC") # frame read request timeout
1000

To get a all available attributes as a dictionary, you can call IMAQCamera.get_all_grabber_attribute_values().
Their meaning, as well as descriptions of trigger modes and other settings, is explained in the manual supplied with
the Vision Acquisition Software.

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there
is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating
the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations
(resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame
rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using IMAQCamera.set_frame_format() method to set frames format to
"chunks" (former way of supplying fastbuff=True in IMAQCamera.read_multiple_images() is now depre-
cated). In this case, instead of a list of individual frames (which is the standard behavior), the method returns list of
chunks about 1Mb in size, which contain several consecutive frames.

Communication with the camera and camera files

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts,
aux lines mapping, etc. In NI MAQ this information is contained in the so-called camera files. These files can be
assigned to cameras in the NI MAX, and are usually supplied by NI or by the camera manufacturer. In addition, NI
MAX allows one to adjust some settings within these files, which are read-only within the NI IMAQ software. These
include frame timeout and camera bit depth.

The communication with the camera itself greatly varies between different cameras. Some will have additional connec-
tion to control the parameters. Others use serial communication built into the CameraLink interface. This communi-
cation can be set up with IMAQCamera.setup_serial_params() and used via IMAQCamera.serial_read() and
IMAQCamera.serial_write(). The communication protocols are camera-dependent, and are frequently described
in the camera manual. However, some other cameras (e.g., Photon Focus) use proprietary communication protocol. In

2.2. Devices overview 37

https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html

pylablib Documentation, Release 1.4.2

this case, they provide their own DLLs, which independently use NI-provided DLLs for serial communication (most
notably, clallserial.dll) to communicate with the camera. In this case, one needs to maintain two independent
connections: one directly to the NI frame grabber to obtain the frame data, and one to the manufacturer library to
control the camera. This is the way it is implemented in PhotonFocus camera interface.

Known issues

• Sometimes when the acquisition is stopped and restarted without being cleared, the acquired frame counter does
not refresh. This might show up as the software not reporting any new frames. It has been tracked down to a
very low (~1ms) frame read timeout. Hence, it is recommended to keep this timeout at least at 500ms.

• If you are unable to access full camera sensor size, check the camera file (it can be opened in the text editor).
MaxImageSize parameter defines the maximal allowed image size, and it should be equal to the camera sensor
size.

• Same goes for bitness. If the camera bitness is higher than set up in the frame grabber, a single camera pixel gets
treated as several pixels by the frame grabber, typically resulting in 1px-wide vertical stripes on the image. In
the opposite case, the frame grabber expects more bytes than the camera sends, it never receives the full frame,
and the acquisition times out.

• Keep in mind that as long as the frame grabber is accessed in NI MAX, it is blocked from use in any other
software. Hence, you need to close NI MAX before running your code.

• As mentioned above, ROI is defined within a frame transferred by the camera. Hence, if it includes pixels with
positions outside of the transferred frame, the acquisition will time out. For example, suppose the camera sensor
is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber is
concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI (i.e.,
512x512 starting at 256,256), it will expect at least 768x768px frame. Since the frame is, actually, 512x512px,
the acquisition will time out. The correct solution is to set frame grabber ROI from 0 to 512px on both axes. In
general, it is a good idea to always follow this pattern: control ROI only on camera, and always set frame grabber
ROI to cover the whole transfer frame.

• Some frame grabbers have a limit on the data transfer rate (for one model observed to be about 200 Mb/s). If
the camera data generation rate exceeds it (e.g., it produces 1024x1024px 16-bit frames at >100FPS), then the
camera will raise IMG_ERR_FIFO error shortly after the acquisition start. In this case, you will need to reduce
the data rate by reducing the frame rate or frame size (through ROI, binning, or bitness).

Note: General camera communication concepts are described on the corresponding page

NI IMAQdx cameras interface

NI IMAQdx is the interface provided by National Instruments and which supports a wide variety of cameras. It is
completely separate from IMAQ, and it supports different communication interfaces: USB, Ethernet and FireWire. It
has been tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

The code is located in pylablib.devices.IMAQdx, and the main camera class is pylablib.devices.IMAQdx.
IMAQdxCamera.

38 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Software requirements

These cameras require imaqdx.dll, which is installed with the freely available Vision Acquisition Software. However,
the IMAQdx part of the software is proprietary, and requires purchase to use. If the software license is invalid, then
any attempt to communicate with cameras will result in License not activated error (although simply listing the
cameras still works). After installation, the DLL is automatically added to the System32 folder, where pylablib looks
for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/
niimaqdx:

import pylablib as pll
pll.par["devices/dlls/niimaqdx"] = "path/to/dlls"
from pylablib.devices import IMAQdx
cam = IMAQdx.IMAQdxCamera()

Connection

The cameras are identified by their name, which usually looks like "cam0". To get the list of all cameras, you can use
NI MAX (Measurement and Automation Explorer), or IMAQdx.list_cameras():

>> from pylablib.devices import IMAQdx
>> IMAQdx.list_cameras()
['cam0', 'cam1']
>> cam1 = IMAQdx.IMAQdxCamera('cam0')
>> cam2 = IMAQdx.IMAQdxCamera('cam1')
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, start-
ing and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for get-
ting and setting various camera attributes using their name. You can use IMAQdxCamera.get_attribute_value()
and IMAQdxCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_attribute_value("StatusInformation/AcqInProgress") # check if the camera is␣
→˓acquiring
0
>> cam.set_attribute_value("Width", 512) # set the ROI width to 512px
>> cam.cav["Width"] # get the exposure; could also use cam.get_attribute_value("Width")
512

To see all available attributes, you can call IMAQdxCamera.get_all_attributes() to get a dictionary with attribute
objects, and IMAQdxCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute
objects provide additional information: attribute kind (integer, enum, string, etc.), range (either numerical range, or
selection of values for enum attributes), description string, etc.:

>> cam = IMAQdx.IMAQdxCamera()
>> attr = cam.get_attribute("Width")
>> attr.description
'Width of the Image provided by the device (in pixels).'

(continues on next page)

2.2. Devices overview 39

https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> attr.writable
True
>> (attr.min, attr.max)
(448, 1312)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a large
range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI (without
binning) and acquisition status. For many specific cameras you might need to explore the attributes tree (either using
the Python class and, e.g., a console, or via NI MAX) and operate them directly in your code.

Known issues

• It seems like sometimes the camera communication settings might be interfering with its operation. It can show
up in an unexpected way, e.g., as an Attribute value is out of range error when starting acquisition. If
it looks like this might be the case, it is a good idea to open the camera in NI MAX (note that Ethernet cameras
are listed under Network Devices, not in the general device list) and try to snap a single frame. NI MAX might
report some problems with the settings and suggest resolution methods. Once the camera is operational, you can
close NI MAX and save the camera settings (request is shown upon closing).

• In general, Ethernet cameras work better with larger packet sizes. However, packets above 1500 bits (so-called
jumbo packets) are not supported by all network adapters by default. If this is the case, any attempt to acquire
images causes IMAQdxErrorTestPacketNotReceived error. One way to deal with that is to set the packet
size to 1500, which is done automatically when small_packet=True is supplied upon the camera creation.
The other is to enable jumbo packets in the adapter properties (in Windows this is done in Device Manager).

• Currently only the basic unpacked monochrome pixel formats are supported: Mono8, Mono10, Mono12, Mono16,
and Mono32. The reason is that even nominally well-defined types (e.g., Mono12Packed) have different formats
for different cameras. Currently any unsupported format will raise an error on readout by default. It it still
possible to read these out as raw frame data in the form of 1D or 2D numpy 'u1' array by enabling raw frame
readout using IMAQdxCamera.enable_raw_readout() method:

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_detector_size() # 1280px x 1024px frame
(1280, 1024)
>> cam.set_attribute_value("PixelFormat", "BGRA 8 Packed") # unsupported format
>> cam.snap().shape
...
IMAQdxError: pixel format BGRA 8 Packed is not supported
>> cam.enable_raw_readout("frame") # frame data is returned as a flat array
>> cam.snap().shape # 1280 * 1024 * 4 = 5242880 bytes
(5242880,)

Note: General camera communication concepts are described on the corresponding page.

40 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Photon Focus pfcam interface

Photon Focus CameraLink cameras transfer their data to the PC using frame grabbers (e.g., via NI IMAQ or Silicon
Software interfaces). Hence, the camera control is done through the serial port built into the CameraLink interface.
However, the cameras use a closed binary protocol, so all the control is done through the pfcam library provided by Pho-
ton Focus. It relies on the libraries exposed by the frame grabber manufacturers (e.g., the standard cl*serial.dll) to
communicate with the camera directly, meaning that the pfcam user simply calls its method, and all the communication
happens behind the scenes.

In principle, pfcam can work with any frame grabber. Because of that, there are two different kinds of classes for
this camera. To start with, there is .PhotonFocus.IPhotonFocusCamera, which provides interface for addressing
camera properties, but can not handle actual frame acquisition. Using this class directly leads to errors in any frame data
related methods (e.g., wait_for_frame, or read_multiple_images), and it is mostly intended to serve as a base
class to be combined with the actual frame grabber. Two such combined classes are already provided: .PhotonFocus.
PhotonFocusIMAQCamera for National Instruments frame grabbers using the NI IMAQ interface, .PhotonFocus.
PhotonFocusSiSoCamera for Silicon Software frame grabbers, and .PhotonFocus.PhotonFocusBitFlowCamera
for BitFlow frame grabbers. All classes are complete and ready to use. In addition to combining camera and frame
grabber control, they also implement basic consistency support, such as automatic adjustment of frame grabber ROI
and data transfer format.

Software requirements

These cameras require pfcam.dll, which is installed with freely available (upon registration) PFInstaller. In addition,
this DLL requires comdll.dll and the DLLs referring to a particular camera, e.g., mv_d1024e_160.dll. After
installation, the path to the DLLs (all located by default in Photonfocus/PFRemote/bin folder in Program Files)
is automatically added to system PATH variable, which is one of the places where pylablib looks for it by default. If the
DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/pfcam:

import pylablib as pll
pll.par["devices/dlls/pfcam"] = "path/to/dlls"
from pylablib.devices import PhotonFocus
cam = PhotonFocus.PhotonFocusIMAQCamera()

Connection

The camera class requires two pieces of information. First is the frame grabber interface connection, e.g., NI IMAQ
interface name (e.g., "img0") identified as described in the NI IMAQ documentation, or Silicon Software board and
applet described in Silicon Software documentation. The second piece of information is the pfcam port, which is either
a number starting from zero indexing the port in the ports list, or a tuple (manufacturer, port), e.g., ("National
Instruments", "port0"). To list all of the connected pfcam-compatible cameras, you can use the PFRemote soft-
ware (the interface number is given in parentheses after every connection option in the list) or run PhotonFocus.
list_cameras():

>> from pylablib.devices import PhotonFocus, IMAQ
>> IMAQ.list_cameras() # get all IMAQ frame grabber devices
['img0.iid']
>> PhotonFocus.list_cameras() # by default, get only the ports which support pfcam␣
→˓interface
[(1, TCameraInfo(manufacturer='National Instruments', port='port0', version=5, type=0))]
>> cam = PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name="img0.iid", pfcam_port=(
→˓"National Instruments", "port0"))
>> cam.close()

(continues on next page)

2.2. Devices overview 41

https://www.photonfocus.com/support/software/

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> cam = PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name="img0.iid", pfcam_
→˓port=1) # same effect as above
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI
and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of
differences from the standard libraries worth highlighting:

• The SDK also provides a universal interface for getting and setting various camera attributes (called “properties”
in the documentation) using their name. You can use IPhotonFocusCamera.get_attribute_value() and
IPhotonFocusCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-
like access:

>> cam = PhotonFocus.PhotonFocusIMAQCamera()
>> cam.get_attribute_value("Window/W") # get the ROI width
256
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_
→˓value("ExposureTime")
0.1

Some values (e.g., Window.Max or Reset) serve as commands; these can be invoked using
PhotonFocusIMAQCamera.call_command() method. To see all available attributes, you can call
IPhotonFocusCamera.get_all_attributes() to get a dictionary with attribute objects, and
IPhotonFocusCamera.get_all_attribute_values() to get the dictionary of attribute values. The
attribute objects provide additional information: attribute range, step, and units:

>> cam = PhotonFocus.PhotonFocusIMAQCamera()
>> attr = cam.get_attribute("Window/W")
>> attr.writable
True
>> (attr.min, attr.max)
(16, 1024)

• PhotonFocus.PhotonFocusIMAQCamera supports all of IMAQ.IMAQCamera features, such as trigger con-
trol and fast buffer acquisition. Some methods have been modified to make them more convenient: e.g.,
PhotonFocusIMAQCamera.set_roi() method sets the camera ROI and automatically adjusts the frame grab-
ber ROI to match.

• Same is true for PhotonFocus.PhotonFocusSiSoCamera, which, e.g., provides access to all of the frame
grabber variables.

• The camera supports a status line, which replaces the bottom one or two rows of the frame with encoded frame-
related data such as frame number and timestamp. You can use PhotonFocus.get_status_lines() func-
tion to identify and extract the data in the status lines from the supplied frames. In addition, you can use
PhotonFocus.remove_status_line() to remove the status lines in several possible ways: zeroing out, mask-
ing with the previous frame, cutting off entirely, etc.

• If several PhotonFocus cameras are connected, you need to correctly associate different PFCam ports
with the corresponding frame grabbers. To do that, you can use the function PhotonFocus.
check_grabber_association().

42 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Note: General camera communication concepts are described on the corresponding page

PCO SC2 cameras interface

SC2 is the interface used with PCO cameras. It has been tested with pco.edge cameras with CLHS and regular Cam-
eraLink interfaces, and with pco.pixelfly usb cameras. A detailed description of the interface is given in the manual.

The code is located in pylablib.devices.PCO , and the main camera class is pylablib.devices.PCO.
PCOSC2Camera.

Software requirements

These cameras require SC2_Cam.dll, which is installed with the freely available pco.camware and pco.sdk tools.
By default, the library searches for DLLs in Digital Camera Toolbox/Camware4 and PCO Digital Camera
Toolbox/pco.sdk/bin folder in Program Files folder (or Program files (x86), if 32-bit version of Python
is running), as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified
using the library parameter devices/dlls/pco_sc2:

import pylablib as pll
pll.par["devices/dlls/pco_sc2"] = "path/to/dlls"
from pylablib.devices import PCO
cam = PCO.PCOSC2Camera()

Connection

The cameras are identified by their index, starting from zero, and, possibly, by their interface. To get the total number
of connected cameras, you can run PCO.get_cameras_number:

>> from pylablib.devices import PCO
>> PCO.get_cameras_number()
2
>> cam1 = PCO.PCOSC2Camera(idx=0)
>> cam2 = PCO.PCOSC2Camera(idx=1)
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and
exposure, starting and stopping acquisition, and operating the frame reading loop. The class also provides read-access
to all of the relevant camera data using PCOSC2Camera.get_full_camera_data(). This method returns data in the
internal manufacturer format; to interpret it, you should consult the manual.

2.2. Devices overview 43

https://www.pco.de/fileadmin/fileadmin/user_upload/pco-manuals/pco.sdk_manual.pdf
https://www.pco.de/software/camera-control-software/pcocamware/
https://www.pco.de/software/development-tools/pcosdk/
https://www.pco.de/fileadmin/fileadmin/user_upload/pco-manuals/pco.sdk_manual.pdf

pylablib Documentation, Release 1.4.2

Known issues

• Some cameras support only ROIs which are symmetric with respect to vertical flip. In other words, if the camera
detector has vertical size of 2160px, the vertical ROI should always have the form (x0, 2160-x0). It is still
possible to set non-symmetric ROI, but it is achieved by the software clipping, while the camera still reads out
the smallest symmetric ROI contained the selected one. As a result, the readout time for the same ROI size
strongly depends on the ROI position. For example, while vertical ROI of (0, 8) has only 8 pixel rows, it is not
symmetric, and requires reading the whole frame; hence, it will be as slow as the full-frame acquisition. On the
other hand, ROI of (1076, 1084) is symmetric, so the camera does read out only 8 rows. This results in vastly
faster readout time. You can use PCOSC2Camera.requires_symmetric_roi() to check if the symmetric ROI
is required.

Note: General camera communication concepts are described on the corresponding page

Princeton Instruments Picam cameras

Picam is the interface provided by Teledyne Princeton Instruments and which supports a set of their cameras. It has
been tested with PIXIS 400 camera.

The code is located in pylablib.devices.PrincetonInstruments, and the main camera class is pylablib.
devices.PrincetonInstruments.PicamCamera.

Software requirements

These cameras require picam.dll, which is installed with the freely available PICam software. By default, the library
searches for DLLs in Princeton Instruments/PICam/Runtime folder in Program Files folder (or Program
files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLL is
located elsewhere, the path can be specified using the library parameter devices/dlls/picam:

import pylablib as pll
pll.par["devices/dlls/picam"] = "path/to/dlls"
from pylablib.devices import PrincetonInstruments
cam = PrincetonInstruments.PicamCamera()

Connection

The cameras are identified by their serial number, which can look like "2800000001". To get the list of all cameras,
you can use .PrincetonInstruments.list_cameras:

>> from pylablib.devices import PrincetonInstruments
>> PrincetonInstruments.list_cameras()
[TCameraInfo(name='E2V 1340 x 400 (CCD 36)(B)(R)', serial_number='2800000001', model=
→˓'PIXIS: 400BR', interface='USB 2.0'),
TCameraInfo(name='E2V 1340 x 400 (CCD 36)(B)(R)', serial_number='2800000002', model=
→˓'PIXIS: 400BR', interface='USB 2.0')]
>> cam1 = PrincetonInstruments.PicamCamera('2800000001')
>> cam2 = PrincetonInstruments.PicamCamera('2800000002')
>> cam1.close()
>> cam2.close()

44 Chapter 2. Citation

https://www.princetoninstruments.com/products/software-family/pi-cam

pylablib Documentation, Release 1.4.2

If no serial number is supplied, the first available camera is connected.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI,
starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for
getting and setting various camera attributes using their name. You can use PicamCamera.get_attribute_value()
and PicamCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = PrincetonInstruments.PicamCamera()
>> cam.get_attribute_value("Pixel Format") # get the current pixel format
'Monochrome 16-bit'
>> cam.set_attribute_value("Exposure Time", 10) # set the exposure time to 10 ms
>> cam.cav["Exposure Time"] # get the exposure; could also use cam.get_attribute_value(
→˓"Exposure Time")
10.0

To see all available attributes, you can call PicamCamera.get_all_attributes() to get a dictionary with attribute
objects, and PicamCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute
objects provide additional information: attribute kind (integer, enum, float, etc.), range (either numerical range, or
selection of values for enum attributes), default value, etc.:

>> cam = PrincetonInstruments.PicamCamera()
>> attr = cam.get_attribute("Exposure Time")
>> attr.default
100.0
>> attr.writable
True
>> (attr.min, attr.max)
(0.0, 8355840.0)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a
large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI
(without binning), exposure, and acquisition status. For many specific cameras you might need to explore the attributes
tree using the Python class and operate them directly in your code.

Known issues

• Frame period obtained using PicamCamera.get_frame_period() can be an underestimate (i.e., it can over-
estimate the frame rate).

• While the cameras support multiple ROIs, only single-ROI readout is currently supported.

• Changing readout mode ("Readout Control Mode") to "Kinetics" might invalidate the current ROI, if it
was originally too large. Therefore, you would need to call set_roi again after setting this mode.

• In principle, the cameras support a variety of different metainfos which can be enabled or disabled separately.
However, for simplicity only two modes are supported in the camera class: either no metainfo, or full “standard”
metainfo (frame stamp, and start and stop timestamps). Any time the metainfo is enabled, disabled, or queried,
it is automatically “truncated” to one of these two modes.

Note: General camera communication concepts are described on the corresponding page

2.2. Devices overview 45

pylablib Documentation, Release 1.4.2

Photometrics PVCAM cameras

PVCAM is the interface provided by Teledyne Photometrics and which supports a set of their cameras. It has been
tested with Prime 95B camera.

The code is located in pylablib.devices.Photometrics, and the main camera class is pylablib.devices.
Photometrics.PvcamCamera.

Software requirements

These cameras require pvcam32.dll or pvcam64.dll, which is installed with the freely available (upon registration)
PVCAM software. By default, the library searches for DLL is automatically added to the System32 folder, where
pylablib looks for them by default. If the DLL is located elsewhere, the path can be specified using the library parameter
devices/dlls/pvcam:

import pylablib as pll
pll.par["devices/dlls/pvcam"] = "path/to/dlls"
from pylablib.devices import Photometrics
cam = Photometrics.PvcamCamera()

Connection

The cameras are identified by their name, which can look like "PMUSBCam00". To get the list of all cameras, you can
use .Photometrics.list_cameras:

>> from pylablib.devices import Photometrics
>> Photometrics.list_cameras()
['PMUSBCam00', 'PMUSBCam01']
>> cam1 = Photometrics.PvcamCamera('PMUSBCam00')
>> cam2 = Photometrics.PvcamCamera('PMUSBCam01')
>> cam1.close()
>> cam2.close()

If no name is supplied, the first camera in the list is connected.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI,
starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for
getting and setting various camera attributes using their name. You can use PvcamCamera.get_attribute_value()
and PvcamCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = Photometrics.PvcamCamera()
>> cam.get_attribute_value("EXPOSURE_MODE") # get the current exposure mode
'Internal Trigger'
>> cam.set_attribute_value("METADATA_ENABLED", True) # enable frame metadata
>> cam.cav["METADATA_ENABLED"] # check if metadata is enabled; could also use cam.get_
→˓attribute_value("METADATA_ENABLED")
True

To see all available attributes, you can call PvcamCamera.get_all_attributes() to get a dictionary with attribute
objects, and PvcamCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute

46 Chapter 2. Citation

https://www.photometrics.com/support/download/pvcam

pylablib Documentation, Release 1.4.2

objects provide additional information: attribute kind (integer, enum, float, etc.), range (either numerical range, or
selection of values for enum attributes), default value, etc.:

>> cam = Photometrics.PvcamCamera()
>> attr = cam.get_attribute("EXPOSURE_TIME")
>> attr.default
0
>> attr.readable
True
>> (attr.min, attr.max)
(0, 10000)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a
large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI
(without binning), exposure, and acquisition status. For many specific cameras you might need to explore the attributes
tree using the Python class and operate them directly in your code.

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there
is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating
the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations
(resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame
rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using PvcamCamera.set_frame_format() method to set frames format to
"chunks". In this case, instead of a list of individual frames (which is the standard behavior), the method returns list
of chunks, which contain several consecutive frames.

Known issues

• Frame period obtained using PvcamCamera.get_frame_period() can be an underestimate (i.e., it can over-
estimate the frame rate), especially for USB-connected devices.

• While the cameras support multiple ROIs, only single-ROI readout is currently supported.

• Exposure time, exposure mode, and ROI are configured using special methods separately from other camera
attributes. Therefore, their corresponding attributes are read-only.

• Not all horizontal and vertical binning combinations are supported. The allowed combinations can be queries
using PvcamCamera.get_supported_binning_modes(). If the combination is not supported, it is truncated
down to the smallest supported one.

Note: General camera communication concepts are described on the corresponding page

2.2. Devices overview 47

pylablib Documentation, Release 1.4.2

Silicon Software frame grabbers interface

Silicon Software produces a range of frame grabbers, which can be used to control different cameras with a CameraLink
interface. It has been tested with microEnable IV AD4-CL frame grabber together with PhotonFocus MV-D1024E
camera.

The code is located in pylablib.devices.SiliconSoftware, and the main camera class is pylablib.devices.
SiliconSoftware.SiliconSoftwareCamera.

Software requirements

This interfaces requires fglib5.dll, which is installed with the freely available (upon registration) Silicon Soft-
ware Runtime Environment (the newest version for 64-bit Windows is 5.7.0), which also includes all the necessary
drivers. After installation, the path to the DLL (located by default in SiliconSoftware/Runtime5.7.0/bin folder
in Program Files) is automatically added to system PATH variable, which is one of the places where pylablib looks
for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/
sisofgrab:

import pylablib as pll
pll.par["devices/dlls/sisofgrab"] = "path/to/dlls"
from pylablib.devices import SiliconSoftware
cam = SiliconSoftware.SiliconSoftwareCamera()

Connection

Figuring out the connection parameters is a multi-stage process. First, one must identify one of several boards. The
boards can be identified using SiliconSoftware.list_boards function. Second, one must select an applet. These
provide different board readout modes and, for Advanced Applets, various post-processing capabilities. These ap-
plets can be identified using SiliconSoftware.list_applets method, or directly from the Silicon Software RT
microDisplay software supplied with the runtime. The choice depends on the color mode (color vs. gray-scale and
different bitness), readout mode (area or line), and camera connection (single, double, or quad). Finally, depending on
the board and the camera connection, one of several ports must be selected. For example, if the frame grabber has two
connectors, but the camera only uses a single interface, then the double camera applet (e.g., DualAreaGray16) must
be selected, and the port should specify the board connector (0 for A, 1 for B):

>> from pylablib.devices import SiliconSoftware
>> SiliconSoftware.list_boards() # first list the connected boards
[TBoardInfo(name='mE4AD4-CL', full_name='microEnable IV AD4-CL')]
>> SiliconSoftware.list_applets(0) # list all applets on the first board
[...,
TAppletInfo(name='DualAreaGray16', file='DualAreaGray16.dll'),
...]
>> cam = SiliconSoftware.SiliconSoftwareCamera(0, 'DualAreaGray16') # connect to the␣
→˓first board (port 0 by default)
>> cam.close()

Note that currently the code is organized in such a way, that only one port on a single board can be in use at one time.

48 Chapter 2. Citation

https://www.baslerweb.com/en/sales-support/downloads/software-downloads/#type=framegrabbersoftware;language=all;version=all;os=windows64bit
https://www.baslerweb.com/en/sales-support/downloads/software-downloads/#type=framegrabbersoftware;language=all;version=all;os=windows64bit
https://www.baslerweb.com/en/sales-support/downloads/software-downloads/complete-installation-for-windows-64bit-ver-5-7-0/

pylablib Documentation, Release 1.4.2

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the
PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame
rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

• External trigger controls frame transfer, not frame acquisition, which is defined by the camera. By default, when
the internal frame grabber trigger is used, the frame grabber transfer rate is synchronized to the camera, so every
frame gets transferred. However, if the external transfer trigger is used and it is out of sync with the camera, it
can result in duplicate or missing frames.

• ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if
the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512.
Any attempts to set it higher result in frame being misshapen or having random data outside of the image area.

The SDK also provides a universal interface for getting and setting various attributes using their name.
You can use SiliconSoftwareCamera.get_grabber_attribute_value() and SiliconSoftwareCamera.
set_grabber_attribute_value() for that, as well as .gav attribute which gives a dictionary-like access:

>> cam = SiliconSoftware.SiliconSoftwareCamera()
>> cam.get_grabber_attribute_value("CAMERA_LINK_CAMTYP") # get the camera data format
'FG_CL_SINGLETAP_8_BIT'
>> cam.set_grabber_attribute_value("WIDTH", 512) # set the readout frame width to 512px
>> cam.gav["WIDTH"] # get the width; could also use cam.get_grabber_attribute_value(
→˓"WIDTH")
512

To see all available attributes, you can call SiliconSoftwareCamera.get_all_grabber_attributes() to get a
dictionary with attribute objects, and SiliconSoftwareCamera.get_all_grabber_attribute_values() to get
the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, string,
etc.), range (either numerical range, or selection of values for enum attributes), description string, etc.:

>> cam = SiliconSoftware.SiliconSoftwareCamera()
>> attr = cam.get_grabber_attribute("BITALIGNMENT")
>> attr.values
{1: 'FG_LEFT_ALIGNED', 0: 'FG_RIGHT_ALIGNED'}

The parameter can also be inspected in the Silicon Software RT microDisplay software.

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there
is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating
the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations
(resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame
rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using SiliconSoftwareCamera.set_frame_format() method to
set frames format to "chunks" (former way of supplying fastbuff=True in SiliconSoftwareCamera.
read_multiple_images() is now deprecated). In this case, instead of a list of individual frames (which is the
standard behavior), the method returns list of chunks about 1Mb in size, which contain several consecutive frames.

2.2. Devices overview 49

pylablib Documentation, Release 1.4.2

Communication with the camera

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts,
aux lines mapping. This information can be specified using the grabber attributes. The most important transfer parame-
ters are the number of taps and the bitness of the transferred data, which can be set up using SiliconSoftwareCamera.
setup_camlink_pixel_format(). The values for this parameters can usually be obtained from the camera manuals.

Known issues

• The maximal frame rate is limited for some boards (at least for the tested microEnable IV AD4-CL board) by
about 20kFPS. It seems to be relatively independent of the frame size, i.e., it is not the data transfer rate issue.
One possible way to get around it is to use line readout applet, e.g., DualLineGray16, and set the frame height to
be the integer multiple of the camera frame. This will combine several camera frames into a single frame-grabber
frame, effectively lowering the frame rate at avoiding the issue. However, this sometimes leads to incorrect frame
splitting: the top line of the “combined” frame does not coincide with the top line of the original camera frame,
so all frames are shifted cyclically by some number of rows. Hence, it might require some post-processing with
frames merging and re-splitting.

• As mentioned above, ROI is defined within a frame transferred by the camera. Therefore, if it includes pixels
with positions outside of the transferred frame, the acquisition will be faulty. For example, suppose the camera
sensor is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber
is concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI
(i.e., 512x512 starting at 256,256), it will expect 768x768px frame. Since the frame is, actually, 512x512px, the
returned frame will partially contain random data. The correct solution is to set frame grabber ROI from 0 to
512px on both axes. In general, it is a good idea to always follow this pattern: control ROI only on camera, and
always set frame grabber ROI to cover the whole transfer frame.

Note: General camera communication concepts are described on the corresponding page

Thorlabs Scientific Cameras interface

This is the interface used in Thorlabs scientific sCMOS cameras such as Kiralux or Zelux. It has been tested with
Thorlabs Kiralux camera.

The code is located in pylablib.devices.Thorlabs, and the main camera class is pylablib.devices.
Thorlabs.ThorlabsTLCamera.

Software requirements

These cameras require thorlabs_tsi_camera_sdk.dll, as well as several additional DLLs:
thorlabs_unified_sdk_kernel.dll, thorlabs_unified_sdk_main.dll, thorlabs_tsi_usb_driver.
dll, thorlabs_tsi_usb_hotplug_monitor.dll, thorlabs_tsi_cs_camera_device.dll, tsi_sdk.dll,
tsi_usb.dll. All of them is automatically installed with the freely available ThorCam tools. By default, the library
searches for DLLs in Thorlabs/Scientific Imaging/ThorCam folder in Program Files folder (or Program
files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLLs are
located elsewhere, the path can be specified using the library parameter devices/dlls/thorlabs_tlcam:

import pylablib as pll
pll.par["devices/dlls/thorlabs_tlcam"] = "path/to/dlls"

(continues on next page)

50 Chapter 2. Citation

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam

pylablib Documentation, Release 1.4.2

(continued from previous page)

from pylablib.devices import Thorlabs
cam = Thorlabs.ThorlabsTLCamera()

Connection

The cameras are identified by their serial number. To list all of the connected cameras, you can run Thorlabs.
list_cameras_tlcam :

>> from pylablib.devices import Thorlabs
>> Thorlabs.list_cameras_tlcam()
['12001', '12002']
>> cam1 = Thorlabs.ThorlabsTLCamera(serial="12001")
>> cam2 = Thorlabs.ThorlabsTLCamera(serial="12002")
>> cam1.close()
>> cam2.close()

If no serial is provided, the software connects to the first available camera.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and
exposure, starting and stopping acquisition, and operating the frame reading loop.

For color cameras, several readout modes are available, which can be set up using ThorlabsTLCamera.
set_color_format()method. By default, the color cameras output the frames in the linear RGB format (each frame
is a 3D array with the last axis encoding color channel).

Warning: The library appears to be not entirely stable: every time acquisition start is issued, there is small (0.1-
1%) chance that it will not actually start, which results in timeout errors. Furthermore, there are occasional crashes
on the SDK unloading (i.e., camera closing), especially when acquisition has been started and stopped multiple
times. It is unclear, what is the cause of this behavior, but it seems to originate from the manufacturer’s DLL (bare-
bones example and the native Python library reproduce this behavior). Hence, it might be different with different
DLL versions.

Note: The DLL prints some debug information in the console when camera list is requested and when the camera is
opened. At the moment, it is unclear how to get rid of it.

Note: General camera communication concepts are described on the corresponding page

2.2. Devices overview 51

pylablib Documentation, Release 1.4.2

Uc480/uEye camera interface

This is the interface used in multiple cameras, including many simple Thorlabs and IDS cameras. It has been tested
with IDS SC2592R12M and Thorlabs DCC1545M.

Essentially identical interface is available under two different implementations: either as Thorlabs uc480 or as IDS
uEye. Both of these seem to cover exactly the same cameras, both are freely available from the manufacturers, and
both implement exactly the same functionality. However, these interfaces are not interchangeable, and each camera will
only interact with one of them depending on which driver it happens to use (usually based on which of the software
packages was installed last). Hence, if you have both ThorCam and IDS Software Suite installed, you would need
to check both interfaces. Normally, the interface should correspond to the software which can connect to the camera
(either ThorCam or uEye Cockpit).

The code is located in pylablib.devices.uc480, and the main camera class is pylablib.devices.uc480.
UC480Camera. Note that while the names only refer to uc480, the same functions and classes equally cover IDS
uEye interface if the appropriate backend argument is provided.

Software requirements

Depending on the interface, these cameras require either uc480.dll, or ueye_api.dll. These are automatically
installed with, correspondingly, the freely available ThorCam software or with IDS Software Suite (upon registration;
note that you need specifically IDS Software Suite, and not IDS peak). By default, the library searches for DLLs in the
corresponding Program Files folder (Thorlabs/Scientific Imaging/ThorCam or IDS/uEye), in the locations
placed in PATH during the installation, as well as in the folder containing the script. If the DLLs are located elsewhere,
the path can be specified using the library parameter devices/dlls/uc480 or devices/dlls/ueye:

import pylablib as pll
pll.par["devices/dlls/uc480"] = "path/to/uc480/dlls"
from pylablib.devices import uc480
cam = uc480.UC480Camera()
pll.par["devices/dlls/ueye"] = "path/to/ueye/dlls"
cam = uc480.UC480Camera(backend="ueye")

Connection

The cameras are identified by their camera ID or device ID (both starting from 1). Device ID corresponds to the connec-
tion order of the cameras: it is guaranteed to be unique, but will change if the camera is disconnected and reconnected
again. On the other hand, camera ID is tied to the camera, but it is set to 1 by default for all cameras, and needs to be
manually assigned using UC480Camera.set_camera_id(). Alternatively, one can use other characteristics (model
or serial number) as a unique identifier. To list all of the connected cameras together with their basic information, you
can run uc480.list_cameras():

>> from pylablib.devices import uc480
>> uc480.list_cameras()
[TCameraInfo(cam_id=4, dev_id=1, sens_id=11, model='SC2592R12M', serial_number=
→˓'1234567890', in_use=False, status=0)]
>> cam = uc480.UC480Camera(cam_id=4) # connect to the camera using cam_id
>> img = cam.snap()
>> cam.close()
>> cam = uc480.UC480Camera(dev_id=1) # connecting to the same camera using dev_id
>> cam.close()

(continues on next page)

52 Chapter 2. Citation

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam
https://en.ids-imaging.com/ids-software-suite.html
https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam
https://en.ids-imaging.com/ids-software-suite.html

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> cam = uc480.UC480Camera() # connecting to the first available camera
>> cam.close()

If cam_id = 0 is provided (default), the software connects to the first available camera.

By default, the code above uses Thorlabs uc480 interface. If you want to use ueye interface, you need to specify
backend="ueye" argument to the corresponding functions and to the camera class upon creation. With that, the
example above becomes:

>> from pylablib.devices import uc480
>> uc480.list_cameras(backend="ueye") # list all cameras for uEye backend
[TCameraInfo(cam_id=4, dev_id=1, sens_id=11, model='SC2592R12M', serial_number=
→˓'1234567890', in_use=False, status=0)]
>> cam = uc480.UC480Camera(cam_id=4, backend="ueye") # connect to the camera using cam_
→˓id and ueye backend
>> img = cam.snap()
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI
and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of
differences from the standard libraries worth highlighting:

• Some cameras support both binning (adding several pixels together) and subsampling (skipping some
pixels). However, only one can be enabled at a time. They can be set independently us-
ing, correspondingly, UC480Camera.get_binning()/UC480Camera.set_binning() and UC480Camera.
get_subsampling()/UC480Camera.set_subsampling(). They can also be set as binning factors in
UC480Camera.get_roi()/UC480Camera.set_roi(). Whether binning or subsampling is set there can be
determined by the roi_binning_mode parameter supplied on creation.

• Uc480 API supports many different pixel modes, including packed ones. However, pylablib currently supports
only monochrome unpacked modes.

• Occasionally (especially at high frame rates) frames get skipped during transfer, before they are placed into the
frame buffer by the camera driver. This can happen in two different ways. First, the frame is simply dropped with-
out any indication. This typically can not be detected without using the framestamp contained in the frame info, as
the frames flow appear to be uninterrupted. In the second way, the acquisition appears to get “restarted” (the inter-
nal number of acquired frames is dropped to zero), which is detected by the library. In this case there are several
different ways the software can react, which are controlled using UC480Camera.set_frameskip_behavior().

The default way to address this “restart” event ("ignore") is to ignore it and only adjust the internal acquired
frame counter; this manifests as quietly dropped frames, exactly the same as the first kind of event. In the other
method ("skip"), some number of frames are marked as skipped, so that the difference between the number of
acquired frames and the internal framestamp is kept constant. This makes the gap explicit in the camera frame
counters. Finally ("error"), the software can raise uc480FrameTransferError when such event is detected,
which can be used to, e.g., restart the acquisition.

One needs to keep in mind, that while the last two methods make “restarts” more explicit, they do not address the
first kind of events (quiet drops). The most direct way to deal with them is to use frame information by setting
return_info=True in frame reading methods like read_multiple_images. This information contains the
internal camera framestamp, which lets one detect any skipped frames.

2.2. Devices overview 53

pylablib Documentation, Release 1.4.2

Note: General camera communication concepts are described on the corresponding page

Mightex cameras interface

Mightex manufactures a set of USB2 and USB3-interfaced cameras with several somewhat different APIs. Currently
only S-series cameras are implemented and tested.

The code is located in pylablib.devices.Mightex, and the main camera class is pylablib.devices.Mightex.
MightexSSeriesCamera.

Software requirements

These cameras require MT_USBCamera_SDK_DS.dll and accompanying MtUsbLib.dll, which can be obtained in the
freely available S-series camera software package (the current latest version is from 2019.01.04). This software does
not require installation, and the required DLLs are contained in the DirectShow/MightexClassicCameraEngine
folder withing the archive (do not confuse them with the regular MT_USBCamera_SDK.dll library, which is similar,
but has some downsides regarding threading). Since these DLLs are not registered anywhere OS-wide, you should
either specify them using the library parameter devices/dlls/mightex_sseries (both the containing folder path
and the direct file path work), or copy the two DLL files to the folder containing your script:

import pylablib as pll
pll.par["devices/dlls/mightex_sseries"] = "path/to/dlls"
from pylablib.devices import Mightex
cam = Mightex.MightexSSeriesCamera()

Connection

The cameras are identified by their index among the present cameras (starting from 1). To get the list of all cameras,
you can use Mightex.list_cameras_s:

>> import pylablib as pll
>> pll.par["devices/dlls/mightex_sseries"] = "path/to/dlls"
>> from pylablib.devices import Mightex
>> Mightex.list_cameras_s()
[TCameraInfo(idx=1, model='SCE-B013-U', serial='13-160000-001')]
>> cam = Mightex.MightexSSeriesCamera() # by default, connect to the camera with index 1
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI,
starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from
the standard libraries worth highlighting:

• The multi-camera support from the SDK is fairly poor, e.g., only a single OS process can communicate with
cameras (even if different processes try to access different cameras), and several cameras are always polled in
sequence, meaning that the slowest camera determines the overall frame rate. Therefore, only the single camera
operation is supported, although one can still select specific camera if several are connected to the same PC.

54 Chapter 2. Citation

https://www.mightexsystems.com/product/s-series-ultra-compact-usb2-0-color-3mp-cmos-cameras/
https://mightex.wpenginepowered.com/wp-content/uploads/2019/04/Mightex_SCX_CDROM_20190104.zip

pylablib Documentation, Release 1.4.2

• In some cases ROIs with extreme aspect ratios (e.g., 32x1024 px) can freeze the camera, such that it only start
operating again after the software restart. Therefore, there should be generally be avoided.

• Colored cameras are in principle supported, but the returned image is not debayered, meaning that it is still a
monochrome image with different pixels within 2x2 sub-squares corresponding to different colors.

2.2.3 Stages

Basic concepts are described at the stages communication page.

Currently supported stages:

• Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with Ethernet
and USB connection for ANC300, and USB connection for ANC350.

• Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101,
K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102 (de-
scribed at a different page)

• Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational mounts.

• Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport 8742
Picomotor driver using Ethernet or USB connection.

• Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands: Arcus,
Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

• Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with USB
connection.

• Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25 stepper
motor stage.

• SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 controllers
are supported. Tested with a standard HCU controller unit and an MCS2 controller with several SLx stages.

• Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

Note: General device communication concepts are described on the corresponding page.

Stages control basics

Basic example

Almost all stages implement the same basic functionality for moving, stopping, homing, and querying the status:

stage = Thorlabs.KinesisMotor("27000001") # connect to the stage
stage.home() # home the stage
stage.wait_for_home() # wait until homing is done
stage.move_by(1000) # move by 1000 steps
stage.wait_move() # wait until moving is done
stage.jog("+") # initiate jog (continuous move) in the positive direction
time.sleep(1.) # wait for 1 second
stage.stop() # stop the motion
stage.close()

2.2. Devices overview 55

pylablib Documentation, Release 1.4.2

Some stages will miss some of this functions (e.g., no homing), but if it’s present, it works roughly in the same manner.

Some concepts are explained below in more detail.

Basic concepts

Counters, encoders, homing, and limit switches

Stages have two basic strategies for keeping track of the position. The first one is counting the steps. The problem with
it is that once the device is powered up, its position in unknown. Hence, it requires some kind of homing procedure,
which usually involves moving to a predefined position and zeroing out the step counter there. This position is defined
by the hardware, usually in the form of a limit switch: a physical switch located at the end of the stage travel range,
which changes the state when the stage reaches its position. It also usually automatically turns off the motion when
tripped, to prevent the motor from overheating or the stage from breaking.

When stepper motors are used, the size of each step (or microstep, if used) is a reasonably well-defined fraction of a turn,
so counting them gives fairly reproducible results. On the other hand, piezo slip-stick sliders (such as Attocube, Smar-
Act, or Picomotor) have inherently unreliable steps size which depends on, e.g., load, direction, position, temperature,
or other environmental factors. In this case steps counting, while possible, usually leads to long-term drifts.

If the reliable counting is impossible, like in the case of sliders or regular DC (as opposed to stepper) motors, the
manufacturer might add a hardware position readout. It can be digital (encoder) or analog (e.g., resistive, capacitive,
or optical readout). The first kind is generally simpler, cheaper and more reliable, but the second one can provide
much higher resolution, and can work in more extreme environments (high vacuum, cryogenics). In both cases, the
controllers would typically have some kind of feedback loop to smoothly control the motion speed and direction to
approach a given position.

Steps and real coordinates

Almost all stages allow control or readout of position in motor steps, encoder steps, or some other internal units. It is
usually not straightforward, or sometimes even impossible, to convert those to real units. In cases where it is possible,
it is defined by the motor gearbox and the screw pitch (for linear stages); in most cases, this ratio is provided in the
motor or translation stage manual (which can be different from the motor controller manual, and the two might even be
completely independent). Sometimes, one even has to do explicit calculations, e.g., getting the number of microsteps
per revolution from the controller and motor manufacturer, and the displacement per step from the stage manufacturer.

Speed control

In many cases, the motor speed is ramped up and down linearly rather than abruptly; hence, both the “cruising” speed
and the ramping acceleration can, in principle, be configured. Usually they are defined in, respectively, steps/s and
steps/s^2, although sometimes internal units have to be used.

56 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Application notes and examples

Here we talk more practically about using pylablib to perform common tasks.

Motion

The most standard motion methods are move_to, which moves to a specified position, move_by, which moves by a
specified distance or number of steps, and jog, which moves continuously in a given direction until stopped or run into
a limit switch. If both move_to and move_by are present, they usually perform the same operation under the hood:
stage.move_by(s) and stage.move_to(stage.get_position()+s) yield the same result.

In almost all cases these commands are asynchronous, in the sense that they simply initialize the motion and continue
immediately:

>> stage.move_by(1000)
>> stage.is_moving() # the stage is moving, but the execution continues
True
>> time.sleep(1.)
>> stage.is_moving() # after 1s the motion is done
False

To stop immediately (which is usually only used with jog commands) you can use the stop method. In some cases,
there are two different stop kinds: “soft” with a ramp-down, or “hard” which immediately ceases motion.

Status and synchronization

Since the motion commands are asynchronous, the devices provide two methods to synchronize it with the script
execution. The first one, is_moving, checks if the stage is currently in motion. The second one, wait_move, pauses
the execution until the stage motion is finished.

In addition, many stages provide methods to obtain additional information, e.g., get_status (which, usually, returns
state of motion, limit switches, possible errors, etc.), or get_current_speed.

Position readout

If a stage has position readout (either hardware sensor, or step counting), it is implemented with the get_position
method. In most cases, it will be accompanied with the set_position_reference method, which lets one change
the currently stored position, effectively adding an offset to all further position readings:

>> stage.get_position()
10000
>> stage.set_position_reference(20000) # change current reference to
>> stage.get_position() # note that it reacts immediately, unlike move_to; no physical␣
→˓motion happened
20000
>> stage.move_to(21000) # move by 1000 steps; equivalent to .move_by(1000), or .move_
→˓to(11000) before the reference change

Note that it only changes the internal counter state, and does not cause any stage motion (which is performed by
move_to).

2.2. Devices overview 57

pylablib Documentation, Release 1.4.2

Axis selection

Many controllers support simultaneous control of several different motors. In this case, all of their methods take an
additional axis (in most cases) or channel argument, which specify the exact motor. In cases where usually only one
motor is controlled (e.g., TMCM1110 or Thorlabs KDC101), this parameters is set to the default value, and is closer
to the end of the parameter list. If having multiple controlled stages is the default (e.g., Attocube ANC350 or Arcus
Performax), this parameter is usually the first one, and it has to be specified. In this cases, the methods frequently allow
to set this parameter to "all", which means that the action is performed for all axes, or the results is returned for all
axes (usually in a form of a list or a dictionary).

The channels are usually specified by their index starting from 0 or 1, although some stages adopt a different labeling
(e.g., Arcus Performax labels them as X, Y, Z, and U). The exact specification is given in the specific class description.

Homing

As mentioned above, often stages require homing to get absolute position readings. It needs to be done every time the
stage is power-cycled, but the homing parameters usually persist between different re-connections.

If homing is implemented, it is done using the home method. In addition, there can also be an is_homed method,
which checks if the homing has already been performed. If the method is present, then by default home will not execute
if is_homed returns True, unless forced.

Some stages do not have an explicit homing method, but can be manually homed by, e.g., running the stage to the limit
switch and setting the position reference to 0.

Note: General stage communication concepts are described on the corresponding page

Attocube positioners

Attocube has two main positioner controllers: ANC300 and ANC350. These cover different but somewhat overlapping
positioner classes, and have fairly different programming interfaces.

Attocube ANC300

This controller is aimed at open-loop (i.e., no position readout) positioners. It is a chassis with a single PC communi-
cation module and up to 7 individual piezo control modules: ANM150 (only stepping), ANM200 (only scanning), or
ANM250 (stepping and scanning).

The device class is pylablib.devices.Attocube.ANC300.

Software requirements

The controller has several communication modes: USB, RS232, and Ethernet. USB mode requires a driver supplied
with the controller (or downloaded from the controller itself using its Ethernet connection and HTTP port), which
makes ANC300 appear as a virtual COM port. RS232 requires a USB-to-RS232 adapter, which usually manifests in
the same way. Finally, Ethernet connection works like any other networks device. The controller has been tested with
USB and Ethernet communication modes (RS232 is identical to USB, so it should operate as well).

Of all of these modes only USB requires specialized drivers, and the other two are usually available purely through the
built-in OS capabilities.

58 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Connection

The device is identified by its communication address. It can be either a serial port (e.g., "COM5"), or an IP address (e.g.,
"192.168.1.100"); see connection description for more information. The backend is chosen automatically based on
the connection parameter. Additionally, Ethernet connection requires a password; by default, the standard Attocube
password "123456" is used, but if you specified a custom password, you need to provide it upon connection:

>> from pylablib.devices import Attocube
>> atc1 = Attocube.ANC300("COM5") # USB or RS232 connection
>> atc2 = Attocube.ANC300("192.168.1.1", pwd="root") # Ethernet connection; no need to␣
→˓provide a password, if it is default
>> atc1.close()
>> atc2.close()

Note that since Ethernet inherently supports multiple connections, it is possible to control the same devices in multiple
scripts at the same time.

Operation

This controller has several features and differences compared to most other stages and sliders:

• The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are numbered
starting from 1, and are addressed according to the chassis spaces, so some can be skipped or missing. To update
the list of connected axes, use ANC300.update_available_axes() (called automatically on connection).

• Different control modules provide different functionality. Hence, not all methods would work for all axes: offset
voltage commands such as ANC300.set_offset() do not work with ANM150 module, while stepping com-
mands such as ANC300.move_by() do not work with ANM200 module. To get the module kinds and serial
numbers, use ANC300.get_axis_serial().

• The most important stepping parameters are step voltage amplitude and step frequency (number of steps per
second). These can be controlled with, correspondingly, ANC300.get_voltage()/ANC300.set_voltage()
and ANC300.get_frequency()/ANC300.set_frequency().

• Different axes can be enabled and disabled (i.e., connected or grounded) using ANC300.enable_axis() and
ANC300.disable_axis(). Disabling an axis completely shuts off the connection to the positioner, which usu-
ally reduces the noise. In addition, there can be different operation modes for only offset, only stepping, or
combination of the two.

• It is possible to measure the positioner capacitance using ANC300.get_capacitance(), which is useful in
identifying breaks or shorts in the wiring or faults in the piezos. By default, this method simply returns the last
measured value. To re-measure, call it with measure=True. Note that after the measurement is done, the axis
is automatically disabled, and needs to be enabled explicitly:

>> atc = ANC300("COM5")
>> atc.get_capacitance(1, measure=True) # get the capacitance (in F) on the first␣
→˓axis; the method waits until the measurement is done (about 1s)
200E-9
>> atc.is_enabled(1)
False

Note that this is also the only way to know if there is an actual positioner connected to the given control module.

2.2. Devices overview 59

pylablib Documentation, Release 1.4.2

Attocube ANC350

This controller is aimed at closed-loop (i.e., with position readout) positioners. It can control up to 3 positioners.

The device class is pylablib.devices.Attocube.ANC350.

Software requirements

The controller has USB and Ethernet modes. USB mode requires a driver supplied with the controller. The commu-
nication is done via PyUSB, which means that it does not require any additional Attocube DLLs, although you might
need to install libusb (see PyUSB for more details). Ethernet control is supplied as an additional purchasable option
and can be configured using the supplied Daisy control software.

This device has only been tested with a USB connection.

Connection

When using a USB connection, the device is identified by its index among all the connected ANC350 devices. To get
the total number of devices, you can use Attocube.get_usb_devices_number_ANC350:

>> from pylablib.devices import Attocube
>> Attocube.get_usb_devices_number_ANC350()
2
>> atc1 = Attocube.ANC350() # use 0 index by default
>> atc2 = Attocube.ANC350(1)
>> atc1.close()
>> atc2.close()

Ethernet connection should work in the same manner as any other similar devices, i.e., the address and, possibly, the
port should be provided.

Operation

This controller has several features and differences compared to most other stages and sliders:

• The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are numbered
0 through 2. You can check if the slide is connected to the given axis using ANC350.is_connected().

• Different axes can be enabled and disabled (i.e., connected or grounded) using ANC300.enable_axis() and
ANC300.disable_axis(). Disabling an axis completely shuts off the connection to the positioner, which usu-
ally reduces the noise.

• It is also possible to control the sensor voltage using ANC350.get_sensor_voltage()/ANC350.
set_sensor_voltage() methods. Reducing this voltage lowers the heating produced by the sensor, which
becomes especially important at very low (<1K) temperatures.

• The most important stepping parameters are step voltage amplitude and step frequency (number of steps per
second). These can be controlled with, correspondingly, ANC350.get_voltage()/ANC350.set_voltage()
and ANC350.get_frequency()/ANC350.set_frequency().

• It is possible to measure the positioner capacitance using ANC350.get_capacitance(), which is useful in
identifying breaks or shorts in the wiring. By default, this method simply returns the last measured value. To
re-measure, call it with measure=True.

60 Chapter 2. Citation

https://pyusb.github.io/pyusb/
https://pyusb.github.io/pyusb/

pylablib Documentation, Release 1.4.2

• Fine positioning is performed using the position readout and the feedback loop. Then a move_to/move_by
command is issued, this feedback loop is activated, and the positioner tries to reach and stay at the cur-
rent position. You can use ANC350.is_target_reached() to check if the target is reached, ANC350.
get_target_position() to get the target, and ANC350.get_precision()/ANC350.set_precision() to
control the target precision.

• In addition, there is a method ANC350.move_by_steps(), which mimics ANC300.move_by() by moving for
a given number of steps instead of a given distance. However, due to implementation limitations, this method is
synchronous, i.e., it waits until all steps are performed. Nevertheless, ANC350.jog() is still asynchronous.

Note: General stage communication concepts are described on the corresponding page

Thorlabs APT/Kinesis devices

Thorlabs has a variety of APT/Kinesis devices for various motion-related functionality (mostly motor controllers and
piezo drivers), which share the same API. The library uses an older and more low-level APT protocol to communi-
cate with these devices. So far it has been only implemented for motor controllers and some specialized devices and
tested with KDC101, KST101, K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, and TPA101
quadrature sensor controller.

The main device classes are pylablib.devices.Thorlabs.BasicKinesisDevice for a generic Kinesis/APT de-
vices pylablib.devices.Thorlabs.KinesisMotor aimed at motor controllers such as K10CR1 or KDC101, and
pylablib.devices.Thorlabs.KinesisPiezoMotor for piezo drivers such as KIM and TIM.

Software requirements

The connection is done using Thorlabs APT protocol, so it needs the corresponding APT drivers. Pylablib communi-
cates directly with the FTDI USB-to-RS232 using pyft232 chip inside the controller, so it bypasses most of the Thorlabs
software. This means that it does not need any Thorlabs-supplied DLLs, but it also means that it can not work with the
simulated devices, since these are simulated on a level above the direct serial communication.

In some cases pyft232 library can not find the required ftd2xx.dll library, which leads to an error. There are several
ways to get around this. First, you can install the FTDI drivers from the manufacturer’s website. Setup executable for
Windows automatically places the necessary DLL into the System32 folder, where pyft232 can discover them. Alter-
natively, you can copy the DLLs there yourself from the Thorlabs APT installation. Their default location is Program
Files\Thorlabs\APT\Drivers\APT\USB Driver\amd64 for 64-bit version or Program Files\Thorlabs\APT\
Drivers\APT\USB Driver\i386 for 32-bit version. Note that in the first case the file is called ftd2xx64.dll, and
you will need to rename it to ftd2xx.dll when copying to the System32 folder.

Connection

On Windows devices are identified by their address, which correspond to their serial numbers. To get the list of all the
connected devices, you can use Thorlabs.list_kinesis_devices:

>> from pylablib.devices import Thorlabs
>> Thorlabs.list_kinesis_devices()
[('27500001', 'Kinesis K-Cube DC Driver')]
>> stage = Thorlabs.KinesisMotor("27500001")
>> stage.close()

2.2. Devices overview 61

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control&viewtab=1
https://github.com/lsgunth/pyft232
https://ftdichip.com/drivers/d2xx-drivers/

pylablib Documentation, Release 1.4.2

On Linux they directly appear as virtual serial ports, e.g., /dev/ttyUSB0. Hence, there you need to identify which
device file corresponds your device (e.g., by unplugging and plugging it back in to see which device shows up). After
that, you can use this name as the device address:

>> from pylablib.devices import Thorlabs
>> stage = Thorlabs.KinesisMotor("/dev/ttyUSB0")
>> stage.close()

Note that on Linux Thorlabs.list_kinesis_devices will not produce a correct list, since it uses a different API.
In the worst case, it can crash the process.

Operation

Standard motors

This controller has several features and differences compared to most other stages and sliders:

• There are two different classes of devices which require slightly different communication approach: generic
USB devices and rack-bay devices. These are hard to detect a priori, so by default generic USB de-
vice (which covers the majority of equipment) is assumed. If this assumption is incorrect, the com-
munication becomes impossible, and an attempt to connect to the device raises a communication er-
ror ThorlabsBackendError: backend exception: 'read returned less data than expected'
('read returned less data than expected'). If you experience this error, you should first power-cycle
the device, as it often gets stuck in a non-communicable state, and then double-check that the standard Thorlabs
software (Kinesis or APT) can detect and control it. If this is the case, you should supply is_rack_system=True
to the controller:

stage = Thorlabs.KinesisMotor("70000001", is_rack_system=True)

• There are several different ways to specify the stage calibration, which are controlled by the scale parameter
supplied upon the connection. By default (scale = "step"), it accepts and returns position in motor steps,
velocity in steps/s and acceleration in steps/s^2 (scaling coefficients for the latter two are determined from the
controller model). If scale = "stage", the class attempts to autodetect the stage and use meters or degrees
instead of steps; in addition you can supply the stage name (e.g., "MTS25-Z8") as a scale instead of relying on the
autodetection. If there is no calibration for the stage that you have, you can instead supply a single scaling factor,
which specifies the number of steps per physical unit (e.g., for "MTS25-Z8" stage and mm units, one would supply
scale = 34304). The stage scaling can be obtained from the APT manual. Finally, one can supply a 3-tuple of
scales for position, velocity and acceleration (all relative to the internal units). The details are given in the APT
manual. To ensure that the units have been applied and/or autodetected correctly, you can use KinesisMotor.
get_scale(), KinesisMotor.get_scale_units() and KinesisMotor.get_stage() methods.

• By default, the controllers are treated as single-axis. If several axes are supported, they can be specified using
channel argument in the corresponding methods such as move_to or get_status. In addition, you can specify
the number of channels using KinesisMotor.set_supported_channels() method, in which case settings
channel="all" in the method would act on all the channels.

• The motor power-up parameters for homing, jogging, limit switches, etc., can be different from the pa-
rameters showing up in the APT/Kinesis controller. This can lead to problems if, e.g., homing speed is
too low, so the motor appears stationary while homing. You should make sure to check those parame-
ters using KinesisMotor.get_velocity_parameters(), KinesisMotor.get_jog_parameters(),
KinesisMotor.get_homing_parameters(), KinesisMotor.get_gen_move_parameters(), and
KinesisMotor.get_limit_switch_parameters().

62 Chapter 2. Citation

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control&viewtab=1

pylablib Documentation, Release 1.4.2

Piezo motors

This controller has several features and differences compared to most other stages and sliders:

• The controllers are treated as multi-axis. However, to be compatible with other Kinesis motor, the channel
argument is not required, and it defaults to the currently selected “default” channel (1 in the beginning). To control
different channels, you can either supply channel argument explicitly, or specify a different default channel using
KinesisPiezoMotor.set_default_channel() or KinesisPiezoMotor.using_channel().

• The motor power-up parameters for jogging and drive can be different from the parameters showing up in
the APT/Kinesis controller. This can lead to problems if, e.g., speed is too low. You should make sure to
check those parameters using KinesisPiezoMotor.get_drive_parameters() and KinesisPiezoMotor.
get_jog_parameters().

• Even open-loop controllers support absolute positioning, which is achieved simply by counting steps in both
directions. However, unlike stepper motors or encoders, these steps can be different depending on the direction,
position, instantaneous load, speed, etc. Hence, the absolute positions quickly become unreliable. It is, therefore,
recommended to generally use relative positioning using KinesisPiezoMotor.move_by() method.

Quadrature detector

These are fairly different from the other discussed devices, since they are more related to sensors than to motors. This
controller takes signal from a quadrature photodetector and implements a PI control loop to feed back to some control
device (e.g., a piezo driver or a galvo mirror). Hence, all of its methods are fairly distinct from the usual motors. Nev-
ertheless, it is described here, since it still belongs to the APT/Kinesis family of devices and shares their detection and
connection approach. The device is implemented in the pylablib.devices.Thorlabs.KinesisQuadDetector
class.

The operation is fairly straightforward: it implements control of PID parameters, output parameters (such as limits),
operation mode (open/close loop), allows for reading current state and setting outputs in the open-loop mode.

Note: General stage communication concepts are described on the corresponding page

Thorlabs Elliptec devices

Thorlabs has a line of basic resonant piezoelectric motor stages from Elliptec, which include several rotational and linear
stages and feature step-motion and position readout. The library has been tested with ELL18 and ELL14 rotational
mounts.

The main device class is pylablib.devices.Thorlabs.ElliptecMotor.

Software requirements

The connection is done using a USB connection together with a built-in USB-to-RS232 chip. It is automatically
recognized as a serial port, and no additional software is required. In case the device is not recognized as a serial port,
you can fix it by installing freely available Thorlabs Elliptec software.

2.2. Devices overview 63

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ELL

pylablib Documentation, Release 1.4.2

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Thorlabs
>> stage = Thorlabs.ElliptecMotor("COM5")
>> stage.close()

Operation

These devices have several features and differences compared to most other stages and sliders:

• There is a possibility to have several (up to 16) devices connected to the same controller board (i.e., the same serial
port address) using bus distributor. However, since they all use the same serial port, they are all controlled from
a single ElliptecMotor instance. Hence, in order to refer to specific devices, each communication requires an
address (integer from 0 to 15), which is specified by addr argument available in almost all methods. When this
argument is None (which is the default value), the so-called default address is used, which can be accessed via
ElliptecMotor.get_default_addr() and ElliptecMotor.set_default_addr() methods. By default,
all connected devices are discovered up the connection, and the first available devices is used as default; therefore,
if only a single devices is connected, addr argument does not have to be used.

• Compared to most motor controllers, Elliptec devices have some limitation related to their inability to com-
municate while the motor is moving. Therefore, there are no methods to query whether the motor is moving,
or stop the motion once initiated. To address that and to simplify the library and the user code, all motion-
related methods (ElliptecMotor.move_to(), ElliptecMotor.move_by(), and ElliptecMotor.home())
are made synchronous, i.e., the execution is paused until the motion is complete. Note that this is true even when
several devices are connected to the same port.

• There are several different ways to specify the stage calibration, which are controlled by the scale parameter
supplied upon the connection. By default (scale = "stage"), the internal device calibration is used, so all
of the positions are expressed in device-specific units (deg or mm). If scale = "step", all of the position
are specified in internal device steps instead. Finally, if scale is a number, it is the proportionality coefficient
between the position units and the internal steps, i.e., the position in user-defined units is multiplied by it to
specify the position in steps. The scale for individually addressed devices can be set using ElliptecMotor.
get_scale() and ElliptecMotor.set_scale() methods.

Note: General stage communication concepts are described on the corresponding page

Newport Picomotor controller

Newport Picomotor is a series of actuators, usually in a screw format, based on the slip-stick piezo actuation mecha-
nism (similar to, e.g., Attocubes). Operating them requires a driver/controller to output specific voltage pulses. The
basic modern open-loop controller is Newport 8742, which can drive up to 4 actuators (but only one at a time), sup-
ports connection via USB or Ethernet, and can be daisy-chained to communicate with several controllers through one
connection. The class has been tested with this controller and a single standard actuator.

The device class is pylablib.devices.Newport.Picomotor8742.

64 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Software requirements

The controller has two communication modes: USB, and Ethernet. USB mode requires a driver supplied with the
freely available PicomotorApp software, while Ethernet connection works like any other networks device and does not
require any additional software. The controller has been tested both with USB and Ethernet communication modes.

Connection

When using the USB connection, the device is identified by its index, starting from 0. To get the number of connected
devices, you can use Newport.get_usb_devices_number_picomotor:

>> from pylablib.devices import Newport
>> Newport.get_usb_devices_number_picomotor()
2
>> stage1 = Newport.Picomotor8742()
>> stage2 = Newport.Picomotor8742(1)
>> stage1.close()
>> stage2.close()

Ethernet connection requires a host name or an IP address. Both can be set up by first connecting the device via USB
or by using the PicomotorApp software (in the Setup -> Ethernet menu). After that, they can be supplied to the
class instead of index:

>> from pylablib.devices import Newport
>> stage1 = Newport.Picomotor8742("8742-12345") # by default, all host names start with␣
→˓8742
>> stage1.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

• The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are labeled
numerically starting from 1 (i.e., 1, 2, 3, and 4). The list of all axes is related to the exact controller, an can be
obtained using Picomotor8742.get_all_axes().

• There is an option to auto-detect motors and their kind using Picomotor8742.autodetect_motors()method.
However, since it involves stepping the motor, it usually makes more sense to detect them once and then store
them into the non-volatile (i.e., power-independent) memory using Picomotor8742.save_parameters().

• Even open-loop controllers support absolute positioning, which is achieved simply by counting steps in both
directions. However, unlike stepper motors or encoders, these steps can be different depending on the direction,
position, instantaneous load, speed, etc. Hence, the absolute positions quickly become unreliable. It is, therefore,
recommended to generally use relative positioning using Picomotor8742.move_by() method.

• As mentioned above, the controller support daisy-chaining using RS-485 connections. It allows to connect sev-
eral controllers together while still only using a single PC connection. In this case, it is recommended to supply
multiaddr=True upon connecting to the device. If, in addition scan=True is set (default), then upon connec-
tion the controller scans for all other connected devices, resolves their address conflicts, and builds the list of the
available addresses (address is a number between 1 and 31). The list can later be read using Picomotor8742.
get_addr_map(), and the network rescanned using Picomotor8742.scan_devices(). To refer to a specific
device, its address should be specified using addr parameter of a method; by default it is set to None, which
selects the device connected to the PC.

2.2. Devices overview 65

https://www.newport.com/p/8742-4-KIT

pylablib Documentation, Release 1.4.2

Note: General stage communication concepts are described on the corresponding page

Arcus Performax positioners

Arcus has several motor controllers and drivers, which are mainly different in their number of axes, communication
possibilities, and driving function. They are also distributed under different names, e.g., Nippon Pulse America (NPA)
or Newmark Systems. However, the models nomenclature is the same: there is 4EX for 4-axis controllers with USB and
RS485 connection, 2EX/2ED for 2-axis controllers with USB and RS485 connections, and 4ET for 4-axis controllers
with Ethernet connection. The class has been tested with 4EX and (partially) 2ED controllers with USB and RS-485
connectivity mode, but other controllers mentioned above should also work.

The main device classes are pylablib.devices.Arcus.Performax4EXStage or 4-axis controllers,
pylablib.devices.Arcus.Performax2EXStage for 2-axis controllers, and pylablib.devices.Arcus.
PerformaxDMXJSAStage for simple single-axis controller (DMX-J-SA). In addition to a different number of axes,
they have several syntax differences, so one can not substitute for the other.

In addition, there is also a generic Performax stage class pylablib.devices.Arcus.GenericPerformaxStage,
which implements only the most basic functions: ASCII communication with the device and basic methods such as
device name request. It can be used with new or not currently supported Arcus stages to directly control them using
the ASCII control language (usually described in the stage manual).

Software requirements

The controller has several communication modes: USB, RS485, and Ethernet. USB mode requires a driver supplied
with the operation software: Arcus Drivers and Tools, Performax Series Installer, and Performax USB Setup (all
obtained at Arcus website). Installing all three seem to be sufficient. Once the appropriate USB drivers are installed, one
can connect the device directly via its USB port and use the manufacturer DLLs PerformaxCom.dll and SiUSBXp.
dll to communicate with the device. They can be obtained on the manufacturer’s website and placed in the folder with
the script, or in the System32 Windows folder. If the DLL is located elsewhere, the path can be specified using the
library parameter devices/dlls/arcus_performax:

import pylablib as pll
pll.par["devices/dlls/arcus_performax"] = "path/to/dll"
from pylablib.devices import Arcus
stage = Arcus.Performax4EXStage()

Warning: There appear to be some issues for USB-controlled devices with Python 3.6 which result in out-of-
bounds write, memory corruption, and undefined behavior. Hence, Python 3.7+ is required to work with this
device.

RS-485 connection does not require any device-specific drivers or DLLs, but it does need RS-485 controller connected
to the PC. Such controllers usually show up as virtual COM ports, and they typically do not need any additional drivers.

66 Chapter 2. Citation

https://www.arcus-technology.com/support/downloads/download-info/drivers-and-tools-installer/
https://www.arcus-technology.com/support/downloads/download-info/performax-series-installer/
https://www.arcus-technology.com/support/downloads/download-info/performax-usb-setup/
https://www.arcus-technology.com/support/downloads/
https://www.arcus-technology.com/support/downloads/download-info/usb-64-bit-dll/

pylablib Documentation, Release 1.4.2

Connection

When using the USB connection, the device is identified by its index, starting from 0. To get the list of all the connected
devices, you can use Arcus.list_usb_performax_devices:

>> from pylablib.devices import Arcus
>> Arcus.list_usb_performax_devices()
[(0, '4ex01', 'Performax USB',
'\\\\?\\usb#vid_1589&pid_a101#4ex01#{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}', '1589',
→˓'a101'),
(1, '4ex21', 'Performax USB',
'\\\\?\\usb#vid_1589&pid_a101#4ex21#{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}', '1589',
→˓'a101')]
>> stage1 = Arcus.Performax4EXStage()
>> stage2 = Arcus.Performax2EXStage(idx=1)
>> stage1.close()
>> stage2.close()

When using the RS-485 connection, you need to specify the serial port corresponding to your RS-485 connection and,
possibly, its baud rate:

stage = Arcus.Performax4EXStage(conn = "COM5")
stage2 = Arcus.Performax4EXStage(conn = ("COM5",38400)) # specify a baud rate

The baud rate is 9600 by default, which is the standard value for the controllers. However, it can be changed using
Performax4EXStage.set_baudrate() method, in which case you would need to explicitly specify it during the
next connection.

In RS-485 mode idx parameter is still used, and it specifies the device number connected to this controller. By default
this number is 0, and it can be queried (using USB connection) via Performax4EXStage.get_device_number().
It can also be set using Performax4EXStage.set_device_number(), although the changes takes effect only after
the device is power cycled. Although in principle idx can be used to distinguish several Arcus controllers connected
to the same bus (i.e., sharing the same RS-485 COM port), currently only single device connection is supported.

To switch between USB and RS-485 control modes, you need to plug or unplug USB connection. It is strongly recom-
mended to power cycle the device after that, since otherwise it might stop responding to RS-485 commands.

Operation

This controller has several features and differences compared to most other stages and sliders:

• The 4-axis and 2-axis controllers are inherently multi-axis, hence they always take the axis as the first argument.
The axes are labeled with letters "x", "y" for a 2-axis version, or "x", "y", "z", "u" for a 4-axis one. The list
of all axes is related to the exact controller, an can be obtained using Performax4EXStage.get_all_axes().
A single-axis controller does not take an axis argument.

• Different axes can be enabled and disabled using Performax4EXStage.enable_axis(). Note that disabled
axes still behave the same as the enabled ones; e.g., their position will increment as usual, when move_to is
called. This can lead to some confusion, as the axis appears mostly operational, but the motor does not move.

• In the default controller configuration the limit errors are enabled. In this case, once a single axes reaches the limit
switch during motion, it is put into an error state, which immediately stops this an all other axes. Any further
motion command on this axis will raise an error, although it is still possible to restart motion on other axes.
The axis motion can only be resumed by calling Performax4EXStage.clear_limit_error(). If, however,
limit errors are disabled, then only the axis which reached the limit is stopped, and all other axes are unaffected.
Furthermore, the motion on the offending axis can be resumed without clearing its error status. In many cases the

2.2. Devices overview 67

pylablib Documentation, Release 1.4.2

default limit error behavior is undesirable, so the class turns it off upon connection. It can be subsequently turned
on and off using Performax4EXStage.enable_limit_errors(), and checked using Performax4EXStage.
limit_errors_enabled().

• Since simplified single-axis controller (DMX-J-SA) always has limit errors disabled, its behavior is specified a
bit differently. Upon connection you can specify autoclear argument (True by default), which indicates that
before every movement command the limit error should be automatically cleared.

• The controllers also have analog and digital inputs and digital outputs, which can be queried and set with the
corresponding commands.

• The controller has an option to connect an encoder for a separate position readout. By default, all of the com-
mands (e.g., for moving, getting position, getting current speed, etc.) still work in the step-counting mode,
and the encoder values are only accessed via Performax4EXStage.get_encoder()/Performax4EXStage.
set_encoder_reference(). In principle, there is a closed-loop mode call StepNLoop, but it is not currently
supported in the code.

• The built-in motion command has 2 modes: relative and absolute. The code sets the absolute mode on connection
and assumes it in all commands. However, if the mode changes for any reason, the move commands will stop
working properly.

Note: General stage communication concepts are described on the corresponding page

Trinamic TMCM-1110 controller

TMCM-1110 is a universal single-axis stepper motor controller from Trinamic. It provides multiple connection options,
but so far has only been tested with USB connection.

The main device class is pylablib.devices.Trinamic.TMCM1110.

Software requirements

USB connection needs drivers, which are supplied with the freely-available TMCL-IDE, or TMCL-LITE. With those
drivers installed, the controllers show up as virtual COM ports. Note that when several devices are connected, they
sometimes get assigned conflicting (i.e., overlapping) COM ports. In this case, you might need to manually reassign
these in the Device Manager.

Connection

Since the devices are identified as virtual COM ports, they use the standard connection method, and all you need to
know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Trinamic
>> stage1 = Trinamic.TMCM1110("COM5")
>> stage2 = Trinamic.TMCM1110("COM8")
>> stage1.close()
>> stage2.close()

68 Chapter 2. Citation

https://www.trinamic.com/support/software/tmcl-ide/#c3291
https://www.trinamic.com/products/modules/details/tmcm-1110/#downloads-4

pylablib Documentation, Release 1.4.2

Operation

This controller has several features and differences compared to most other stages and sliders:

• The controller allows one to control the number of microsteps per step using TMCM1110.
get_microstep_resolution() and TMCM1110.set_microstep_resolution(). Hence, the calibration
of the real position to the controller readout position depends on this resolution. Furthermore, changing this
resolution does not affect the step counter, meaning that changing it, performing a move, and changing it back
will result in a different position. Hence, it is not recommended to change it after homing or referencing the
position.

• Similarly, the controller has variable frequency divisors, which control the ratio between internal and real units
for the velocity and the acceleration. They are set up together with the maximal velocity and acceleration using
TMCM1110.setup_velocity() and TMCM1110.get_velocity_parameters(), and the conversion factors
can be obtained using TMCM1110.get_acceleration_factor() and TMCM1110.get_velocity_factor().

• The device has an option of controlling maximal output current using TMCM1110.setup_current() and
TMCM1110.get_current_parameters(). Change them carefully, since the values which are too large can
damage the motor. Also take into account, that the currents are defined relative to the maximal output current,
which is controlled using the physical jumper on the board.

Note: General stage communication concepts are described on the corresponding page

SmarAct positioners

SmarAct has multiple different controller covering different slider kinds. So far only simple controllers (CU/HCU/SCU)
are implemented.

SmarAct CU/HCU/SCU

This is a simple controller, which is mostly aimed at open-loop (i.e., no position readout) positioners. It can control up
to 3 axes, and connects to the PC via the USB port.

The device class is pylablib.devices.SmarAct.SCU3D. Currently only open-loop controllers are supported.

Software requirements

The controller shows up as a virtual COM port, and it has a standard FTDI chip, so it does not need any special drivers.
However, to communicate with the device, it still needs SCU3DControl.dll library. It is supplied on a CD together
with the device, although it might also be possible to request it from SmarAct.

2.2. Devices overview 69

pylablib Documentation, Release 1.4.2

Connection

The devices are identified by their index starting from 0. To get the list of all the connected devices, you can use
SmarAct.list_scu_devices:

>> from pylablib.devices import SmarAct
>> SmarAct.list_scu_devices()
[TDeviceInfo(device_id=0, firmware_version='1.3.0.0', dll_version='4.3.0.0')]
>> stage = SmarAct.SCU3D(idx=0) # connect to the first device in the list
>> stage.close()

Due to the manufacturer’s API organization, it is currently only possible to “reserve” all connected stages of the same
type simultaneously in one application. This means that no other application can connect to any of the stages as long
as at least one stage is being controlled (though it does not make any difference if only one stage is connected).

In addition, currently there is no check on whether the stage is already controlled in the other part of the code. This
is in contrast with the vast majority of the devices, which issue a unique handle making it impossible to create two
different device objects even within the same application. Hence, one needs to be careful to not connect to the same
device twice, which can lead to confusing behavior.

Operation

This controller has several features and differences compared to most other stages and sliders:

• The motion is generally executed in “macrosteps”, which is a sequence of several “microsteps” with a given
amplitude, frequency, and number. A single macrostep with the defined parameters can be performed with
SCU3D.move_macrostep(), while SCU3D.move_by() executes a series of these macrosteps with one of the
predefined sizes (from 0 to 20). These sizes are configured to roughly correspond to the step sizes selectable by
the controller, although the agreement is not exact.

SmarAct MCS2 stages

This is an advanced controller, which can control multiple open-loop and closed-loop stages using multiple sensor
modules. It connects to the PC via the USB or the Ethernet port.

The device class is pylablib.devices.SmarAct.MCS2. It has been tested with an Ethernet-connected MCS module
with several SLx stages.

Software requirements

The controller requires libraries supplied with the SmarAct MCS2 software, which is usually distributed with the
device. The required DLL is called SmarActCTL.dll and is located in the MCS2 folder (either MCS/SDK/lib64 for
64-bit systems). By default, pyLabLib searches for these DLLs in the default MCS2 software location (C:/SmarAct/
MCS2), in the folder defined by the corresponding environment variable upon installation (MCS2_SDK), as well as in the
folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter
devices/dlls/smaract_mcs2:

import pylablib as pll
pll.par["devices/dlls/smaract_mcs2"] = "path/to/MCS2/dlls"
from pylablib.devices import SmarAct
stage = SmarAct.MCS2("network:sn:MCS2-00000001")

70 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Connection

The devices are identified by their locator string, which may look like, e.g., "network:sn:MCS2-00000001" or
"usb:sn:MCS2-00000001". To get the list of all the connected devices, you can use SmarAct.list_mcs2_devices:

>> from pylablib.devices import SmarAct
>> SmarAct.list_msc2_devices()
["usb:sn:MCS2-00000123"]
>> stage = SmarAct.MCS2("usb:sn:MCS2-00000123")
>> stage.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

• The provided class implements the basic functionality required for the regular levels of automation: movement,
accessing position and status, setting up basic parameters (velocity, acceleration, step frequency, etc.), hom-
ing. However, it does not cover more advanced and rarely used functions like details of the sensor operation,
auxiliary IO, triggering, operation modes (normal, low noise, etc.), PID parameters, and so on. These can still
be accessed using MCS2.get_property() and MCS2.set_property() methods, but the interpretation of the
property values is up to the user.

Note: General stage communication concepts are described on the corresponding page

Physik Instrumente (PI) controllers

Physik Instrumente produces a variety of piezo, servo, and slider controller. So far, only PI E-515 and PI E-516 are
supported and tested via a standard serial connection.

The main device classes are pylablib.devices.PhysikInstrumente.PIE515 and pylablib.devices.
PhysikInstrumente.PIE516.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Note that these devices frequently require cross-cable (also called null-modem cable), in which connections between
Rx and Tx lines are switched. In addition, one might need to activate RS-232 communication in the front panel menu,
as otherwise the device would not respond.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import PhysikInstrumente
>> stage1 = PhysikInstrumente.PIE516("COM5")
>> stage2 = PhysikInstrumente.PIE516("COM8")
>> stage1.close()
>> stage2.close()

2.2. Devices overview 71

pylablib Documentation, Release 1.4.2

Operation

These controllers has several features and differences compared to most other stages and sliders:

• The controllers support either servo (position feedback) or direct voltage output modes, controlled with PIE516.
enable_servo() method. In the servo mode they are more similar to a stage controller, and you can use, e.g.,
PIE516.move_to() and PIE516.stop() (only for E-516) methods. In the direct voltage mode you can use
PIE516.set_voltage() to set the voltage directly.

• The controllers only accepts commands from the PC when it is in the “online” (i.e., remote) mode, in
which case external voltage controls are ignored. This mode is enabled automatically upon connection if
auto_online=True is supplied upon creation (default), and can be connected via PIE516.enable_online()
method. Note that in this case manual servo switches should be turned off, since otherwise the device is perma-
nently in the servo mode.

• PI E-515 bring additional complications due to its mechanism of switching between the manual and online
modes:

– First, the online mode is only accessible when the servo mode switches on the front panel are off. At
the same time, even when online mode is not enabled (and the voltages/positions can not be controlled
remotely), it is still possible to switch the servo mode on and off remotely, so one must be careful when
calling PIE515.enable_servo().

– Second, when switching to the online mode, all of the voltages and positions are set to the last time they
were updated (or zero, if they have not been changed since the device was turned on). It is possible to set
the remote voltages to match the local ones before switching the modes, which is done automatically when
safe=True is supplied to PIE515.enable_online(). The same can not be done for servo positions,
since these can only be changed when the servo mode is on.

– Finally, when the online mode is turned back off, the output voltages go back to the values set by manual
knobs, which can be different from the current remote settings.

As a result, one should expect and look out for sudden changes in the stage positions when switching between
online and offline modes, and when switching the servo on and off.

Note: General stage communication concepts are described on the corresponding page

72 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Standa motorized stages

Standa produces a variety of motorized stages and positions, which are generally controlled by a single controller model
8SCM4 (older version) or 8SMC5 (newer version).

The main device class are pylablib.devices.Standa.Standa8SMC. The code has been tested with 8SMC4-USB
single-axis controller and 8MT167-25 stepper motor stage.

Software requirements

The controllers have a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port by the OS, so
no additional software is required.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Standa
>> stage = Standa.Standa8SMC("COM3")
>> stage.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

• The controllers provide a large set of methods for checking and adjusting various motion parameters, controlling
different accessories, etc. So far only a basic subset of these commands is implemented, which allows one to
start and stop the motion, home the stage, set up basic velocity parameters, and query the status. If you need
advanced functionality, you can examine the list of commands in the documentation and implement them in your
code using Standa8SMC.query() method.

• All commands dealing with distances (e.g., moving, getting position, velocity, etc.) use internal units. For
DC motors these are steps (derived from the rotational encoder), while for stepper motors these are microsteps,
whose resolution can be found using Standa8SMC.get_stepper_motor_calibration(). This means that,
e.g., given a stepper motor with 200 steps per revolution and 256 microsteps per step, one can rotate it by a full
turn (before taking a possible gearbox into account) by calling stage.move_by(200*256).

• Some stages can come with a built-in linear encoder. In this case, the position can be accessed both us-
ing Standa8SMC.get_position() method like for all other stages, and using Standa8SMC.get_encoder()
method. If there is not linear encoder, Standa8SMC.get_encoder() will return zero.

2.2.4 Basic sensors

Basic concepts are described at the basic sensors communication page.

Currently supported sensors:

• HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

• Ophir: optical power and energy meters. Tested with Ophir Vega.

• Thorlabs: optical power and energy meters. Tested with PM160.

2.2. Devices overview 73

https://doc.xisupport.com/en/8smc4-usb/8SMCn-USB/Programming/Communication_protocol_specification.html#all-controller-commands

pylablib Documentation, Release 1.4.2

• Lakeshore: temperature sensors. Tested with Lakeshore 218.

• Cryocon: temperature sensors. Tested with CryoCon 14C.

• Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

• Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

• Leybold: pressure gauges. Tested with ITR90 gauge.

• Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

• Thorlabs quadrature detector controller. Tested with TPA101.

• Keithley multimeters. Tested with model 2110.

• Voltcraft multimeters. Tested with VC-7055BT and VC880.

Note: General device communication concepts are described on the corresponding page.

Basics of sensors communication

Basic example

Basic sensors usually only implement a handful of functions related to reading out the measurements (possibly on
different channels) and setting up measurements modes:

>> gauge = Pfeiffer.TPG260("COM1") # connect to the gauge
>> gauge.enable(1) # enable the first channel (usually it's already enabled)
>> gauge.get_pressure() # read pressure at the default channel (1)
100E3
>> gauge.close()

Application notes and examples

Here we talk more practically about using pylablib to perform commons sensor tasks.

Readout

The main readout methods almost always start with get_ prefix, e.g., get_pressure, get_temperature, or
get_level. In some cases there would be two different measurement modes: one which just reads the latest mea-
surement result, and one which initializes the measurement, waits until it’s done, and returns the result. These two
approaches may be implemented differently in different devices, and it is addressed in their description:

>> meter = Cryomagnetics.LM500("COM1")
>> meter.get_level(1) # immediately return the latest reading
20.0
>> meter.get_level(1) # return the same reading
20.0
>> meter.measure_level(1) # initialize a new measurement; takes some time
19.8

74 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Non-numerical values

In some cases the readout method would return a non-numerical values. This usually happens when the sensor readings
are outside of its range, or if it is in a wrong state (off, warming up, error, etc.) These cases are documented in the
querying method description:

>> meter = Ophir.VegaPowerMeter("COM1")
>> meter.get_power() # power is higher than the current range
'over'
>> meter.set_range_idx(0) # set the maximal power range
>> meter.get_power() # now the reading is numerical
10E-3

Units

Unless absolutely necessary and obvious, all the readout values are specified in SI units (even, e.g., laser frequency
in Hz, or pressure in Pa). In rare cases when the devices allows for selection of readout units (e.g., Pfeiffer TPG260
gauges), it only affects the displayed value, but not the results returned by the corresponding methods:

>> gauge = Pfeiffer.TPG260("COM1")
>> gauge.set_units("pa")
>> gauge.get_pressure()
100E3
>> gauge.set_units("mbar")
>> gauge.get_pressure() # pressure still in Pa
100E3
>> gauge.get_pressure(display_units=True) # pressure in display units
1000

Channel selection

Some gauges support simultaneous readout on several channels. In this case, all of their methods take an additional
channel (in most cases) argument, which specify the read channel.

The channels are usually specified by their index starting from 0 or 1, although some devices adopt more complicated
labeling schemes (e.g., Lakeshore 218 temperature sensor can only assign a sensor type to a group of 4 sensors, which
is labeled "A" or "B"). The exact specification is given in the specific class description.

Currently supported sensors

• HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

• Ophir: optical power and energy meters. Tested with Ophir Vega.

• Thorlabs: optical power and energy meters. Tested with PM160.

• Lakeshore: temperature sensors. Tested with Lakeshore 218.

• Cryocon: temperature sensors. Tested with CryoCon 14C.

• Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

• Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

2.2. Devices overview 75

pylablib Documentation, Release 1.4.2

• Leybold: pressure gauges. Tested with ITR90 gauge.

• Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

• Thorlabs quadrature detector controller. Tested with TPA101.

• Keithley multimeters. Tested with model 2110.

• Voltcraft multimeters. Tested with VC-7055BT and VC880.

Note: General sensor communication concepts are described on the corresponding page

HighFinesse wavemeters

HighFinesse produces a variety of fiber-coupled wavelength meters. Currently pylablib only deals with WS series
which uses a USB connection. The code has been tested with several WS6 and WS7 wavemeters.

The main device class is pylablib.devices.HighFinesse.WLM .

Software requirements

HighFinesse employs a fairly unique control system.

First, one needs to install the control software, which is uniquely tied to a particular wavemeter and is supplied with it.
In theory, software from another wavemeter might still work, but the results are not guaranteed.

Second, this control software runs an application server which processes all requests from third-party software. This
means, that the main application needs to be running to perform any device communication from the code. The code
has an option of automatically starting it, but on some occasions it might fail, in which case it is necessary to either
manually start it, or supply the location of the executable file.

Note: The control software should keep running the whole time. As soon as it is closed, the device will raise an error.

Finally, one needs the DLL to communicate with this software. It is usually named wlmData.dll, and it is located in the
main controller software folder either in Com-Test (for 32-bit applications) or Projects/64 (for 64-bit applications).

Connection

The device class makes an attempt to search for the DLL and executable in the standard installation folders, as well as
use the DLL in the standard location and its executable auto-detection capabilities. However, depending on the number
of installed wavemeters and their installation locations, one needs to provide up to 3 arguments on connection. First,
the wavemeter ID, which simply a 1 to 5-digit number (e.g. 1234). It is used to identify the correct instance of the
control software, either by searching for the correct folder, or via DLL autostart capabilities. Second, one might need to
provide the path to wlmData.dll (either including the name, or simply the containing folder). Its location is described
in the above section. Finally, you might also need to give the path to the application executable, which is located in
the main installation folder and is named wlm_ws*.exe, where * is the wavemeter generation (e.g., wlm_ws7.exe for
WS7 wavemeters). Hence, the fully qualified (and, therefore, most robust) instantiation looks like this:

>> import os
>> from pylablib.devices import HighFinesse
>> app_folder = r"C:\Program Files\HighFinesse\Wavelength Meter WS7 1234"
>> dll_path = os.path.join(app_folder, "Projects", "64")

(continues on next page)

76 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> app_path = os.path.join(app_folder, "wlm_ws7.exe")
>> wm = HighFinesse.WLM(1234, dll_path=dll_path, app_path=app_path)
>> wm.close()

A unique property of this device is the ability to control it simultaneously from several applications. Keep this in mind,
since it might cause confusion or strange results if the control attempts are not synchronized.

Warning: Communication with several simultaneously running wavemeters from a single application has not
been tested, and might not work correctly.

Operation

The operation of the wavemeter is fairly straightforward, but there is a couple of points to keep in mind:

• By default, the main measurement functions (WLM.get_frequency() and WLM.get_wavelength()) raise an
error on over- or under-exposure. If this is undesirable (e.g., the laser has power jumps), one can instead make it
return "over" or "under" on these occasions.

• The measurement result is returned immediately, but it is updated only about every 15-30ms (+ exposure time).
Hence, fast consecutive calls to WLM.get_frequency() and WLM.get_wavelength() will return the same
value.

• Multi-channel devices have two working modes: single-channel (when only one channel is enabled at a time)
and cycling (the wavemeter constantly cycles through several channels for quasi-simultaneous measurements).
Some methods only make sense in one of this modes, e.g., WLM.set_active_channel() only works in the
single-channel mode, while WLM.enable_switcher_channel() only in the multi-channel mode. By default,
these methods will automatically switch to the corresponding mode.

• Due to a minor control software bug, change in the exposure on some channels might not be reported until
the control software is switched to the corresponding channel’s exposure control tab (in the upper right cor-
ner). By default, the device class performs this switching any time the exposure value is queried, which solves
the issue. However, it does take about 10ms. If it is critical, it’s possible to turn of this behavior by setting
auto_channel_tab attribute to False.

Note: General sensor communication concepts are described on the corresponding page

Ophir power meters

Ophir produces a variety of power and energy meters with different controllers and measurement heads. The class has
been tested with Ophir Vega controller with a photodiode head.

The main device classes are pylablib.devices.Ophir.OphirDevice for a generic device and pylablib.
devices.Ophir.VegaPowerMeter for Vega power meter.

2.2. Devices overview 77

pylablib Documentation, Release 1.4.2

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5) and the baudrate, if it is different from the standard one (9600 baud):

>> from pylablib.devices import Ophir
>> meter1 = Ophir.VegaPowerMeter("COM5") # default connection assumes 9600 baud
>> meter2 = Ophir.VegaPowerMeter(("COM6", 19200)) # if the second power meter has a␣
→˓different baudrate
>> meter1.close()
>> meter2.close()

Operation

The operation of the power meter is fairly straightforward, but there is a couple of points to keep in mind:

• On the Vega controller the results can be sent at most 15 times a second. However, they are not necessarily
updated at this rate, so several consecutive request might yield the same result.

• The device provides the way to change the communication baud rate. If the rate is changed, the device is auto-
matically disconnected, and the new object needs to be instantiated with the updated baudrate.

• The device might return "over" instead of the power reading on overexposure. To fix that, you can adjust the
measurement range using VegaPowerMeter.set_range_idx().

Note: General sensor communication concepts are described on the corresponding page

Thorlabs PM100/PM160 series power meters

Thorlabs produces several different models of power and energy meters with different controllers and measurement
heads, but relatively similar interfaces. The class has been tested with PM160 standalone power VegaPowerMeter.

The main device class pylablib.devices.Thorlabs.PM160.

Software requirements

The drivers for USB devices are provided in the Thorlabs Optical Power Monitor software software. PyLabLib uses
NI VISA communication interface to communicate with this device. Hence, it also requires NI VISA Runtime, which
is freely available from the National Instruments website. Finally, to make the devices run with VISA interface, you
need to run Power Meter Driver Switcher (comes with the Optical Power Monitor software) and switch all the desired
power meters to PM100D mode (it is called PM100D even for other power meters such as PM160).

Devices with pure RS232 interface do not require Thorlabs software, and only need an appropriate USB-to-RS232
adapter with its own drivers.

Devices with bluetooth connection can be used on Windows via a bluetooth COM port. For that, first you need co
connect the power meter to your PC by making sure it is active (i.e., the display is lit up), and then adding a new bluetooth

78 Chapter 2. Citation

https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=OPM
https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html

pylablib Documentation, Release 1.4.2

device in Bluetooth and other devices settings (the power meter should show up in the list of discovered
devices). After that, you need to open More Bluetooth options (in the panel on the right side) and navigate to the
COM Ports tab. There should already be several COM ports in the list corresponding to the added power meter. You
are interested in the one marked with Outgoing direction, with the name containing 'SPP' (e.g., Thorlabs PM160
400000 'SPP'). The corresponding COM port (e.g., COM5) is the one you need to use for communication.

Connection

Depending on the protocol used (VISA or RS232/bluetooth), you will need to supply either a VISA name (e.g.,
"USB0::0x1313::0x807B::400000::INSTR") or a COM port name (e.g., "COM5"), potentially with the baud rate if
it is different from the standard 115200 baud (e.g., ("COM5", 19200); only applies to RS232 devices, not bluetooth):

>> from pylablib.devices import Thorlabs
>> meter1 = Thorlabs.PM160("USB0::0x1313::0x807B::400000::INSTR") # USB connection uses␣
→˓VISA interface
>> meter2 = Thorlabs.PM160("COM3") # bluetooth connection uses a COM port
>> meter1.close()
>> meter2.close()

Operation

The operation of the power meter is fairly straightforward, but there is a couple of points to keep in mind:

• Bluetooth communication tends to go to a sleep mode after about a second of inactivity (i.e., lack of communi-
cation with the PC). When in this mode, it takes about a second for the device to reply to the first command, after
which it switches in the active mode and replies significantly fast (about 20ms per command) until it goes back
into the sleep mode. Hence, to keep the device responsive, it is important to poll it at least 2-3 times a second
(e.g., using method PM160.get_reading() with measure=False, which immediately returns the currently
displayed value).

Note: Basic sensors communication concepts are described on the corresponding page

Lakeshore temperature sensors

Lakeshore manufactures a range of temperature sensor controllers and resistance bridges, which are also used for
temperature sensing. There is some overlap between different products, but they still use fairly distinct interfaces and
interaction patterns. The code has been tested with Lakeshore 218 temperature controller.

The main device class is pylablib.devices.Lakeshore.Lakeshore218.

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

2.2. Devices overview 79

pylablib Documentation, Release 1.4.2

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Lakeshore
>> sensor = Lakeshore.Lakeshore218("COM5")
>> sensor.close()

Note that the connection uses the standard which is fairly different from most RS232 controllers: 7 data bits, 1 parity
bit, and 1 stop bit (as opposed to 8 data bits and no parity bit for most controllers). Hence, it is possible that not all
RS232 controllers can communicate with it. In addition, they might need a null-modem (crossed Rx and Tx lines)
RS232 cable.

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

• Like most similar devices, querying temperature using Lakeshore218.get_temperature() immediately re-
turns the most recently measured value. Re-measurement is periodically initiated by the devices itself.

• It is possible to specify custom response curves by using Lakeshore218.set_curve_header() and
Lakeshore218.set_curve(). However, you need to be careful, as it overwrites the stored user curves.

Note: Basic sensors communication concepts are described on the corresponding page

CryoCon temperature sensors

CryoCon manufactures a range of temperature sensor controllers and resistance bridges, which are also used for tem-
perature sensing. The code has been tested with CryoCon 14C temperature controller.

The main device class is pylablib.devices.Cryocon.Cryocon1x.

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Cryocon
>> sensor = Cryocon.Cryocon1x("COM5")
>> sensor.close()

80 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

• Like most similar devices, querying temperature using Cryocon1x.get_temperature() immediately returns
the most recently measured value. Re-measurement is periodically initiated by the devices itself.

Note: Basic sensors communication concepts are described on the corresponding page

Cryomagnetics level monitor

Cryomagnetics manufactures cryogenic liquid level monitors, which are used for monitoring liquid nitrogen or helium
levels inside cryostats. The two level meters supported in the package are LM-500 and LM-510; despite difference in
appearance, their functionalities are very similar, so their interfaces are nearly identical.

The main device classes are pylablib.devices.Cryomagnetics.LM500 and pylablib.devices.
Cryomagnetics.LM500.

Software requirements

LM-500 provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work. LM-510 has a USB
interface with a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port, so no additional
software is required.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Cryomagnetics
>> sensor = Cryomagnetics.LM510("COM5")
>> sensor.close()

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

• Upon connection the devices are automatically switched into the remote mode, which disables manual controls.
If this mode is manually switched off (e.g., using Local button in LM-510), the device will no longer obey the
remote commands, even though the readout would still work.

• There are no specific commands for stopping a refill or resetting the timeout state after a timed-out refill. However,
both can be achieved using LM500.reset() method.

• Only LM-510 supports switching the automated refill option on and off using LM510.set_control_mode()
method.

• Like most similar devices, querying the level using LM500.get_level() immediately returns the most recently
measured value. Re-measurement is periodically initiated by the devices itself, or can be initiated manually using
LM500.start_measurement() or LM500.measure_level().

2.2. Devices overview 81

pylablib Documentation, Release 1.4.2

Note: Basic sensors communication concepts are described on the corresponding page

Pfeiffer pressure gauges

Pfeiffer manufactures a range of pressure gauges and controllers with several different standards and communication
protocols. The code has been tested with Pfeiffer TPG260 series controller (specifically, TPG261) and Pfeiffer DPG202
controller.

The main device classes are pylablib.devices.Pfeiffer.TPG260 and pylablib.devices.Pfeiffer.DPG202.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Pfeiffer
>> gauge = Pfeiffer.TPG260("COM5")
>> gauge.close()

Operation

TPG260 series

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

• On measurement error TPG260.get_pressure() returns None. To get the underlying issue, you can use
TPG260.get_channel_status()

• By default, the pressure is always returned in Pa regardless of the display units. This behavior can be overridden
by setting display_units=True in TPG260.get_pressure().

• In case an error occurs, you can use TPG260.get_current_errors() to get the list of currently active errors
and TPG260.reset_error() to reset them.

• This communication protocol for 350-series gauges (361, 362 and 366) is similar, so the device class should also
be able to work with them. However, it has not been tested.

82 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

DPG202/TPG202 controller

There is a variety of different controllers which implement a similar protocol: DPG202 and TPG202, as well as a variety
of RS485-controlled gauges (e.g., CPT200). It is based on requesting parameters with certain 3-digit numbers. These
are fairly consistent between the devices, for example, 312 stands for the software version, 740 for pressure, and 349
for the device name. However, different devices implement different subsets of these parameters. The supplied class
provides a generic interface through DPG202.get_value() and DPG202.comm() methods, which, correspondingly,
request or set a value of a given parameter given its number (e.g., 740) and datatype (e.g., "string", "u_expo_new",
or "u_short_int"). Both of these pieces of information are usually provided in the controller or gauge manual
in the Parameter overview (or similar-named) section. Currently the device class provides only the most basic
functionality:

>> from pylablib.devices import Pfeiffer
>> gauge = Pfeiffer.DPG202("COM5")
>> gauge.get_pressure() # pressure in Pa
9.78E4
>> gauge.get_value(740,"u_expo_new") # request the parameter directly, yields pressure␣
→˓in mBar
9.78E2
>> gauge.close()

Note: Basic sensors communication concepts are described on the corresponding page

Leybold pressure gauges

Leybold manufactures a range of pressure gauges and controllers with several different standards and communication
protocols. The code has been tested with Leybold ITR90 pressure gauge using its built-in RS232 connection.

The main device classes are pylablib.devices.Leybold.ITR90.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import Leybold
>> gauge = Leybold.ITR90("COM5")
>> gauge.close()

2.2. Devices overview 83

pylablib Documentation, Release 1.4.2

Operation

ITR90

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

• Device operates by constantly streaming its status updates. To get the most recent and most consistent data, you
can use ITR90.get_update(). This is also how you access the gauge status and error states.

• By default, the pressure is always returned in Pa regardless of the display units. This behavior can be overridden
by setting display_units=True in ITR90.get_pressure().

Note: Basic sensors communication concepts are described on the corresponding page

Kurt J. Lesker pressure gauges

KJL manufactures a range of pressure gauges and controllers with several different standards and communication pro-
tocols. The code has been tested with KJL300 pressure gauge using its built-in RS232 connection.

The main device classes are pylablib.devices.KJL.KJL300.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import KJL
>> gauge = KJL.KJL300("COM5")
>> gauge.close()

Operation

KJL300

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

• Even standard RS232 operation requires specifying the device RS485 address. IT can be specified using addr
parameter on creation. By default, the class assumes the factory default of 1, but if it is ever changed on the
device, it needs to be specified correctly.

• By default, the pressure is always returned and set in Pa regardless of the display units.

Note: General device communication concepts are described on the corresponding page.

84 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

2.2.5 Basic lasers

Basic example

Basic lasers (such as pump lasers) usually only have very basic power-related functionality: turning it on and off, setting
power, and controlling and/or requesting the shutter state:

>> laser = LaserQuantum.Finesse("COM1") # connect to the laser
>> laser.set_output_power(10.) # set 10W output power
>> laser.enable() # enable the laser
>> laser.get_output_power() # laser hasn't ramped up up yet
0.1
>> time.sleep(30.) # wait until the ramp up is done
>> laser.get_output_power()
10.0
>> laser.enable(False)
>> laser.close()

Lighthouse Photonics Sprout

Lighthouse Photonics Sprout laser implements the same basic functionality, with some small additions like reading the
interlock status, output mode, temperatures, etc.

The device class is pylablib.devices.LighthousePhotonics.SproutG .

Since the device shows up as a COM port, it uses the standard connection method, and all you need to know to connect
is its COM-port address:

from pylablib.devices import LighthousePhotonics
laser = LighthousePhotonics.SproutG("COM1")
laser.close()

Laser Quantum Finesse

Laser Quantum Finesse laser implements the same basic functionality, with some small additions like controlling the
shutter, reading the driving current, temperatures, etc.

The device class is pylablib.devices.LaserQuantum.Finesse.

Since the device shows up as a COM port, it uses the standard connection method, and all you need to know to connect
is its COM-port address:

from pylablib.devices import LaserQuantum
laser = LaserQuantum.Finesse("COM1")
laser.close()

Note: General device communication concepts are described on the corresponding page.

2.2. Devices overview 85

pylablib Documentation, Release 1.4.2

2.2.6 M2 Solstis laser

Solstis is a Ti:Saph laser produces by M2. It is controlled via IceBloc controller unit, which communicates with the
PC via a network connection.

The main laser class is pylablib.devices.M2.Solstis.

Software requirements

The device provides a bare network interface, so no additional software is required. However, the device and the local
network need to be appropriately configured, such that the PC and the laser are in the same local network and have
static IPs.

In order to access some advanced features, you will need a websocket-client package, which is not installed with
pylablib by default. You can obtain it from PyPi either separately as

pip install websocket-client

or with the expanded pylablib version

pip install pylablib[devio-full]

Connection

The laser is identified by its IP address (typically starting with 192.168.1, if it is on the local network) and the port:

>> from pylablib.devices import M2
>> laser = M2.Solstis("192.168.1.2", 34567)
>> laser.close()

The port is set up in the Remote interface row of the Network Settings menu of the laser web interface. There
you also need to provide the correct IP address of the controlling PC and enable the remote interface; otherwise the
connection will be rejected by the laser.

In addition, you can enable websocket interface option, which is used to send request directly though the device web
interface. It is used for some options which are unavailable otherwise, such as enabling or disable the wavemeter
connection, receiving some additional status information, and performing more robust control. Note that for proper
operation the web interfaces should be opened in the browser and logged in.

Operation

The method names are pretty self-explanatory, and mostly correspond directly to the operations in the web inter-
face. Note that, due to the remote interface organization, terascan requires two methods to start: first Solstis.
setup_terascan() to specify parameters, and then Solstis.start_terascan() to start it.

One should note, that the device operation is not very stable, and occasionally some errors and crashes arise. These
can range from failed wavelength tuning and terascan, to terascans failing in exotic ways (e.g., the remote interface
suggests that the scan is in progress while the web interface reports a crash), to complete device failure requiring Ice
Bloc power cycling.

The device class attempts to somewhat mitigate it by providing relatively a robust stopping method Solstis.
stop_all_operation(), which tries to set the devices to the default idle state. It uses web interface to get a better
information about the laser crashing and send additional stopping commands. It also performs additional steps to stop
scans and put the laser in an operation state after a failure, such as starting quick small fine and terascans, and tuning
to a nearby frequency.

86 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

2.2.7 M2 external mixing module (EMM)

M2 EMM allows for mixing Solstis lasers with an additional IR laser to produce higher frequency radiation. Its control
principles are fairly similar to Solstis, and it is accessed through the same kind of Ice Bloc controller.

The main device class is pylablib.devices.M2.EMM .

Software requirements

Same as Solstis, the device provides a bare network interface, so no additional software is required. However, the
device and the local network need to be appropriately configured, such that the PC, the EMM, and the corresponding
Solstis laser are in the same local network and have static IPs.

Connection

The EMM is identified by its IP address (typically starting with 192.168.1, if it is on the local network) and the port:

>> from pylablib.devices import M2
>> emm = M2.EMM("192.168.1.2", 34567)
>> emm.close()

The port is set up in the Remote interface row of the Network Settings menu of the controller web interface.
There you also need to provide the correct IP address of the controlling PC and enable the remote interface; otherwise
the connection will be rejected by the controller.

Operation

The methods are organized in the same way as for the Solstis laser. Overall, the remote interface implements fewer
commands, so the class provides fewer methods. Most of the commonly used methods are related to fine frequency
tuning, terascan control, and status checking.

Note: General device communication concepts are described on the corresponding page.

2.2.8 Toptica iBeam Smart laser

Toptica iBeam Smart is a series of CW diode lasers from Toptica. The software has been tested with the standard
633nm laser.

The main device class is pylablib.devices.Toptica.TopticaIBeam .

Software requirements

The device is connected to the PC via RS232 or USB. RS232 simply requires a COM-port controller on the PC, which
in most cases is a USB-to-Serial adapter. Such adapters normally come with their standard drivers. The USB version
simply involves a built-in USB-to-Serial converter (e.g., a standard FTDI chip), so it also shows up as a virtual COM
port. Hence, it requires relatively standard drivers, which are either included with the laser, or can be download from
the manufacturer’s website, for example, together with the TOPAS control software.

2.2. Devices overview 87

https://www.toptica.com/products/single-mode-diode-lasers/ibeam-smart/

pylablib Documentation, Release 1.4.2

Connection

Since the devices are identified as virtual COM ports, they use the standard connection method, and all you need to
know is their COM-port address (e.g., COM5) and, possibly, baud rate, if it is different from the standard 115200 baud:

>> from pylablib.devices import Toptica
>> laser1 = Toptica.TopticaIBeam("COM5")
>> laser2 = Toptica.TopticaIBeam(("COM10",38400)) # in case of 38400 baud connection
>> laser1.close()
>> laser2.close()

Operation

Power and output control

Usually the laser has the main power control and one or several (up to 5) output channels, which can be controlled
separately. To turn the whole laser on or off, you can use TopticaIBeam.enable(), while each channel is controlled
using TopticaIBeam.enable_channel(). The power is set independently for each channel via TopticaIBeam.
set_channel_power(). The actual output power can be queried using TopticaIBeam.get_output_power().

Detailed info

The most detailed information about the laser can be obtained using TopticaIBeam.get_full_data() method. It
outputs a detailed report generated by the laser, which contains most of the adjustable parameters.

Notes and issues

Occasionally the laser communication falls into an error state, where replies are lagging behind the requests (i.e., instead
of replying to the issued command, the devices replies to the previous one). This is especially likely if several commands
are issued in a rapid succession. If this happens, the laser should be rebooted using TopticaIBeam.reboot()method.

Note: General device communication concepts are described on the corresponding page.

2.2.9 Sirah Matisse laser

Matisse is a family of Ti:Saph and dye ring lasers produces by Sirah.

The main laser class is pylablib.devices.Sirah.SirahMatisse.

88 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Software requirements

The device requires Matisse Commander software supplied by the manufacturer. When it is installed, it shows up as a
VISA resource and can be accessed without further requirements.

Connection

The laser is identified by its VISA address, typically looking like "USB0::0x17E7::0x0102::01-01-10::INSTR":

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x17E7::0x0102::01-01-10::INSTR',)
>> from pylablib.devices import Sirah
>> laser = Sirah.SirahMatisse("")
>> laser.close()

Operation

The method names are pretty self-explanatory, and mostly correspond directly to the operations in the Matisse Com-
mander. However, only the basic tuning and scanning functions supplied by the interface are provided, and the more
advanced once like scanning BRF/etalon or interfacing with a wavemeter need to be implemented by the user based on
the defined methods.

Note that depending on the specific model not all methods are available, e.g., reference cell locking is not available in
TR/DR configuration.

Note: General device communication concepts are described on the corresponding page.

2.2.10 NKT lasers

NKT Photonics produces a variety of light sources (predominantly fiber-coupled lasers), which are frequently ar-
ranges as multi-stage modular systems. These systems consist of individual modules, which can be controlled
via the main module using the common Interbus connection. The main laser class is pylablib.devices.NKT.
GenericInterbusDevice for a generic Interbus-connected system. The code has been tested with SuperK EX-
TREME white light laser equipped with SuperK SELECT tunable filter.

Software requirements

The controllers have a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port by the OS, so
no additional software is required. If the device is not recognized, the drivers can be obtained from the manufacturer
website.

2.2. Devices overview 89

https://www.nktphotonics.com/support/
https://www.nktphotonics.com/support/

pylablib Documentation, Release 1.4.2

Connection

The whole Interbus system is identified as a COM port, so it uses the standard connection method, and all you need to
know is its COM-port address (e.g., COM5):

>> from pylablib.devices import NKT
>> laser = NKT.GenericInterbusDevice("COM3")
>> laser.close()

Within each Interbus system, there is a set of modules which can be accessed individually using their address (a
number between 1 and 48). To automatically detect all available modules, you can use GenericInterbusDevice.
ib_scan_devices(). Note that it typically takes relatively long time (about 25s for the full scan), so you should
generally only do it when you change the Interbus arrangement by connecting or disconnecting devices or changing
their addresses.

To identify, which address corresponds to which device, there are several methods. First, you can use the returned device
type (also an integer between 0 and 255). You can look up the types in the SDK manual, which is freely available on
the manufacturer website (you need to download SDK zip file, inside which SDK Instruction manual.pdf provides
the necessary information). In addition, some devices either have standard addresses (e.g., Koheras BasiK K80-1 has
address 10 and type 33, while SuperK EXTREME has address 15 and type 96), or allow for setting their address using
switches (e.g., SuperK SELECT).

Operation

All of the device control is done by querying and setting values of internal registers. Similar to modules them-
selves, registers within each module are also identified by their numerical addresses. The list of the device regis-
ters and their meaning is provided in the same SDK file as mentioned above. To access the registers, you can use
GenericInterbusDevice.ib_get_reg() and GenericInterbusDevice.ib_set_reg() methods. By default
these methods work with raw binary values, but you can provide the register kind (e.g., "i16" or "u8") to these
methods. You can learn the kind of the registers and their precise meaning from the register files, which are available
after installing the SDK. These files are located in the Register Files folder within the SDK, and their names cor-
respond to the device kind in hex (e.g., the file corresponding to Koheras BasiK K80-1 will be name 21.txt). Given
this information, you can control your system. For example, the following code connects to the SuperK EXTREME
module, queries its inlet temperature, sets the power setpoint and turns on the emission:

from pylablib.devices import NKT
laser = NKT.GenericInterbusDevice("COM3")
print(laser.ib_get_reg(15,0x11,"i16")/10) # the register is temperature in 0.1C
laser.ib_set_reg(15,0x37,600,"u16") # set power to 60% (the register is power level in␣
→˓0.1%)
laser.ib_set_reg(15,0x30,3,"u8") # turn on the output (3 for on, 0 for off)

Note: General device communication concepts are described on the corresponding page.

90 Chapter 2. Citation

https://www.nktphotonics.com/support/

pylablib Documentation, Release 1.4.2

2.2.11 Tektronix oscilloscopes

Tektronix produces a large number of very widespread oscilloscopes. They have strongly overlapping, though not
entirely identical, interfaces. The library has been tested with TDS2002B, TDS2004B, and DBO2014B.

The generic oscilloscope class is pylablib.devices.Tektronix.ITektronixScope, and the derived classes
for specific devices are pylablib.devices.Tektronix.TDS2000 of TDS2000 series and pylablib.devices.
Tektronix.DPO2000 for DPO2000/MSO2000 series.

Software requirements

These oscilloscopes use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely
available from the National Instruments website

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x0699, e.g.,
"USB0::0x0699::0x0364::C000001::INSTR". To get a list of all connected VISA-enabled devices, you can run
pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x0699::0x0364::C000001::INSTR',)
>> from pylablib.devices import Tektronix
>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR")
>> osc.close()

Operation

The method names are usually pretty self-explanatory. A typical operation involves setting up channels, scales, and
trigger options, acquiring a waveform, and reading the result:

from pylablib.devices import Tektronix
osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR") # connect to the␣
→˓oscilloscope
osc.enable_channel([1,2]) # enable channels
osc.set_horizontal_span(0.1) # set up horizontal and vertical spans
osc.set_vertical_span("CH1", 1)
osc.set_vertical_span("CH2", 0.1)
osc.setup_edge_trigger("CH1", 0., "dc", "rise") # set up edge trigger on channel 1 at␣
→˓0V threshold
osc.grab_single(wait_timeout=10.) # grab a single waveform and wait for up to 10s to␣
→˓finish acquisition
sweeps = osc.read_multiple_sweeps([1,2]) # read out the waveforms
osc.close()

However, there is a couple of points to keep in mind:

• The acquisition is controlled using grab_ methods. Generally, the most convenient way is to use
ITektronixScope.grab_single() to acquire a single waveform (analogous to pressing a Single button
on the oscilloscope panel). By default, this method waits until the acquisition is complete (i.e., the oscillo-
scope is triggered and the waveform is completely acquired) before continuing. You can also set wait=False

2.2. Devices overview 91

https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html

pylablib Documentation, Release 1.4.2

to perform other operations in the meantime. The acquisition status can be queried via ITektronixScope.
is_grabbing(), which returns True while the trigger is armed or while the data is recording, and False after
the acquisition is done.

• It appears that the software trigger does not work some time (~500 ms) after the acquisition is set up. If it
is invoked in ITektronixScope.grab_single() method by supplying software_trigger=True, a 300ms
delay is added automatically. However, if you invoke it manually using ITektronixScope.force_trigger(),
you should keep it in mind.

• The waveform transfer is usually performed via ITektronixScope.read_sweep() or ITektronixScope.
read_multiple_sweeps() methods. Since the waveform is transferred in raw form, it requires a preamble
data (vertical and horizontal scales and offsets, data format, etc.) to translate into physical units. By default, it is
acquired every time before the waveform transfer, which takes some time (up to ~200ms). Alternatively, one can
acquire a preamble once and use it in subsequent reading. This method is faster, but will result in an incorrect
scaling if the parameters are changed in the meantime (either remotely, or directly on the oscilloscope):

>> wfmpres = osc.osc.get_wfmpre([1,2])
>> %time sweeps = osc.read_multiple_sweeps([1,2])
Wall time: 2.2 s
>> %time sweeps = osc.read_multiple_sweeps([1,2], wfmpres=wfmpres)
Wall time: 450 ms

• The device class attempts to determine the number of channels automatically on connection, based on which
requests raise device errors. However, this process takes some time, and sometimes can raise errors on not fully
SCPI-compliant devices. If that is the case, it is always possible to supply the number of channels on construction:

>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR") # use␣
→˓autodetection
>> osc.get_channels_number()
2
>> osc.close()
>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR", nchannels=2) #␣
→˓specify manually

Keithley (currently absorbed by Tektronix) manufactures a large variety of precision electrical test and measurement
equipment.

2.2.12 Keithley multimeters

Note: Basic sensors communication concepts are described on the corresponding page

There are different series of multimeters with somewhat different capabilities. The code has been tested with Keithley
2110 multimeter, but it should also be able to work with 2100 and 2010 series.

The main device class is pylablib.devices.Keithley.Keithley2110.

92 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Software requirements

These multimeters use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely avail-
able from the National Instruments website

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x05E6, e.g.,
"USB0::0x05E6::0x2110::0000001::INSTR". To get a list of all connected VISA-enabled devices, you can run
pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x05E6::0x2110::0000001::INSTR',)
>> from pylablib.devices import Keithley
>> meter = Keithley.Keithley2110("USB0::0x05E6::0x2110::0000001::INSTR")
>> meter.close()

Operation

The operation of this multimeter is fairly straightforward, but there is a couple of points to keep in mind:

• While all measurement modes are, in principle, supported, only some of them have implemented specific param-
eter changing (e.g., range or resolution): voltage and current (AC and DC), resistance (2-wire and 4-wire), ca-
pacitance, frequency and period (voltage and current). These methods allow for changing of specific parameters
using methods like Keithley2110.get_vcr_function_parameters() (get voltage, current, or resistance
measurement parameters) or Keithley2110.set_cap_function_parameters() (set capacitance measure-
ment parameters).

• At the same time, more universal Keithley2110.get_configuration() and Keithley2110.
set_configuration() methods allow for changing basic parameters (range and resolution) for all of
the applicable measurement functions (excluded are continuity, diode, and temperature modes).

Rigol manufactures a large variety of electrical test and measurement equipment, including signal generators, oscillo-
scopes, multimeters, power supplies, etc.

2.2.13 Rigol laboratory power supplies

There are different kinds of power supplies with somewhat different capabilities. The code has been tested with Rigol
DP1116A.

The main device class is pylablib.devices.Rigol.DP1116A .

2.2. Devices overview 93

https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html

pylablib Documentation, Release 1.4.2

Software requirements

These power supplies use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely
available from the National Instruments website

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x1AB1, e.g.,
"USB0::0x1AB1::0x0E10::DP1A000000000::INSTR". To get a list of all connected VISA-enabled devices, you
can run pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x1AB1::0x0E10::DP1A000000000::INSTR',)
>> from pylablib.devices import Rigol
>> supply = Rigol.DP1116A("USB0::0x1AB1::0x0E10::DP1A000000000::INSTR")
>> supply.close()

Operation

The operation of this multimeter is fairly straightforward, but there is are some points to keep in mind:

• Note that the supply supports different output ranges (for DP1116A it’s "16V" or "32V"), which trike different
balance between output voltage and current. Other power supplies might support different output ranges, in
which case the related method will raise an error or lead to communication timeout.

Note: General device communication concepts are described on the corresponding page.

2.2.14 NI DAQmx interface

National Instruments produces lots of different data acquisition devices, which support digital and analog input and
output, both immediate and clocked (depending on the exact device). They are controlled via a very universal NI
DAQmx interface. This interface is implemented in python-nidaqmx package, which provides a fairly close to original
functionality, but with much more convenient Python wrappers. Pylablib implements a relatively thin wrapper around
this package to present it in a way similar to the other device classes, and to simplify common tasks such as setting up
voltage and counter input channels.

The main daq class is pylablib.devices.NI.NIDAQ . It has been tested with NI PCIe-6323, NI USB-6008, and NI
USB-6363.

Software requirements

This interface uses NI DAQmx library, which is freely available on the National Instruments website. Additionally,
it needs python-nidaqmx package (not to be confused with pydaqmx). It is not automatically installed with the base
version of pylablib, and can be obtained from PyPi either separately as

pip install nidaqmx

or with the expanded pylablib version

94 Chapter 2. Citation

https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8baSAC
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8baSAC
https://nidaqmx-python.readthedocs.io/en/latest/
https://www.ni.com/en-us/support/downloads/drivers/download.ni-daqmx.html
https://nidaqmx-python.readthedocs.io/en/latest/

pylablib Documentation, Release 1.4.2

pip install pylablib[devio-full]

Connection

The devices are identified by their name, such as "Dev1". To list all of the connected devices together with their basic
information, you can run NI.list_nidaqmx_devices:

>> from pylablib.devices import NI
>> NI.list_nidaqmx_devices()
[TDeviceInfo(name='Dev1', model='USB-6008', serial_number='01234567')]
>> daq = NI.NIDAQ("Dev1")
>> daq.close()

Operation

The typical use case involves setting up different input and output channels, starting acquisition, and acquiring some
number of samples:

from pylablib.devices import NI
daq = NI.NIDAQ("Dev1")
daq.add_voltage_input("vin", "ai0") # add voltage input named "vin" on the terminal "ai0
→˓"
daq.add_voltage_input("vin2", "ai1", rng=(-1,1)) # add second channel with a smaller␣
→˓range of +/- 1V
daq.add_digital_input("din", "port0/line0")
daq.setup_clock(100) # setup 100Hz sampling clock
trace = daq.read(100) # start acquisition, read finite number of samples, and stop it␣
→˓again
now do continuous acquisition + processing loop
nsamples = 0
daq.start() # start continuous acquisition
while nsamples<1000:

sample = daq.read()
... process sample
nsamples+=1

daq.stop()

The class provide basic methods to set up analog, digital, and counter inputs, and analog and digital outputs. All the
analog and digital inputs are synchronized to the same clock, which is the default analog input sample clock (ai/
SampleClock) by default. It is also possible to set up the external clock via NIDAQ.setup_clock() and export the
sampling clock via NIDAQ.export_clock(). Not that not all devices support clocked digital inputs, which means
that setting up digital inputs there would raise an error.

By default, the counter inputs are synchronized to the same clock, although it is possible to change that. The counter
inputs have 3 modes for output values: bare counter (accumulates the number of counts), differential (number of new
counts between the two sampling points), and rate (same as differential, but normalized by the sampling rate). In case
of external clock, when the sampling rate is a priori unknown, it might be useful to setup a clock rate counter input to
determine this clock rate via NIDAQ.add_clock_period_input().

Acquisition is controlled with NIDAQ.start() and NIDAQ.stop()methods, and the readout is performed via NIDAQ.
read(). The result of this is always a 2D numpy array, where the first index corresponds to samples and the second to
channels. The order of channels can be obtained from NIDAQ.get_input_channels().

2.2. Devices overview 95

pylablib Documentation, Release 1.4.2

The outputs can be either analog or digital. The digital outputs are always immediate, i.e., they immediately produce
and hold the latest output value. The analog outputs can work in two modes: either immediate, or clocked. The mode
is set up via NIDAQ.setup_voltage_output_clock(). In this case, it is possible to output a list of values, which
produces a waveform clocked according to the specified clock: either a separate clock source (default), or the analog
input clock, which makes voltage input and output synchronized.

Note: General device communication concepts are described on the corresponding page.

2.2.15 Generic AWGs

There is a large variety of Arbitrary Waveform Generators, which have very similar characteristics and communication
interface.

The generic AWG class is pylablib.devices.AWG.GenericAWG , and the derived classes for specific devices
are pylablib.devices.AWG.Agilent33500 and pylablib.devices.AWG.Agilent33220A for two different
Agilent AWGs, pylablib.devices.AWG.RigolDG1000 for Rigol DG1000 series, pylablib.devices.AWG.
TektronixAFG1000 for Tektronix AFG1000 series, pylablib.devices.AWG.InstekAFG2000 for Instek GW 2000
series, pylablib.devices.AWG.RSInstekAFG21000 for Iso-Tech 21000 series (a clone of Instek AFG2000, but with
a couple of bugs which needs to be worked around), and pylablib.devices.AWG.InstekAFG2225 for Instek GW
2225 (slightly advanced two-channel version of Instek AFG2000).

Software requirements

Most of these AWGs use NI VISA communication interface. Hence, they require NI VISA Runtime, which is freely
available from the National Instruments website. However, Instek and Iso-Tech AWGs show up as virtual COM ports,
so they require no additional software.

Connection

The devices are identified by their VISA connection strings, (e.g., "USB0::0x0699::0x0364::C000001::INSTR")
or COM-port (e.g., "COM5"). To get a list of all connected VISA-enabled devices, you can run pylablib.
list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x09C4::0x0400::DG1D150200000::INSTR',)
>> from pylablib.devices import AWG
>> dev = AWG.RigolDG1000("USB0::0x09C4::0x0400::DG1D150200000::INSTR")
>> dev.close()

Operation

The method names are usually pretty self-explanatory. A typical operation involves setting up the function, its param-
eters, and controlling output:

from pylablib.devices import AWG
dev = AWG.RigolDG1000("USB0::0x09C4::0x0400::DG1D150200000::INSTR") # connect to the␣
→˓device
dev.set_function("square", 2) # set up square waveform on the second channel

(continues on next page)

96 Chapter 2. Citation

https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html

pylablib Documentation, Release 1.4.2

(continued from previous page)

dev.set_duty_cycle(20, 2)
dev.set_output_range((-1, 1), 2) # set output span from -1V to 1V
dev.enable_output(channel=2) # enable output
dev.close()

However, there is a couple of points to keep in mind:

• Since the same general class architecture supports both single-channel and multichannel devices, the chan-
nel argument is usually close to the end of the argument list and is not mandatory. If it is not supplied,
it is chosen to be the current default channel (1 upon creation), which can be set using GenericAWG.
select_current_channel(). Hence, int the example above we can write:

dev.select_current_channel(2) # now all methods assume channel 2
dev.set_function("square")
dev.set_duty_cycle(20)
dev.set_output_range((-1, 1))
dev.enable_output()

• Similarly, some methods can be present but not applicable to the particular AWG (e.g., burst trigger related
methods, phase synchronization methods, etc.) If this is the case, they will cause an error when called.

Note: General device communication concepts are described on the corresponding page.

2.2.16 Andor Shamrock spectrometers

In addition to cameras, Andor has a set of spectrometers primarily designed to work with and communicate through
those cameras. Among these Kymera and Shamrock spectrographs have a common configuration and API.

The code is located in pylablib.devices.Andor, and the main device class is pylablib.devices.Andor.
ShamrockSpectrograph . It has been tested with Kymera 328i spectrograph connected via an Andor Newton camera
through I2C interface.

Software requirements

Unfortunately, there is a large variety of different hardware setups and DLL combinations, which relate to each other
in very non-obvious way. The possible adjustable parameters are

• Spectrograph connection: either via camera’s I2C interface, or directly to the PC via a USB interface

• Camera AndorSDK2 DLL: on 64-bit systems it can be named atmcd64d.dll or atmcd64d_legacy.dll, and
it can come from Andor Solis or Andor SDK2.

• Spectrometer DLL; on 64-bit systems it can be named atspectrograph.dll, ShamrockCIF.dll, or
ShamrockCIF64.dll, and it might require Andor SDK2 DLLs (atmcd64d.dll, atmcd64d_legacy.dll,
atshamrock.dll, atshamrock64.dll) to be located in the same folder. it can come from Andor Solis, Andor
SDK2 or MicroManager plugin available on Andor/Oxford website.

As mentioned above, there are three main sources of these libraries:

• Andor Solis, which can be obtained either with the camera, or from the website upon registration.

• Andor SDK2, similarly obtained from the website (the most recent version is 2.104.30084)

• MicroManager plugin, also obtained from the website (Software section; here is the direct link).

2.2. Devices overview 97

https://andor.oxinst.com/products/solis-software/
https://andor.oxinst.com/products/software-development-kit/
https://andor.oxinst.com/downloads/view/andor-sdk-2.104.30084.0
https://andor.oxinst.com/products/spectrographs-solutions
https://andor.oxinst.com/assets/uploads/downloads/mm-microspectroscopyplugin-1.0.0.zip

pylablib Documentation, Release 1.4.2

In general, it makes sense to try different combinations of DLLs and connection methods and see what works. To specify
the exact DLL sources, you use the corresponding library parameters devices/dlls/andor_sdk2 and devices/
dlls/andor_shamrock:

import pylablib as pll
pll.par["devices/dlls/andor_shamrock"] = "path/to/shamrock/dlls"
pll.par["devices/dlls/andor_sdk2"] = "path/to/sdk2/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK2Camera()
spec = Andor.ShamrockSpectrograph()

Possible issues might include

• Not being able to find camera, spectrograph, or both. You can check for this by examining the outputs of Andor.
get_cameras_number_SDK2() and Andor.list_shamrock_spectrographs()

• Not being able to connect both to the camera and the spectrograph simultaneously. It might be possible to connect
to one of them individually, but once one connection is opened, the other one gets blocked. You can check for
this directly by trying to open both the camera and the spectrograph and making sure that it works (if it does
not, it will look the same as if the camera/spectrograph disappear as soon as spectrograph/camera is connected).
It might be less of an issue if the spectrograph is connected directly via USB rather than via I2C through the
camera.

• In some cases (especially when using libraries from the MicroManager plugin), spectrograph is identified cor-
rectly and can be connected to, but the connection is corrupted, and queries return nonsense values.

• Rarely, the spectrometer state might get corrupted, and it would stop being identified even in Andor Solis. In
this case, you can try power cycling the spectrometer, camera and PC, as well as temporarily changing the
spectrometer connection method (USB generally seems more stable). Just as a precaution, it is recommended
to store a backup of the spectrograph EEPROM configuration, which can be done through Andor Solis. To do
that, you need to go to the Hardware -> Spectrograph Setup window in the top menu, there click on the
System Configuration button, and there export the EEPROM state via Save to File... button.

Connection

The spectrographs are identified by their index, starting from zero. To list the connected spectrographs, you can run
Andor.list_shamrock_spectrographs:

>> from pylablib.devices import Andor
>> Andor.list_shamrock_spectrographs()
["KY-1234"]
>> spec = Andor.ShamrockSpectrograph(idx=0)
>> spec.close()

In addition, in order to acquire the spectra you need to establish the connection to the corresponding camera using
Andor cameras interface. It is generally recommended to open the camera connection before the spectrograph to avoid
software conflicts.

98 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Operation

The operation of these spectrographs is relatively straightforward. Note that they only allow for control of the spectrom-
eter part of the setup (e.g., gratings, slits, filters) and for calculation of the wavelength calibration, i.e., the wavelength
corresponding to each camera pixel column. In order to actually acquire and image, you would need to establish a
separate camera connection and acquire images from it independently (typically in the full vertical binning, FVB,
mode):

>> from pylablib.devices import Andor
>> cam = Andor.AndorSDK2Camera() # camera should be connected first
>> spec = Andor.ShamrockSpectrograph()
>> spec.set_wavelength(600E-9) # set 600nm center wavelength
>> spec.setup_pixels_from_camera(cam) # setup camera sensor parameters (number and size␣
→˓of pixels) for wavelength calibration
>> wavelengths = spec.get_calibration() # return array of wavelength corresponding to␣
→˓each pixel
>> cam.set_image_mode("fvb")
>> spectrum = cam.snap()[0] # 1D array of the corresponding spectrum intensities
>> cam.close()
>> spec.close()

Note: General device communication concepts are described on the corresponding page.

2.2.17 Miscellaneous Thorlabs devices

Thorlabs has a variety of devices implementing different serial communication protocols, mostly related to optome-
chanics. Their requirements and general approach are still fairly similar, so they are all collected here.

Software requirements

Most devices provide either a bare RS232 interface, or a USB connection with a built-in USB-to-RS232 chip. In either
case, they are automatically recognized as serial ports, and no additional software is required. The only exception on
this page is MFF101/102 motorized flip mount, which belongs to the Kinesis devices and requires APT software.

Connection

Most of the devices are identified as COM ports, so they use the standard connection method, and all you need to know
is their COM-port address (e.g., COM5):

>> from pylablib.devices import Thorlabs
>> wheel = Thorlabs.FW102("COM5")
>> wheel.close()

The only exception is MFF101/102, which is identified by its serial number (more details are given at the Kinesis
devices page).

2.2. Devices overview 99

pylablib Documentation, Release 1.4.2

Operation

MFF101/102 flip mount

The class is provided as pylablib.devices.Thorlabs.MFF. It allows for control of the flip mirror position, as well
as changing its motion parameters and designations of its digital input and output.

FW102/212 filter wheel

The class is proved as pylablib.devices.Thorlabs.FW .

In addition to setting the position, it allows to adjust speed settings and turn the indicator LED off to minimize light
contamination. By default, the wheel also “respects bound” between the first and the last position. Usually, when one
orders a move from, e.g., position 2 to 6 on a 6-position wheel, it would go along the shortest route, i.e., position 1. If
this is an ND filter wheel (e.g., FW102CNEB), this leads to momentary increase of the transmitted power by ND0.5
(about factor of 3) compared to start and stop positions. To avoid that, the class breaks this move into several shorter
(no longer than 1/3 of the wheel) moves, which never cross the boundary between the first and the last position. This
takes a bit longer (as it requires several consecutive moves), but is generally safer. This behavior can be turned off by
setting respect_bound=False on class creation.

Note that older version (1.0) of the filter wheel do not support the full range of options and operate on a slightly different
protocol. This leads to crashes on at least some of the methods, e.g., FW.get_position(). If this is the case, you can
try pylablib.devices.Thorlabs.FWv1 instead.

MDT693/694 high-voltage source

The class is proved as pylablib.devices.Thorlabs.MDT69xA .

The class provides the ability to set and query the voltage on the three channels, as well as to query the total voltage
range (it is set by a physical switch on the back panel, and can not be altered remotely).

Note: General device communication concepts are described on the corresponding page.

2.2.18 OZ Optics devices

OZ Optics provides a variety of mostly fiber-optics related devices. Pylablib covers some of its fiber optomechanics
solutions: polarization controller, tunable filter and variable attenuator. Their requirements and general approach are
fairly similar, so they are all collected here.

Software requirements

All the devices provide either a bare RS232 interface, or a USB connection with built-in USB-to-RS232 chip. In either
case, they are automatically recognized as serial ports, and no additional software is required.

100 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Connection

The devices are identified as COM ports, so they use the standard connection method, and all you need to know is their
COM-port address (e.g., COM5):

>> from pylablib.devices import OZOptics
>> ctl = OZOptics.EPC04("COM5")
>> ctl.close()

Operation

EPC04 fiber polarization controller

The class is proved as pylablib.devices.OZOptics.EPC04. It lets the user change the 4 control voltages, switch
between DC and AC (scrambling) modes, and change the AC frequency.

DD100 fiber attenuator

The class is proved as pylablib.devices.OZOptics.DD100. It simply lets the user query and change the attenuation,
as well as home the device. Note that homing is required once after the device power up, and it might in general sweep
over the whole range of attenuations.

TF100 fiber filter

The class is proved as pylablib.devices.OZOptics.TF100. It simply lets the user query and change the central
wavelength, as well as home the device. Note that homing is required once after the device power up, and it might in
general sweep over the whole range of wavelengths.

Note: Basic sensors communication concepts are described on the corresponding page

2.2.19 Elektro Automatik sources

Elektro Automatik manufactures a range of lab power supplies. The code has been tested with PS-2000B series con-
troller (specifically, PS 2042-06B).

The main device class is pylablib.devices.ElektroAutomatik.PS2000B.

Software requirements

The devices provide a USB connection with a built-in USB-to-RS232 chip. They are automatically recognized as serial
ports by the operating system, and no additional software is required.

2.2. Devices overview 101

pylablib Documentation, Release 1.4.2

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is
their COM-port address (e.g., COM5):

>> from pylablib.devices import ElektroAutomatik
>> src = ElektroAutomatik.PS2000B("COM3")
>> src.close()

Operation

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

• The source can operate in the manual or in the remote mode. In the manual mode the device is controlled using
the front panel, but the values can still be read out. In the remote mode the outputs are controlled from the PC,
and the front panel controls are disabled. Upon creation one can specify the remote mode handling for the device:
either "manual" (it has to be enabled or disabled explicitly, and disabled by default) or "force" (remote mode
is enabled upon connection and disabled upon disconnection).

Voltcraft produces different basic measurement and electronic devices including multimeters, oscilloscopes, signal
generators, power supplies, and environment sensors.

2.2.20 Voltcraft multimeters

Note: Basic sensors communication concepts are described on the corresponding page

There are different series of multimeters with somewhat different capabilities and fairly different communication meth-
ods and protocols. There are currently two different supported protocols. The firs has been designed with Voltcraft
VC-7055BT multimeter, but it might also be able to work with other 7000 series multimeters such as 7060 and 7200.
The second was designed with VC880, but might also work with VC650T.

The main device classes are pylablib.devices.Voltcraft.VC7055 and pylablib.devices.Voltcraft.
VC880.

Software requirements

VC7055 multimeters provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work. VC880
multimeters show up as a standard HID device and are automatically supported by Windows.

Connection

VC7055 devices are identified as COM ports, so use the standard connection method, and all you need to know is their
COM-port address (e.g., COM5):

>> from pylablib.devices import Voltcraft
>> meter = Voltcraft.VC7055("COM1")
>> meter.close()

VC880 devices are identified either via their HID path (a fairly long and complicated string of symbols such as \\?
\hid#vid_10c4&pid_ea80#7&0000000&1&0000#{4d1e55b2-f16f-11cf-88cb-001111000030}), and they can

102 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

be identified either using this string, or an integer index (Starting from 0) which selects one of the potentially suitable
devices in the system:

>> from pylablib.devices import Voltcraft
>> meter1 = Voltcraft.VC880() # try to connect to the first available multimeter
>> meter2 = Voltcraft.VC880(idx=1) # try to connect to the second available multimeter
>> meter1.close()
>> meter2.close()

Operation

The operation of this multimeter is fairly straightforward, but there is a couple of points to keep in mind:

• The documentation from VC7055 multimeter does not always correctly reflect the communication protocol, and
the device behavior is sometimes strange (e.g., it return non-ASCII symbols or strange replies to commands).
The communication protocol is implemented as observed in reality, not as documented. Therefore, it is not
guaranteed, that the provided code will work with related models, such as other 7000-series multimeters, or even
with different revisions of the same model.

• Keep in mind that VC880 should be manually activated for PC communication by pressing PC button on the front
panel, and this needs to be done every time the device is turned on. Otherwise it is detected by the OS and can
be connected to, but it will not send updates or react to commands.

Note: Basic Modbus protocol concepts are described on the corresponding page

2.2.21 Lumel automation electronics

Lumel manufactures a range of automation electronics (sensors, relays, etc.), which frequently can be remotely con-
trolled using Modbus protocol. In addition to the generic Modbus control, pylablib implements RE72 temperature
controller in a bit more detail. The code has been tested with RE72-122200E0 controller and generic USB to RS485
converter.

The main device classes are pylablib.devices.Lumel.LumelRE72Controller.

Software requirements

Basic Lumel devices implement Modbus protocol over RS485 physical layer. If one uses a dedicated USB to RS485
controller or a USB to RS232 controller with RS232 to RS485 adapter, then it shows up as a serial port in the OS, and
no additional software is required.

Connection

Generally, you would need to know a serial port of the RS485 controller, the serial connection parameters (by default
it’s 9600 baud, 8 data bits, no parity bit, one stop bit) and the controller Modbus address (1 by default). For details, see
Modbus protocol description.

2.2. Devices overview 103

pylablib Documentation, Release 1.4.2

Operation

RE72

There are two sets of methods implemented. The first are the generic methods for getting and setting values of internal
registers: LumelRE72Controller.get_reg() and LumelRE72Controller.set_reg(). These allow full control
over the device. The description of the registers is given in the user’s manual (RS-485 INTERFACE section).

The second set of methods provides the basic temperature readout, as well as the setpoint control. These are imple-
mented in two varieties, floating point and integer, according to the two kinds of registers on the device. The integer
methods (ending with i, e.g., LumelRE72Controller.get_measurementi()) return integer value, whose interpre-
tation depends on the measurement units and other parameters (e.g., for temperature this is the value in 1/10th of the
current degree unit, C or F). The floating point methods return value in a more straightforward way (e.g., directly in
degrees), but they do not allow for setting of the temperature setpoint.

Note: General device communication concepts are described on the corresponding page.

2.2.22 Miscellaneous devices

There are several miscellaneous device classes, which are collected in this page. All of them implement straightforward
serial communication protocol, so the software requirements and the connection approach is the same for all of them.

Software requirements

All the devices provide either a bare RS232 interface, or a USB connection with a built-in USB-to-RS232 chip. In
either way, they are automatically recognized as serial ports, and no additional software is required.

Connection

The devices are identified as COM ports, so they use the standard connection method, and all you need to know is their
COM-port address (e.g., COM5):

>> from pylablib.devices import Conrad
>> dev = Conrad.RelayBoard("COM5")
>> dev.close()

Operation

Conrad relay board

This is a board, which has several externally-controlled relays.

The class is proved as pylablib.devices.Conrad.RelayBoard . It simply lets the user query and set the relay
states. It also in principle supports communication with several daisy-chained boards, but it has never been tested.

104 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Generic Arduino class

The class is proved as pylablib.devices.Arduino.IArduinoDevice. It implements basic serial communication;
the exact command protocol depends on the particular Arduino software written and uploaded by the user.

The main difference from directly using a serial backend is in handling of DTR line, which signal reset to the
Arduino board. Unlike the standard backend, connection will not restart the board; instead, there is an explicit
IArduinoDevice.reset_board() which pulses the DTR line to reset the board.

Note: General device communication concepts are described on the corresponding page.

2.2.23 Generic protocols

There exist generic mid-level communication protocols built on top of the existing communication channels. These are
not specific to any particular device, but simply provide a level of abstraction to implement specific devices later.

Modbus

This is one of the standard industrial communication protocols. It has several different implementations depending on
the underlying protocol (UART, TCP). Currently only Modbus RTU (binary protocol over UART) is supported.

The code is located in pylablib.devices.Modbus, and the main camera class is pylablib.devices.Modbus.
GenericModbusRTUDevice.

Software requirements

The requirements depend on the underlying transfer layer. Most common is the RS485 physical layer, where one
normally uses either a dedicated USB to RS485 controller, or a USB to RS232 controller with RS232 to RS485 adapter.
In this case, the RS485 controller shows up as a serial port in the OS, and no additional software is required.

Connection

To successfully communicate with a device, several pieces of information are needed. First, one needs to know the
serial port of the RS485 controller (e.g., "COM1" or "dev/ttyUSB0"). Next are the serial port parameters, such as
the baud rate, number of data bits, parity bits, and stop bits (the most common is 9600 baud with 8N1 format, i.e., 8
data bits, one parity bit, 1 stop bit). Finally, since several Modbus devices can be connected to the same controller, one
needs to know the specific device address, which is an integer between 1 and 247. Both the serial port parameters and
the device address are set at the device or specified in its documentation:

>> from pylablib.devices import modbus
>> dev = modbus.GenericModbusRTUDevice(("COM3", 19200), daddr=5) # 19200 baud serial␣
→˓interface, default device address 5
>> dev.close()

Note: Serial ports are exclusive OS resources, which means that only one instance of modbus.
GenericModbusRTUDevice can be opened at the same port, even if several devices are connected to the same RS485
controller. One can choose which device is addressed either by using daddr parameter in the methods, or by using
GenericModbusRTUDevice.mb_set_default_address() method.

2.2. Devices overview 105

pylablib Documentation, Release 1.4.2

Operation

The code implements the most basic Modbus methods for setting and reading coils, discrete inputs, and registers.
All relevant methods are prefixed with mb_, e.g., GenericModbusRTUDevice.mb_read_holding_registers()
or GenericModbusRTUDevice.mb_write_single_coil(). In addition, it implements a basic device scanning
method, which sends the same command to all possible addresses and notes which of them reply.

2.3 Data processing

2.3.1 Fitting

Class fitting.Fitter is a user-friendly wrapper around scipy.optimize.least_squares() routine. Dealing
with fitting is made more convenient in a couple of ways:

• It is easy to specify the x-parameter name (in the case it is not the first parameter), or specify multiple x-
parameters;

• All of the fit and fixed parameters are specified by name; it is easy to switch between any parameter being fit or
fixed;

• The wrapper automatically handles complex parameters (split into real and imaginary parts), numpy arrays, lists,
or tuples (including nested structures);

• The final parameters (fit and fixed) are returned in a single dictionary indexed by their names;

• The wrapper also returns the fit function with all of the parameters bound to the final fit and fixed values;

• The fit function result is flattened during fitting, so it works for functions returning multi-dimensional (for exam-
ple, 2D) arrays.

Examples

Fitting a Lorentzian:

def lorentzian(frequency, position=0., width=1., height=1.):
return height/(1.+4.*(frequency-position)**2/width**2)

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"position":0.5, "height":1.}
fitter = pll.Fitter(lorentzian, xarg_name="frequency", fit_parameters=fit_par)
additional fit parameter is supplied during the call
fit_par, fit_func = fitter.fit(xdata, ydata, fit_parameters={"width":1.0})
plot(xdata, ydata) # plot the experimental data
plot(xdata, fit_func(xdata)) # plot fit result

Fitting a sum of complex Lorentzians with the same width:

def lorentzian_sum(frequency, positions, width, amplitudes):
list of complex lorentzians
positions and amplitudes are lists, one per peak
lorentzians = [a/(1.+2j*(frequency-p)/width) for (a,p) in zip (amplitudes,positions)]
return np.sum(lorentzians, axis=0)

(continues on next page)

106 Chapter 2. Citation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares

pylablib Documentation, Release 1.4.2

(continued from previous page)

creating the fitter
fit_parameters dictionary specifies the initial guess
(complex initial guess for the "amplitude" parameter hints that this parameter is␣
→˓complex)
fit_par = {"positions":[0.,0.5,1.], "amplitudes":[1.+0.j]*3}
fitter = pll.Fitter(lorentzian_sum, xarg_name="frequency", fit_parameters=fit_par)
fixed parameter is supplied during the call (could have also been supplied on Fitter␣
→˓initialization)
fit_par, fit_func = fitter.fit(xdata, ydata, fixed_parameters = {"width":0.3})
plot(xdata, ydata.real) # plot the experimental data
plot(xdata, fit_func(xdata).real) # plot fit result

Fitting 2D Gaussian and getting the parameter estimation errors:

def gaussian(x, y, pos, width, height):
return np.exp(-((x-pos[0])**2+(y-pos[1])**2)/(2*width**2))*height

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"pos":(100,100), "width":10., "height":5.}
fitter = pll.Fitter(gaussian, xarg_name=["x","y"], fit_parameters=fit_par)
xs, ys = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing="ij") #␣
→˓building x and y coordinates for the image
fit_stderr is a dictionary containing the fit error for the corresponding parameters
fit_par, fit_func, fit_stderr = fitter.fit([xs,ys], img, return_stderr=True)
imshow(fit_func(xs, ys)) # plot fit result

The full module documentation is given at pylablib.core.dataproc.fitting.

2.3.2 Filtering and decimation

There are several functions present for filtering the data to smooth it or reduce its size. Most of them are thin wrapper
around standard numpy or scipy method, but they provide more universal interface which work both with numpy arrays
and pandas DataFrames:

• First are the decimation functions: filters.decimate() (and its special case filters.
binning_average()), filters.decimate_full() and filters.decimate_datasets(). The first one
splits the supplied trace into consecutive segments of n points and compresses them into a single value using the
supplied method (e.g., "mean" will average them together, which is used for filters.binning_average()).
The second one completely decimates the dataset along the given axis (which is essentially identical to using
the standard numpy methods such as np.mean or np.max). The last one decimates several datasets together,
which is similar to combining them into a large (n+1)D array and fully decimating along the given axis:

>> trace = np.arange(10)
>> pll.binning_average(trace, 3) # average every block of 3 points to a single␣
→˓value
array([1., 4., 7.])
>> pll.decimate(trace, 3, dec="max")
array([2, 5, 8])
>> pll.decimate_full(trace, "mean") # same as np.mean(trace)
4.5
>> trace2 = np.arange(10)**2

(continues on next page)

2.3. Data processing 107

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> pll.decimate_datasets([trace, trace2], "sum") # same as np.sum([trace, trace2],
→˓axis=0)
array([0, 2, 6, 12, 20, 30, 42, 56, 72, 90])

• Sliding decimation methods filters.sliding_average(), filters.median_filter() and filters.
sliding_filter() are related, but use a sliding window of n points instead of complete decimation of n points
together. They only work for 1D traces or 2D multi-column datasets. Note that filters.sliding_filter()
is implemented through a simple Python loop, so it is fairly inefficient:

>> trace = np.arange(10)
>> pll.sliding_average(trace, 4) # average points in 4-point window (by default␣
→˓use "reflect" boundary conditions)
array([0.75, 1.5 , 2.5 , 3.5 , 4.5 , 5.5 , 6.5 , 7.5 , 8.25, 8.5])
>> pll.sliding_filter(trace, 4, "max") # find maximum of points in 4-point window
array([2, 3, 4, 5, 6, 7, 8, 9, 9, 9])

• Next are convolution filters which operate by convolving the trace with a given kernel function. These involve
filters.gaussian_filter() (and filters.gaussian_filter_nd(), which is simply a wrapper around
scipy.ndimage.gaussian_filter()), and a more generic filters.convolution_filter(). Related are
infinite impulse response (IIR) filter filters.low_pass_filter() and filters.high_pass_filter(),
which mimic standard single-pole low-pass and high-pass filters. In principle, they can be modeled as a con-
volution with an exponential decay, but the implementation using the recursive filters is more efficient for large
widths.

• Finally, there are Fourier filters, which Fourier-transform the trace, scale the transform values, and trans-
form it back to the real domain. These involve the main function filters.fourier_filter(), which
takes a generic frequency response function, as well as two specific response function generators filters.
fourier_filter_bandpass() and filters.fourier_filter_bandstop(), both generating hard fre-
quency cutoff filters.

• In addition to “post-processing” filters described above, there are also “real-time” filters which serve to filter
data as it is acquired, e.g., to filter out temporary noise or spikes. There are two filters of this kind: filters.
RunningDecimationFilter and filters.RunningDebounceFilter. They are implemented as classes, and
both have methods to add a new datapoint, to get the current filter value, and to reset the filter.

2.3.3 Fourier transform

There is a couple of methods to work with Fourier transform. They are built around numpy.fft.fft(), but allow
more convenient normalization (e.g., in units of power spectral density), and work better with pandas DataFrames.
They also have an option to automatically trim the trace length to the nearest “good” size, which is a product of small
primes. This can have fairly strong (up to a factor of several) effect on the transform runtime, while typically trimming
off less than 1% of the data.

The main methods are fourier.fourier_transform() for the direct transform, fourier.
inverse_fourier_transform() for the inverse transform, and fourier.power_spectral_density() for
the power spectral density:

>> x = np.random.normal(size=10**5) # normal distribution centered at 0 with a width of␣
→˓1
>> PSD = pll.power_spectral_density(x, dt=1E-3) # by default, use density normalization;
→˓ assume time step of 1ms
>> df = PSD[1,0] - PSD[0,0]
>> df # total span is 1kHz with 10**5 points, resulting in 0.01Hz step

(continues on next page)

108 Chapter 2. Citation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft

pylablib Documentation, Release 1.4.2

(continued from previous page)

0.01
>> np.sum(PSD[:,1]) * df # integrated PSD is equal to the original trace RMS squared,␣
→˓which is about 1 for the normal distribution
1.005262206692361
>> np.mean(x**2)
1.005262206692361

2.3.4 Feature detection

There are several methods for simple feature detection:

• The peak detection, which is usually achieved by the combination of feature.multi_scale_peakdet() and
feature.find_peaks_cutoff(). The first applies difference-of-Lorentzians or difference-of-Gaussians filter,
which detects peaks of a particular width. The second finds peaks using a cutoff.

• Another way to find peaks is using feature.find_local_extrema(), which finds local minima or maxima
in a sliding window of a given width.

• Switching between two states with a noisy trace can be detected using feature.latching_trigger(). It
implements a more robust approach to find when the trace is above/below threshold by considering two thresh-
olds: a higher “on” thresholds and a lower “off” threshold. It makes the on/off state “latch” to its current value
and is robust to small trace fluctuations around the threshold, which would lead to rapid on/off switches in a
single-threshold scheme.

2.3.5 Miscellaneous utilities

Additionally, there is a variety of small functions to simplify some data analyses and transforms:

• Checking trace properties: dataproc.utils.is_ascending(), dataproc.utils.is_descending(),
dataproc.utils.is_ordered(), dataproc.utils.is_linear().

• Sorting by a given column: dataproc.utils.sort_by(); work both on pandas and numpy arrays

• Filtering: dataproc.utils.filter_by() and dataproc.utils.unique_slices() (a simple analog of
pandas pandas.DataFrame.groupby(), which works on numpy arrays)

• Binary search (both in ordered and unordered 1D arrays): dataproc.utils.find_closest_arg(),
dataproc.utils.find_closest_value(), and dataproc.utils.get_range_indices().

• Traces step analysis and unwrapping: dataproc.utils.find_discrete_step() tries to find a single number
which divides all values within a reasonable precision, and dataproc.utils.unwrap_mod_data() “unwraps”
modulo data (e.g., phase, which is defined mod 2pi) provided that the steps between two consecutive points are
less than 1/2 of the module.

• Cutting the trace to the given range, or cutting out a given range: dataproc.utils.cut_to_range() and
dataproc.utils.cut_out_regions().

• Converting between 2-column “XY” and complex representations: dataproc.utils.xy2c() and dataproc.
utils.c2xy()

• Scalar numerical utilities: utils.numerical.limit_to_range() (limit a value to lie in a given range, in-
cluding option for no limits in one or both directions), utils.numerical.gcd() and utils.numerical.
gcd_approx() (greatest common divisor or its approximate version for non-integer values)

2.3. Data processing 109

https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

pylablib Documentation, Release 1.4.2

2.4 Data storage

Complex data storage in pylablib centers around 2 main components: the multi-level dictionary for representing hier-
archical data within the code, and file IO to (among other things) load and store it in a human-readable format.

2.4.1 Multi-level dictionary

dictionary.Dictionary is an expansion of the standard dict class which supports tree structures (nested dictionar-
ies). The extensions include:

• handling multi-level paths and nested dictionaries, with several different indexing methods

• iteration over the immediate branches, or over the whole tree structure

• some additional methods: mapping, filtering, finding difference between two dictionaries

• combined with pylablib.core.fileio allows to save and load the content in a human-readable format.

Creating and indexing:

>>> d = pll.Dictionary()
>>> d['d/0/x'] = 5
>>> d
Dictionary('d/0/x': 5)
>>> d['d/0/x'] # string path indexing
5
>>> d['d']['0']['x'] # nested indexing
5
>>> d['d','0','x'] # multi-level path indexing
5
>>> d['d',0,'x'] # all path elements are converted into strings
5
>>> d['d/0']['x'] # indexing styles can be freely mixed
5
>>> d['d','0/x']
5
>>> b = d['d'] # indexing a branch yields another Dictionary object
>>> b
Dictionary('0/x': 5)
>>> b['0/x'] = 10 # the branch shares the data with the main dictionary
>>> d
Dictionary('d/0/x': 10)

A dictionary can be build from a Python dict, which automatically normalizes paths and nested dictionaries:

>>> d = pll.Dictionary({ 'a':1, 'b/i':2, 'c':{'i':3, 'ii':4}, 'd/0/x':5 })
>>> d
Dictionary('b/i': 2
'c/i': 3
'c/ii': 4
'd/0/x': 5
'a': 1)

Note: There are several limitations on the dictionary structure (mostly they involve possible paths and keys):

110 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

• As mentioned above, the keys are converted into strings to get the path; therefore, different Python object can
merge together (e.g., number 0 and string literal '0'). This also discourages use of some of the objects with
“underdefined” (implementation dependent) representations, for example, floating point numbers.

• Since the '/' symbol is used to split different path entries, it can’t be used inside a single-level key. It is possible
to re-define this symbol on dictionary creation; however, it might lead to compatibility issues.

• Empty keys are not allowed. When building a path, they are automatically dropped, so 'a/b', 'a/b/', 'a///
b//' all correspond to the same path.

• One path can either correspond to a branch node, or a leaf node. In other words, one path can’t be a prefix of
other paths and also contain data: structures like pll.Dictionary({ 'a':1, 'a/b':2}) are not allowed. To
get around this, one can define a specific “data key” not used anywhere else, and store data in a node under that
key (e.g., with the data key '#' the example before turns into a valid structure pll.Dictionary({ 'a/#':1,
'a/b/#':2})).

Thus, it is generally recommended to only use strings or non-negative integers as keys, and apply the same restrictions
to them as to the Python variable names (with the addition of names starting with a digit).

2.4.2 File IO

pylablib.core.fileio contains several function for saving and loading data into different kinds of files:
binary (loadfile.load_bin() and savefile.save_bin()), CSV (loadfile.load_csv() and savefile.
save_csv()), or dictionary (loadfile.load_dict() and savefile.save_dict()).

Binary files

The first (binary files) closely corresponds to numpy fromfile. In addition, it also allows automatic conversion into
pandas arrays, setting column names, and skipping some number of bytes from the start:

>> table = np.arange(6).reshape((3,2))
>> pll.save_bin(table, "table.dat", dtype="<f8)
>> pll.load_bin("table.dat", columns=["Column1", "Column2"], dtype="<f8)

Column1 Column2
0 0.0 1.0
1 2.0 3.0
2 4.0 5.0

Furthermore, there is an option to save the binary data with a preamble dictionary file, which describes its structure
(columns, dtype, etc.) This way, one does not have specify these parameter in the loading code:

>> table = pd.DataFrame({"C1":arange(3),"C2":arange(3)**2/3})
>> table

C1 C2
0 0 0.000000
1 1 0.333333
2 2 1.333333
>> pll.save_bin_desc(table, "table.dat")
>> pll.load_bin_desc("table.dat")

C1 C2
0 0.0 0.000000
1 1.0 0.333333
2 2.0 1.333333

(continues on next page)

2.4. Data storage 111

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> np.fromfile("table_data.bin", "<f8").reshape((3, 2)) # the data is still stored in␣
→˓the regular binary format
array([[0. , 0.],

[1. , 0.33333333],
[2. , 1.33333333]])

Note that only homogeneous data (i.e., all columns having the same type) is currently supported. That’s why the first
column got converted from integers into reals.

CSV files

The functionality of the second one mimics pandas read_csv, but offers a bit more flexibility with more complicated
values in columns, such as tuples or binary strings:

>> table = pd.DataFrame({ "C1":np.arange(3), "C2":[(i**2,i**3) for i in range(3)] })
>> table # the second columns contains tuples

C1 C2
0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)
>> pll.save_csv(table, "table.csv")
>> pll.load_csv("table.csv", dtype="generic") # need to specify generic values type,␣
→˓which handle complicated cases, but is somewhat slower

C1 C2
0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)

In addition, its default settings are a bit different: the column separator is a whitespace, the column names are contained
in the comment string (which removes occasional ambiguity), and the creation date string is appended by default.
Hence, the content of the file created above is

C1 C2
0 (0, 0)
1 (1, 1)
2 (4, 8)

Saved on 2021/01/01 12:00:00

Note that currently it operates only with simple flat tables and does not support advanced pandas features such as index
or multi-index. If these are required, you can use savefile.save_csv_desc() and loadfile.load_csv_desc().
Similarly to savefile.save_bin_desc() and loadfile.load_bin_desc(), it saves a dictionary containing ad-
ditional description; however, the table is inlined by default, so only one file is generated:

>> table = pd.DataFrame({ "C1":np.arange(3), "C2":[(i**2,i**3) for i in range(3)] },␣
→˓index=np.arange(3)+10)
>> table # non-trivial index colum

C1 C2
10 0 (0, 0)
11 1 (1, 1)
12 2 (4, 8)
>> pll.save_csv(table, "table.csv")

(continues on next page)

112 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

(continued from previous page)

>> pll.load_csv("table.csv", dtype="generic") # index is lost
C1 C2

0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)
>> pll.save_csv_desc(table, "table.dat")
>> pll.load_csv_desc("table.dat") # index is preserved (also note that here dtype is
→˓"generic" by default)

C1 C2
10 0 (0, 0)
11 1 (1, 1)
12 2 (4, 8)

Dictionary files

Finally, dictionary saving and loading operates with dictionary objects. It is generally useful to load or save various
heterogeneous settings or parameters, such as device parameters, data processing parameters, and GUI or device state.
It supports most basic Python data types as values: standard scalar types (integers, reals, complex numbers, strings,
booleans, None), containers (tuples, lists, dictionaries, sets, including nested ones), binary and raw string representation
(e.g., b"\x00" or r"m\n\o"), short numpy arrays (represented as, e.g., "array([1, 2, 3])"), and inline tables
(which are interpreted as pandas table by default). The only common data type not included is named tuples; they get
automatically converted to regular tuples on saving.

The dictionary files have the key value line formats and typically use full paths (as opposed to, say, XML hierarchy),
which makes them easier to inspect and parse without pylablib. For example, the dictionary from the previous section
will be saved as

b/i 2
c/i 3
c/ii 4
d/0/x 5
a 1

With more complicated data types, it might look more like

process/points array([1., 2., 3.])
process/default/frequency 10+2.j
Lines starting with # are treated as comments
plot/position [(0,0), (1,1), (2,3)]
plot/label r"ν_0"
Keys do not have to be in any particular order
process/default/amplitude 5.

which results in a dictionary

Dictionary('plot/label': ν_0
'plot/position': [(0, 0), (1, 1), (2, 3)]
'process/default/amplitude': 5.0
'process/default/frequency': (10+2j)
'process/points': [1. 2. 3.])

The format also supports hierarchy using //branch to mark a start of sub-branch and /// to mark its end. For example,
the dictionary above can be also saved as

2.4. Data storage 113

pylablib Documentation, Release 1.4.2

//process
indentation is not required, but helps to see the structure
points array([1., 2., 3.])
default/frequency 10+2.j
default/amplitude 5.

///

//plot
position [(0,0), (1,1), (2,3)]
label r"ν_0"

///

Finally, it is possible to specify inline tables using special comment lines. For example,

The key without the value marks the path to the table within the dictionary
data/table
Begin table
1 1.j
2 4.j
3 9.j
End table

produces a dictionary containing pandas DataFrame:

Dictionary('data/table':
0 1

0 1 0.000000+1.000000j
1 2 0.000000+4.000000j
2 3 0.000000+9.000000j)

2.5 Various utilities

2.5.1 File system

There is a number of methods which are minor expansions of the built-in file utilities:

• Accessing and changing file times: utils.files.get_file_creation_time(), utils.files.
get_file_modification_time(), utils.files.touch() (update the modification date).

• Generating new file names (e.g., for storing a new dataset): utils.files.generate_indexed_filename()
and utils.files.generate_prefixed_filename().

• Some path analysis methods: utils.files.fullsplit(), utils.files.normalize_path(), utils.
files.paths_equal(), utils.files.relative_path(); a lot of these have also been implemented in
pathlib module, and are kept for backwards compatibility.

• Checking if a string is a valid path: utils.files.is_path_valid().

• File copying and moving, which also creates containing folders if necessary: utils.files.copy_file(),
utils.files.move_file().

• Folder creation and cleaning: utils.files.ensure_dir(), utils.files.remove_dir(), utils.files.
remove_dir_if_empty(), utils.files.clean_dir().

114 Chapter 2. Citation

https://docs.python.org/3/library/pathlib.html#module-pathlib

pylablib Documentation, Release 1.4.2

• Analyzing folder content: utils.files.list_dir(), utils.files.list_dir_recursive(), utils.
files.dir_empty(), utils.files.walk_dir(). Compared to the built-in methods, allows for more com-
plicated (e.g., regex) filters for listed files and folders, as well as for visited folders.

• Copying, moving, and comparing folders: utils.files.copy_dir(), utils.files.move_dir(), utils.
files.cmp_dirs(); like methods above, allows for regex filters for files and folders.

• Retrying versions of most of the above methods: e.g., utils.files.retry_move() or utils.files.
retry_clean_dir(). These functions try to copy/move/remove files or folders several times if errors arise,
in case the files or folders are only temporarily blocked. Useful when, e.g., using network shares or some soft-
ware which makes files or folders unavailable for a short period of time.

• Wrapping methods for working with zip files: utils.files.zip_folder(), utils.files.zip_file(),
utils.files.zip_multiple_files(), utils.files.unzip_folder(), utils.files.unzip_file().

2.5.2 Network

There is a simple wrapper class utils.net.ClientSocket, which simplifies some operations with the built-in
socket module. In addition, it also implements a couple of higher-level ways to send the data: either fixed length
(as in the usual socket), with the length prepended (in case the total length is initially unknown at the receiving end),
or using a delimiter to mark the end of the message.

In addition, there are several methods for gaining local or remote host information (utils.net.
get_local_addr(), utils.net.get_all_local_addr(), utils.net.get_local_hostname(), utils.
net.get_all_remote_addr(), utils.net.get_remote_hostname()), receiving JSON-formatted values
(utils.net.recv_JSON()), and listening on a given port (utils.net.listen()).

2.5.3 Strings

There are several string manipulation functions present:

• Powerful to/from string conversion. The main function are utils.string.to_string() and utils.string.
from_string(), which can convert a large variety of values: simple scalar values (numbers, strings, booleans,
None), containers (lists, tuples, sets, dictionaries), escaped and byte strings (e.g., b"\x00"), complex types
such as numpy arrays (represented as, e.g., "array([0, 1, 2, 3, 4])"). The latter version requires setting
use_classes=True in utils.string.to_string(), which is not enabled by default to make the results more
compatible with other parsers:

>> pll.to_string(np.arange(5)) # by default, use the standard str method, which␣
→˓makes array look like a list
'[0, 1, 2, 3, 4]'
>> pll.from_string('[0, 1, 2, 3, 4]') # gets converted back into a list
[0, 1, 2, 3, 4]
>> pll.to_string(np.arange(5), use_classes=True) # use representation class
'array([0, 1, 2, 3, 4])'
>> pll.from_string('array([0, 1, 2, 3, 4])') # get converted back into an array
array([0, 1, 2, 3, 4])

More complex data classes can be added using utils.string.add_conversion_class() and utils.
string.add_namedtuple_class():

>> NamedTuple = collections.namedtuple("NamedTuple", ["field1", "field2"])
>> nt = NamedTuple(1,2)
>> nt

(continues on next page)

2.5. Various utilities 115

https://docs.python.org/3/library/socket.html#module-socket

pylablib Documentation, Release 1.4.2

(continued from previous page)

NamedTuple(field1=1, field2=2)
>> pll.to_string(nt, use_classes=True) # class is not registered, so use the␣
→˓default tuple representation
'(1, 2)'
>> pll.add_namedtuple_class(NamedTuple)
>> pll.to_string(nt, use_classes=True) # now the name marker is added
'NamedTuple(1, 2)'
>> pll.from_string('NamedTuple(1, 2)')
NamedTuple(field1=1, field2=2)
>> DifferentNamedTuple = collections.namedtuple("DifferentNamedTuple", ["field1",
→˓"field2"])
>> pll.from_string('DifferentNamedTuple(1, 2)') # note that if the class is not␣
→˓registered, it can't be parsed, so the string is returned back
'DifferentNamedTuple(1, 2)'

Furthermore, there is a couple of auxiliary string functions to parse more complicated situations:
utils.string.escape_string() and utils.string.unescape_string() for escaping and unescap-
ing string with potentially confusing or unprintable characters (e.g., quotation marks, spaces, new
lines); utils.string.from_string_partial(), utils.string.from_row_string(), utils.string.
extract_escaped_string() to determine and extract the first value in a string which potentially has several
values.

• Comparing and searching string: utils.string.string_equal() (compare string using different rules such
as case sensitivity), utils.string.find_list_string(), utils.string.find_dict_string() (find
string in a list or a dictionary using different comparison rules).

• Filtering strings: utils.string.get_string_filter(), utils.string.sfglob(), and utils.string.
sfregex(). Creates filter functions which may include or exclude certain string patterns; these filter functions
can be later used in, e.g., file-related methods such as utils.files.list_dir().

2.5.4 Misc utilities

A variety of small useful methods and classes:

• Dictionary manipulation functions: utils.general.any_item() (get a random dict key-value pair),
utils.general.merge_dicts() (merge several dictionaries together), utils.general.filter_dict()
(filter dictionary according to key or value), utils.general.map_dict_keys(), utils.general.
map_dict_values(), utils.general.to_dict() (convert a dict or a list of pairs into a dictionary, using
a default value for a non-pair list elements), utils.general.invert_dict() (turn keys into values and vice
versa).

• List manipulation functions: utils.general.flatten_list() (flatten a nested list structure), utils.
general.partition_list() (split a list into two lists according to a predicate), utils.general.
split_in_groups() (split list into several groups according to a key function), utils.general.
sort_set_by_list() (convert set into a list, whose values are sorted according to a second supplied list),
utils.general.compare_lists() (compare two lists and return their intersection and differences).

• utils.general.DummyResource: a “dummy” resource class, which can be used in a with block but does
nothing; can be used to, e.g., replace multi-threading resources such as locks to turn them off.

• Unique ID generators: utils.general.UIDGenerator and utils.general.NamedUIDGenerator, which
generate unique names (based on a counter), with a thread-safe option (useful to create, e.g., unique data markers).

• Timekeeping: utils.general.Countdown for single shot and utils.general.Timer for repeating tasks.

116 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Simplifies dealing with operation timeouts: checking how much time is left (including options for infinite time-
out), checking if timeout is passed, resetting, etc.

• Script restarting via utils.general.restart() (thread-controller style applications can also use thread.
controller.restart_app() for a more managed restart).

• utils.general.StreamFileLogger, which can be set up to log all outputs into a stream (e.g., stdout):

from pylablib import StreamFileLogger
import sys
sys.stderr = StreamLogger("logerr.txt", sys.stderr) # replace stderr stream with a␣
→˓logged version
perform some tasks ...
sys.stderr = sys.stderr.stream # revert back, if necessary

With the code above, all output to stderr will be logged into logerr.txt to be analyzed later. It can also be
set with autoflush=True to automatically flush the printed text, which helps with identifying crushing bugs,
and it can be supplied with a lock to help separate printouts from different threads.

2.6 Change log

This is a list of changes between each version.

2.6.1 Version 1.x

Transitioning from version 0.x to version 1.x saw lots of interface changes which break backward compatibility. The
previous version of the library can be either obtained on PyPi using pip install "pylablib<1", or by using legacy
module. Hence, instead of

import pylablib as pll
from pylablib.aux_libs.devices import Lakeshore

you can write

import pylablib.legacy as pll
from pylablib.legacy.aux_libs.devices import Lakeshore

1.4.2

• Devices

– Added multiple devices:

∗ Andor Shamrock spectrographs

∗ ElektorAutomatick PS2000B power supply

∗ Keithley 2110 multimeter

∗ Lumel RE72 temperature controller (via Modbus RTU protocol)

∗ M2 Solstis EMM (external mixing module)

∗ Mightex S-Series cameras

∗ Generic NKT lasers Interbus protocol support (tested with NKT SuperK with Select spectral filter)

2.6. Change log 117

pylablib Documentation, Release 1.4.2

∗ Generic Modbus RTU protocol

∗ PhysikInstrumente E-515 piezo controller

∗ Rigol DP1116A power supply

∗ SmarAct MCS2 stage controller

∗ Standa 8SMC5 motion controller

∗ Thorlabs PM160 power meter

∗ Voltcraft VC-7055BT multimeter

– Extended device support:

∗ Thorlabs Scientific Cameras (Zelux, Kiralux) color mode

∗ Thorlabs APT/Kinesis motor controllers

∗ Trinamic TMCM1110 homing

– Added HID device communication backend

– Switched some camera code to Cython to support higher frame rates.

– Multiple bug fixes and improved support of specific models:

∗ Selection of RTS cycling for Arduino boards (better support for newer boards such as Leonardo)

∗ Support for SiliconSoftware microEnable 5 (Basler microEnable 5 marathon)

∗ Improved Sirah Matisse tuning support for frequency tuning and stitched scans based on HighFinesse
wavemeters feedback.

• Switched to Cython code in several places for minor plotting speedups.

• Minor additional functions

– Added time tracker class for simple profiling

– Added CRC calculation methods

1.4.1

• Devices

– Added Basler pylon-compatible cameras, BitFlow frame grabbers, AlliedVision Bonito cameras, Thorlabs
Elliptec stages, PI-E516 piezo controller, and Sirah Matisse laser.

– Minor additions to Cryocon temperature controller, Cryomagnetics LM510 level meters, and NI DAQmx
DAQs. Improved performance of PCO cameras at high frame rates.

– Multiple minor bug fixes and improved support of specific models.

• Added encoding argument to file loading.

• Improved color images support in image plotter, minor additions to trace plotter.

• Added real-time binning and debounce filters.

118 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

1.4.0

• Added Photometrics cameras and Cryocon temperature controllers.

• More consistent cameras interface: attributes properties, fast chunks (former fastbuff) readout, frame info
formats.

• Added new simple GUI elements: multiline edits, enum labels.

• Expanded image and trace plotting widgets.

• Added linear transforms to data processing.

• Minor bugfixes in threading, GUI, devices.

1.3.3

• Numpy loads bugfix (fixes compatibility with numpy>=1.22).

1.3.2

• Added Leybold ITR90 and KJL300 pressure gauges.

• Minor bugfixes in threading and devices.

1.3.1

• Added expandable edit boxes and dialog containers.

• Improved Thorlabs devices compliance.

• Additional minor bugfixes in threading, GUI, devices.

1.3.0

• General

– Minor speedups through calls caching.

– Changed muxcall signature to allow multiple special argument values.

• Devices

– Added Princeton Instruments cameras, IDS uEye cameras (as an option in uc480 cameras backend),
Thorlabs Kinesis piezo motor controllers (e.g., KIM101) and quadrature photo-detector controllers (e.g.,
KPA101).

– Added RS485 Arcus connection and a simple single-motor stage (DMX-J-SA).

– Improved reliability if errors are encountered upon connection.

– Multiple minor bug fixes and improved support of specific models.

• GUI

– Added widgets: menu dropdown button, scroll area container, area highlighter.

– Added querying element position and layout shape in layout widgets.

– Added more utilities methods: querying containing layout, querying top-level parent, deleting widget.

2.6. Change log 119

pylablib Documentation, Release 1.4.2

• Threading

– Added simple profiling through yappi.

1.2.1

• General

– Added restarting methods for regular and threaded applications.

• Threading

– Bugfixes in cameras and camera threads.

– Bugfixes in streaming.

1.2.0

• General

– Added timing context manager for simple code timing checks.

– Improved RPyC wrapper logging and reliability.

– Added Anaconda support.

– Added minor network and file functions.

• Devices

– Added Newport Picomotor 8742 motor controller, Toptica iBeam Smart laser, older version of Thorlabs
FW motorized filter wheel.

– Added camera frame output format (list or array).

– Added use_cavity option to M2 Solstis laser.

– Added method for auto-detecting associations between PhotonFocus cameras and frame grabbers.

– Updated some generic classes (DCAM cameras, Thorlabs TLCamera cameras).

– Updated SCPI failsafe operation, improved Thorlabs FW reliability.

– Fixed several minor bugs.

• GUI

– Rewritten GUI values handling to pass calls in a hierarchical manner. This makes the operation more
predictable and overloading the behavior a bit easier.

– Added out-of-range value action for combo boxes.

– Fixed ImagePlotter incompatibility with the newer pyqtgraph versions, added separate x and y axis line
cuts selection.

– Minor layout handling bugfixes.

• Threading

– Released advanced threading functionality: table/frame streaming, device threads, basic frame processing.

– Task thread additions: delayed batch job stopping, context manager for task loop pausing.

– Added argument-dependent call queue limit.

– Improved threading speed and stability.

120 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

1.1.0

• General

– Reorganized the core modules import structure: now __init__.py modules are mostly empty, and all the
necessary imports are either exposed directly in pylablib (e.g., pylablib.Fitter), or should be ac-
cessed directly by the module (e.g. pll.core.dataproc.fitting.Fitter). Intermediate access (e.g.,
pll.core.dataproc.Fitter) is no longer supported.

– File IO functions (e.g., read_csv) can now take file-like objects in addition to paths.

• Devices

– Added Silicon Software frame grabbers interface and rearranged PhotonFocus code to include both IMAQ
and SiliconSoftware frame grabbers.

– Fixed various compatibility bugs arising for specific versions of Python or dependency modules: Kinesis
error with specific pyft232 versions, some DLL-dependent devices errors with Python 3.8+, DLL types in
32-bit Python.

– Addressed issue with occasional uc480 acquisition restarts, fixed M2 communication report errors.

• GUI and threading

– Added container and layout management classes in addition to parameter tables for more consistent GUI
structure organization.

– Added pylablib.widgets module which combines all custom widgets for the ease of using in layout
managers or custom applications.

– Fixed support for PySide2 Qt5 backed.

– Renamed setupUi -> setup for all widgets, and changed the GUI setup organization for many of them
(the functioning stayed the same).

– Reorganized scheduling in QTaskThread to treat jobs, commands, and subscriptions more consistently.

– Added basic data stream management.

1.0.0

There have been too many alterations to list here comprehensively. Below is the list of the largest changes.

• General

– Removed built-in DataTable class (together with core.datatable subpackage) in favor of pandas.

– Renamed file IO functions: instead of generic load and save methods there are now more specific
loadfile.load_csv(), loadfile.load_dict(), etc.

– Removed some legacy modules which are not used in the rest of the library.

– Renamed or moved certain modules: core.utils.rpyc -> core.utils.rpyc_utils, core.fileio.
logfile -> core.fileio.table_stream, core.fileio.binio -> core.utils.binio , core.
devio.backend -> core.devio.backencd_comm, core.devio.untis -> core.utils.units, core.
dataproc.waveforms -> core.dataproc.utils

• Devices

– Some legacy devices have been removed, since without access to the hardware it is hard to maintain and
expand them. These include most of Agilent devices (33502A amplifier, N9310A microwave generator, HP
8712B and HP 8722D network analyzers, HP 8168F laser), Rigol DSA1030A spectrum analyzer, Tektronix
MDO3000 oscilloscope, Vaunix LabBrick generators, Zurich Instruments HF2 and UHF, Andor Shamrock

2.6. Change log 121

pylablib Documentation, Release 1.4.2

spectrographs (should be restored in future releases), NuPhoton NP2000 EDFA, PurePhotonics PPCL200
laser, Sirah Matisse laser (should be restored in future releases), Thorlabs PM100 power meter (should be
restored in future releases), Lakeshore 370 resistance bridge (should be restored in future releases), MKS
900-series pressure gauges, and some custom devices (Arduino and Olimex AVR boards and Janis-related
hardware).

– The main devices package has been moved from pylablib.aux_libs.devices (which now refers to the
legacy code) to pylablib.devices. Module organization has also changed slightly. To find the required
modules and device class names, see the devices list.

– Lots of devices’ interface has varied slightly, to make the interface more uniform and compatible between
different kinds of devices. The changes are usually fairly straightforward (e.g., move_to instead of move).
In many cases the interface was also expanded to include additional available methods.

– Several devices have been added, generalized, or restructured:

∗ Combined Thorlabs KDC101 and K10CR1 into a single class pylablib.devices.Thorlabs.
BasicKinesisDevice, which also accommodates similar kinds of devices.

∗ Added Arcus Performax2EXStage device for 2-axis controller with a slightly different interface
(pylablib.devices.Arcus.Performax2EXStage)

∗ Added several more AWGs with similar interfaces

– Simplified the way external DLLs are handled

– Unified the error handling

• GUI and threading

– Changed module structure

∗ threading and GUI are now separate sub-packages core.thread and core.gui

∗ all widgets are available simply through pylablib.widgets (simplifies integration with Qt Designer)

∗ moved parameter tables widgets to the core library

– Renamed some widgets to remove the LV prefix.

– Interfaces changes in some of the classes: thread controllers, parameter tables, value tables. The changes
are mostly cosmetics and involve names and parameters order. Most important changes:

∗ thread controller methods: subscribe -> subscribe_sync, sync_exec -> sync_exec_point,

∗ thread controller command/query shortcut: .c -> .ca, .q -> .cs, .qi -> .csi, .qs -> .css

∗ thread controller variable access uses .v shortcut, i.e., instead of ctl[name] it is now ctl.v[name]

∗ GUI value storage ValuesTable/IndicatorValuesTable are now combined and named as
GUIValues

∗ ParamTable and GUIValues uses .h shortcut to access value handlers, i.e., instead of table[name]
it is now table.h[name]

∗ ParamTable, ImagePlotterCtl, TracePlotterCtl constructor arguments: display_table ->
gui_values, display_table_root -> gui_values_root

∗ value-changed signal names in ParamTable and GUIValues: changed_event ->
get_value_changed_signal

∗ value-changed signal names in value handlers: value_changed_signal ->
get_value_changed_signal

∗ ParamTable methods: lock -> set_enabled, add_button(checkable=True) ->
add_toggle_button

122 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

∗ NumEdit and NumLabel methods: set_number_format -> set_formatter, set_number_limit
-> set_limiter (the call signature also changed)

∗ renamed signals to multicasts to avoid confusion with built-in Qt signals. Leads to
ThreadController.send_signal -> send_multicast, ThreadController.process_signal
-> process_multicast, ThreadController constructor argument signal_pool ->
multicast_pool, class SignalPool -> MulticastPool, QSignalThreadCallScheduler
-> QMulticastThreadCallScheduler.

2.6.2 Version 0.x

0.4.1

Interface changes

• Slightly changed representations of complex number in to-string conversions depending on the conversion rules
("python" vs "text").

Additions

• Devices

– Added Thorlabs K10CR1 rotational stage (legacy.aux_libs.devices.Thorlabs.K10CR1)

– Added Andor Shamrock spectrographs (legacy.aux_libs.devices.AndorShamrock)

– Expanded Agilent AWG class

– Added more 32bit dlls

– Added list_resources method to every backend class, which lists available connections for this
backend (not available for every backend; so far only works in legacy.core.devio.backed.
VisaDeviceBackend, legacy.core.devio.backed.SerialDeviceBackend, and legacy.core.
devio.backed.FT232BackendOpenError.

• GUI and threading

– Added legacy.aux_libs.gui.helpers.TableAccumulatorThread.preprocess_data method to
pre-process incoming data before adding it to the table

– Added update_only_on_visible argument to legacy.aux_libs.gui.widgets.trace_plotter.
TracePlotter.setupUi method, and legacy.aux_libs.gui.widgets.trace_plotter.
TracePlotter.get_required_channels method.

0.4.0

Interface changes

• Dictionary entries (legacy.core.fileio.dict_entry) system has been slightly redesigned: building en-
tries from stored objects has been moved from legacy.core.fileio.dict_entry.IDictionaryEntry.
build_entry class method to a dedicated function legacy.core.fileio.dict_entry.build_entry, and
entry classes have been added.

• legacy.aux_libs.gui.helpers.StreamFormerThread architecture changes, so that it can accumu-
lates several rows before adding them into the storage; this lead to replacement of legacy.aux_libs.
gui.helpers.StreamFormerThread.prepare_new_row method by legacy.aux_libs.gui.helpers.
StreamFormerThread.prepare_new_data.

Additions

2.6. Change log 123

pylablib Documentation, Release 1.4.2

• General

– Added pandas support in a bunch of places: loading/saving tables and dictionaries; data processing rou-
tines in legacy.core.dataproc; conversion of legacy.core.dataproc.datatable.DataTable and
legacy.core.utils.dictionary.Dictionary object to/from pandas dataframes.

– Expanded string conversion to support more explicit variable classes. For example, a numpy array
np.array([1,2,3]) can be converted into a string 'array([1, 2, 3])' instead of a more am-
biguous string '[1, 2, 3]' (which can also be a list). This behavior is controlled by a new argu-
ment use_classes in string conversion functions (such as legacy.core.utils.string.to_string
and legacy.core.utils.string.from_string) and an argument use_rep_classes in file saving
(legacy.core.fileio.savefile.save)

– Added general library parameters, which can be accessed via pylablib.par (works as a dictionary ob-
ject). So far there’s only one supported parameter: the default return type of the CSV file reading (can be
"pandas" for pandas dataframe, "table" for legacy.core.dataproc.datatable.DataTable object,
or "array" for raw numpy array).

• Devices

– Added LaserQuantum Finesse device class (legacy.aux_libs.devices.devices.LaserQuantum)

– NI DAQ now supports output of waveforms

– Added legacy.aux_libs.devices.PCO_SC2.reset_api and legacy.aux_libs.devices.
PCO_SC2.PCOSC2Camera.reboot methods for resetting API and cameras

– Added legacy.aux_libs.devices.Thorlabs.list_kinesis_devices function to list connected Ki-
nesis devices

– Added serial communication methods for IMAQ cameras (legacy.aux_libs.devices.IMAQ.
IMAQCamera)

• GUI and threading

– Added line plotter (legacy.aux_libs.gui.widgets.line_plotter) and trace plotter (legacy.
aux_libs.gui.widgets.trace_plotter) widgets

– Added virtual elements to value tables and parameter tables

– Added gui_thread_safe parameter to value tables and parameter tables. Enabling it make most common
methods thread-safe (i.e., transparently called from the GUI thread)

– Added a corresponding legacy.core.gui.qt.thread.controller.gui_thread_method wrapper to
implement the change above

– Added functional thread variables (legacy.core.gui.qt.thread.controller.
QThreadController.set_func_variable)

• File saving / loading

– Added notation for dictionary files to include nested structures (‘prefix blocks’). This lets one avoid com-
mon path prefix in stored dictionary files. For example, a file

some/long/prefix/x 1
some/long/prefix/y 2
some/long/prefix/y 3

can be represented as

//some/long/prefix
x 1

(continues on next page)

124 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

(continued from previous page)

y 2
z 3

///

The meaningful elements are //some/long/prefix line denoting that following elements have the given
prefix, and /// line denoting that the prefix block is done (indentation is only added for clarity).

– New dictionary entries: dict_entry.ExternalNumpyDictionaryEntry (external numpy array, can
have arbitrary number of dimensions) and dict_entry.ExpandedContainerDictionaryEntry (turns
lists, tuples and dicts into dictionary branches, so that their content can benefit from the automatic table
inlining, dictionary entry classes, etc.).

• Data processing

– legacy.core.dataproc.fitting.Fitter now takes default scale and limit as constructor arguments.

– legacy.core.dataproc.feature.multi_scale_peakdet has new norm_ratio argument.

– legacy.core.dataproc.image.get_region and legacy.core.dataproc.image.
get_region_sum take axis argument.

• Miscellaneous

– Functions introspection module now supports Python 3 - style functions, and added a new function legacy.
core.utils.functions.funcsig

– legacy.core.utils.general.StreamFileLogger supports multiple destination paths

– New network function legacy.core.utils.net.get_all_local_addr (return list of all local ad-
dresses on all interfaces) and legacy.core.utils.net.get_local_hostname

2.7 pylablib

2.7.1 pylablib package

Subpackages

pylablib.core package

Subpackages

pylablib.core.dataproc package

Submodules

pylablib.core.dataproc.callable module

class pylablib.core.dataproc.callable.ICallable

Bases: object

Fit function generalization.

Has a set of mandatory argument with no default values and a set of parameters with default values (there may
or may not be an explicit list of them).

2.7. pylablib 125

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

All the arguments are passed explicitly by name. Passed value supersede default values. Extra arguments (not
used in the calculations) are ignored.

Assumed (but not enforced) to be immutable: changes after creation can break the behavior.

Implements (possibly; depends on subclasses) call namelist binding boosting: if the function is to be called
many times with the same parameter names list, one can first bind parameters list, and then call bound function
with the corresponding arguments. This way, callable(**p) should be equivalent to callable.bind(p.
keys())(*p.values()).

has_arg(arg_name)
Determine if the function has an argument arg_name (of all 3 categories)

filter_args_dict(args)
Filter argument names dictionary to leave only the arguments that are used

get_mandatory_args()

Return list of mandatory arguments (these are the ones without default values)

is_mandatory_arg(arg_name)
Check if the argument arg_name is mandatory

get_arg_default(arg_name)
Return default value of the argument arg_name.

Raise KeyError if the argument is not defined or ValueError if it has no default value.

bind(arg_names, **bound_params)
Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

class NamesBoundCall(func, names, bound_params)
Bases: object

bind_namelist(arg_names, **bound_params)
Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

class pylablib.core.dataproc.callable.MultiplexedCallable(func, multiplex_by,
join_method='stack')

Bases: ICallable

Multiplex a single callable based on a single parameter.

If the function is called with this parameter as an iterable, then the underlying callable will be called for each
value of the parameter separately, and the results will be joined into a single array (if return the values are scalar,
they’re joined in 1D array; otherwise, they’re joined using join_method).

Parameters

• func (callable) – Function to be parallelized.

• multiplex_by (str) – Name of the argument to be multiplexed by.

• join_method (str) – Method for combining individual results together if they’re non-
scalars. Can be either 'list' (combine the results in a single list), 'stack' (combine using
numpy.column_stack(), i.e., add dimension to the result), or 'concatenate' (concate-
nate the return values; the dimension of the result stays the same).

Multiplexing also makes use of call signatures for underlying function even if __call__ is used.

Note that this operation is slow, and should be used only for high-dimensional multiplexing; for 1D case it’s
much better to just use numpy arrays as arguments and rely on numpy parallelizing.

126 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack

pylablib Documentation, Release 1.4.2

has_arg(arg_name)
Determine if the function has an argument arg_name (of all 3 categories)

get_mandatory_args()

Return list of mandatory arguments (these are the ones without default values)

get_arg_default(arg_name)
Return default value of the argument arg_name.

Raise KeyError if the argument is not defined or ValueError if it has no default value.

class NamesBoundCall(func, names, bound_params)
Bases: object

bind(arg_names, **bound_params)
Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

bind_namelist(arg_names, **bound_params)
Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

filter_args_dict(args)
Filter argument names dictionary to leave only the arguments that are used

is_mandatory_arg(arg_name)
Check if the argument arg_name is mandatory

class pylablib.core.dataproc.callable.JoinedCallable(funcs, join_method='stack')
Bases: ICallable

Join several callables sharing the same arguments list.

The results will be joined into a single array (if return the values are scalar, they’re joined in 1D array; otherwise,
they’re joined using join_method).

Parameters

• funcs ([callable]) – List of functions to be joined together.

• join_method (str) – Method for combining individual results together if they’re non-
scalars. Can be either 'list' (combine the results in a single list), 'stack' (combine using
numpy.column_stack(), i.e., add dimension to the result), or 'concatenate' (concate-
nate the return values; the dimension of the result stays the same).

has_arg(arg_name)
Determine if the function has an argument arg_name (of all 3 categories)

get_mandatory_args()

Return list of mandatory arguments (these are the ones without default values)

get_arg_default(arg_name)
Return default value of the argument arg_name.

Raise KeyError if the argument is not defined or ValueError if it has no default value.

class NamesBoundCall(func, names, bound_params)
Bases: object

bind(arg_names, **bound_params)
Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

2.7. pylablib 127

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

bind_namelist(arg_names, **bound_params)
Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

filter_args_dict(args)
Filter argument names dictionary to leave only the arguments that are used

is_mandatory_arg(arg_name)
Check if the argument arg_name is mandatory

class pylablib.core.dataproc.callable.FunctionCallable(func, function_signature=None,
defaults=None, alias=None)

Bases: ICallable

Callable based on a function or a method.

Parameters

• func – Function to be wrapped.

• function_signature – A functions.FunctionSignature object supplying informa-
tion about function’s argument names and default values, if they’re different from what’s
extracted from its signature.

• defaults (dict) – A dictionary {name: value} of additional default parameters values.
Override the defaults from the signature. All default values must be pass-able to the function
as a parameter

• alias (dict) – A dictionary {alias: original} for renaming some of the original ar-
guments. Original argument names can’t be used if aliased (though, multi-aliasing can be
used explicitly, e.g., alias={'alias':'arg','arg':'arg'}). A name can be blocked
(its usage causes error) if it’s aliased to None (alias={'blocked_name':None}).

Optional non-named arguments in the form *args are not supported, since all the arguments are passed to the
function by keywords.

Optional named arguments in the form **kwargs are supported only if their default values are explicitly pro-
vided in defaults (otherwise it would be unclear whether argument should be added into **kwargs or ignored
altogether).

has_arg(arg_name)
Determine if the function has an argument arg_name (of all 3 categories)

get_mandatory_args()

Return list of mandatory arguments (these are the ones without default values)

get_arg_default(arg_name)
Return default value of the argument arg_name.

Raise KeyError if the argument is not defined or ValueError if it has no default value.

class NamesBoundCall(func, names, bound_params)
Bases: object

bind(arg_names, **bound_params)
Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

bind_namelist(arg_names, **bound_params)
Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

128 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

filter_args_dict(args)
Filter argument names dictionary to leave only the arguments that are used

is_mandatory_arg(arg_name)
Check if the argument arg_name is mandatory

class pylablib.core.dataproc.callable.MethodCallable(method, function_signature=None,
defaults=None, alias=None)

Bases: FunctionCallable

Similar to FunctionCallable, but accepts class method instead of a function.

The only addition is that now object’s attributes can also parameters to the function: all the parameters which
are not explicitly mentioned in the method signature are assumed to be object’s attributes.

The parameters are affected by alias, but NOT affected by defaults (since it’s impossible to ensure that all object’s
attributes are kept constant, and it’s impractical to reset them all to default values at every function call).

Parameters

• method – Method to be wrapped.

• function_signature – A functions.FunctionSignature object supplying informa-
tion about function’s argument names and default values, if they’re different from what’s
extracted from its signature. If it’s assumed that the first self argument is already excluded.

• defaults (dict) – A dictionary {name: value} of additional default parameters values.
Override the defaults from the signature. All default values must be pass-able to the function
as a parameter

• alias (dict) – A dictionary {alias: original} for renaming some of the original ar-
guments. Original argument names can’t be used if aliased (though, multi-aliasing can be
used explicitly, e.g., alias={'alias':'arg','arg':'arg'}). A name can be blocked
(its usage causes error) if it’s aliased to None (alias={'blocked_name':None}).

This callable is implemented largely to be used with TheoryCalculator class (currently deprecated).

has_arg(arg_name)
Determine if the function has an argument arg_name (of all 3 categories)

get_arg_default(arg_name)
Return default value of the argument arg_name.

Raise KeyError if the argument is not defined or ValueError if it has no default value.

class NamesBoundCall(func, names, bound_params)
Bases: object

bind(arg_names, **bound_params)
Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

bind_namelist(arg_names, **bound_params)
Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

filter_args_dict(args)
Filter argument names dictionary to leave only the arguments that are used

get_mandatory_args()

Return list of mandatory arguments (these are the ones without default values)

2.7. pylablib 129

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

is_mandatory_arg(arg_name)
Check if the argument arg_name is mandatory

pylablib.core.dataproc.callable.to_callable(func)
Convert a function to an ICallable instance.

If it’s already ICallable, return unchanged. Otherwise, return FunctionCallable or MethodCallable de-
pending on whether it’s a function or a bound method.

pylablib.core.dataproc.ctransform_fallback module

class pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform(m=None, s=None)
Bases: object

Pure Python implementation of Cython-based linear 2D transform

copy()

Copy the transform

property tmatr

Transform matrix as a 2x2 numpy array

property svec

Transform vector as a numpy array

invert()

Invert the transform

precede(trans)
Precede the transform with a different transform

follow(trans)
Follow the transform with a different transform

i(x, y)
Apply the inverse transform to the given point

shift(s1, s2, preceded=False)
Apply a shift transform before or after (default) the given transform

multiply(m11, m12, m21, m22, preceded=False)
Apply a matrix multiplication transform before or after (default) the given transform

scale(s1, s2, preceded=False)
Apply a scale transform before or after (default) the given transform

transpose(preceded=False)
Apply a transpose transform before or after (default) the given transform

classmethod from_matr_shift(matr, shift)
Build a transform from a 2x2 transform matrix and a shift vector

130 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.feature module

Traces feature detection: peaks, baseline, local extrema.

class pylablib.core.dataproc.feature.Baseline(position=0.0, width=1.0)
Bases: Baseline

Baseline (background) for a trace.

position is the background level, and width is its noise width.

position

width

pylablib.core.dataproc.feature.get_baseline_simple(trace, find_width=True)
Get the baseline of the 1D trace.

If find_width==True, calculate its width as well.

pylablib.core.dataproc.feature.subtract_baseline(trace)
Subtract baseline from the trace (make its background zero).

class pylablib.core.dataproc.feature.Peak(position=0.0, height=1.0, width=1.0, kernel='generic')
Bases: Peak

A trace peak.

kernel defines its shape (for, e.g., generation purposes).

height

kernel

position

width

pylablib.core.dataproc.feature.find_peaks_cutoff(trace, cutoff , min_width=0, kind='peak',
subtract_bl=True)

Find peaks in the data using cutoff.

Parameters

• trace – 1D data array.

• cutoff (float) – Cutoff value for the peak finding.

• min_width (int) – Minimal uninterrupted width (in datapoints) of a peak. Any peaks this
width are ignored.

• kind (str) – Peak kind. Can be 'peak' (positive direction), 'dip' (negative direction) or
'both' (both directions).

• subtract_bl (bool) – If True, subtract baseline of the trace before checking cutoff.

Returns
List of Peak objects.

pylablib.core.dataproc.feature.rescale_peak(peak, xoff=0.0, xscale=1.0, yoff=0, yscale=1.0)
Rescale peak’s position, width and height.

xscale rescales position and width, xoff shifts position, yscale and yoff affect peak height.

2.7. pylablib 131

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.feature.peaks_sum_func(peaks, peak_func='lorentzian')
Create a function representing sum of peaks.

peak_func determines default peak kernel (used if peak.kernel=="generic"). Kernel is either a name string
or a function taking 3 arguments (x, width, height).

pylablib.core.dataproc.feature.get_kernel(width, kernel_width=None, kernel='lorentzian')
Get a finite-sized kernel.

Return 1D array of length 2*kernel_width+1 containing the given kernel. By default,
kernel_width=int(width*3).

pylablib.core.dataproc.feature.get_peakdet_kernel(peak_width, background_width,
kernel_width=None, kernel='lorentzian')

Get a peak detection kernel.

Return 1D array of length 2*kernel_width+1 containing the kernel. The kernel is a sum of narrow positive
peak (with the width peak_width) and a broad negative peak (with the width background_width); both widths
are specified in datapoints (index). Each peak is normalized to have unit sum, i.e., the kernel has zero total sum.
By default, kernel_width=int(background_width*3).

pylablib.core.dataproc.feature.multi_scale_peakdet(trace, widths, background_ratio, kind='peak',
norm_ratio=None, kernel='lorentzian')

Detect multiple peak widths using get_peakdet_kernel() kernel.

Parameters

• trace – 1D data array.

• widths ([float]) – Array of possible peak widths.

• background_ratio (float) – ratio of the background_width to the peak_width in
get_peakdet_kernel().

• kind (str) – Peak kind. Can be 'peak' (positive direction) or 'dip' (negative direction).

• norm_ratio (float) – if not None, defines the width of the “normalization region” (in units
of the kernel width, same as for the background kernel); it is then used to calculate a local
trace variance to normalize the peaks magnitude.

• kernel – Peak matching kernel.

Returns
Filtered trace which shows peak ‘affinity’ at each point.

pylablib.core.dataproc.feature.find_local_extrema(wf , region_width=3, kind='max',
min_distance=None)

Find local extrema (minima or maxima) of 1D trace.

kind can be "min" or "max" and determines the kind of the extrema. Local minima (maxima) are defined
as points which are smaller (greater) than all other points in the region of width region_width around it. re-
gion_width is always round up to an odd integer. min_distance defines the minimal distance between the extrema
(region_width//2 by default). If there are several extrema within min_distance, their positions are averaged
together.

pylablib.core.dataproc.feature.latching_trigger(wf , threshold_on, threshold_off , init_state='undef',
result_kind='separate')

Determine indices of rise and fall trigger events with hysteresis (latching) thresholds.

132 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Return either two arrays (rise_trig, fall_trig) containing trigger indices (if
result_kind=="separate"), or a single array of tuples [(dir,pos)], where dir is the trigger direc-
tion (+1 or -1) and pos is its index (if result_kind=="joined"). Triggers happen when a state switch from
‘high’ to ‘low’ (rising) or vice versa (falling). The state switches from ‘low’ to ‘high’ when the trace value
goes above threshold_on, and from ‘high’ to ‘low’ when the trace value goes below threshold_off. For a stable
hysteresis effect, threshold_on should be larger than threshold_off, which means that the trace values between
these two thresholds can not change the state. init_state specifies the initial state: "low", "high", or "undef"
(undefined state).

pylablib.core.dataproc.filters module

Routines for filtering arrays (mostly 1D data).

pylablib.core.dataproc.filters.convolve1d(trace, kernel, mode='reflect', cval=0.0)
Convolution filter.

Convolves trace with the given kernel (1D array). mode and cval determine how the endpoints are handled.
Simply a wrapper around the standard scipy.ndimage.convolve1d() that handles complex arguments.

pylablib.core.dataproc.filters.convolution_filter(a, width, kernel='gaussian', kernel_span='auto',
mode='reflect', cval=0.0, kernel_height=None)

Convolution filter.

Parameters

• a – array for filtering.

• width (float) – kernel width (second parameter to the kernel function).

• kernel – either a string defining the kernel function (see specfunc.get_kernel_func()
for possible kernels), or a function taking 3 arguments (pos, width, height), where
height can be None (assumes normalization by area).

• kernel_span – the cutoff for the kernel function. Either an integer (number of points) or
'auto' (autodetect for "gaussian", "rectangle" and "exp_decay", full trace width for
all other kernels).

• mode (str) – convolution mode (see scipy.ndimage.convolve()).

• cval (float) – convolution fill value (see scipy.ndimage.convolve()).

• kernel_height – height parameter to be passed to the kernel function. None means nor-
malization by area.

pylablib.core.dataproc.filters.gaussian_filter(a, width, mode='reflect', cval=0.0)
Simple gaussian filter. Can handle complex data.

Equivalent to a convolution with a gaussian. Equivalent to scipy.ndimage.gaussian_filter1d(), uses
convolution_filter().

pylablib.core.dataproc.filters.gaussian_filter_nd(a, width, mode='reflect', cval=0.0)
Simple gaussian filter. Can’t handle complex data.

Equivalent to a convolution with a gaussian. Wrapper around scipy.ndimage.gaussian_filter().

pylablib.core.dataproc.filters.low_pass_filter(trace, t, mode='reflect', cval=0.0)
Simple single-pole low-pass filter.

t is the filter time constant, mode and cval are the trace expansion parameters (only from the left). Implemented
as a recursive digital filter, so its performance doesn’t depend strongly on t. Works only for 1D arrays.

2.7. pylablib 133

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.filters.high_pass_filter(trace, t, mode='reflect', cval=0.0)
Simple single-pole high-pass filter (equivalent to subtracting a low-pass filter).

t is the filter time constant, mode and cval are the trace expansion parameters (only from the left). Implemented
as a recursive digital filter, so its performance doesn’t depend strongly on t. Works only for 1D arrays.

pylablib.core.dataproc.filters.integrate(trace)
Calculate the integral of the trace.

Alias for numpy.cumsum().

pylablib.core.dataproc.filters.differentiate(trace)
Calculate the differential of the trace.

Note that since the data dimensions are changed (length is reduced by 1), the index is not preserved for pandas
DataFrames.

pylablib.core.dataproc.filters.sliding_average(a, width, mode='reflect', cval=0.0)
Simple sliding average filter

Equivalent to convolution with a rectangle peak function.

pylablib.core.dataproc.filters.median_filter(a, width, mode='reflect', cval=0.0)
Median filter.

Wrapper around scipy.ndimage.median_filter().

pylablib.core.dataproc.filters.sliding_filter(trace, n, dec='bin', mode='reflect', cval=0.0)
Perform sliding filtering on the data.

Parameters

• trace – 1D array-like object.

• n (int) – bin width.

• dec (str) – decimation method. Can be - 'bin' or 'mean' - do a binning average; - 'sum' -
sum points; - 'min' - leave min point; - 'max' - leave max point; - 'median' - leave median
point (works as a median filter). - a function which takes a single 1D array and compresses
it into a number

• mode (str) – Expansion mode. Can be 'constant' (added values are determined by cval),
'nearest' (added values are end values of the trace), 'reflect' (reflect trace with respect
to its endpoint) or 'wrap' (wrap the values from the other size).

• cval (float) – If mode=='constant', determines the expanded values.

pylablib.core.dataproc.filters.decimate(a, n, dec='skip', axis=0, mode='drop')
Decimate the data.

Note that since the data dimensions are changed, the index is not preserved for pandas DataFrames.

Parameters

• a – data array.

• n (int) – decimation factor.

• dec (str) – decimation method. Can be - 'skip' - just leave every n’th point while com-
pletely omitting everything else; - 'bin' or 'mean' - do a binning average; - 'sum' - sum
points; - 'min' - leave min point; - 'max' - leave max point; - 'median' - leave median
point (works as a median filter). - a function which takes two arguments (nD numpy array
and an axis) and compresses the array along the given axis

134 Chapter 2. Citation

https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• axis (int) – axis along which to perform the decimation; can also be a tuple, in which case
the same decimation is performed sequentially along several axes.

• mode (str) – determines what to do with the last bin if it’s incomplete. Can be either 'drop'
(omit the last bin) or 'leave' (keep it).

pylablib.core.dataproc.filters.binning_average(a, width, axis=0, mode='drop')
Binning average filter.

Equivalent to decimate() with dec=='bin'.

pylablib.core.dataproc.filters.decimate_full(a, dec='skip', axis=0)
Completely decimate the data along a given axis.

Parameters

• a – data array.

• dec (str) – decimation method. Can be - 'skip' - just leave every n’th point while com-
pletely omitting everything else; - 'bin' or 'mean' - do a binning average; - 'sum' - sum
points; - 'min' - leave min point; - 'max' - leave max point; - 'median' - leave median
point (works as a median filter). - a function which takes two arguments (nD numpy array
and an axis) and compresses the array along the given axis

• axis (int) – axis along which to perform the decimation; can also be a tuple, in which case
the same decimation is performed along several axes.

pylablib.core.dataproc.filters.decimate_datasets(arrs, dec='mean')
Decimate datasets with the same shape element-wise (works only for 1D or 2D arrays).

Note that the index data is taken from the first array in the list.

dec has the same values and meaning as in decimate(). The format of the output (numpy or pandas, and the
name of columns in pandas DataFrame) is determined by the first array in the list.

pylablib.core.dataproc.filters.collect_into_bins(values, distance, preserve_order=False,
to_return='value')

Collect all values into bins separated at least by distance.

Return the extent of each bin. If preserve_order==False, values are sorted before splitting. If
to_return="value", the extent is given in values; if to_return="index", it is given in indices (only useful
if preserve_order=True, as otherwise the indices correspond to a sorted array). If distance is a tuple, then it
denotes the minimal and the maximal separation between consecutive elements; otherwise, it is a single number
denoting maximal absolute distance (i.e., it corresponds to a tuple (-distance,distance)).

pylablib.core.dataproc.filters.split_into_bins(values, max_span, max_size=None)
Split values into bins of the span at most max_span and number of elements at most max_size.

If max_size is None, it’s assumed to be infinite. Return array of indices for each bin. Values are sorted before
splitting.

pylablib.core.dataproc.filters.fourier_filter(trace, response, dt=1, preserve_real=True)
Apply filter to a trace in the frequency domain.

response is a (possibly) complex function with single 1D real numpy array as a frequency argument. dt specifies
time step between consecutive points. Note that in case of a multi-column data the filter is applied column-wise;
this is in contrast with the Fourier transform methods, which would assume the first column to be times.

If preserve_real==True, then the response for negative frequencies is automatically taken to be complex
conjugate of the response for positive frequencies (so that the real trace stays real).

2.7. pylablib 135

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.filters.fourier_make_response_real(response)
Turn a frequency filter function into a real one (in the time domain).

Done by reflecting and complex conjugating positive frequency part to negative frequencies. response is a func-
tion with a single argument (frequency), return value is a modified function.

pylablib.core.dataproc.filters.fourier_filter_bandpass(pass_range_min, pass_range_max)
Generate a bandpass filter function (hard cutoff).

The function is symmetric, so that it corresponds to a real response in time domain.

pylablib.core.dataproc.filters.fourier_filter_bandstop(stop_range_min, stop_range_max)
Generate a bandstop filter function (hard cutoff).

The function is symmetric, so that it corresponds to a real response in time domain.

class pylablib.core.dataproc.filters.RunningDecimationFilter(n, mode='mean',
on_incomplete='none')

Bases: object

Running decimation filter.

Remembers last n samples and returns their averages, median, etc.

Parameters

• n – decimation length

• mode – decimation mode ("mean", "median", "min", or "max")

• on_incomplete – determines what to return while the filter window is not yet full; can be
"none" (default, return None), or "partial" (operate on the partial accumulated data)

get()

Get the filtered result

add(x)
Add a new sample

reset()

Reset the filter

class pylablib.core.dataproc.filters.RunningDebounceFilter(n, precision=None, initial=None)
Bases: object

Running debounce filter.

“Sticks” to the current value and only switches when a new value remains constant (withing a given precision)
for a given number of samples. Filters out temporary spikes and short changes, conceptually similar to a running
median filter.

Parameters

• n – length of the required constant period

• precision – comparison precision (None means that the values should be exactly equal)

• initial – initial value; None means that the first sample sets this value

get()

Get the filtered result

136 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add(x)
Add a new sample

reset()

Reset the filter

pylablib.core.dataproc.fitting module

Universal function fitting interface.

class pylablib.core.dataproc.fitting.Fitter(func, xarg_name=None, fit_parameters=None,
fixed_parameters=None, scale=None, limits=None,
weights=None)

Bases: object

Fitter object.

Can handle variety of different functions, complex arguments or return values, array arguments.

Parameters

• func (callable) – Fit function. Can be anything callable (function, method, object with
__call__ method, etc.).

• xarg_name (str or list) – Name (or multiple names) for x arguments. These arguments
are passed to func (as named arguments) when calling for fitting. Can be a string (single
argument) or a list (arbitrary number of arguments, including zero).

• fit_parameters (dict) – Dictionary {name: value} of parameters to be fitted (value
is the starting value for the fitting procedure). If value is None, try and get the default value
from the func.

• fixed_parameters (dict) – Dictionary {name: value} of parameters to be fixed dur-
ing the fitting procedure. If value is None, try and get the default value from the func.

• scale (dict) – Defines typical scale of fit parameters (used to normalize fit parameters
supplied of scipy.optimize.least_squares()). Note: for complex parameters scale
must also be a complex number, with re and im parts of the scale variable corresponding to
the scale of the re and im part.

• limits (dict) – Boundaries for the fit parameters (missing entries are assumed to be un-
bound). Each boundary parameter is a tuple (lower, upper). lower or upper can be
None, numpy.nan or numpy.inf (with the appropriate sign), which implies no bounds in
the given direction. Note: for compound data types (such as lists) the entries are still tuples
of 2 elements, each of which is either None (no bound for any sub-element) or has the same
structure as the full parameter. Note: for complex parameters limits must also be complex
numbers (or None), with re and im parts of the limits variable corresponding to the limits of
the re and im part.

• weights (list or numpy.ndarray) – Determines the weights of y-points. Can be either
an array broadcastable to y (e.g., a scalar or an array with the same shape as y), in which
case it’s interpreted as list of individual point weights (which multiply residuals before they
are squared). Or it can be an array with number of elements which is square of the number
of elements in y, in which case it’s interpreted as a weights matrix (which matrix-multiplies
residuals before they are squared).

2.7. pylablib 137

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pylablib Documentation, Release 1.4.2

set_xarg_name(xarg_name)
Set names of x arguments.

Can be a string (single argument) or a list (arbitrary number of arguments, including zero).

use_xarg()

Return True if the function requires x arguments

set_fixed_parameters(fixed_parameters)
Change fixed parameters

update_fixed_parameters(fixed_parameters)
Update the dictionary of fixed parameters

del_fixed_parameters(fixed_parameters)
Remove fixed parameters

set_fit_parameters(fit_parameters)
Change fit parameters

update_fit_parameters(fit_parameters)
Update the dictionary of fit parameters

del_fit_parameters(fit_parameters)
Remove fit parameters

fit(x=None, y=0, fit_parameters=None, fixed_parameters=None, scale='default', limits='default',
weights=1.0, parscore=None, return_stderr=False, return_residual=False, **kwargs)
Fit the data.

Parameters

• x – x arguments. If the function has single x argument, x is an array-like object; otherwise,
x is a list of array-like objects (can be None if there are no x parameters).

• y – Target function values.

• fit_parameters (dict) – Adds to the default fit_parameters of the fitter (has priority on
duplicate entries).

• fixed_parameters (dict) – Adds to the default fixed_parameters of the fitter (has pri-
ority on duplicate entries).

• scale (dict) – Defines typical scale of fit parameters (used to normalize fit parameters
supplied of scipy.optimize.least_squares()). Note: for complex parameters scale
must also be a complex number, with re and im parts of the scale variable corresponding to
the scale of the re and im part. If value is "default", use the value supplied on the fitter
creation (by default, no specific scales).

• limits (dict) – Boundaries for the fit parameters (missing entries are assumed to be
unbound). Each boundary parameter is a tuple (lower, upper). lower or upper can
be None, numpy.nan or numpy.inf (with the appropriate sign), which implies no bounds
in the given direction. Note: for compound data types (such as lists) the entries are still
tuples of 2 elements, each of which is either None (no bound for any sub-element) or has
the same structure as the full parameter. Note: for complex parameters limits must also be
complex numbers (or None), with re and im parts of the limits variable corresponding to
the limits of the re and im part. If value is "default", use the value supplied on the fitter
creation (by default, no limits).

138 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://docs.python.org/3/library/stdtypes.html#dict

pylablib Documentation, Release 1.4.2

• weights (list or numpy.ndarray) – Determines the weights of y-points. Can be ei-
ther an array broadcastable to y (e.g., a scalar or an array with the same shape as y), in which
case it’s interpreted as list of individual point weights (which multiply residuals before they
are squared). Or it can be an array with number of elements which is square of the number
of elements in y, in which case it’s interpreted as a weights matrix (which matrix-multiplies
residuals before they are squared). If value is "default", use the value supplied on the
fitter creation (by default, no weights)

• parscore (callable) – parameter score function, whose value is added to the mean-
square error (sum of all residuals squared) after applying weights. Takes the same param-
eters as the fit function, only without the x-arguments, and return an array-like value. Can
be used for, e.g., ‘soft’ fit parameter constraining.

• return_stderr (bool) – If True, append stderr to the output.

• return_residual – If not False, append residual to the output.

• **kwargs – arguments passed to scipy.optimize.least_squares() function.

Returns

(params, bound_func[, stderr][, residual]):

• params: a dictionary {name: value} of the parameters supplied to the function (both
fit and fixed).

• bound_func: the fit function with all the parameters bound (i.e., it only requires x pa-
rameters).

• stderr: a dictionary {name: error} of standard deviation for fit parameters to
the return parameters.

If the fitting routine returns no residuals (usually for a bad or an under-constrained fit),
all residuals are set to NaN.

• residual: either a full array of residuals func(x,**params)-y (if
return_residual=='full'),

a mean magnitude of the residuals mean(abs(func(x,**params)-y)**2) (if
return_residual==True or return_residual=='mean'), or the total resid-
uals including weights mean(abs((func(x,**params)-y)*weights)**2) (if
return_residual=='weighted').

Return type
tuple

initial_guess(fit_parameters=None, fixed_parameters=None, return_stderr=False,
return_residual=False)

Return the initial guess for the fitting.

Parameters

• fit_parameters (dict) – Overrides the default fit_parameters of the fitter.

• fixed_parameters (dict) – Overrides the default fixed_parameters of the fitter.

• return_stderr (bool) – If True, append stderr to the output.

• return_residual – If not False, append residual to the output.

Returns

(params, bound_func).

• params: a dictionary {name: value} of the parameters supplied to the function
(both fit and fixed).

2.7. pylablib 139

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• bound_func: the fit function with all the parameters bound (i.e., it only requires x
parameters).

• stderr: a dictionary {name: error} of standard deviation for fit parameters to
the return parameters.

Always zero, added for better compatibility with fit().

• residual: either a full array of residuals func(x,**params)-y (if
return_residual=='full') or

a mean magnitude of the residuals mean(abs(func(x,**params)-y)**2) (if
return_residual==True or return_residual=='mean'). Always zero, added
for better compatibility with fit().

Return type
tuple

pylablib.core.dataproc.fitting.huge_error(x, factor=100.0)

pylablib.core.dataproc.fitting.get_best_fit(x, y, fits)
Select the best (lowest residual) fit result.

x and y are the argument and the value of the bound fit function. fits is the list of fit results (tuples returned by
Fitter.fit()).

pylablib.core.dataproc.fourier module

Routines for Fourier transform.

pylablib.core.dataproc.fourier.get_prev_len(l, maxprime=7)
Get the largest number less or equal to l, which is composed of prime factors up to maxprime.

So far, only maxprime of 2, 3, 5, 7 and 11 are supported. maxprime of 5 gives less than 15% length reduction
(and less than 6% for lengths above 400). maxprime of 11 gives less than 8% length reduction (and less than 4%
for lengths above 300).

pylablib.core.dataproc.fourier.truncate_trace(trace, maxprime=7)
Truncate trace length to the nearest smaller length which is composed of prime factors up to maxprime.

So far, only maxprime of 2, 3, 5, 7 and 11 are supported. maxprime of 5 gives less than 15% length reduction
(and less than 6% for lengths above 400). maxprime of 11 gives less than 8% length reduction (and less than 4%
for lengths above 300).

pylablib.core.dataproc.fourier.normalize_fourier_transform(ft, normalization='none', df=None,
copy=False)

Normalize the Fourier transform data.

ft is a 1D trace or a 2D array with 2 columns: frequency and complex amplitude. normal-
ization can be 'none' (standard numpy normalization), 'sum' (the power sum is preserved:
sum(abs(ft)**2)==sum(abs(trace)**2)), 'rms' (the power sum is equal to the trace RMS power:
sum(abs(ft)**2)==mean(abs(trace)**2)), 'density' (power spectral density normalization,
sum(abs(ft[:,1])**2)*df==mean(abs(trace[:,1])**2)), or 'dBc' (same as 'density', but
normalized by the mean of the trace) If normalization=='density', then df can specify the frequency step
between two consecutive bins; if df is None, it is extracted from the first two points of the frequency axis (or set
to 1, if ft is a 1D trace)

pylablib.core.dataproc.fourier.apply_window(trace_values, window='rectangle',
window_power_compensate=True)

140 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

Apply FT window to the trace.

If window_power_compensate==True, multiply the data is multiplied by a compensating factor to preserve
power in the spectrum.

pylablib.core.dataproc.fourier.fourier_transform(trace, dt=None, truncate=False,
normalization='none', single_sided=False,
window='rectangle',
window_power_compensate=True, raw=False)

Calculate a fourier transform of the trace.

Parameters

• trace – Time trace to be transformed. It can be a 1D trace of values, a 2-column trace, or
a 3-column trace. If dt is None, then the first column is assumed to be time (only support
uniform time step), and the other columns are either the trace values (for a single data
column) or real and imaginary parts of the trace (for two data columns). If dt is not None,
then the time column is assumed to be missing, so the two columns are assumed to be the
real and the imaginary parts.

• dt – if not None, can specify the time step between the consecutive samples, in which
case it is assumed that the time column is missing from the trace; otherwise, try to get it
from the time column of the trace if it exists, or set to 1 otherwise.

• truncate (bool or int) – Determines whether to truncate the trace to the nearest prod-
uct of small primes (speeds up FFT algorithm); can be False (no truncation), an integer
2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number), or True
(default prime factorization, currently set to 7)

• normalization (str) – Fourier transform normalization: - 'none': no (i.e., default
numpy) normalization; - 'sum': the norm of the data is conserved (sum(abs(ft[:,
1])**2)==sum(abs(trace[:,1])**2)); - 'rms': sum of the PSD is equal to the RMS
trace amplitude squared (sum(abs(ft[:,1])**2)==mean(abs(trace[:,1])**2));
- 'density': power spectral density normalization, in x/rtHz (sum(abs(ft[:,
1])**2)*df==mean(abs(trace[:,1])**2)); - 'dBc': like 'density', but normal-
ized to the mean trace value.

• single_sided (bool) – If True, only leave positive frequency side of the transform.

• window (str) – FT window. Can be 'rectangle' (essentially, no window), 'hann' or
'hamming'.

• window_power_compensate (bool) – If True, the data is multiplied by a compensating
factor to preserve power in the spectrum.

• raw (bool) – if True, return a simple 1D trace with the result.

Returns
a two-column array of the same kind as the input, where the first column is frequency, and the
second is complex FT data.

pylablib.core.dataproc.fourier.flip_fourier_transform(ft)
Flip the fourier transform (analogous to making frequencies negative and flipping the order).

pylablib.core.dataproc.fourier.inverse_fourier_transform(ft, df=None, truncate=False,
zero_loc=None, symmetric_time=False,
raw=False)

Calculate an inverse fourier transform of the trace.

Parameters

2.7. pylablib 141

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• ft – Fourier transform data to be inverted. It can be a 1D trace of values, a 2-column
trace, or a 3-column trace. If df is None, then the first column is assumed to be frequency
(only support uniform frequency step), and the other columns are either the trace values
(for a single data column) or real and imaginary parts of the trace (for two data columns).
If df is not None, then the frequency column is assumed to be missing, so the two columns
are assumed to be the real and the imaginary parts.

• df – if not None, can specify the frequency step between the consecutive samples; other-
wise, try to get it from the frequency column of the trace if it exists, or set to 1 otherwise.

• truncate (bool or int) – Determines whether to truncate the trace to the nearest prod-
uct of small primes (speeds up FFT algorithm); can be False (no truncation), an integer
2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number), or True
(default prime factorization, currently set to 7)

• zero_loc (bool) – Location of the zero frequency point. Can be None (the one with
the value of f-axis closest to zero, or the first point if the frequency column is missing),
'center' (mid-point), or an integer index.

• symmetric_time (bool) – If True, make time axis go from (-0.5/df, 0.5/df) rather
than (0, 1./df).

• raw (bool) – if True, return a simple 1D trace with the result.

Returns
a two-column array, where the first column is frequency, and the second is the complex-valued
trace data.

pylablib.core.dataproc.fourier.power_spectral_density(trace, dt=None, truncate=False,
normalization='density', single_sided=False,
window='rectangle',
window_power_compensate=True,
raw=False)

Calculate a power spectral density of the trace.

Parameters

• trace – Time trace to be transformed. It can be a 1D trace of values, a 2-column trace, or
a 3-column trace. If dt is None, then the first column is assumed to be time (only support
uniform time step), and the other columns are either the trace values (for a single data
column) or real and imaginary parts of the trace (for two data columns). If dt is not None,
then the time column is assumed to be missing, so the two columns are assumed to be the
real and the imaginary parts.

• dt – if not None, can specify the time step between the consecutive samples; otherwise,
try to get it from the time column of the trace if it exists, or set to 1 otherwise.

• truncate (bool or int) – Determines whether to truncate the trace to the nearest prod-
uct of small primes (speeds up FFT algorithm); can be False (no truncation), an integer
2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number), or True
(default prime factorization, currently set to 7)

• normalization (str) – Fourier transform normalization: - 'none': no (i.e.,
default numpy) normalization; - 'sum': the norm of the data is conserved
(sum(PSD[:,1])==sum(abs(trace[:,1])**2)); - 'rms': sum of the PSD is
equal to the RMS trace amplitude squared (sum(PSD[:,1])==mean(abs(trace[:,
1])**2)); - 'density': power spectral density normalization, in x/rtHz (sum(PSD[:,
1])*df==mean(abs(trace[:,1])**2)); - 'dBc': like 'density', but normalized to
the mean trace value.

142 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• single_sided (bool) – If True, only leave positive frequency side of the PSD.

• window (str) – FT window. Can be 'rectangle' (essentially, no window), 'hann' or
'hamming'.

• window_power_compensate (bool) – If True, the data is multiplied by a compensating
factor to preserve power in the spectrum.

• raw (bool) – if True, return a simple 1D trace with the result.

Returns
a two-column array, where the first column is frequency, and the second is positive PSD.

pylablib.core.dataproc.fourier.get_real_part_ft(ft)
Get the fourier transform of the real part only from the fourier transform of a complex variable.

pylablib.core.dataproc.fourier.get_imag_part_ft(ft)
Get the fourier transform of the imaginary part only from the fourier transform of a complex variable.

pylablib.core.dataproc.fourier.get_correlations_ft(ft_a, ft_b, zero_mean=True,
normalization='none')

Calculate the correlation function of the two variables given their fourier transforms.

Parameters

• ft_a – first variable fourier transform

• ft_b – second variable fourier transform

• zero_mean (bool) – If True, the value corresponding to the zero frequency is set to zero
(only fluctuations around means of a and b are calculated).

• normalization (str) – Can be 'whole' (correlations are normalized by product of
PSDs derived from ft_a and ft_b) or 'individual' (normalization is done for each fre-
quency individually, so that the absolute value is always 1).

pylablib.core.dataproc.iir_transform module

Digital recursive infinite impulse response filter.

Implemented using Numba library (JIT high-performance compilation) if possible.

pylablib.core.dataproc.iir_transform.iir_apply_complex(trace, xcoeff , ycoeff)
Apply digital, (possibly) recursive filter with coefficients xcoeff and ycoeff along the first axis.

Result is filtered signal y with y[n]=sum_j x[n-j]*xcoeff[j] + sum_k y[n-k-1]*ycoeff[k].

pylablib.core.dataproc.image module

pylablib.core.dataproc.image.convert_shape_indexing(shape, src, dst, axes=(0, 1))
Convert image indexing style.

shape is the source image shape (2-tuple), src and dst are current format and desired format. Formats can be
"rcb" (first index is row, second is column, rows count from the bottom), "rct" (same, but rows count from the
top). "xyb" (first index is column, second is row, rows count from the bottom), or "xyt" (same but rows count
form the top). "rc" is interpreted as "rct", "xy" as "xyt"

2.7. pylablib 143

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.image.convert_image_indexing(img, src, dst, axes=(0, 1))
Convert image indexing style.

img is the source image (ND numpy array with N>=2), src and dst are current format and desired format, axes
specify correspondingly the row and the column axes (by default, the first two array axes). Formats can be "rcb"
(first index is row, second is column, rows count from the bottom), "rct" (same, but rows count from the top).
"xyb" (first index is column, second is row, rows count from the bottom), or "xyt" (same but rows count form
the top). "rc" is interpreted as "rct", "xy" as "xyt"

class pylablib.core.dataproc.image.ROI(imin=0, imax=None, jmin=0, jmax=None)
Bases: object

copy()

center(shape=None)

size(shape=None)

area(shape=None)

tup(shape=None)

ispan(shape=None)

jspan(shape=None)

classmethod from_centersize(center, size, shape=None)

classmethod intersect(*args)

limit(shape)

pylablib.core.dataproc.image.get_region(image, center, size, axis=(-2, -1))
Get part of the image with the given center and size (both are tuples (i, j)).

The region is automatically reduced if a part of it is outside of the image.

pylablib.core.dataproc.image.get_region_sum(image, center, size, axis=(-2, -1))
Sum part of the image with the given center and size (both are tuples (i, j)).

The region is automatically reduced if a part of it is outside of the image. Return tuple (sum, area), where
area is the actual summer region are (in pixels).

pylablib.core.dataproc.interpolate module

pylablib.core.dataproc.interpolate.interpolate1D_func(x, y, kind='linear', axis=-1, copy=True,
bounds_error=True, fill_values=nan,
assume_sorted=False)

1D interpolation.

Simply a wrapper around scipy.interpolate.interp1d.

Parameters

• x – 1D arrays of x coordinates for the points at which to find the values.

• y – array of values corresponding to x points (can have more than 1 dimension, in which
case the output values are (N-1)-dimensional)

• kind – Interpolation method.

144 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

pylablib Documentation, Release 1.4.2

• axis – axis in y-data over which to interpolate.

• copy – if True, make internal copies of x and y.

• bounds_error – if True, raise error if interpolation function arguments are outside of x
bounds.

• fill_values – values to fill the outside-bounds regions if bounds_error==False.

• assume_sorted – if True, assume that data is sorted.

Returns
A 1D array with interpolated data.

pylablib.core.dataproc.interpolate.interpolate1D(data, x, kind='linear', bounds_error=True,
fill_values=nan, assume_sorted=False)

1D interpolation.

Parameters

• data – 2-column array [(x,y)], where y is a function of x.

• x – Arrays of x coordinates for the points at which to find the values.

• kind – Interpolation method.

• bounds_error – if True, raise error if x values are outside of data bounds.

• fill_values – values to fill the outside-bounds regions if bounds_error==False

• assume_sorted – if True, assume that data is sorted.

Returns
A 1D array with interpolated data.

pylablib.core.dataproc.interpolate.interpolate2D(data, x, y, method='linear', fill_value=nan)
Interpolate data in 2D.

Simply a wrapper around scipy.interpolate.griddata().

Parameters

• data – 3-column array [(x,y,z)], where z is a function of x and y.

• x/y – Arrays of x and y coordinates for the points at which to find the values.

• method – Interpolation method.

Returns
A 2D array with interpolated data.

pylablib.core.dataproc.interpolate.interpolateND(data, xs, method='linear')
Interpolate data in N dimensions.

Simply a wrapper around scipy.interpolate.griddata().

Parameters

• data – (N+1)-column array [(x_1,..,x_N,y)], where y is a function of x_1, ...
,x_N.

• xs – N-tuple of arrays of coordinates for the points at which to find the values.

• method – Interpolation method.

Returns
An ND array with interpolated data.

2.7. pylablib 145

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.interpolate.regular_grid_from_scatter(data, x_points, y_points,
x_range=None, y_range=None,
method='nearest')

Turn irregular scatter-points data into a regular 2D grid function.

Parameters

• data – 3-column array [(x,y,z)], where z is a function of x and y.

• x_points/y_points – Number of points along x/y axes.

• x_range/y_range – If not None, a tuple specifying the desired range of the data (all
points in data outside the range are excluded).

• method – Interpolation method (see scipy.interpolate.griddata() for options).

Returns
A nested tuple (data, (x_grid, y_grid)), where all entries are 2D arrays (either with
data or with gridpoint locations).

pylablib.core.dataproc.interpolate.interpolate_trace(trace, step, rng=None, x_column=0,
select_columns=None, kind='linear',
assume_sorted=False)

Interpolate trace data over a regular grid with the given step.

rng specifies interpolation range (by default, whole data range). x_column specifies column index for x-
data. select_column specifies which columns to interpolate and keep at the output (by default, all data). If
assume_sorted==True, assume that x-data is sorted. kind specifies interpolation method.

pylablib.core.dataproc.interpolate.average_interpolate_1D(data, step, rng=None, avg_kernel=1,
min_weight=0, kind='linear')

1D interpolation combined with pre-averaging.

Parameters

• data – 2-column array [(x,y)], where y is a function of x.

• step – distance between the points in the interpolated data (all resulting x-coordinates
are multiples of step).

• rng – if not None, specifies interpolation range (by default, whole data range).

• avg_kernel – kernel used for initial averaging. Can be either a 1D array, where each point
corresponds to the relative bin weight, or an integer, which specifies simple rectangular
kernel of the given width.

• min_weight – minimal accumulated weight in the bin to consider it ‘valid’ (if the bin
is invalid, its accumulated value is ignored, and its value is obtained by the interpolation
step). min_weight of 0 implies any non-zero weight; otherwise, weight >=min_weight.

• kind – Interpolation method.

Returns
A 2-column array with the interpolated data.

146 Chapter 2. Citation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.specfunc module

Specific useful functions.

pylablib.core.dataproc.specfunc.gaussian_k(x, sigma=1.0, height=None)
Gaussian kernel function.

Normalized by the area if height is None, otherwise height is the value at 0.

pylablib.core.dataproc.specfunc.rectangle_k(x, width=1.0, height=None)
” Symmetric rectangle kernel function.

Normalized by the area if height is None, otherwise height is the value at 0.

pylablib.core.dataproc.specfunc.lorentzian_k(x, gamma=1.0, height=None)
Lorentzian kernel function

Normalized by the area if height is None, otherwise height is the value at 0.

pylablib.core.dataproc.specfunc.complex_lorentzian_k(x, gamma=1.0, amplitude=1j)
Complex Lorentzian kernel function.

pylablib.core.dataproc.specfunc.exp_decay_k(x, width=1.0, height=None, mode='causal')
Exponential decay kernel function

Normalized by area if height=None (if possible), otherwise height is the value at 0.

Mode determines value for x<0:

• 'causal' - it’s 0 for x<0;

• 'step' - it’s constant for x<=0;

• 'continue' - it’s a continuous decaying exponent;

• 'mirror' - function is symmetric: exp(-|x|/width).

pylablib.core.dataproc.specfunc.get_kernel_func(kernel)
Get a kernel function by its name.

Available functions are: 'gaussian', 'rectangle', 'lorentzian', 'exp_decay',
'complex_lorentzian'.

pylablib.core.dataproc.specfunc.rectangle_w(x, N , ft_compensated=False)
Rectangle FT window function

pylablib.core.dataproc.specfunc.gen_hamming_w(x, N , alpha, beta, ft_compensated=False)
Generalized Hamming FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the
spectrum.

pylablib.core.dataproc.specfunc.hann_w(x, N , ft_compensated=False)
Hann FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the
spectrum.

pylablib.core.dataproc.specfunc.hamming_w(x, N , ft_compensated=False)
Specific Hamming FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the
spectrum.

2.7. pylablib 147

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.specfunc.get_window_func(window)
Get a window function by its name.

Available functions are: 'hamming', 'rectangle', 'hann'.

pylablib.core.dataproc.specfunc.gen_hamming_w_ft(f , t, alpha, beta)
Get Fourier Transform of a generalized Hamming FT window function.

f is the argument, t is the total window size.

pylablib.core.dataproc.specfunc.rectangle_w_ft(f , t)
Get Fourier Transform of the rectangle FT window function.

f is the argument, t is the total window size.

pylablib.core.dataproc.specfunc.hann_w_ft(f , t)
Get Fourier Transform of the Hann FT window function.

f is the argument, t is the total window size.

pylablib.core.dataproc.specfunc.hamming_w_ft(f , t)
Get Fourier Transform of the specific Hamming FT window function.

f is the argument, t is the total window size.

pylablib.core.dataproc.specfunc.get_window_ft_func(window)
Get a Fourier Transform of a window function by its name.

Available functions are: 'hamming', 'rectangle', 'hann'.

pylablib.core.dataproc.table_wrap module

Utilities for uniform treatment of pandas tables and numpy arrays for functions which can deal with them both.

class pylablib.core.dataproc.table_wrap.IGenWrapper(container)
Bases: object

The interface for a wrapper that gives a uniform access to basic methods of wrapped objects’.

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

ndim()

shape()

class pylablib.core.dataproc.table_wrap.I1DWrapper(container)
Bases: IGenWrapper

A wrapper containing a 1D object (a 1D numpy array or a pandas Series object).

Provides a uniform access to basic methods of a wrapped object.

148 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class Accessor(wrapper)
Bases: object

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate
over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

subcolumn(idx, wrapped=False)
Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

static from_array(array, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array
or a list).

If force_copy==True, make a copy of supplied array. If wrapped==True, return a new wrapper con-
taining the column; otherwise, just return the column.

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns;
only length-1 lists is supported).

column_names parameter is ignored. If wrapped==True, return a new wrapper containing the column;
otherwise, just return the column.

array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

get_index()

Get index of the given 1D trace, or None if none is available

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

ndim()

shape()

class pylablib.core.dataproc.table_wrap.Array1DWrapper(container)
Bases: I1DWrapper

A wrapper for a 1D numpy array.

Provides a uniform access to basic methods of a wrapped object.

get_deleted(idx, wrapped=False)
Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

2.7. pylablib 149

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_inserted(idx, val, wrapped=False)
Return a copy of the column with the data val added at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

insert(idx, val)
Add data val to index idx

get_appended(val, wrapped=False)
Return a copy of the column with the data val appended at the end.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

append(val)
Append data val to the end

subcolumn(idx, wrapped=False)
Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

static from_array(array, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array
or a list).

If force_copy==True, make a copy of supplied array. If wrapped==True, return a new wrapper con-
taining the column; otherwise, just return the column.

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

class Accessor(wrapper)
Bases: object

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate
over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns;
only length-1 lists is supported).

column_names parameter is ignored. If wrapped==True, return a new wrapper containing the column;
otherwise, just return the column.

get_index()

Get index of the given 1D trace, or None if none is available

ndim()

150 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

shape()

class pylablib.core.dataproc.table_wrap.Series1DWrapper(container)
Bases: I1DWrapper

A wrapper for a pandas Series object.

Provides a uniform access to basic methods of a wrapped object.

get_deleted(idx, wrapped=False)
Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

get_inserted(idx, val, wrapped=False)
Return a copy of the column with the data val added at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

get_appended(val, wrapped=False)
Return a copy of the column with the data val appended at the end.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

subcolumn(idx, wrapped=False)
Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

static from_array(array, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array
or a list).

If force_copy==True, make a copy of supplied array. If wrapped==True, return a new wrapper con-
taining the column; otherwise, just return the column.

get_index()

Get index of the given 1D trace, or None if none is available

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

class Accessor(wrapper)
Bases: object

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate
over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

2.7. pylablib 151

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns;
only length-1 lists is supported).

column_names parameter is ignored. If wrapped==True, return a new wrapper containing the column;
otherwise, just return the column.

ndim()

shape()

class pylablib.core.dataproc.table_wrap.I2DWrapper(container, r=None, c=None, t=None)
Bases: IGenWrapper

A wrapper containing a 2D object (a 2D numpy array or a pandas DataFrame object).

Provides a uniform access to basic methods of a wrapped object.

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper). If
wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

columns_replaced(columns, preserve_index=False, wrapped=False)
Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a
2D numpy array).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper). If
wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

get_index()

Get index of the given 2D table, or None if none is available

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

column(idx, wrapped=False)
Get a column at index idx.

Return a 1D numpy array for a 2D numpy array object, and an Series object for a pandas DataFrame. If
wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

subtable(idx, wrapped=False)
Return a subtable at index idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

152 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

ndim()

shape()

class pylablib.core.dataproc.table_wrap.Array2DWrapper(container)
Bases: I2DWrapper

A wrapper for a 2D numpy array.

Provides a uniform access to basic methods of a wrapped object.

set_container(cont)

class RowAccessor(wrapper, storage)
Bases: object

A row accessor: creates a simple uniform interface to treat the wrapped object row-wise (ap-
pend/insert/delete/iterate over rows).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

get_deleted(idx, wrapped=False)
Return a new table with the rows at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

get_inserted(idx, val, wrapped=False)
Return a new table with new rows given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

insert(idx, val)
Insert new rows given by val at index idx.

get_appended(val, wrapped=False)
Return a new table with new rows given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

append(val)
Insert new rows given by val to the end of the table

class ColumnAccessor(wrapper, storage)
Bases: object

A column accessor: creates a simple uniform interface to treat the wrapped object column-wise (ap-
pend/insert/delete/iterate over columns).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

get_deleted(idx, wrapped=False)
Return a new table with the columns at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

get_inserted(idx, val, wrapped=False)
Return a new table with new columns given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

insert(idx, val)
Insert new columns given by val at index idx.

2.7. pylablib 153

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_appended(val, wrapped=False)
Return a new table with new columns given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

append(val)
Insert new columns given by val to the end of the table

set_names(names)
Set column names (does nothing)

get_names()

Get column names (all names are None)

get_column_index(idx)
Get number index for a given column index

class TableAccessor(storage)
Bases: object

A table accessor: accessing the table data through this interface returns an object of the appropriate type
(numpy array for numpy wrapped object, and a DataFrame for a pandas DataFrame wrapped object).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

subtable(idx, wrapped=False)
Return a subtable at index idx of the appropriate type (2D numpy array).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

column(idx, wrapped=False)
Get a column at index idx as a 1D numpy array.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table. col-
umn_names parameter is ignored.

static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a
2D numpy array).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table. col-
umn_names parameter is ignored.

get_type()

Get a string representing the wrapped object type

copy(wrapped=False)
Copy the object.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

154 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

columns_replaced(columns, preserve_index=False, wrapped=False)
Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

get_index()

Get index of the given 2D table, or None if none is available

ndim()

shape()

class pylablib.core.dataproc.table_wrap.DataFrame2DWrapper(container)
Bases: I2DWrapper

A wrapper for a pandas DataFrame object.

Provides a uniform access to basic methods of a wrapped object.

class RowAccessor(wrapper, storage)
Bases: object

A row accessor: creates a simple uniform interface to treat the wrapped object row-wise (ap-
pend/insert/delete/iterate over rows).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

get_deleted(idx, wrapped=False)
Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

get_inserted(idx, val, wrapped=False)
Return a new table with new rows given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

insert(idx, val)
Insert new rows given by val at index idx.

get_appended(val, wrapped=False)
Return a new table with new rows given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

append(val)
Insert new rows given by val to the end of the table

class ColumnAccessor(wrapper, storage)
Bases: object

A column accessor: creates a simple uniform interface to treat the wrapped object column-wise (ap-
pend/insert/delete/iterate over columns).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

get_deleted(idx, wrapped=False)
Return a new table with the columns at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

2.7. pylablib 155

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_inserted(idx, val, column_name=None, wrapped=False)
Return a new table with new columns given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

insert(idx, val, column_name=None)
Insert new columns given by val at index idx

get_appended(val, column_name=None, wrapped=False)
Return a new table with new columns given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

append(val, column_name=None)
Insert new columns given by val to the end of the table

set_names(names)
Set column names

get_names()

Get column names

get_column_index(idx)
Get number index for a given column index

class TableAccessor(storage)
Bases: object

A table accessor: accessing the table data through this interface returns an object of the appropriate type
(numpy array for numpy wrapped object, and a DataFrame for a pandas DataFrame wrapped object).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

subtable(idx, wrapped=False)
Return a subtable at index idx of the appropriate type (pandas DataFrame).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

column(idx, wrapped=False)
Get a column at index idx as a pandas Series object.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

classmethod from_columns(columns, column_names=None, index=None, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper). If
wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)
Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a
2D numpy array).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper). If
wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

get_index()

Get index of the given 2D table, or None if none is available

get_type()

Get a string representing the wrapped object type

156 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

copy(wrapped=False)
Copy the object. If wrapped==True, return a new wrapper containing the table; otherwise, just return the
table

array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)
Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

columns_replaced(columns, preserve_index=False, wrapped=False)
Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

ndim()

shape()

pylablib.core.dataproc.table_wrap.wrap1d(container)
Wrap a 1D container (a 1D numpy array or or a pandas Series) into an appropriate wrapper

pylablib.core.dataproc.table_wrap.wrap2d(container)
Wrap a 2D container (a 2D numpy array or a pandas DataFrame) into an appropriate wrapper

pylablib.core.dataproc.table_wrap.wrap(container)
Wrap container (a numpy array, a pandas Series or a pandas DataFrame) into an appropriate wrapper

pylablib.core.dataproc.transform module

class pylablib.core.dataproc.transform.LinearTransform(tmatr=None, shift=None, ndim=2)
Bases: object

A generic linear transform which combines an affine transform with a given matrix and an additional shift.

Parameters

• tmatr – translational matrix (if None, use a unity matrix)

• shift – added shift (if None, use a zero shift)

• ndim – if both tmatr and shift are None, specifies the dimensionality of the transform;
otherwise, ignored

i(coord, shift=True)

inverted()

Return inverted transformation

preceded(trans)
Return a combined transformation which result from applying this transformation followed by trans

followed(trans)
Return a combined transformation which result from applying trans followed by this transformation

shifted(shift, preceded=False)
Return a transform with an added shift before or after (depending of preceded) the current one

2.7. pylablib 157

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

multiplied(mult, preceded=False)
Return a transform with an added scaling before or after (depending of preceded) the current one.

mult can be a single number (scale), a 1D vector (scaling for each axis independently), or a matrix.

rotated2d(deg, preceded=False)
Return a transform with an added rotation before or after (depending of preceded) the current one.

Only applies to 2D transforms.

class pylablib.core.dataproc.transform.Indexed2DTransform(tmatr=None, shift=None, rigid=False)
Bases: LinearTransform

A restriction of LinearTransform which only applies to 2D and only allows rotations by multiples of 90 de-
grees.

Parameters

• tmatr – translational matrix (if None, use a unity matrix)

• shift – added shift (if None, use a zero shift)

• rigid – if True, only allow orthogonal transforms, i.e., no scaling

rotated2d(deg, preceded=False)
Return a transform with an added rotation before or after (depending of preceded) the current one.

Only applies to 2D transforms.

followed(trans)
Return a combined transformation which result from applying trans followed by this transformation

i(coord, shift=True)

inverted()

Return inverted transformation

multiplied(mult, preceded=False)
Return a transform with an added scaling before or after (depending of preceded) the current one.

mult can be a single number (scale), a 1D vector (scaling for each axis independently), or a matrix.

preceded(trans)
Return a combined transformation which result from applying this transformation followed by trans

shifted(shift, preceded=False)
Return a transform with an added shift before or after (depending of preceded) the current one

pylablib.core.dataproc.utils module

Generic utilities for dealing with numerical arrays.

pylablib.core.dataproc.utils.is_ascending(trace)
Check the if the trace is ascending.

If it has more than 1 dimension, check all lines along 0’th axis.

pylablib.core.dataproc.utils.is_descending(trace)
Check if the trace is descending.

If it has more than 1 dimension, check all lines along 0’th axis.

158 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.utils.is_ordered(trace)
Check if the trace is ordered (ascending or descending).

If it has more than 1 dimension, check all lines along 0’th axis.

pylablib.core.dataproc.utils.is_linear(trace)
Check if the trace is linear (values go with a constant step).

If it has more than 1 dimension, check all lines along 0’th axis (with the same step for all).

pylablib.core.dataproc.utils.get_x_column(t, x_column=None, idx_default=False)
Get x column of the table.

x_column can be

• an array: return as is;

• '#': return index array;

• None: equivalent to ‘#’ for 1D data if idx_default==False, or to 0 otherwise;

• integer: return the column with this index.

pylablib.core.dataproc.utils.get_y_column(t, y_column=None)
Get y column of the table.

y_column can be

• an array: return as is;

• '#': return index array;

• None: return t for 1D data, or the column 1 otherwise;

• integer: return the column with this index.

pylablib.core.dataproc.utils.sort_by(t, x_column=None, reverse=False, stable=False)
Sort a table using selected column as a key and preserving rows.

If reverse==True, sort in descending order. x_column values are described in get_x_column(). If
stable==True, use stable sort (could be slower and uses more memory, but preserves the order of elements
for the same key)

pylablib.core.dataproc.utils.filter_by(t, columns=None, pred=None, exclude=False)
Filter 1D or 2D array using a predicate.

If the data is 2D, columns contains indices of columns to be passed to the pred function. If exclude==False,
drop all of the rows satisfying pred rather than keep them.

pylablib.core.dataproc.utils.unique_slices(t, u_column)
Split a table into subtables with different values in a given column.

Return a list of t subtables, each of which has a different (and equal among all rows in the subtable) value in
u_column.

pylablib.core.dataproc.utils.merge(ts, idx=None, as_array=True)
Merge several tables column-wise.

If idx is not None, then it is a list of index columns (one column per table) used for merging. The rows that have
the same value in the index columns are merged; if some values aren’t contained in all the ts, the corresponding
rows are omitted. If idx is None, just join the tables together (they must have the same number of rows).

If as_array==True, return a simple numpy array as a result; otherwise, return a pandas DataFrame if applicable
(note that in this case all column names in all tables must be different to avoid conflicts)

2.7. pylablib 159

pylablib Documentation, Release 1.4.2

class pylablib.core.dataproc.utils.Range(start=None, stop=None)
Bases: object

Single data range.

If start or stop are None, it’s implied that they’re at infinity (i.e., Range(None,None) is infinite). If the range
object is None, it’s implied that the range is empty

property start

property stop

contains(x)
Check if x is in the range

intersect(*rngs)
Find an intersection of multiple ranges.

If the intersection is empty, return None.

rescale(mult=1.0, shift=0.0)

tup()

pylablib.core.dataproc.utils.find_closest_arg(xs, x, approach='both', ordered=False)
Find the index of a value in xs that is closest to x.

approach can take values 'top', 'bottom' or 'both' and denotes from which side should array elements
approach x (meaning that the found array element should be >x, <x or just the closest one). If there are no
elements lying on the desired side of x (e.g. approach=='top' and all elements of xs are less than x), the
function returns None. if ordered==True, then xs is assumed to be in ascending or descending order, and
binary search is implemented (works only for 1D arrays). if there are recurring elements, return any of them.

pylablib.core.dataproc.utils.find_closest_value(xs, x, approach='both', ordered=False)

pylablib.core.dataproc.utils.get_range_indices(xs, xs_range, ordered=False)
Find trace indices corresponding to the given range.

The range is defined as xs_range[0]:xs_range[1], or infinite if xs_range=None (so the data is returned
unchanged in that case). If ordered==True, then the function assumes that xs in ascending or descending
order.

pylablib.core.dataproc.utils.cut_to_range(t, xs_range, x_column=None, ordered=False)
Cut the table to the given range based on x_column.

The range is defined as xs_range[0]:xs_range[1], or infinite if xs_range=None. x_column is used
to determine which column’s values to use to check if the point is in range (see get_x_column()). If
ordered_x==True, then the function assumes that x_column in ascending order.

pylablib.core.dataproc.utils.cut_out_regions(t, regions, x_column=None, ordered=False,
multi_pass=True)

Cut the regions out of the t based on x_column.

x_column is used to determine which column’s values to use to check if the point is in range (see
get_x_column()). If ordered_x==True, then the function assumes that x_column in ascending order. If
multi_pass==False, combine all indices before deleting the data in a single operation (works faster, but only
for non-intersecting regions).

160 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.dataproc.utils.find_discrete_step(trace, min_fraction=1e-08, tolerance=1e-05)
Try to find a minimal divisor of all steps in a 1D trace.

min_fraction is the minimal possible size of the divisor (relative to the minimal non-zero step size). tolerance is
the tolerance of the division. Raise an ArithmeticError if no such value was found.

pylablib.core.dataproc.utils.unwrap_mod_data(trace, wrap_range)
Unwrap data given wrap_range.

Assume that every jump greater than 0.5*wrap_range is not real and is due to value being restricted. Can be
used to, e.g., unwrap the phase data.

pylablib.core.dataproc.utils.pad_trace(trace, pad, mode='constant', cval=0.0)
Expand 1D trace or a multi-column table for different convolution techniques.

Wrapper around numpy.pad(), but can handle pandas dataframes or multi-column arrays. Note that the index
data is not preserved.

Parameters

• trace – 1D array-like object.

• pad (int or tuple) – Expansion size. Can be an integer, if pad on both sides is equal,
or a 2-tuple (left, right) for pads on opposite sides.

• mode (str) – Expansion mode. Takes the same values as numpy.pad(). Common values
are 'constant' (added values are determined by cval), 'edge' (added values are end
values of the trace), 'reflect' (reflect trace with respect to its endpoint) or 'wrap'
(wrap the values from the other size).

• cval (float) – If mode=='constant', determines the expanded values.

pylablib.core.dataproc.utils.xy2c(t)
Convert a trace or a table from xy representation to a single complex data.

t is a 2D array with either 2 columns (x and y) or 3 columns (index, x and y). Return 2D array with either 1
column (c) or 2 columns (index and c).

pylablib.core.dataproc.utils.c2xy(t)
Convert the a trace or a table from complex representation to a split x and y data.

t is either 1D array (c data) or a 2D array with either 1 column (c) or 2 columns (index and c). Return 2D array
with either 2 column (x and y) or 3 columns (index, x and y).

Module contents

pylablib.core.devio package

Submodules

pylablib.core.devio.SCPI module

class pylablib.core.devio.SCPI.SCPIDevice(conn, term_write=None, term_read=None,
wait_callback=None, backend='auto',
backend_defaults=None, failsafe=None, timeout=None,
backend_params=None)

2.7. pylablib 161

https://docs.python.org/3/library/exceptions.html#ArithmeticError
https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Bases: ICommBackendWrapper

A base class for a device controlled with the usual SCPI syntax.

Implements two functions:

• deals with composing and parsing of standard SCPI commands and simplifying repetitive property
access routines

• implements automatic re-sending and reconnecting on communication failures (fail-safe mode)

Parameters

• conn – Connection parameters (depend on the backend). Can also be an opened
comm_backend.IDeviceCommBackend class for a custom backend.

• term_write (str) – Line terminator for writing operations.

• wait_callback (callable) – A function to be called periodically (every 300ms by
default) while waiting for operations to complete.

• backend (str) – Connection backend (e.g., 'serial' or 'visa').

• backend_defaults – if not None, specifies a dictionary {backend: params} with
default connection parameters (depending on the backend), which are added to conn

• failsafe (bool) – If True, the device is working in a fail-safe mode: if an operation
times out, attempt to repeat it several times before raising error. If None, use the class
value _default_failsafe (False by default).

• timeout (float) – Default timeout (in seconds).

Error

alias of DeviceError

ReraiseError = None

BackendError

alias of DeviceBackendError

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

sleep(delay)
Wait for delay seconds

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

reset()

Reset the device (by default, "*RST" command)

162 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

static get_arg_type(arg)
Autodetect argument type

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as

2.7. pylablib 163

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

class NoParameterCaller(device, kind)
Bases: object

Class to simplify calling functions without a parameter

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

164 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

pylablib.core.devio.backend_logger module

class pylablib.core.devio.backend_logger.BackendLogger(path)
Bases: object

Backend logger.

Receives log requests from backends and stores them in a predefined file.

Parameters
path – path to save the log

start(header)
Start logging section

stop()

Stop logging section

section(header)
Context manager for operations within a header

log(operation, value)
Log the operation

pylablib.core.devio.backend_logger.load_logfile(path)
Load backend log file.

Return a list of tuples [(header, section)], where header is the header name, and section is the list [(op,
value)] with operations ("r", "w", or "e") nd corresponding values.

2.7. pylablib 165

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.devio.base module

exception pylablib.core.devio.base.DeviceError

Bases: RuntimeError

Generic device communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.core.devio.comm_backend module

Routines for defining a unified interface across multiple backends.

exception pylablib.core.devio.comm_backend.DeviceBackendError(exc)
Bases: DeviceError

Generic exception relaying a backend error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.core.devio.comm_backend.reraise(func)
Wrapper for a backend method which intercepts backend exceptions and re-emits them as a subclass of
DeviceBackendError defined in the class

pylablib.core.devio.comm_backend.logerror(func)
Wrapper for a backend method which logs if any errors escaped

class pylablib.core.devio.comm_backend.IDeviceCommBackend(conn, timeout=None, term_write=None,
term_read=None, datatype='auto',
reraise_error=None)

Bases: object

An abstract class for a device communication backend.

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters (depend on the backend).

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations.

• term_read (str) – Line terminator for reading operations.

166 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object),
"str" (return str object), or "auto" (default Python result: str in Python 2 and bytes
in Python 3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError = None

Base class for the errors raised by the backend operations

Error

alias of DeviceBackendError

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

2.7. pylablib 167

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

readline(remove_term=True, timeout=None, skip_empty=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

read(size=None)
Read data from the device.

If size is not None, read size bytes (the standard timeout applies); otherwise, read all available data (return
immediately).

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If flush==True, flush the write buffer. If read_echo==True, wait for read_echo_delay seconds and
then perform readline() (read_echo_lines times).

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

pylablib.core.devio.comm_backend.remove_longest_term(msg, terms)
Remove the longest terminator among terms from the end of the message.

exception pylablib.core.devio.comm_backend.DeviceVisaError(exc)
Bases: DeviceBackendError

Visa backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

168 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.VisaDeviceBackend(conn, timeout=10.0, term_write=None,
term_read=None, do_lock=None,
datatype='auto', reraise_error=None)

Bases: IDeviceCommBackend

NIVisa backend (via pyVISA).

Connection is automatically opened on creation.

Parameters

• conn (str) – Connection string.

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – Line terminator for reading operations (specifies when readline()
stops).

• do_lock (bool) – If True, employ locking operations; otherwise, locking function does
nothing.

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

Base class for the errors raised by the backend operations

alias of object

Error

alias of DeviceVisaError

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes

2.7. pylablib 169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

unlock()

Unlock the access to the device from other threads/processes

locking(timeout=None)
Context manager for lock & unlock

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

read(size=None)
Read data from the device.

If size is not None, read size bytes (the standard timeout applies); otherwise, read all available data (return
immediately).

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines
times). flush parameter is ignored.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

170 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceSerialError(exc)
Bases: DeviceBackendError

Serial backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.SerialDeviceBackend(conn, timeout=10.0, term_write=None,
term_read=None,
connect_on_operation=False,
open_retry_times=3, no_dtrrts=False,
datatype='auto', reraise_error=None)

Bases: IDeviceCommBackend

Serial backend (via pySerial).

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters. Can be either a string (for a port), or a list/tuple (port,
baudrate, bytesize, parity, stopbits, xonxoff, rtscts, dsrdtr) sup-
plied to the serial connection (default is ('COM1',19200,8,'N',1,0,0,0)), or a dict
with the same parameters.

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – List of possible single-char terminator for reading operations (speci-
fies when readline() stops).

• connect_on_operation (bool) – If True, the connection is normally closed, and is
opened only on the operations (normally two processes can’t be simultaneously connected
to the same device).

• open_retry_times (int) – Number of times the connection is attempted before giving
up.

• no_dtrrts (bool) – If True, turn off DTR and RTS status lines before opening (e.g.,
turns off reset-on-connection for Arduino controllers).

2.7. pylablib 171

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

Base class for the errors raised by the backend operations

alias of object

Error

alias of DeviceSerialError

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

single_op()

Context manager for a single operation.

If connect_on_operation==True during creation, wrapping several command in single_op prevents
the connection from being closed and reopened between the operations (only opened in the beginning and
closed in the end).

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

read(size=None)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)
Read a single line with multiple possible terminators.

Parameters

172 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• term – Either a string (single multi-char terminator) or a list of strings (multiple ter-
minators).

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If flush==True, flush the write buffer. If read_echo==True, wait for read_echo_delay seconds and
then perform readline() (read_echo_lines times).

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The

2.7. pylablib 173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceFT232Error(exc)
Bases: DeviceBackendError

FT232 backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.FT232DeviceBackend(conn, timeout=10.0, term_write=None,
term_read=None, open_retry_times=3,
datatype='auto', reraise_error=None)

Bases: IDeviceCommBackend

FT232 backend (via pyft232).

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters. Can be either a string (for a port), or a list/tuple (port,
baudrate, bytesize, parity, stopbits, xonxoff, rtscts) supplied to the
serial connection (default is ('COM1',19200,8,'N',1,0,0,0)), or a dict with the same
parameters.

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – List of possible single-char terminator for reading operations (speci-
fies when readline() stops).

• open_retry_times (int) – Number of times the connection is attempted before giving
up.

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

Base class for the errors raised by the backend operations

alias of object

174 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

Error

alias of DeviceFT232Error

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

single_op()

Context manager for a single operation.

Does nothing.

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

read(size=None)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)
Read a single line with multiple possible terminators.

Parameters

• term – Either a string (single multi-char terminator) or a list of strings (multiple ter-
minators).

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

2.7. pylablib 175

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If flush==True, flush the write buffer. If read_echo==True, wait for read_echo_delay seconds and
then perform readline() (read_echo_lines times).

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

176 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceNetworkError(exc)
Bases: DeviceBackendError

Network backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.NetworkDeviceBackend(conn, timeout=10.0,
term_write=None, term_read=None,
datatype='auto',
reraise_error=None)

Bases: IDeviceCommBackend

Serial backend (via pySerial).

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters. Can be either a string "IP:port" (e.g., "127.0.0.
1:80"), or a tuple (IP,port), where IP is a string and port is a number.

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – List of possible single-char terminator for reading operations (speci-
fies when readline() stops).

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

Note: If term_read is a string, its behavior is different from the VISA backend: instead of being a multi-char
terminator it is assumed to be a set of single-char terminators. If multi-char terminator is required, term_read
should be a single-element list instead of a string.

BackendError

Base class for the errors raised by the backend operations

alias of OSError

Error

alias of DeviceNetworkError

open()

Open the connection

2.7. pylablib 177

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

close()

Close the connection

is_opened()

Check if the device is connected

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

read(size=None)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

read_multichar_term(term, remove_term=True, timeout=None)
Read a single line with multiple possible terminators.

Parameters

• term – Either a string (single multi-char terminator) or a list of strings (multiple ter-
minators).

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines
times). flush parameter is ignored.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

178 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceUSBError(exc)
Bases: DeviceBackendError

USB backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.PyUSBDeviceBackend(conn, timeout=10.0, term_write=None,
term_read=None,
check_read_size=True, datatype='auto',
reraise_error=None)

2.7. pylablib 179

pylablib Documentation, Release 1.4.2

Bases: IDeviceCommBackend

USB backend (via PyUSB package).

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters. Can be either a string (for a port), or a list/tuple
(vendorID, productID, index, endpoint_read, endpoint_write,
backend) supplied to the connection (default is (0x0000,0x0000,0,0x00,0x01,
'libusb1'), which is invalid for most devices), or a dict with the same parameters.
vendorID and productID specify device kind, index is an integer index (starting
from zero) of the device among several identical (i.e., with the same ids) ones, and
endpoint_read and endpoint_write specify connection endpoints for the specific
device.

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – List of possible single-char terminator for reading operations (speci-
fies when readline() stops).

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

Base class for the errors raised by the backend operations

alias of USBError

Error

alias of DeviceUSBError

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

180 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

read(size=None, max_read_size=65536)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)
Read a single line with multiple possible terminators.

Parameters

• term – Either a string (single multi-char terminator) or a list of strings (multiple ter-
minators).

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines
times). flush parameter is ignored.

static list_resources(desc=False, **kwargs)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

2.7. pylablib 181

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceHIDError(exc)
Bases: DeviceBackendError

HID backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.HIDeviceBackend(conn, timeout=10.0, term_write=None,
term_read=None, datatype='auto',
reraise_error=None)

Bases: IDeviceCommBackend

HID backend (via Windows DLLs).

Connection is automatically opened on creation.

Parameters

• conn – Connection parameters. Can be either a string (for a port), or a list/tuple
(vendorID, productID, index, endpoint_read, endpoint_write,
backend) supplied to the connection (default is (0x0000,0x0000,0,0x00,0x01,
'libusb1'), which is invalid for most devices), or a dict with the same parameters.
vendorID and productID specify device kind, index is an integer index (starting
from zero) of the device among several identical (i.e., with the same ids) ones, and
endpoint_read and endpoint_write specify connection endpoints for the specific
device.

182 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

• timeout (float) – Default timeout (in seconds).

• term_write (str) – Line terminator for writing operations; appended to the data

• term_read (str) – List of possible single-char terminator for reading operations (speci-
fies when readline() stops).

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

Base class for the errors raised by the backend operations

alias of HIDError

Error

alias of DeviceHIDError

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

set_timeout(timeout)
Set operations timeout (in seconds)

get_timeout()

Get operations timeout (in seconds)

readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

read(size=None)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)
Read a single line with multiple possible terminators.

Parameters

2.7. pylablib 183

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• term – Either a string (single multi-char terminator) or a list of strings (multiple ter-
minators).

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• error_on_timeout (bool) – If False, return an incomplete line instead of raising
the error on timeout.

get_pending()

Get the number of bytes in the read buffer

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines
times). flush parameter is ignored.

static list_resources(desc=False, **kwargs)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

184 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

exception pylablib.core.devio.comm_backend.DeviceRecordedError(exc)
Bases: DeviceBackendError

Recorded backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.devio.comm_backend.RecordedDeviceBackend(conn, datatype='auto',
reraise_error=None)

Bases: IDeviceCommBackend

Recorded backend.

Connection is automatically opened on creation.

Parameters

• conn – connection parameters (recorded log path)

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• reraise_error – if not None, specifies an error to be re-raised on any backend exception
(by default, use backend-specific error); should be a subclass of DeviceBackendError.

BackendError

alias of OSError

Error

alias of DeviceRecordedError

open()

Open the connection

close()

Close the connection

2.7. pylablib 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

start(header)
Start recorded section

stop()

Stop logging section

section(header)

readline(remove_term=True, timeout=None, skip_empty=True)
Read a single line from the device.

Parameters

• remove_term (bool) – If True, remove terminal characters from the result.

• timeout – Operation timeout. If None, use the default device timeout.

• skip_empty (bool) – If True, ignore empty lines (works only for
remove_term==True).

read(size=None)
Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return imme-
diately).

write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)
Write data to the device.

If flush==True, flush the write buffer. If read_echo==True, wait for read_echo_delay seconds and
then perform readline() (read_echo_lines times).

ask(query, delay=0.0, read_all=False)
Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

classmethod combine_conn(conn1, conn2)
Combined two connection parameters into a single dictionary (conn1 overrides conn2)

cooldown(kind='default')
Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0). Called automatically by various
backend operations, so usually there is no need to call explicitly.

flush_read()

Flush the device output (read all the available data; return the number of bytes read)

classmethod get_backend_name()

Get string representation of the backend (e.g., "serial", "visa", or "network")

get_timeout()

Get operations timeout (in seconds)

186 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

static list_resources(desc=False)
List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the
device. Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)
Read multiple lines from the device.

Parameters are the same as in readline().

set_timeout(timeout)
Set operations timeout (in seconds)

setup_cooldown(**kwargs)
Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds), and kind
is the operation kind (common kinds are open, close, read, write, timeout, and flush). kind
can also be default (default value for all kind), or all (reset all cooldown values to this value). The
cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some
devices, otherwise the communication can freeze or crush). Default cooldown values are specified by
_default_operation_cooldown class attribute dictionary.

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

pylablib.core.devio.comm_backend.autodetect_backend(conn, default='visa')
Try to determine the backend by the connection.

default specifies the default backend which is returned if the backend is unclear.

pylablib.core.devio.comm_backend.new_backend(conn, backend='auto', defaults=None, **kwargs)
Build new backend with the supplied parameters.

Parameters

• conn – Connection parameters (depend on the backend). Can be simply connection
parameters (tuple or dict) for the given backend (e.g., "192.168.0.1" or ("COM1",
19200)), a tuple (backend, conn) which specifies both backend and connection (in
which case it overrides the supplied backend), or an already opened backend (in which
case it is returned as is)

• backend (str) – Backend type. Available backends are 'auto' (try to autodetect based
on the connection), 'visa', 'serial', 'ft232', 'network', and "pyusb". Can also
be directly a backend class (more appropriate for custom backends), or a tuple ('auto',
backend), which is analogous to 'auto', but it returns the specified backend if the
autodetection fails; by default, the fallback backend is 'visa', so 'auto' is exactly the
same as ('auto', 'visa').

2.7. pylablib 187

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• defaults – if not None, specifies a dictionary {backend: params} with default con-
nection parameters (depending on the backend), which are added to the connection pa-
rameters

• **kwargs – parameters sent to the backend.

pylablib.core.devio.comm_backend.backend_error(backend, conn=None)
Return error class corresponding to the current backend.

Like new_backend(), allows setting backend="auto", in which case conn is used to try and autodetect the
backend kind (not completely reliable, should be avoided).

pylablib.core.devio.comm_backend.list_backend_resources(backend=None, desc=False)
List all resources for the given backend.

If backend is None, return dictionary {backend: resources} for all available backends. If desc==False,
return list of connections (usually strings or tuples), which can be used to connect to the device. Otherwise,
return a list of descriptions, which have more info, but can be backend-dependent.

class pylablib.core.devio.comm_backend.ICommBackendWrapper(instr)
Bases: IDevice

A base class for an instrument using a communication backend.

Parameters
instr – Backend (assumed to be already opened).

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

set_device_variable(key, value)
Set the value of a settings parameter

open()

Open the backend

188 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

close()

Close the backend

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

pylablib.core.devio.data_format module

Library for binary data encoding/decoding for device communication and dealing with different data format represen-
tations in different contexts (numpy, SCPI, etc.).

class pylablib.core.devio.data_format.DataFormat(size, kind, byteorder)
Bases: object

Describes data encoding for device communications.

Parameters

• size (int) – Size of a single element (in bytes).

• kind (str) – Kind of the element. Can be 'i' (integer), 'u' (unsigned integer), 'f'
(floating point) or 'ascii' (text representation).

• byteorder (str) – Byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB
first).

flip_byteorder()

Flip byteorder of the description

is_ascii()

Check of the format is textual

static from_desc(desc, str_type='numpy')
Build the format from the string description.

str_type is the description format. Can be 'numpy' (numpy dtype description), 'struct' (struct de-
scription) or 'SCPI' (the standard SCPI description).

static from_desc_SCPI(desc, border='norm')
Build the format from the string SCPI description.

border describes byte order (either 'norm' or 'swap').

to_desc(str_type='auto')
Build a description string of this format.

str_type can be 'auto' (similar to 'numpy', but also accepts 'ascii'), 'numpy', 'struct' or 'SCPI'
(return tuple (desc, border)).

2.7. pylablib 189

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/struct.html#module-struct

pylablib Documentation, Release 1.4.2

convert_from_str(data)
Convert the string data into an array

convert_to_str(data, ascii_format='.5f')
Convert the array into a string data.

ascii_format is the str.format() string for textual representation.

pylablib.core.devio.hid module

class pylablib.core.devio.hid.TDeviceDescription(path, manufacturer, product, serial, vendor_id,
product_id, version)

Bases: tuple

manufacturer

path

product

product_id

serial

vendor_id

version

pylablib.core.devio.hid.list_devices()

List HID devices.

Return list of tuples (path, manufacturer, product, serial, vendor_id, product_id, version),
where path is the string path used for connection.

class pylablib.core.devio.hid.HIDevice(path, timeout=3.0, rep_fmt='lenpfx', pause_on_write=True)
Bases: object

Generic HID-based device interface.

Parameters

• path – HID path (usually obtained using hid.list_devices())

• timeout – communication timeout

• rep_fmt – HID report format; can be "raw" (read/write raw data from/to HID),
"lenpfx" (assume a format where the first byte for the report indicates the payload size),
or a tuple (parser, builder) of two functions, where the parser takes a single raw
report data argument and returns a parsed value, while builder takes 2 arguments (data
to be written and the output report size) and return the bytes to be sent to HID.

• pause_on_write – if True, pause the reading loop when writing; makes some commu-
nications more stable

open()

Open the device connection if it is not opened yet

close()

Close the device connection

190 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device connection is opened

get_description()

Get device description

Return tuple (path, manufacturer, product, serial, vendor_id, product_id, version),
where path is the string path used for connection.

get_timeout()

Get device communication timeout

set_timeout(timeout)
Set device communication timeout

class Reader(f , caps, buffsize, parser)
Bases: object

loop_read()

start_loop()

Start the read loop

stop_loop()

Stop the read loop

pausing(do_pause=True, timeout=None)

read(nbytes=None, timeout=None, peek=False)
Read the given number of bytes from the read buffer.

If nbytes is None, return all read bytes. If timeout is not None, it can define the read operation timeout;
otherwise, use the default timeout specified on creation. If peek==True, return the bytes but keep
them in the buffer.

get_pending()

Get the number of bytes in the read buffer

get_pending()

Get the number of bytes in the read buffer

read(nbytes=None, timeout=None)
Read the given number of bytes from the read buffer.

If nbytes is None, return all read bytes. If timeout is not None, it can define the read operation timeout;
otherwise, use the default timeout specified on creation.

write(data, timeout=None)
Write the given data to the device.

If timeout is not None, it can define the write operation timeout; otherwise, use the default timeout specified
on creation.

2.7. pylablib 191

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.devio.hid_base module

exception pylablib.core.devio.hid_base.HIDError

Bases: RuntimeError

Generic HID error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.devio.hid_base.HIDLibError(func, code)
Bases: HIDError

Generic HID library boolean function error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.devio.hid_base.HIDTimeoutError

Bases: HIDError

HID read timeout error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.core.devio.interface module

class pylablib.core.devio.interface.IDevice

Bases: object

A base class for an instrument.

Contains some useful functions for dealing with device settings.

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

192 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

set_device_variable(key, value)
Set the value of a settings parameter

class pylablib.core.devio.interface.IParameterClass(name)
Bases: object

A generic parameter class.

Deals with converting device interface representation and the ‘internal’ representation (e.g., names used in SCPI
commands or integer indices). Also responsible for validating the user-passed and device-returned parameters.

Needs to define to methods: __call__ for converting user parameters (‘alias’) into the device parameters
(‘value’) and i() for the opposite conversion. In addition, it provides using_device() context manager to
temporarily change the device attribute, which can be used by some parameter classes for device-dependent
conversions.

Parameters
name – parameter class name; used to match method arguments with corresponding classes.

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

docstring()

Get a parameter docstring

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

2.7. pylablib 193

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class pylablib.core.devio.interface.ICheckingParameterClass(name)
Bases: IParameterClass

Parameter class which separately handles checking and conversion.

Specifies six methods: check_value(), to_alias() and _value_error_str for handling value-to-alias con-
version, and check_alias(), to_value() and _alias_error_str for handling alias-to-value conversion.

check_alias(alias)
Check if the alias is valid

check_value(value)
Check if the device value is valid

to_value(alias)
Convert the alias into a device value

to_alias(value)
Convert the device value into an alias

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

docstring()

Get a parameter docstring

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.RangeParameterClass(name, minval=None, maxval=None,
out_of_range='error')

Bases: ICheckingParameterClass

Parameter class for numerical values constrained to a certain range.

Parameters

• name – parameter class name

• minval – minimal allowed value (inclusive); None means no lower limit

• maxval – maximal allowed value (inclusive); None means no upper limit

• out_of_range – action if an out-of-range value is supplied; can be either "error" (raise
an error), or "truncate" (truncate to the nearest limit).

check_value(value)
Check if the device value is valid

check_alias(alias)
Check if the alias is valid

to_value(alias)
Convert the alias into a device value

docstring()

Get a parameter docstring

194 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

to_alias(value)
Convert the device value into an alias

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.IEnumParameterClass(name, allowed_alias='device_values',
allowed_value='exact', alias_case=None,
value_case=None, match_prefix=False)

Bases: ICheckingParameterClass

Parameter class for a generic enum (i.e., predefined values) parameter.

Defines two methods for handling conversion:

• _get_value_map which returns a dictionary for converting device values into aliases,

• _get_alias_map which returns a dictionary for converting aliases into device values.

These methods need to be redefined in subclasses.

Parameters

• name – parameter class name

• allowed_alias – specifies a range of allowed aliases; can be "exact" (only exact map
matches are allowed), "device_value" (exact map matches and raw device values are
allowed), or "all" (all values are allowed); in the latter two cases the value not in the
map are passed as is.

• allowed_value – specifies a range of allowed device values; can be "exact" (only exact
map matches are allowed), or "all" (all values are allowed); in the latter case the value
not in the map is passed as is.

• alias_case – default alias parameter case for string values; can be None (no case nor-
malization), or "lower" or "upper" (any received or returned alias will be normalized
into this case)

• value_case – default value parameter case for string values; can be None (no case nor-
malization), or "lower" or "upper" (any received or returned device value will be nor-
malized into this case)

• match_prefix – if True, then the keys in the value map (returned by _get_value_map
method) are interpreted as prefixes, so in the value-to-alias conversion the converted value
matches the map value if it just starts with it; in the case of ambiguity (several map values
are prefixes for the same converted value), the exact match takes priority; useful for some
SCPI devices, where the shorter version of the value can sometimes be returned.

check_value(value)
Check if the device value is valid

check_alias(alias)
Check if the alias is valid

to_value(alias)
Convert the alias into a device value

2.7. pylablib 195

pylablib Documentation, Release 1.4.2

to_alias(value)
Convert the device value into an alias

docstring()

Get a parameter docstring

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.EnumParameterClass(name, alias_map, value_map=None,
allowed_alias='device_values',
allowed_value='exact', alias_case=None,
value_case=None, match_prefix=False)

Bases: IEnumParameterClass

Parameter class for a enum (i.e., predefined values) parameter with the specified mapping.

Parameters

• name – parameter class name

• alias_map – mapping of aliases to device values; can be a dictionary, or a list of (alias,
value) tuples (in the latter case non-tuple values are also allowed, indicating that value is
the same as the alias); the list representation is useful in cases where the same alias maps
to more than one value, so the map inversion is impossible

• value_map – mapping of device values to aliases; can only be a dictionary or None, which
means that the alias map is automatically inverted

• allowed_alias – specifies a range of allowed aliases; can be "exact" (only exact map
matches are allowed), "device_value" (exact map matches and raw device values are
allowed), or "all" (all values are allowed); in the latter two cases the value not in the
map are passed as is.

• allowed_value – specifies a range of allowed device values; can be "exact" (only exact
map matches are allowed), or "all" (all values are allowed); in the latter case the value
not in the map is passed as is.

• alias_case – default alias parameter case for string values; can be None (no case nor-
malization), or "lower" or "upper" (any received or returned alias will be normalized
into this case)

• value_case – default value parameter case for string values; can be None (no case nor-
malization), or "lower" or "upper" (any received or returned device value will be nor-
malized into this case)

• match_prefix – if True, then the keys in the value map (or values in the alias map, if only
it is provided) are assumed to br prefixes, so in the value-to-alias conversion the converted
value matches the map value if it just starts with it; useful for some SCPI devices, where
the shorter version of the value can sometimes be returned.

check_alias(alias)
Check if the alias is valid

196 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

check_value(value)
Check if the device value is valid

docstring()

Get a parameter docstring

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

to_alias(value)
Convert the device value into an alias

to_value(alias)
Convert the alias into a device value

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.FunctionParameterClass(name, to_alias=None, to_value=None,
check_value=None, check_alias=None,
alias_err=None, value_err=None)

Bases: ICheckingParameterClass

Parameter class which uses supplied methods for checking, conversion, and generating error messages.

The arguments correspond to the parameter methods with the same names. When not supplied, checking methods
always return True, conversion methods leave value intact, and error string methods generate the default error
messages.

check_value(value)
Check if the device value is valid

check_alias(alias)
Check if the alias is valid

to_alias(value)
Convert the device value into an alias

to_value(alias)
Convert the alias into a device value

docstring()

Get a parameter docstring

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.CombinedParameterClass(name, parameters)
Bases: IParameterClass

A multi-stage combined parameter class, which performs several conversion/check stages.

Parameters

2.7. pylablib 197

pylablib Documentation, Release 1.4.2

• name – parameter class name

• parameters – list of parameters classes which are combined; the order is from the ‘most
alias’ to the ‘most device parameter’, i.e., when converting an alias to a device parameter,
it is first passed to the first class, then the second, etc. (the reverse is done when converting
device values into aliases)

docstring()

Get a parameter docstring

i(value, device=None)
Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

using_device(device)
Context manager for temporarily changing the device attribute to the given device instance

class pylablib.core.devio.interface.TRawParameterValue(value)
Bases: tuple

value

pylablib.core.devio.interface.pval(value)
Mark that the value has already been treated by the parameter class

pylablib.core.devio.interface.use_parameters(*args, **kwargs)
Wrapper to indicate that a device class method uses device parameter classes.

The corresponding parameters classes are automatically determined if the argument name matches the parameter
class name. The parameters classes can also be defined explicitly using keywords arguments arg=parameter
supplied to the wrapper, where arg is the argument, and parameter is either a parameter class instance, or
a parameter class name (the more preferable way). In addition, an argument _returns can be used to define
the parameter class for the return value; it can also be a list or a tuple of parameter classes, indicating that the
returned value is also a list or a tuple.

Module contents

pylablib.core.fileio package

Submodules

pylablib.core.fileio.datafile module

class pylablib.core.fileio.datafile.DataFile(data, filepath=None, filetype=None, creation_time=None,
comments=None, props=None)

Bases: object

Describes a single datafile.

Parameters

• data – the main content of the file (usually a numpy array, a pandas DataFrame or a
Dictionary).

• filepath (str) – absolute path from which the file was read

• filetype (str) – a source type (e.g., "csv" or "bin")

198 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• creation_time (datetime.datetime) – File creation time

• props (dict) – all the metainfo about the file (extracted from comments, filename etc.)

• comments (list) – all the comments excluding the ones containing props

get(name, default=None)
Get a property from the dictionary. Use default value if it’s not found

pylablib.core.fileio.dict_entry module

Classes for dealing with the Dictionary entries with special conversion rules when saved or loaded. Used to redefine
how certain objects (e.g., tables) inside dictionaries are written into files and read from files.

pylablib.core.fileio.dict_entry.is_dict_entry_branch(branch)
Check if the dictionary branch contains a dictionary entry which needs to be specially converted.

class pylablib.core.fileio.dict_entry.DictEntryBuilder(entry_cls, pred=None, **kwargs)
Bases: object

Object for building dictionary entries from objects.

Parameters

• entry_cls – dictionary entry class

• pred – method used to check if an object can be turned into the corresponding entry; if
None, use the default entry class checker (entry_class.is_data_valid)

• kwargs – keyword arguments passed to the entry constructor along with the data

is_data_valid(data)
Check if a data object can be wrapped by the current entry class

from_data(data)
Build a dictionary entry from the data

class pylablib.core.fileio.dict_entry.DictEntryParser(entry_cls, pred=None, **kwargs)
Bases: object

Object for building dictionary entries from dictionary branches.

Parameters

• entry_cls – dictionary entry class

• pred – method used to check if a dictionary branch can be turned into the corresponding
entry; if None, use the default entry class checker (entry_class.is_branch_valid)

• kwargs – keyword arguments passed to the entry from_dict class method along with
the branch

is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

from_dict(dict_ptr, loc)
Build a dictionary entry from the branch and the file location

pylablib.core.fileio.dict_entry.add_dict_entry_builder(builder)
Add an entry builder to the global list of builders

2.7. pylablib 199

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.dict_entry.add_dict_entry_parser(parser)
Add an entry parser to the global list of parsers

pylablib.core.fileio.dict_entry.add_dict_entry_class(cls)
Add an entry class.

Automatically registers builder and parser, which take no additional arguments and use default class method to
determine if an object/branch can be converted into an entry.

pylablib.core.fileio.dict_entry.from_data(data, builders=None)
Build a dictionary entry from the data.

builders can contain an additional list of builder to try before using the default ones.

pylablib.core.fileio.dict_entry.from_dict(dict_ptr, loc, parsers=None)
Build a dictionary entry from the dictionary branch and the file location.

parsers can contain an additional list of parsers to try before using the default ones.

class pylablib.core.fileio.dict_entry.IDictionaryEntry(data)
Bases: object

A generic Dictionary entry.

Contains data represented by the node, as well as the way to represent this data as a dictionary branch.

Parameters
data – data to be wrapped

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod from_dict(dict_ptr, loc)
Convert a dictionary branch to a specific IDictionaryEntry object.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

to_dict(dict_ptr, loc)
Convert data to a dictionary branch on saving.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – File location for the data to be saved.

pylablib.core.fileio.dict_entry.parse_stored_table_data(desc=None, data=None,
out_type='pandas')

Parse table data corresponding to the given description dictionary and data.

Parameters

• desc – description dictionary; can be None, if no description is given

200 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• data – separately loaded data; can be None, if no data is given (in this case assume that it
is stored in the description dictionary); can be a tuple (column_data, column_names)
(such as the one returned by parse_csv.read_table()), or a an InlineTable object
containing such tuple.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects).

Returns
tuple (data, columns), where data is the data table in the specified format, and columns
is the list of columns

class pylablib.core.fileio.dict_entry.ITableDictionaryEntry(data, columns=None)
Bases: IDictionaryEntry

A generic table Dictionary entry.

Parameters

• data – Table data.

• columns (list) – If not None, list of column names (if None and data is a pandas
DataFrame object, get column names from that).

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

classmethod from_dict(dict_ptr, loc, out_type='pandas')
Convert a dictionary branch to a specific DictionaryEntry object.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects), used only if the dictionary doesn’t provide the format.

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

to_dict(dict_ptr, loc)
Convert data to a dictionary branch on saving.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – File location for the data to be saved.

class pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry(data, columns=None)
Bases: ITableDictionaryEntry

An inlined table Dictionary entry.

Parameters

• data – Table data.

• columns (list) – If not None, a list of column names (if None and data is a pandas
DataFrame object, get column names from that).

2.7. pylablib 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

pylablib Documentation, Release 1.4.2

to_dict(dict_ptr, loc)
Convert the data to a dictionary branch and write the table to the file.

classmethod from_dict(dict_ptr, loc, out_type='pandas')
Build an InlineTableDictionaryEntry object from the dictionary and read the inlined data.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects).

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

class pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry(data, file_format, name,
columns,
force_name=True)

Bases: ITableDictionaryEntry

classmethod from_dict(dict_ptr, loc, out_type='pandas')
Convert a dictionary branch to a specific DictionaryEntry object.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects), used only if the dictionary doesn’t provide the format.

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

to_dict(dict_ptr, loc)
Convert data to a dictionary branch on saving.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – File location for the data to be saved.

class pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry(data=None,
file_format='csv',
name='',
columns=None,
force_name=True)

202 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

Bases: IExternalTableDictionaryEntry

An external text table Dictionary entry.

Parameters

• data – Table data.

• file_format (str) – Output file format.

• name (str) – Name template for the external file (default is the full path connected with
"_" symbol).

• columns (list) – If not None, a list of column names (if None and data is a pandas
DataFrame object, get column names from that).

• force_name (bool) – If False and the target file already exists, generate a new unique
name; otherwise, overwrite the file.

to_dict(dict_ptr, loc)
Convert the data to a dictionary branch and save the table to an external file.

classmethod from_dict(dict_ptr, loc, out_type='pandas')
Build an ExternalTextTableDictionaryEntry object from the dictionary and load the external data.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects).

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

class pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry(data=None,
file_format='bin',
name='', columns=None,
force_name=True)

Bases: IExternalTableDictionaryEntry

An external binary table Dictionary entry.

Parameters

• data – Table data.

• file_format (str) – Output file format.

• name (str) – Name template for the external file (default is the full path connected with
"_" symbol).

• columns (list) – If not None, a list of column names (if None and data is a pandas
DataFrame object, get column names from that).

• force_name (bool) – If False and the target file already exists, generate a new unique
name; otherwise, overwrite the file.

2.7. pylablib 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

to_dict(dict_ptr, loc)
Convert the data to a dictionary branch and save the table to an external file.

classmethod from_dict(dict_ptr, loc, out_type='pandas')
Build an ExternalBinTableDictionaryEntry object from the dictionary and load the external data.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

• out_type (str) – Output format of the data ('array' for numpy arrays or 'pandas'
for pandas DataFrame objects).

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

pylablib.core.fileio.dict_entry.table_entry_builder(table_format='inline')
Make an entry builder for tables depending on the table format.

Parameters
table_format (str) – Default format for table (numpy arrays or pandas DataFrames) entries.
Can be 'inline' (table is written inside the file), 'csv' (external CSV file) or 'bin' (external
binary file).

class pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry(data, name='',
force_name=True)

Bases: IDictionaryEntry

Generic dictionary entry for data in an external file.

Parameters

• data – Stored data.

• name (str) – Name template for the external file (default is the full path connected with
"_" symbol).

• force_name (bool) – If False and the target file already exists, generate a new unique
name; otherwise, overwrite the file.

file_format = None

static add_file_format(subclass)
Register an IExternalFileDictionaryEntry as a possible stored file format.

Used to automatically invoke a correct loader when loading the dictionary file. Only needs to be done once
after the subclass declaration.

to_dict(dict_ptr, loc)
Convert the data to a dictionary branch and save the data to an external file

classmethod from_dict(dict_ptr, loc)
Build an IExternalFileDictionaryEntry object from the dictionary and load the external data.

Parameters

204 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

get_preamble()

Generate preamble (dictionary with supplementary data which allows to load the data from the file)

save_file(location_file)
Save stored data into the given location.

Virtual method, should be overloaded in subclasses

classmethod load_file(location_file, preamble)
Load stored data from the given location, using the supplied preamble.

Virtual method, should be overloaded in subclasses

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

class pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry(data, name='',
force_name=True,
dtype=None)

Bases: IExternalFileDictionaryEntry

A dictionary entry which stores the numpy array data into an external file in binary format.

Parameters

• data – Numpy array data.

• name (str) – Name template for the external file (default is the full path connected with
"_" symbol).

• force_name (bool) – If False and the target file already exists, generate a new unique
name; otherwise, overwrite the file.

• dtype – numpy dtype to load/save the data (by default, dtype of the supplied data).

file_format = 'numpy'

get_preamble()

Generate preamble (dictionary with supplementary data which allows to load the data from the file)

save_file(location_file)
Save stored data into the given location

classmethod load_file(location_file, preamble)
Load stored data from the given location, using the supplied preamble

static add_file_format(subclass)
Register an IExternalFileDictionaryEntry as a possible stored file format.

Used to automatically invoke a correct loader when loading the dictionary file. Only needs to be done once
after the subclass declaration.

2.7. pylablib 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

classmethod from_dict(dict_ptr, loc)
Build an IExternalFileDictionaryEntry object from the dictionary and load the external data.

Parameters

• dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location
for the entry.

• loc – Location for the data to be loaded.

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

to_dict(dict_ptr, loc)
Convert the data to a dictionary branch and save the data to an external file

class pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry(data)
Bases: IDictionaryEntry

A dictionary entry which expands containers (lists, tuples, dictionaries) into subdictionaries.

Useful when the data in the containers is complex, so writing it into one line (as is default for lists and tuples)
wouldn’t work.

Parameters
data – Container data.

to_dict(dict_ptr, loc)
Convert the stored container to a dictionary branch

classmethod from_dict(dict_ptr, loc)
Build an ExpandedContainerDictionaryEntry object from the dictionary

classmethod is_branch_valid(branch)
Check if a branch can be parsed by the current entry class

classmethod is_data_valid(data)
Check if a data object can be wrapped by the current entry class

pylablib.core.fileio.loadfile module

Utilities for reading data files.

class pylablib.core.fileio.loadfile.IInputFileFormat

Bases: object

Generic class for an input file format.

Based on file_format or autodetection, calls one of its subclasses to read the file.

Defines a single static method

static detect_file_format(location_file)

read(location_file)
Read a file at a given location

206 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class pylablib.core.fileio.loadfile.ITextInputFileFormat

Bases: IInputFileFormat

Generic class for a text input file format.

Based on file_format or autodetection, calls one of its subclasses to read the file.

static detect_file_format(location_file)

read(location_file)
Read a file at a given location

class pylablib.core.fileio.loadfile.CSVTableInputFileFormat(out_type='default', dtype='numeric',
columns=None, delimiters=None,
empty_entry_substitute=None,
ignore_corrupted_lines=True,
skip_lines=0)

Bases: ITextInputFileFormat

Class for CSV input file format.

Parameters

• out_type (str) – type of the result: 'array' for numpy array, 'pandas' for pandas
DataFrame, or 'default' (determined by the library default; 'pandas' by default)

• dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex', 'numeric' (tries to coerce to mini-
mal possible numeric type, raises error if data can’t be converted to complex), 'generic'
(accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep
raw string).

• columns – either a number if columns, or a list of columns names.

• delimiters (str) – Regex string which recognizes entries delimiters (by default r"\
s*,\s*|\s+", i.e., commas and whitespaces).

• empty_entry_substitute – Substitute for empty table entries. If None, all empty table
entries are skipped.

• ignore_corrupted_lines (bool) – If True, skip corrupted (e.g., non-numeric for nu-
meric dtype, or with too few entries) lines; otherwise, raise ValueError.

• skip_lines (int) – Number of lines to skip from the beginning of the file.

read(location_file)
Read a file at a given location

static detect_file_format(location_file)

class pylablib.core.fileio.loadfile.DictionaryInputFileFormat(case_normalization=None,
inline_dtype='generic',
inline_out_type='default',
entry_format='value',
allow_duplicate_keys=False,
skip_lines=0)

Bases: ITextInputFileFormat

Class for Dictionary input file format.

Parameters

2.7. pylablib 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

• location_file – Location of the data.

• case_normalization (str) – If None, the dictionary paths are case-sensitive; other-
wise, defines the way the entries are normalized ('lower' or 'upper').

• inline_dtype (str) – dtype for inlined tables.

• inline_out_type (str) – type of the result of the inline table: 'array' for numpy
array, 'pandas' for pandas DataFrame, 'raw' for raw InlineTable data containing
tuple (column_data, column_names), or 'default' (determined by the library de-
fault; 'pandas' by default).

• entry_format (str) – Determines the way for dealing with dict_entry.
IDictionaryEntry objects (objects transformed into dictionary branches with
special recognition rules). Can be 'branch' (don’t attempt to recognize those object,
leave dictionary as in the file), 'dict_entry' (recognize and leave as dict_entry.
IDictionaryEntry objects) or 'value' (recognize and keep the value).

• allow_duplicate_keys (bool) – if False and the same key is mentioned twice in the
file, raise and error

• skip_lines (int) – Number of lines to skip from the beginning of the file.

read(location_file)
Read a file at a given location

static detect_file_format(location_file)

class pylablib.core.fileio.loadfile.BinaryTableInputFileFormatter(out_type='default',
dtype='<f8', columns=None,
packing='flatten',
preamble=None,
skip_bytes=0)

Bases: IInputFileFormat

Class for binary input file format.

Parameters

• location_file – Location of the data.

• out_type (str) – type of the result: 'array' for numpy array, 'pandas' for pandas
DataFrame, or 'default' (determined by the library default; 'pandas' by default)

• dtype – numpy.dtype describing the data.

• columns – either number if columns, or a list of columns names.

• packing (str) – The way the 2D array is packed. Can be either 'flatten' (data is
stored row-wise) or 'transposed' (data is stored column-wise).

• preamble (dict) – If not None, defines binary file parameters that supersede the parame-
ters supplied to the function. The defined parameters are 'dtype', 'packing', 'ncols'
(number of columns) and 'nrows' (number of rows).

• skip_bytes (int) – Number of bytes to skip from the beginning of the file.

read(location_file)
Read a file at a given location

static detect_file_format(location_file)

208 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.loadfile.build_file_format(location_file, file_format='generic', **kwargs)
Create file format (IInputFileFormat instance) for given parameters and file locations.

If file_format is already an instance of IInputFileFormat, return unchanged. If file_format is generic
(e.g., "generic" or "test"), attempt to autodetect it from the file. **kwargs are passed to the file format
constructor.

pylablib.core.fileio.loadfile.load_csv(path=None, out_type='default', dtype='numeric', columns=None,
delimiters=None, empty_entry_substitute=None,
ignore_corrupted_lines=True, skip_lines=0, loc='file',
encoding=None, return_file=False)

Load data table from a CSV/table file.

Parameters

• path (str) – path to the file of a file-like object

• out_type (str) – type of the result: 'array' for numpy array, 'pandas' for pandas
DataFrame, or 'default' (determined by the library default; 'pandas' by default)

• dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex', 'numeric' (tries to coerce to mini-
mal possible numeric type, raises error if data can’t be converted to complex), 'generic'
(accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep
raw string).

• columns – either a number if columns, or a list of columns names

• delimiters (str) – regex string which recognizes entries delimiters (by default r"\s*,
\s*|\s+", i.e., commas and whitespaces)

• empty_entry_substitute – substitute for empty table entries. If None, all empty table
entries are skipped

• ignore_corrupted_lines (bool) – if True, skip corrupted (e.g., non-numeric for nu-
meric dtype, or with too few entries) lines; otherwise, raise ValueError

• skip_lines (int) – number of lines to skip from the beginning of the file

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

pylablib.core.fileio.loadfile.load_csv_desc(path=None, loc='file', encoding=None, return_file=False)
Load data from the extended CSV table file.

Analogous to load_dict(), but doesn’t allow any additional parameters (which don’t matter in this case).

Parameters

• path (str) – path to the file of a file-like object

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

2.7. pylablib 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.loadfile.load_bin(path=None, out_type='default', dtype='<f8', columns=None,
packing='flatten', preamble=None, skip_bytes=0, loc='file',
encoding=None, return_file=False)

Load data from the binary file.

Parameters

• path (str) – path to the file of a file-like object

• out_type (str) – type of the result: 'array' for numpy array, 'pandas' for pandas
DataFrame, or 'default' (determined by the library default; 'pandas' by default)

• dtype – numpy.dtype describing the data.

• columns – either number if columns, or a list of columns names.

• packing (str) – The way the 2D array is packed. Can be either 'flatten' (data is
stored row-wise) or 'transposed' (data is stored column-wise).

• preamble (dict) – If not None, defines binary file parameters that supersede the parame-
ters supplied to the function. The defined parameters are 'dtype', 'packing', 'ncols'
(number of columns) and 'nrows' (number of rows).

• skip_bytes (int) – Number of bytes to skip from the beginning of the file.

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

pylablib.core.fileio.loadfile.load_bin_desc(path=None, loc='file', encoding=None, return_file=False)
Load data from the binary file with a description.

Analogous to load_dict(), but doesn’t allow any additional parameters (which don’t matter in this case).

Parameters

• path (str) – path to the file of a file-like object

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

pylablib.core.fileio.loadfile.load_dict(path=None, case_normalization=None, inline_dtype='generic',
entry_format='value', inline_out_type='default', skip_lines=0,
allow_duplicate_keys=False, loc='file', encoding=None,
return_file=False)

Load data from the dictionary file.

Parameters

• path (str) – path to the file of a file-like object

• case_normalization (str) – If None, the dictionary paths are case-sensitive; other-
wise, defines the way the entries are normalized ('lower' or 'upper').

• inline_dtype (str) – dtype for inlined tables.

210 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• inline_out_type (str) – type of the result of the inline table: 'array' for numpy
array, 'pandas' for pandas DataFrame, 'raw' for raw InlineTable data containing
tuple (column_data, column_names), or 'default' (determined by the library de-
fault; 'pandas' by default).

• entry_format (str) – Determines the way for dealing with dict_entry.
IDictionaryEntry objects (objects transformed into dictionary branches with
special recognition rules). Can be 'branch' (don’t attempt to recognize those object,
leave dictionary as in the file), 'dict_entry' (recognize and leave as dict_entry.
IDictionaryEntry objects) or 'value' (recognize and keep the value).

• allow_duplicate_keys (bool) – if False and the same key is mentioned twice in the
file, raise and error

• skip_lines (int) – Number of lines to skip from the beginning of the file.

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

pylablib.core.fileio.loadfile.load_generic(path=None, file_format=None, loc='file', encoding=None,
return_file=False, **kwargs)

Load data from the file.

Parameters

• path (str) – path to the file of a file-like object

• file_format (str) – input file format; if None, attempt to auto-detect file format (same
as 'generic'); can also be an IInputFileFormat instance for specific reading method

• loc (str) – location type ("file" means the usual file location; see location.
get_location() for details)

• encoding – if a new file location is opened, this specifies the encoding

• return_file (bool) – if True, return DataFile object (contains some metainfo); oth-
erwise, return just the file data

**kwargs are passed to the file formatter used to read the data (see CSVTableInputFileFormat,
DictionaryInputFileFormat and BinaryTableInputFileFormatter for the possible arguments). The
default format names are:

• 'generic': Generic file format. Attempt to autodetect, raise IOError if unsuccessful;

• 'txt': Generic text file. Attempt to autodetect, raise IOError if unsuccessful

• 'csv': CSV file, corresponds to CSVTableInputFileFormat;

• 'dict': Dictionary file, corresponds to DictionaryInputFileFormat;

• 'bin': Binary file, corresponds to BinaryTableInputFileFormatter

2.7. pylablib 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#IOError

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.loadfile_utils module

Miscellaneous utilities for reading data files.

pylablib.core.fileio.loadfile_utils.is_unprintable_character(chn)

pylablib.core.fileio.loadfile_utils.detect_binary_file(stream)

Check if the opened file is binary

pylablib.core.fileio.loadfile_utils.test_row_type(line)
Try to determine whether the line is a comment line, a numerical data row, a dictionary row or an unrecognized
row.

Doesn’t distinguish with a great accuracy; useful only for trying to guess file format.

pylablib.core.fileio.loadfile_utils.detect_textfile_type(stream)

Try to autodetect text file type: dictionary or table

pylablib.core.fileio.loadfile_utils.test_savetime_comment(line)
Test if the comment resembles a savetime line

pylablib.core.fileio.loadfile_utils.find_savetime_comment(comments)
Try to find savetime comment

pylablib.core.fileio.loadfile_utils.test_columns_line(line, cols_num)

Test if the line looks like a list of columns for a given columns number

pylablib.core.fileio.loadfile_utils.find_columns_lines(corrupted, comments, cols_num)

Try to find a column line (for a given columns number) among the comment and corrupted lines

class pylablib.core.fileio.loadfile_utils.InlineTable(table)
Bases: object

Simple marker class that denotes that the wrapped numpy 2D array should be written inline

pylablib.core.fileio.loadfile_utils.parse_dict_line(line)
Parse stripped dictionary file line

pylablib.core.fileio.loadfile_utils.read_dict_and_comments(f , case_normalization=None,
inline_dtype='generic',
allow_duplicate_keys=False)

Load dictionary entries and comments from the file stream.

Parameters

• f – file stream

• case_normalization – case normalization for the returned dictionary; Nonemeans that
it’s case sensitive, "upper" and "lower" determine how they are normalized

• inline_dtype – dtype for inline tables; by default, use the most generic type (can include
Python objects such as lists or strings)

• allow_duplicate_keys – if False and the same key is listed twice, raise and error

Return tuple (data, comment_lines), where data is a dictionary with parsed entries (tables are still repre-
sented as ‘raw’, i.e., as a tuple of columns list and column names list), and comment_lines is a list of comment
lines

212 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.location module

Classes for describing a generic file location.

class pylablib.core.fileio.location.LocationName(path=None, ext=None)
Bases: object

File name inside a location.

Parameters

• path – Path inside the location. Gets normalized according to the Dictionary rules (not
case-sensitive; '/' and '\' are the delimiters).

• ext (str) – Name extension (None is default).

get_path(default_path='', sep='/')
Get the string path.

If the object’s path is None, use default_path instead. If sep is not None, use it to join the path entries;
otherwise, return the path in a list form.

get_ext(default_ext='')
Get the extension.

If the object’s ext is None, use default_ext instead.

to_string(default_path='', default_ext='', path_sep='/', ext_sep='|', add_empty_ext=True)
Convert the path to a string representation.

Parameters

• default_path (str) – Use it as path if the object’s path is None.

• default_ext (str) – Use it as path if the object’s ext is None.

• path_sep (str) – Use it to join the path entries.

• ext_sep (str) – Use it to join path and extension.

• add_empty_ext (str) – If False and the extension is empty, don’t add ext_sep in
the end.

to_path(default_path='', default_ext='', ext_sep='|', add_empty_ext=True)
Convert the path to a list representation.

Extension is added with ext_sep to the last entry in the path.

Parameters

• default_path (str) – Use it as path if the object’s path is None.

• default_ext (str) – Use it as path if the object’s ext is None.

• ext_sep (str) – Use it to join path and extension.

• add_empty_ext (str) – If False and the extension is empty, don’t add ext_sep in
the end.

static from_string(expr, ext_sep='|')
Create a LocationName object from a string representation.

ext_sep defines extension separator; the path separators are '/' and '\'. Empty path or extension translate
into None.

2.7. pylablib 213

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

static from_object(obj)
Create a LocationName object from an object.

obj can be a LocationName (return unchanged), tuple or list (use as construct arguments), string (treat as
a string representation) or None (return empty name).

copy()

class pylablib.core.fileio.location.LocationFile(loc, name=None)
Bases: object

A file at a location.

Combines information about the location and the name within this location. Can be opened for reading or writing.

Parameters

• loc – File location.

• name – File’s name inside the location.

loc

File location.

name

File’s name inside the location.

opened

Whether the file is currently opened.

open(mode='read', data_type='text')
Open the file.

Parameters

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

close()

Close the file

class pylablib.core.fileio.location.IDataLocation

Bases: object

Generic location.

is_free(name=None)
Check if the name is unoccupied

generate_new_name(prefix_name, idx=0)
Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

open(name=None, mode='read', data_type='text')
Open a location file.

Parameters

• name – File name inside the location (None means ‘default’ location),

214 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

close(name)
Close a location file.

list_opened_files()

Get a dictionary {string_name: location_file} of all files opened in this location

class pylablib.core.fileio.location.OpenedFileLocation(f , open_error=False, check_mode=False,
check_data_type=True)

Bases: object

File location which corresponds to an already opened file.

is_free(name=None)

generate_new_name(prefix_name, idx=0)

open(name=None, mode='read', data_type='text')

close(name)

list_opened_files()

class pylablib.core.fileio.location.IFileSystemDataLocation(encoding=None)
Bases: IDataLocation

A generic filesystem data location.

A single file name describes a single file in the filesystem.

get_filesystem_path(name=None, path_type='absolute')
Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path), 'relative' (return relative path; level depends on
the location) or 'name' (only return path inside the location).

is_free(name=None)
Check if the name is unoccupied

open(name=None, mode='read', data_type='text')
Open a location file.

Parameters

• name – File name inside the location (None means ‘default’ location),

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

close(name)
Close a location file

list_opened_files()

Get a dictionary {string_name: location_file} of all files opened in this location

2.7. pylablib 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

generate_new_name(prefix_name, idx=0)
Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

class pylablib.core.fileio.location.SingleFileSystemDataLocation(file_path, encoding=None)
Bases: IFileSystemDataLocation

A location describing a single file.

Any use of a non-default name raises ValueError.

Parameters
file_path (str) – The path to the file.

get_filesystem_path(name=None, path_type='absolute')
Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path), 'relative' (return relative path; level depends on
the location) or 'name' (only return path inside the location).

close(name)
Close a location file

generate_new_name(prefix_name, idx=0)
Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

is_free(name=None)
Check if the name is unoccupied

list_opened_files()

Get a dictionary {string_name: location_file} of all files opened in this location

open(name=None, mode='read', data_type='text')
Open a location file.

Parameters

• name – File name inside the location (None means ‘default’ location),

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

class pylablib.core.fileio.location.PrefixedFileSystemDataLocation(file_path,
prefix_template='{0}_{1}',
encoding=None)

Bases: IFileSystemDataLocation

A location describing a set of prefixed files.

Parameters

• file_path (str) – A master path. Its name is used as a prefix, and its extension is used
as a default.

• prefix_template (str) – A str.format() string for generating prefixed files. Has
two arguments: the first is the master name, the second is the sub_location.

216 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format

pylablib Documentation, Release 1.4.2

Multi-level paths translate into nested folders (the top level folder is combined from the file_path prefix and the
first path entry).

get_filesystem_path(name=None, path_type='absolute')
Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path), 'relative' (return relative path; level depends on
the location) or 'name' (only return path inside the location).

close(name)
Close a location file

generate_new_name(prefix_name, idx=0)
Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

is_free(name=None)
Check if the name is unoccupied

list_opened_files()

Get a dictionary {string_name: location_file} of all files opened in this location

open(name=None, mode='read', data_type='text')
Open a location file.

Parameters

• name – File name inside the location (None means ‘default’ location),

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

class pylablib.core.fileio.location.FolderFileSystemDataLocation(folder_path,
default_name='content',
default_ext='',
encoding=None)

Bases: IFileSystemDataLocation

A location describing a single folder.

Parameters

• folder_path (str) – A path to the folder. Can also have one or two '|' symbols in the
end (e.g., 'folder|file|dat'), which separate default name and extension (overrides
default_name and default_ext parameters)

• default_name (str) – The default file name.

• default_ext (str) – The default file extension.

Multi-level paths translate into nested subfolders.

get_filesystem_path(name=None, path_type='absolute')
Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path), 'relative' (return relative path; level depends on
the location) or 'name' (only return path inside the location).

2.7. pylablib 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

close(name)
Close a location file

generate_new_name(prefix_name, idx=0)
Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

is_free(name=None)
Check if the name is unoccupied

list_opened_files()

Get a dictionary {string_name: location_file} of all files opened in this location

open(name=None, mode='read', data_type='text')
Open a location file.

Parameters

• name – File name inside the location (None means ‘default’ location),

• mode (str) – Opening mode. Can be 'read', 'write' or 'append', as well as
standard abbreviation (e.g., "r" or "wb").

• data_type (str) – Either 'text' or 'binary'; if mode is an abbreviation, this
parameter is ignored (i.e., open("r","binary") still opens file as text).

pylablib.core.fileio.location.get_location(path, loc, *args, **kwargs)
Build a location.

If path or loc are instances of IDataLocation, return them unchanged. If loc is a string, it describes location
kind:

• 'single_file': SingleFileSystemDataLocation with the given path.

• 'file' or 'prefixed_file': PrefixedFileSystemDataLocation with the given path as a master
path.

• 'folder': FolderFileSystemDataLocation with the given folder path.

Any additional arguments are relayed to the constructors.

pylablib.core.fileio.parse_csv module

Utilities for parsing CSV files.

class pylablib.core.fileio.parse_csv.ChunksAccumulator(dtype='numeric',
ignore_corrupted_lines=True,
trim_rows=False)

Bases: object

Class for accumulating data chunks into a single array.

Parameters

• dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex', 'numeric' (tries to coerce to mini-
mal possible numeric type, raises error if data can’t be converted to complex), 'generic'
(accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep
raw string).

218 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• ignore_corrupted_lines – if True, skip corrupted (e.g., non-numeric for numeric
dtype, or with too few entries) lines; otherwise, raise ValueError.

• trim_rows – if True and the row length is larger than expected, drop extra entries; oth-
erwise, treat the row as corrupted

corrupted_number()

convert_columns(raw_columns)
Convert raw columns into appropriate data structure (numpy array for numeric dtypes, list for generic and
raw).

add_columns(columns)
Append columns (lists or numpy arrays) to the existing data.

add_chunk(chunk)
Add a chunk (2D list) to the pre-existing data.

pylablib.core.fileio.parse_csv.read_columns(f , dtype, delimiters='\\s*,\\s*|\\s+',
empty_entry_substitute=None,
ignore_corrupted_lines=True, trim_rows=False,
stop_comment=None)

Load columns from the file stream f.

Parameters

• dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex', 'numeric' (tries to coerce to mini-
mal possible numeric type, raises error if data can’t be converted to complex), 'generic'
(accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep
raw string).

• delimiters (str) – Regex string which recognizes delimiters (by default r"\s*,\s*|\
s+", i.e., commas and whitespaces).

• empty_entry_substitute – Substitute for empty table entries. If None, all empty table
entries are skipped.

• ignore_corrupted_lines – If True, skip corrupted (e.g., non-numeric for numeric
dtype, or with too few entries) lines; otherwise, raise ValueError.

• trim_rows – if True and the row length is larger than expected, drop extra entries; oth-
erwise, treat the row as corrupted

• stop_comment (str) – Regex string for the stopping comment. If not None. the function
will stop if comment satisfying stop_comment regex is encountered.

Returns

(columns, comments, corrupted_lines).

columns is a list of columns with data.

comments is a list of comment strings.

corrupted_lines is a dict {'size':list, 'type':list} of corrupted lines (al-
ready split into entries), based on the corruption type ('size' means too small size,
'type' means it couldn’t be converted using provided dtype).

Return type
tuple

2.7. pylablib 219

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.parse_csv.columns_to_table(data, columns=None, dtype='numeric',
out_type='columns')

Convert data (columns list) into a table.

Parameters

• columns – either number if columns, or a list of columns names.

• out_type (str) – type of the result: 'array' for numpy array, 'pandas' for pandas
DataFrame, 'columns' for tuple (data, columns)

pylablib.core.fileio.parse_csv.read_table(f , dtype='numeric', columns=None, out_type='columns',
delimiters='\\s*,\\s*|\\s+', empty_entry_substitute=None,
ignore_corrupted_lines=True, trim_rows=False,
stop_comment=None)

Load table from the file stream f.

Arguments are the same as in read_columns() and columns_to_table().

Returns

(table, comments, corrupted_lines).

table is a table of the format out_type.

corrupted_lines is a dict {'size':list, 'type':list} of corrupted lines (al-
ready split into entries), based on the corruption type ('size' means too small size,
'type' means it couldn’t be converted using provided dtype).

comments is a list of comment strings.

Return type
tuple

pylablib.core.fileio.savefile module

Utilities for writing data files.

class pylablib.core.fileio.savefile.IOutputFileFormat(format_name)
Bases: object

Generic class for an output file format.

Parameters
format_name (str) – The name of the format (to be defined in subclasses).

write_file(location_file, to_save)

write_data(location_file, data)

write(location_file, data)

class pylablib.core.fileio.savefile.ITextOutputFileFormat(format_name, save_props=True,
save_comments=True, save_time=True,
new_time=True)

Bases: IOutputFileFormat

Generic class for a text output file format.

Parameters

• format_name (str) – The name of the format (to be defined in subclasses).

220 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• save_props (bool) – If True and saving datafile.DataFile object, save its props
metainfo.

• save_comments (bool) – If True and saving datafile.DataFile object, save its com-
ments metainfo.

• save_time (bool) – If True, append the file creation time in the end.

• new_time (bool) – If saving datafile.DataFile object, determines if the time should
be updated to the current time.

make_comment_line(comment)

make_prop_line(name, value)

make_savetime_line(time)

static write_line(stream, line)

write_comments(stream, comments)

write_props(stream, props)

write_savetime(stream, time)

write_file(location_file, to_save)

write(location_file, data)

write_data(location_file, data)

class pylablib.core.fileio.savefile.CSVTableOutputFileFormat(delimiters='\t', value_formats=None,
use_rep_classes=False,
save_columns=True,
save_props=True,
save_comments=True,
save_time=True)

Bases: ITextOutputFileFormat

Class for CSV output file format.

Parameters

• delimiters (str) – Used to separate entries in a row.

• value_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function.

• use_rep_classes (bool) – If True, use representation classes for Dictionary entries
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1,
2, 3]"); This improves storage fidelity, but makes result harder to parse (e.g., by external
string parsers).

• save_columns (bool) – If True, save column names as a comment line in the beginning
of the file.

• save_props (bool) – If True and saving datafile.DataFile object, save its props
metainfo.

• save_comments (bool) – If True and saving datafile.DataFile object, save its com-
ments metainfo.

• save_time (bool) – If True, append the file creation time in the end.

2.7. pylablib 221

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_table_line(line)

get_columns_line(columns)

write_data(location_file, data)
Write data to a CSV file.

Parameters

• location_file – Location of the destination.

• data – Data to be saved. Can be a pandas DataFrame or an arbitrary 2D array (numpy
array, 2D list, etc.); if the data is not DataFrame or numpy 2D array, it gets converted
into a DataFrame using the standard constructor (i.e., 2D list is interpreted as a list of
rows)

make_comment_line(comment)

make_prop_line(name, value)

make_savetime_line(time)

write(location_file, data)

write_comments(stream, comments)

write_file(location_file, to_save)

static write_line(stream, line)

write_props(stream, props)

write_savetime(stream, time)

class pylablib.core.fileio.savefile.DictionaryOutputFileFormat(param_formats=None,
use_rep_classes=False,
table_format='inline',
inline_delimiters='\t',
inline_formats=None,
save_props=True,
save_comments=True,
save_time=True)

Bases: ITextOutputFileFormat

Class for Dictionary output file format.

Parameters

• param_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function when writing Dictionary entries.

• use_rep_classes (bool) – If True, use representation classes for Dictionary entries
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1,
2, 3]"); This improves storage fidelity, but makes result harder to parse (e.g., by external
string parsers).

• table_format (str) – Default format for table (numpy arrays or pandas DataFrames)
entries. Can be 'inline' (table is written inside the file), 'csv' (external CSV file) or
'bin' (external binary file).

• inline_delimiters (str) – Used to separate entries in a row for inline tables.

222 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• inline_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function when writing inline tables.

• save_props (bool) – If True and saving datafile.DataFile object, save its props
metainfo.

• save_comments (bool) – If True and saving datafile.DataFile object, save its com-
ments metainfo.

• save_time (bool) – If True, append the file creation time in the end.

get_dictionary_line(path, value)

write_data(location_file, data)
Write data to a Dictionary file.

Parameters

• location_file – Location of the destination.

• data – Data to be saved. Should be object of class Dictionary.

make_comment_line(comment)

make_prop_line(name, value)

make_savetime_line(time)

write(location_file, data)

write_comments(stream, comments)

write_file(location_file, to_save)

static write_line(stream, line)

write_props(stream, props)

write_savetime(stream, time)

class pylablib.core.fileio.savefile.IBinaryOutputFileFormat(format_name)
Bases: IOutputFileFormat

get_preamble(location_file, data)

write(location_file, data)

write_data(location_file, data)

write_file(location_file, to_save)

class pylablib.core.fileio.savefile.TableBinaryOutputFileFormat(dtype=None, transposed=False)
Bases: IBinaryOutputFileFormat

Class for binary output file format.

Parameters

• dtype – a string with numpy dtype (e.g., "<f8") used to save the data. By default, use
little-endian ("<") variant kind of the supplied data array dtype

• transposed (bool) – If False, write the data row-wise; otherwise, write it column-wise.

2.7. pylablib 223

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_dtype(table)

get_preamble(location_file, data)
Generate a preamble (dictionary describing the file format).

The parameters are 'dtype', 'packing' ('transposed' or 'flatten', depending on the transposed
attribute), 'ncol' (number of columns) and 'nrows' (number of rows).

write_data(location_file, data)
Write data to a binary file.

Parameters

• location_file – Location of the destination.

• data – Data to be saved. Can be a pandas DataFrame or an arbitrary 2D array (numpy
array, 2D list, etc.) Converted to numpy array before saving.

write_file(location_file, to_save)

write(location_file, data)

pylablib.core.fileio.savefile.get_output_format(data, output_format, **kwargs)

pylablib.core.fileio.savefile.save_csv(data, path, delimiters='\t', value_formats=None,
use_rep_classes=False, save_columns=True, save_props=True,
save_comments=True, save_time=True, loc='file',
encoding=None)

Save data to a CSV file.

Parameters

• data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile
object containing this data).

• path (str) – Path to the file or a file-like object.

• delimiters (str) – Used to separate entries in a row.

• value_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function.

• use_rep_classes (bool) – If True, use representation classes for Dictionary entries
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1,
2, 3]"); This improves storage fidelity, but makes result harder to parse (e.g., by external
string parsers).

• save_columns (bool) – If True, save column names as a comment line in the beginning
of the file.

• save_props (bool) – If True and saving datafile.DataFile object, save its props
metainfo.

• save_comments (bool) – If True and saving datafile.DataFile object, save its com-
ments metainfo.

• save_time (bool) – If True, append the file creation time in the end.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

224 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.savefile.save_csv_desc(data, path, loc='file', encoding=None)
Save data table to a dictionary file with an inlined table.

Compared to save_csv(), supports more pandas features (index, column multi-index), but can only be directly
read by pylablib.

Parameters

• data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile
object containing this data).

• path (str) – Path to the file or a file-like object.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

pylablib.core.fileio.savefile.save_bin(data, path, dtype=None, transposed=False, loc='file',
encoding=None)

Save data to a binary file.

Parameters

• data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile
object containing this data).

• path (str) – Path to the file or a file-like object.

• dtype – numpy.dtype describing the data. By default, use little-endian ("<") variant
kind of the supplied data array dtype.

• transposed (bool) – If False, write the data row-wise; otherwise, write it column-wise.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

pylablib.core.fileio.savefile.save_bin_desc(data, path, loc='file', encoding=None)
Save data to a binary file with an additional description file, which contains all of the data related to loading
(shape, dtype, columns, etc.)

Parameters

• data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile
object containing this data).

• path (str) – Path to the file or a file-like object.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

pylablib.core.fileio.savefile.save_dict(data, path, param_formats=None, use_rep_classes=False,
table_format='inline', inline_delimiters='\t',
inline_formats=None, save_props=True, save_comments=True,
save_time=True, loc='file', encoding=None)

Save dictionary to a text file.

Parameters

• data – Data to be saved.

• path (str) – Path to the file or a file-like object.

2.7. pylablib 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• param_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function when writing Dictionary entries.

• use_rep_classes (bool) – If True, use representation classes for Dictionary entries
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1,
2, 3]"); This improves storage fidelity, but makes result harder to parse (e.g., by external
string parsers).

• table_format (str) – Default format for table (numpy arrays or pandas DataFrames)
entries. Can be 'inline' (table is written inside the file), 'csv' (external CSV file) or
'bin' (external binary file).

• inline_delimiters (str) – Used to separate entries in a row for inline tables.

• inline_formats (str) – If not None, defines value formats to be passed to utils.
string.to_string() function when writing inline tables.

• save_props (bool) – If True and saving datafile.DataFile object, save its props
metainfo.

• save_comments (bool) – If True and saving datafile.DataFile object, save its com-
ments metainfo.

• save_time (bool) – If True, append the file creation time in the end.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

pylablib.core.fileio.savefile.save_generic(data, path, output_format=None, loc='file', encoding=None,
**kwargs)

Save data to a file.

Parameters

• data – Data to be saved.

• path (str) – Path to the file or a file-like object.

• output_format (str) – Output file format. Can be either None (defaults to 'csv' for
table data and 'dict' for Dictionary data), a string with one of the default format names,
or an already prepared IOutputFileFormat object.

• loc (str) – Location type.

• encoding – if a new file location is opened, this specifies the encoding.

**kwargs are passed to the file formatter constructor (see CSVTableOutputFileFormat,
DictionaryOutputFileFormat and TableBinaryOutputFileFormat for the possible arguments).
The default format names are:

• 'csv': CSV file, corresponds to CSVTableOutputFileFormat and save_csv();

• 'csv': CSV file with an additional dictionary containing format description, corresponds to
DictionaryOutputFileFormat and save_csv_desc();

• 'bin': Binary file, corresponds to TableBinaryOutputFileFormat and save_bin();

• 'bin_desc': Binary file with an additional dictionary containing format description, corresponds to
DictionaryOutputFileFormat and save_bin_desc();

• 'dict': Dictionary file, corresponds to DictionaryOutputFileFormat and save_dict()

226 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

pylablib.core.fileio.table_stream module

class pylablib.core.fileio.table_stream.TableStreamFile(path, columns=None, delimiter='\t',
fmt=None, add_timestamp=False,
header_prepend='# ')

Bases: object

Expanding table file.

Can define column names and formats for different columns, and repeatedly write data into the same file. Useful
for, e.g., continuous log files.

Parameters

• path (str) – Path to the destination file.

• columns (list) – If not None, it’s a list of column names to be added as a header on
creation.

• delimiter (str) – Values delimiter.

• fmt (str) – If not None, it’s a list of format strings for the line entries (e.g., ".3f"); instead
of format string one can also be None, which means using the standard to_string()
conversion function

• add_timestamp (bool) – If True, add the UNIX timestamp in the beginning of each
line (columns and format are expanded accordingly)

• header_prepend – the string to prepend to the header line; by default, a comment sym-
bol, which is best compatibly with loadfile.load_csv() function

write_text_lines(lines)
Write several text lines into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

Parameters
lines ([str]) – List of lines to write.

write_row(row)
Write a single data row into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

Parameters
data (list or numpy.ndarray) – Data row to be added.

write_multiple_rows(rows)
Write a multiple data lines into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

Parameters
rows ([list or numpy.ndarray]) – Data rows to be added.

2.7. pylablib 227

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pylablib Documentation, Release 1.4.2

Module contents

pylablib.core.gui package

Subpackages

pylablib.core.gui.widgets package

Submodules

pylablib.core.gui.widgets.button module

class pylablib.core.gui.widgets.button.ToggleButton(parent=None)
Bases: object

Expanded toggle button.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads). Allows setting
different captions of pressed/unpressed, and uses those to represent values.

set_value_labels(labels)
Set a list of values corresponding to combo box indices.

Can be either a list of values, whose length must be equal to the number of options, or None (don’t change
the button label on toggle).

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current value

set_value(value, notify_value_change=True)
Set current value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.

repr_value(value)
Return representation of value as a caption text

pylablib.core.gui.widgets.combo_box module

class pylablib.core.gui.widgets.combo_box.ComboBox(parent)
Bases: object

Expanded combo box.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads). Allows setting
values which are reported via value_changed signal instead of simple indices.

wheelEvent(event)

228 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

set_out_of_range(action='error')
Set behavior when out-of-range value is applied.

Can be "error" (raise error), "reset" (reset to no-value position), "reset_start" (reset to the first
position) or "ignore" (keep current value).

set_direct_index_action(action='error')
Set behavior when index values are specified, but direct indexing is used.

Can be "ignore" (do not allow direct indexing and treat any value as index value), "value_default"
(allow direct indexing, but prioritize index values with the same value), or "index_default" (allow
direct indexing and prioritize it if index value with the same value exists).

index_to_value(idx)
Turn numerical index into value

value_to_index(value)
Turn value into a numerical index

set_index_values(index_values, value=None, index=None)
Set a list of values corresponding to combo box indices.

Can be either a list of values, whose length must be equal to the number of options, or None (simply
use indices). Note: if the number of combo box options changed (e.g., using addItem or insertItem
methods), the index values need to be manually updated; otherwise, the errors might arise if the index is
larger than the number of values. If value is specified, set as the new values. If index is specified, use it as
the index of a new value; if both value and index are specified, the value takes priority.

get_index_values()

Return the list of values corresponding to combo box indices

get_options()

Return the list of labels corresponding to combo box indices

get_options_dict()

Return the dictionary {value: label} of the option labels

set_options(options, index_values=None, value=None, index=None)
Set new set of options.

If index_values is not None, set these as the new index values; otherwise, index values are reset. If options
is a dictionary, interpret it as a mapping {option: index_value}. If value is specified, set as the new
values. If index is specified, use it as the index of a new value; if both value and index are specified, the
value takes priority.

insert_option(option, index_value=None, index=None)
Insert or append a new option to the list

Insertion (i.e., index is not None) only works for index-valued combo boxes.

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current numerical value

set_value(value, notify_value_change=True)
Set current value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.

2.7. pylablib 229

pylablib Documentation, Release 1.4.2

repr_value(value)
Return representation of value as a combo box text

pylablib.core.gui.widgets.container module

class pylablib.core.gui.widgets.container.TTimer(name, period, timer)
Bases: tuple

name

period

timer

class pylablib.core.gui.widgets.container.TTimerEvent(start, loop, stop, timer)
Bases: tuple

loop

start

stop

timer

class pylablib.core.gui.widgets.container.TChild(name, widget, gui_values_path)
Bases: tuple

gui_values_path

name

widget

class pylablib.core.gui.widgets.container.IQContainer(*args, name=None, **kwargs)
Bases: object

Basic controller object which combines and controls several other widget.

Can either corresponds to a widget (e.g., a frame or a group box), or simply be an organizing entity.

Parameters
name – entity name (used by default when adding this object to a values table)

Abstract mix-in class, which needs to be added to a class inheriting from QObject. Alternatively, one can directly
use QContainer, which already inherits from QObject.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

setup_name(name)
Set the object’s name

setup(name=None)
Setup the container by initializing its GUI values and setting the ctl attribute

230 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

is_timer_running(name)
Check if the timer with the given name is running

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_child(name, widget, gui_values_path=True, add_change_event=True)
Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored. if add_change_event==True, changing of
the widget’s value emits the container’s contained_value_changed event

get_child(name)
Get the child widget with the given name

remove_child(name, clear=True)
Remove child from the container and (if clear==True) clear it

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

2.7. pylablib 231

pylablib Documentation, Release 1.4.2

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

clear()

Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets, remove all widgets from the
values table, remove all widgets from the table.

get_handler(name)
Get value handler of a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_all_values()

Get values of all widget in the container

set_value(name, value)
Set value of a widget with the given name (None means all values)

set_all_values(value)
Set values of all widgets in the container

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_all_indicators()

Get indicator values of all widget in the container

232 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_all_indicators(value, ignore_missing=True)

update_indicators()

Update all indicators to represent current values

class pylablib.core.gui.widgets.container.QContainer(*args, name=None, **kwargs)
Bases: IQContainer, object

Basic controller object which combines and controls several other widget.

Can either corresponds to a widget (e.g., a frame or a group box), or simply be an organizing entity.

Parameters
name – entity name (used by default when adding this object to a values table)

Simply a combination of IQContainer and QObject.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, gui_values_path=True, add_change_event=True)
Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored. if add_change_event==True, changing of
the widget’s value emits the container’s contained_value_changed event

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

2.7. pylablib 233

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

clear()

Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets, remove all widgets from the
values table, remove all widgets from the table.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

remove_child(name, clear=True)
Remove child from the container and (if clear==True) clear it

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

234 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(name=None)
Setup the container by initializing its GUI values and setting the ctl attribute

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

class pylablib.core.gui.widgets.container.IQWidgetContainer(*args, **kwargs)
Bases: IQLayoutManagedWidget, IQContainer

Generic widget container.

Combines IQContainer management of GUI values and timers with IQLayoutManagedWidget management
of the contained widget’s layout.

Typically, adding widget adds them both to the container values and to the layout; however, this can be
skipped by either using QLayoutManagedWidget.add_to_layout() (only add to the layout), or specifying
location="skip" in add_child() (only add to the container).

Abstract mix-in class, which needs to be added to a class inheriting from QWidget. Alternatively, one can directly
use QWidgetContainer, which already inherits from QWidget.

setup(layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

2.7. pylablib 235

pylablib Documentation, Release 1.4.2

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

236 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

2.7. pylablib 237

pylablib Documentation, Release 1.4.2

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

238 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

class pylablib.core.gui.widgets.container.QWidgetContainer(*args, **kwargs)
Bases: IQWidgetContainer, object

Generic widget container.

Combines IQContainer management of GUI values and timers with IQLayoutManagedWidget management
of the contained widget’s layout.

2.7. pylablib 239

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

Typically, adding widget adds them both to the container values and to the layout; however, this can be
skipped by either using QLayoutManagedWidget.add_to_layout() (only add to the layout), or specifying
location="skip" in add_child() (only add to the container).

Simply a combination of IQWidgetContainer and QWidget.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

240 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

2.7. pylablib 241

pylablib Documentation, Release 1.4.2

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

242 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

2.7. pylablib 243

pylablib Documentation, Release 1.4.2

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

class pylablib.core.gui.widgets.container.QFrameContainer(*args, **kwargs)
Bases: IQWidgetContainer, object

An extension of IQWidgetContainer for a QFrame Qt base class

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

244 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

2.7. pylablib 245

pylablib Documentation, Release 1.4.2

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

246 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

2.7. pylablib 247

pylablib Documentation, Release 1.4.2

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

class pylablib.core.gui.widgets.container.QDialogContainer(*args, **kwargs)
Bases: IQWidgetContainer, object

An extension of IQWidgetContainer for a QDialog Qt base class

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

248 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

2.7. pylablib 249

pylablib Documentation, Release 1.4.2

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

250 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

2.7. pylablib 251

pylablib Documentation, Release 1.4.2

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

class pylablib.core.gui.widgets.container.QGroupBoxContainer(*args, **kwargs)
Bases: IQWidgetContainer, object

An extension of IQWidgetContainer for a QGroupBox Qt base class

setup(caption=None, layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the

252 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer

2.7. pylablib 253

pylablib Documentation, Release 1.4.2

is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

254 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup_name(name)
Set the object’s name

2.7. pylablib 255

pylablib Documentation, Release 1.4.2

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

class pylablib.core.gui.widgets.container.QScrollAreaContainer(*args, name=None, **kwargs)
Bases: IQContainer, object

An extension of IQWidgetContainer for a QScrollArea Qt base class.

Due to Qt organization, this container is “intermediate”: it contains only a single QWidgetContainer widget
(named "widget"), which in turn has all of the standard container traits: layout, multiple widgets, etc. Hence,
when dealing with any container methods (adding children, changing layout, etc.), this widget (accessible with
.widget() method) should be used.

class QContainedWidget(*args, **kwargs)
Bases: QWidgetContainer

resizeEvent(event)

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout,
but not to the container. location specifies the layout location to which the widget is added; if
location=="skip", skip adding it to the layout (can be manually added later). Note that if the
widget is added to the layout, it will be completely deleted when clear or remove_child methods
are called; otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add
it under the same root (path=="") if it’s a container, and under name if it’s not; otherwise,
gui_values_path specifies the path under which the widget values are stored.

256 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its
setup_gui_values to make it share the same GUI values; otherwise, simply add it to the GUI
values under the given path. if add_change_event==True, changing of the widget’s value emits
the container’s contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies
its location within the container layout. If no_margins==True, the frame will have no inner layout
margins. The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True,
no_margins=True)

Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies
its location within the container layout. If no_margins==True, the frame will have no inner layout
margins. The other parameters are the same as in add_child() method.

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal
for hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of
the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell
spacer); can also be a tuple with two stretches along vertical and horizontal directions.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0,
location='next')

Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions;
otherwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); if
kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind
can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

2.7. pylablib 257

pylablib Documentation, Release 1.4.2

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer
as well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None,
autostart=True)

Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented
through Qt timers. loop, start and stop are the functions called, correspondingly, on timer (period-
ically), when timer is start, and when it’s finished. One can either specify the timer by name (timer
parameter), or create a new one with the given period. If autostart==True and the container has
been started (by calling start() method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view (its value can be set or read, it has on-change events, it can have indicator). The element value
is simply stored on set and retrieved on get. If multivalued==True, the internal value is assumed
to be complex, so it is forced to be a Dictionary every time it is set. If add_indicator==True,
add default indicator handler as well.

clear()

Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the
main layout), and location is a tuple (row, column, rowspan, colspan). If the given widget
is not in this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

258 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

remove_layout_element(element)
Remove a previously added layout element

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

2.7. pylablib 259

pylablib Documentation, Release 1.4.2

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(layout='vbox', no_margins=False, name=None)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in
the middle of layout hierarchy)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None,
emit for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

setup(layout='vbox', no_margins=False, name=None, fix_width=True, fix_height=False)
Setup the container.

layout specifies the container layout, no_margins determines whether margins within the container are
removed, name specifies the widget name (if not specified yet). fix_width and fix_height determine whether
the corresponding direction behaves as a scroll window (i.e., the size is fixed when the content changes),
or as a standard widget container (the size is determined by the content).

260 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

clear()

Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets, remove all widgets from the
values table, remove all widgets from the table.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, gui_values_path=True, add_change_event=True)
Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored. if add_change_event==True, changing of
the widget’s value emits the container’s contained_value_changed event

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

2.7. pylablib 261

pylablib Documentation, Release 1.4.2

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

remove_child(name, clear=True)
Remove child from the container and (if clear==True) clear it

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

262 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

class pylablib.core.gui.widgets.container.QTabContainer(*args, **kwargs)
Bases: IQContainer, object

Container which manages tab widget.

Does not have its own layout, but can add or remove tabs, which are represented as QFrameContainer widgets.

add_tab(name, caption, index=None, widget=None, layout='vbox', gui_values_path=True,
no_margins=True)

Add a new tab container with the given caption to the widget.

index specifies the new tab’s index (None means adding to the end, negative values count from the end).
If widget is None, create a new frame widget using the given layout ("vbox", "hbox", or "grid") and
no_margins (specifies whether the frame has inner margins) arguments; otherwise, use the supplied widget.
The other parameters are the same as in add_child() method.

remove_tab(name)
Remove a tab with the given name.

Clear it, remove its GUI values, and delete it and all contained widgets.

clear()

Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets, remove all widgets from the
values table, remove all widgets from the table.

get_current_name()

Get current tab name

set_by_name(name)
Set tab by name

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_child(name, widget, gui_values_path=True, add_change_event=True)
Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored. if add_change_event==True, changing of
the widget’s value emits the container’s contained_value_changed event

2.7. pylablib 263

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

264 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

remove_child(name, clear=True)
Remove child from the container and (if clear==True) clear it

set_all_indicators(value, ignore_missing=True)

set_all_values(value)
Set values of all widgets in the container

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_value(name, value)
Set value of a widget with the given name (None means all values)

setup(name=None)
Setup the container by initializing its GUI values and setting the ctl attribute

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

2.7. pylablib 265

pylablib Documentation, Release 1.4.2

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

pylablib.core.gui.widgets.edit module

class pylablib.core.gui.widgets.edit.TextEdit(parent, value=None)
Bases: object

Expanded text edit.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads).

keyPressEvent(event)

set_expandable(left=0, right=0, top=0, bottom=0)
Make text edit expandable.

If it is expandable, the edit size is expanded by the given size into the corresponding directions. If all are
zero, the widget behaves as normal.

focusInEvent(evt)

focusOutEvent(evt)

value_entered = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is entered (regardless of whether it stayed the same)

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current text value

show_value(interrupt_edit=False)
Display currently stored text value

If interrupt_edit==True and the edit is currently being modified by the user, don’t update the display.

set_value(value, notify_value_change=True, interrupt_edit=False)
Set current text value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently. If
interrupt_edit==True and the edit is currently being modified by the user, don’t update the display
(but still update the internally stored value).

class pylablib.core.gui.widgets.edit.NumEdit(parent, value=None, limiter=None, formatter=None,
custom_steps=None)

Bases: object

Labview-style numerical edit.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads). Supports
different number representations, metric prefixes (in input or output), keyboard shortcuts (up/down for changing
number, escape for cancelling).

Parameters

266 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• parent – parent widget

• value – initial value (None means no value is set)

• limiter – number limiter (for details, see set_limiter())

• formatter – number formatter (for details, see set_formatter())

• custom_steps – if not None, can specify custom fixed value steps when up/down
keys are pressed with a modifier key (Control, Alt, or Shift) specifies a dictionary
{'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the corre-
sponding steps (missing elements mean that the modifier key is ignored)

keyPressEvent(event)

set_limiter(limiter, new_value=None)
Change current numerical limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or
raises limiter.LimitError if it should be ignored; or it can be a tuple (lower, upper, action,
value_type), where lower and upper are the limits (None means no limits), action defines out-of-
limit action (either "ignore" to ignore entered value, or "coerce" to truncate to the nearest limit), and
value_type can be None (keep value as is), "float" (cast value to float), "int" (cast value to int). If
the tuple is shorter, the missing parts are filled by default values (None, None, "ignore", None).

set_formatter(formatter)
Change current numerical formatter.

Formatter can be a callable object turning value into a string, a string ("float", "int", or a format
string, e.g., ".5f"), or a tuple starting with "float" which contains arguments to the formatter.
FloatFormatter.

set_float_formatter(output_format='auto', digits=9, add_trailing_zeros=True, leading_zeros=0,
explicit_sign=False)

Set up float formatter.

Has the same functionality as set_formatter() (i.e., set_float_formatter(*args) is equivalent to
set_formatter(("float",)+args)), but explicitly lists the arguments.

Parameters

• output_format (str) – can be "auto" (use standard Python conversion), "SI" (use
SI prefixes if possible), or "sci" (scientific “E” notation).

• digits (int) – if add_trailing_zeros==False, determines the number of signif-
icant digits; otherwise, determines precision (number of digits after decimal point).

• add_trailing_zeros (bool) – if True, always show fixed number of digits after
the decimal point, with zero padding if necessary.

• leading_zeros (bool) – determines the minimal size of the integer part (before the
decimal point) of the number; pads with zeros if necessary.

• explicit_sign (bool) – if True, always add explicit plus sign.

set_custom_steps(custom_steps=None)
Specify custom fixed value steps when up/down keys are pressed with a modifier key (Control, Alt, or
Shift).

custom_steps is a dictionary {'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with
the corresponding steps (missing elements mean that the modifier key is ignored).

2.7. pylablib 267

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_cursor_order()

Get a decimal order of the text cursor

set_cursor_order(order)
Move text cursor to a given decimal order

repr_value(value)
Return representation of value according to the current numerical format

value_entered = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is entered (regardless of whether it stayed the same)

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current numerical value

show_value(interrupt_edit=False, preserve_cursor_order=True)
Display currently stored numerical value

If interrupt_edit==False and the edit is currently being modified by the user, don’t update the display.
If preserve_cursor_order==True and the display value is being edited, keep the decimal order of the
cursor position after change.

set_value(value, notify_value_change=True, interrupt_edit=False, preserve_cursor_order=True)
Set and display current numerical value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently. If
interrupt_edit==False and the edit is currently being modified by the user, don’t update the display
(but still update the internally stored value). If preserve_cursor_order==True and the display value
is being edited, keep the decimal order of the cursor position after change.

pylablib.core.gui.widgets.label module

class pylablib.core.gui.widgets.label.TextLabel(parent, value=None)
Bases: object

Labview-style text label.

The main difference from the standard QLabel is the changed event.

clicked = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

mousePressEvent(ev)

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current numerical value

set_value(value)
Set and display current text value

268 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class pylablib.core.gui.widgets.label.EnumLabel(parent, options, value=None, prep=None)
Bases: object

Labview-style label for enumerated values.

Can automatically convert input enum values into corresponding text labels based on the options dictionary. Can
also specify a function which takes a single value argument and converts into a enum value before checking
options; useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

clicked = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

mousePressEvent(ev)

set_out_of_range(action='error')
Set behavior when out-of-range value is applied.

Can be "error" (raise error), "text" (turn value into text and display it), or "ignore" (keep current
value).

set_options(options, value=None, index=None)
Set new set of options.

If index_values is not None, set these as the new index values; otherwise, index values are reset. If options
is a dictionary, interpret it as a mapping {option: index_value}. If value is specified, set as the new
values. If index is specified, use it as the index of a new value; if both value and index are specified, the
value takes priority.

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current numerical value

set_value(value)
Set and display current text value

repr_value(value)
Return representation of value as a combo box text

class pylablib.core.gui.widgets.label.NumLabel(parent, value=None, limiter=None, formatter=None,
allow_text=True)

Bases: object

Labview-style numerical label.

Supports different number representations and metric prefixes.

Parameters

• parent – parent widget

• value – initial value (None means no value is set)

• limiter – number limiter (for details, see set_limiter())

• formatter – number formatter (for details, see set_formatter())

• allow_text – if True, can also take text values (which are displayed as is); otherwise,
raise an error.

clicked = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

2.7. pylablib 269

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

mousePressEvent(ev)

set_limiter(limiter, new_value=None)
Change current numerical limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or
raises limiter.LimitError if it should be ignored; or it can be a tuple (lower, upper, action,
value_type), where lower and upper are the limits (None means no limits), action defines out-of-
limit action (either "ignore" to ignore entered value, or "coerce" to truncate to the nearest limit), and
value_type can be None (keep value as is), "float" (cast value to float), "int" (cast value to int). If
the tuple is shorter, the missing parts are filled by default values (None, None, "ignore", None).

set_formatter(formatter)
Change current numerical formatter.

Formatter can be a callable object turning value into a string, a string ("float", "int", or a format
string, e.g., ".5f"), or a tuple starting with "float" which contains arguments to the formatter.
FloatFormatter.

set_float_formatter(output_format='auto', digits=9, add_trailing_zeros=True, leading_zeros=0,
explicit_sign=False)

Set up float formatter.

Has the same functionality as set_formatter() (i.e., set_float_formatter(*args) is equivalent to
set_formatter(("float",)+args)), but explicitly lists the arguments.

Parameters

• output_format (str) – can be "auto" (use standard Python conversion), "SI" (use
SI prefixes if possible), or "sci" (scientific “E” notation).

• digits (int) – if add_trailing_zeros==False, determines the number of signif-
icant digits; otherwise, determines precision (number of digits after decimal point).

• add_trailing_zeros (bool) – if True, always show fixed number of digits after
the decimal point, with zero padding if necessary.

• leading_zeros (bool) – determines the minimal size of the integer part (before the
decimal point) of the number; pads with zeros if necessary.

• explicit_sign (bool) – if True, always add explicit plus sign.

repr_value(value)
Return representation of value according to the current numerical format

value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

Signal emitted when value is changed

get_value()

Get current numerical value

set_value(value)
Set and display current numerical value

270 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.gui.widgets.layout_manager module

class pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget(*args, **kwargs)
Bases: object

GUI widget which can manage layouts.

Typically, first it is set up using setup() method to specify the master layout kind; afterwards, widgets and
sublayout can be added using add_to_layout(). In addition, it can directly add named sublayouts using
add_sublayout() method.

Abstract mix-in class, which needs to be added to a class inheriting from QWidget. Alternatively, one can directly
use QLayoutManagedWidget, which already inherits from QWidget.

setup(layout='grid', no_margins=False)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

using_layout(name)
Use a different sublayout as default inside the with block

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

remove_layout_element(element)
Remove a previously added layout element

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

get_sublayout(name=None)
Get the previously added sublayout

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

2.7. pylablib 271

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

add_decoration_label(text, location='next')
Add a decoration text label with the given text

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

clear()

Clear the layout and remove all the added elements

class pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget(*args, **kwargs)
Bases: IQLayoutManagedWidget, object

GUI widget which can manage layouts.

Typically, first it is set up using setup() method to specify the master layout kind; afterwards, widgets and
sublayout can be added using add_to_layout(). In addition, it can directly add named sublayouts using
add_sublayout() method.

Simply a combination of IQLayoutManagedWidget and QWidget.

add_decoration_label(text, location='next')
Add a decoration text label with the given text

272 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=None)
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

clear()

Clear the layout and remove all the added elements

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_layout_element(element)
Remove a previously added layout element

2.7. pylablib 273

pylablib Documentation, Release 1.4.2

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

setup(layout='grid', no_margins=False)
Setup the layout.

Parameters

• layout – layout kind; can be "grid", "vbox" (vertical single-column box), or
"hbox" (horizontal single-row box).

• no_margins – if True, set all layout margins to zero (useful when the widget is in the
middle of layout hierarchy)

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=None)
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

pylablib.core.gui.widgets.param_table module

class pylablib.core.gui.widgets.param_table.ParamTable(parent=None, name=None)
Bases: QWidgetContainer

GUI parameter table.

Simplifies creating code-generated controls and displays table layouts.

Has methods for adding various kinds of controls (labels, edit boxes, combo boxes, check boxes), automatically
creates values table for easy settings/getting. By default supports 2-column (label-control) and 3-column (label-
control-indicator) layout, depending on the parameters given to setup().

Similar to GUIValues, has three container-like accessor: .h for getting the value handler (i.e., self.
get_handler(name) is equivalent to self.h[name]), .w for getting the underlying widget (i.e., self.
get_widget(name) is equivalent to self.w[name]), .v for settings/getting values using the default get-
ting method (equivalent to .wv if cache_values=False in setup(), and to .cv otherwise), .wv for set-
tings/getting current current widget values without caching (i.e., self.get_value(name) is equivalent to
self.v[name], and self.set_value(name, value) is equivalent to self.v[name]=value), .cv for set-
tings/getting values using cached value’s table for getting (i.e., self.current_values[name] is equivalent
to self.cv[name], and self.set_value(name, value) is equivalent to self.cv[name]=value), (i.e.,
self.get_value(name) is equivalent to self.v[name], and self.set_value(name, value) is equivalent
to self.v[name]=value), .i for settings/getting indicator values (i.e., self.get_indicator(name) is equiv-
alent to self.i[name], and self.set_indicator(name, value) is equivalent to self.i[name]=value)
.vs for getting the value changed Qt signal (i.e., self.get_value_changed_signal(name) is equivalent to
self.s[name]),

Like most widgets, requires calling setup() to set up before usage.

Parameters
parent – parent widget

274 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

setup(name=None, add_indicator=True, gui_thread_safe=False, cache_values=False,
change_focused_control=False)

Setup the table.

Parameters

• name (str) – table widget name

• add_indicator (bool) – if True, add indicators for all added widgets by default.

• gui_thread_safe (bool) – if True, all value-access and indicator-access
calls (get/set_value, get/set_all_values, get/set_indicator, and
update_indicators) are automatically called in the GUI thread.

• cache_values (bool) – if True or "update_one", store a dictionary with all
the current values and update it every time a GUI value is changed; provides a
thread-safe way to check current parameters without lag (unlike get_value() or
get_all_values() with gui_thread_safe==True, which re-route calls to a GUI
thread and may cause up to 100ms delay) can also be set to "update_all", in which
case change of any value will cause value update of all variables; otherwise, change of
a value will only cause update of that same value (might potentially miss some value
updates for custom controls).

• change_focused_control (bool) – if False and set_value() method is called
while the widget has user focus, ignore the value; note that set_all_values() will
still set the widget value.

add_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

using_new_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

pad_borders(kind='both', stretch=0)
Add expandable paddings on the bottom and/or right border.

kind can be "bottom", "right", "both", or "none" (do nothing). Note that if more elements are added,
they will be placed after the padding, so the table will be padded in the middle.

add_frame(name, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True,
no_margins=True)

Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

2.7. pylablib 275

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

class ParamRow(widget, label, indicator, value_handler, indicator_handler)
Bases: tuple

indicator

indicator_handler

label

value_handler

widget

add_simple_widget(name, widget, label=None, value_handler=None, add_indicator=None,
location=None, tooltip=None, add_change_event=True)

Add a ‘simple’ (single-spaced, single-valued) widget to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• widget – widget to add

• label (str) – if not None, specifies label to put in front of the widget in the layout

• value_handler – value handler of the widget; by default, use auto-detected value
handler (works for many simple built-in or custom widgets)

• add_indicator – if True, add an indicator label in the third column and a corre-
sponding indicator handler in the built-in values table; by default, use the default value
supplied to setup()

• location (tuple) – tuple (row, column) specifying location of the widget (or wid-
get label, if it is specified); by default, add to a new row in the end and into the first
column can also be a string "skip", which means that the widget is added to some
other location manually later (this option only works if label=None, and doesn’t add
any indicator)

• tooltip – widget tooltip (mouseover text)

• add_change_event (bool) – if True, changing of the widget’s value emits the table’s
contained_value_changed event

Return the widget’s value handler

add_custom_widget(name, widget, value_handler=None, indicator_handler=None, location=None,
tooltip=None, add_change_event=True)

Add a ‘custom’ (multi-spaced, possibly complex-valued) widget to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• widget – widget to add

• value_handler – value handler of the widget; by default, use auto-detected value
handler (works for many simple built-in or custom widgets)

• indicator_handler – indicator handler of the widget; by default, use auto-detected
indicator handler (use set/get_indicator methods if present, or no indicator oth-
erwise)

276 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• location (tuple) – tuple (row, column, rowspan, colspan) specifying loca-
tion of the widget; by default, add to a new row in the end and into the first column,
span one row and all table columns can also be a string "skip", which means that the
widget is added to some other location manually later

• add_change_event (bool) – if True, changing of the widget’s value emits the table’s
contained_value_changed event

Return the widget’s value handler

remove_widget(name)
Remove the widget and, if applicable, its indicator and label

add_virtual_element(name, value=None, multivalued=False, add_indicator=None)
Add a virtual table element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_button(name, caption, label=None, add_indicator=None, location=None, tooltip=None,
add_change_event=True, virtual=False)

Add a button to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str) – text on the button

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_toggle_button(name, caption, value=False, label=None, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a toggle button to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str or list) – text on the button; can be a single string, or a list of two
strings which specifies the caption for off and on states

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

2.7. pylablib 277

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_dropdown_button(name, caption, options=None, index_values=None, label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True,
virtual=False)

Add a button which shows a dropdown menu when clicked.

Similar in behavior to a regular button, but its changed event provides a single argument which is the name
of the selected item.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str or list) – text on the button

• options (list) – list of strings specifying menu options

• index_values (list) – list of values corresponding to menu options; if supplied,
these values are used when setting/getting values or sending signals.

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_check_box(name, caption, value=False, label=None, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a checkbox to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str) – text on the checkbox

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_text_label(name, value='', label=None, location=None, tooltip=None, add_change_event=False,
virtual=False)

Add a text label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_enum_label(name, options, value=None, out_of_range='error', prep=None, label=None,
location=None, tooltip=None, add_change_event=False, virtual=False)

Add a text label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

278 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• options (list) – dictionary {index_value: text} which converts values into
text

• out_of_range (str) – behavior when out-of-range value is applied; can be "error"
(raise error), "text" (convert value into text), or "ignore" (keep current value).

• prep – a function which takes a single value argument and converts into an option;
useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_num_label(name, value=0, limiter=None, formatter=None, label=None, tooltip=None, location=None,
add_change_event=False, virtual=False)

Add a numerical label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (float) – specifies initial value

• limiter (tuple) – tuple (upper_limit, lower_limit, action,
value_type) specifying value limits; see limiter.as_limiter() for details

• formatter (tuple) – either "int" (for integer values), or tuple specifying floating
value format; see formatter.as_formatter() for details

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_text_edit(name, value='', label=None, multiline=False, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a text edit to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• multiline (bool) – if True, use multi-line text edit widget; otherwise, use a standard
single-line edit

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_num_edit(name, value=None, limiter=None, formatter=None, custom_steps=None, label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

Add a numerical edit to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

2.7. pylablib 279

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• limiter (tuple) – tuple (upper_limit, lower_limit, action,
value_type) specifying value limits; see NumEdit.set_limiter() for de-
tails

• formatter (tuple) – either "int" (for integer values), or tuple specifying floating
value format; see NumEdit.set_formatter() for details

• custom_steps – if not None, can specify custom fixed value steps when up/down
keys are pressed with a modifier key (Control, Alt, or Shift) specifies a dictionary
{'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the cor-
responding steps (missing elements mean that the modifier key is ignored)

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_progress_bar(name, value=None, label=None, location=None, tooltip=None,
add_change_event=True, virtual=False)

Add a progress bar to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_combo_box(name, value=None, options=None, index_values=None, out_of_range='reset', label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True,
virtual=False)

Add a combo box to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value – specifies initial value

• options (list) – list of strings specifying box options or a dictionary {option:
index_value}

• index_values (list) – list of values corresponding to box options; if supplied, these
values are used when setting/getting values or sending signals; if options is a dictio-
nary, this parameter is ignored

• out_of_range (str) – behavior when out-of-range value is applied; can be "error"
(raise error), "reset" (reset to no-value position), or "ignore" (keep current value).

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

set_enabled(names=None, enabled=True, include_indicator=True, include_label=True)
Enable or disable widgets with the given names (by default, all widgets)

set_visible(names=None, visible=True, include_indicator=True, include_label=True)
Show or hide widgets with the given names (by default, all widgets)

280 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_all_values()

Get values of all widget in the container

set_value(name, value, force=True)
Set value of a widget with the given name.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

set_all_values(value, force=True)
Set values of all widgets in the table.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

get_widget(name)
Get a widget corresponding to a value with the given name

get_indicator_widget(name)
Get indicator widget for a parameter with the given name, or None if this parameter has no indicator label

get_label_widget(name)
Get label widget for a parameter with the given name, or None if this parameter has no label

get_child(name)
Get the child widget with the given name

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_all_indicators()

Get indicator values of all widget in the container

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_all_indicators(value, ignore_missing=True)

update_indicators()

Update all indicators to represent current values

clear(disconnect=False)
Clear the table (remove all widgets)

If disconnect==True, also disconnect all slots connected to the contained_value_changed signal.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

2.7. pylablib 281

pylablib Documentation, Release 1.4.2

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

282 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

remove_layout_element(element)
Remove a previously added layout element

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

2.7. pylablib 283

pylablib Documentation, Release 1.4.2

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

using_layout(name)
Use a different sublayout as default inside the with block

class pylablib.core.gui.widgets.param_table.StatusTable(parent=None, name=None)
Bases: ParamTable

Expansion of ParamTable which adds status lines, which automatically subscribe to signals and update values.

setup(name=None, add_indicator=True, gui_thread_safe=False, cache_values=False,
change_focused_control=False)

Setup the table.

Parameters

• name (str) – table widget name

• add_indicator (bool) – if True, add indicators for all added widgets by default.

• gui_thread_safe (bool) – if True, all value-access and indicator-access
calls (get/set_value, get/set_all_values, get/set_indicator, and
update_indicators) are automatically called in the GUI thread.

• cache_values (bool) – if True or "update_one", store a dictionary with all
the current values and update it every time a GUI value is changed; provides a
thread-safe way to check current parameters without lag (unlike get_value() or
get_all_values() with gui_thread_safe==True, which re-route calls to a GUI
thread and may cause up to 100ms delay) can also be set to "update_all", in which
case change of any value will cause value update of all variables; otherwise, change of
a value will only cause update of that same value (might potentially miss some value
updates for custom controls).

• change_focused_control (bool) – if False and set_value() method is called
while the widget has user focus, ignore the value; note that set_all_values() will
still set the widget value.

add_status_line(name, label=None, srcs=None, tags=None, filt=None, fmt=None)
Add a status line to the table:

Parameters

• name (str) – widget name (used to reference its value in the values table)

284 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• label (str) – if not None, specifies label to put in front of the status line

• srcs (list) – status signal sources

• tags (list) – status signal tags

• filt (list) – filter function for the signals

• fmt – if not None, specifies a function which takes 3 arguments (signal source, tag,
and value) and generates a status line text.

update_status_line(name, thread=None, path=None)
Update status line to the variable with the given path from the thread with the given thread name.

If thread is None, use srcs name provided upon creation. If path is None, use tags name provided upon
creation.

TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

add_button(name, caption, label=None, add_indicator=None, location=None, tooltip=None,
add_change_event=True, virtual=False)

Add a button to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str) – text on the button

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_check_box(name, caption, value=False, label=None, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a checkbox to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str) – text on the checkbox

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_child(name, widget, location=None, gui_values_path=True)
Add a contained child widget.

name specifies the child storage name; if name==False, only add the widget to they layout, but not to the
container. location specifies the layout location to which the widget is added; if location=="skip", skip
adding it to the layout (can be manually added later). Note that if the widget is added to the layout, it will
be completely deleted when clear or remove_child methods are called; otherwise, simply its clear
method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table; if it is True, add it under
the same root (path=="") if it’s a container, and under name if it’s not; otherwise, gui_values_path
specifies the path under which the widget values are stored.

2.7. pylablib 285

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_child_values(name, widget, path, add_change_event=True)
Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"), use its setup_gui_values
to make it share the same GUI values; otherwise, simply add it to the GUI values under the
given path. if add_change_event==True, changing of the widget’s value emits the container’s
contained_value_changed event

add_combo_box(name, value=None, options=None, index_values=None, out_of_range='reset', label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True,
virtual=False)

Add a combo box to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value – specifies initial value

• options (list) – list of strings specifying box options or a dictionary {option:
index_value}

• index_values (list) – list of values corresponding to box options; if supplied, these
values are used when setting/getting values or sending signals; if options is a dictio-
nary, this parameter is ignored

• out_of_range (str) – behavior when out-of-range value is applied; can be "error"
(raise error), "reset" (reset to no-value position), or "ignore" (keep current value).

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_custom_widget(name, widget, value_handler=None, indicator_handler=None, location=None,
tooltip=None, add_change_event=True)

Add a ‘custom’ (multi-spaced, possibly complex-valued) widget to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• widget – widget to add

• value_handler – value handler of the widget; by default, use auto-detected value
handler (works for many simple built-in or custom widgets)

• indicator_handler – indicator handler of the widget; by default, use auto-detected
indicator handler (use set/get_indicator methods if present, or no indicator oth-
erwise)

• location (tuple) – tuple (row, column, rowspan, colspan) specifying loca-
tion of the widget; by default, add to a new row in the end and into the first column,
span one row and all table columns can also be a string "skip", which means that the
widget is added to some other location manually later

• add_change_event (bool) – if True, changing of the widget’s value emits the table’s
contained_value_changed event

Return the widget’s value handler

286 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_decoration_label(text, location='next')
Add a decoration text label with the given text

add_dropdown_button(name, caption, options=None, index_values=None, label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True,
virtual=False)

Add a button which shows a dropdown menu when clicked.

Similar in behavior to a regular button, but its changed event provides a single argument which is the name
of the selected item.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str or list) – text on the button

• options (list) – list of strings specifying menu options

• index_values (list) – list of values corresponding to menu options; if supplied,
these values are used when setting/getting values or sending signals.

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_enum_label(name, options, value=None, out_of_range='error', prep=None, label=None,
location=None, tooltip=None, add_change_event=False, virtual=False)

Add a text label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• options (list) – dictionary {index_value: text} which converts values into
text

• out_of_range (str) – behavior when out-of-range value is applied; can be "error"
(raise error), "text" (convert value into text), or "ignore" (keep current value).

• prep – a function which takes a single value argument and converts into an option;
useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_frame(name, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)
Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

add_group_box(name, caption, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True,
no_margins=True)

Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame, and location specifies its
location within the container layout. If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

2.7. pylablib 287

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_num_edit(name, value=None, limiter=None, formatter=None, custom_steps=None, label=None,
add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

Add a numerical edit to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• limiter (tuple) – tuple (upper_limit, lower_limit, action,
value_type) specifying value limits; see NumEdit.set_limiter() for de-
tails

• formatter (tuple) – either "int" (for integer values), or tuple specifying floating
value format; see NumEdit.set_formatter() for details

• custom_steps – if not None, can specify custom fixed value steps when up/down
keys are pressed with a modifier key (Control, Alt, or Shift) specifies a dictionary
{'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the cor-
responding steps (missing elements mean that the modifier key is ignored)

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_num_label(name, value=0, limiter=None, formatter=None, label=None, tooltip=None, location=None,
add_change_event=False, virtual=False)

Add a numerical label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (float) – specifies initial value

• limiter (tuple) – tuple (upper_limit, lower_limit, action,
value_type) specifying value limits; see limiter.as_limiter() for details

• formatter (tuple) – either "int" (for integer values), or tuple specifying floating
value format; see formatter.as_formatter() for details

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_padding(kind='auto', location='next', stretch=0)
Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for
hbox), or "both" (stretches in both directions). If stretch is not None, it specifies stretch of the spacer the
corresponding direction (applied to the upper row and leftmost column for multi-cell spacer); can also be
a tuple with two stretches along vertical and horizontal directions.

add_progress_bar(name, value=None, label=None, location=None, tooltip=None,
add_change_event=True, virtual=False)

Add a progress bar to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

288 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_simple_widget(name, widget, label=None, value_handler=None, add_indicator=None,
location=None, tooltip=None, add_change_event=True)

Add a ‘simple’ (single-spaced, single-valued) widget to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• widget – widget to add

• label (str) – if not None, specifies label to put in front of the widget in the layout

• value_handler – value handler of the widget; by default, use auto-detected value
handler (works for many simple built-in or custom widgets)

• add_indicator – if True, add an indicator label in the third column and a corre-
sponding indicator handler in the built-in values table; by default, use the default value
supplied to setup()

• location (tuple) – tuple (row, column) specifying location of the widget (or wid-
get label, if it is specified); by default, add to a new row in the end and into the first
column can also be a string "skip", which means that the widget is added to some
other location manually later (this option only works if label=None, and doesn’t add
any indicator)

• tooltip – widget tooltip (mouseover text)

• add_change_event (bool) – if True, changing of the widget’s value emits the table’s
contained_value_changed event

Return the widget’s value handler

add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')
Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; oth-
erwise, the widget size is fixed. If stretch is not None, it specifies stretch of the spacer the corresponding
direction (applied to the upper row and leftmost column for multi-cell spacer); if kind==”both”`, it can
also be a tuple with two stretches along vertical and horizontal directions.

add_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))
Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later. kind can
be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

add_text_edit(name, value='', label=None, multiline=False, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a text edit to the table.

2.7. pylablib 289

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• multiline (bool) – if True, use multi-line text edit widget; otherwise, use a standard
single-line edit

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_text_label(name, value='', label=None, location=None, tooltip=None, add_change_event=False,
virtual=False)

Add a text label to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• value (bool) – specifies initial value

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_timer(name, period, autostart=True)
Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created). If
autostart==True and the container has been started (by calling start() method), start the timer as
well.

add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)
Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt
timers. loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer
is start, and when it’s finished. One can either specify the timer by name (timer parameter), or create a new
one with the given period. If autostart==True and the container has been started (by calling start()
method), start the timer as well.

add_to_layout(element, location=None, kind='widget')
Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

add_toggle_button(name, caption, value=False, label=None, add_indicator=None, location=None,
tooltip=None, add_change_event=True, virtual=False)

Add a toggle button to the table.

Parameters

• name (str) – widget name (used to reference its value in the values table)

• caption (str or list) – text on the button; can be a single string, or a list of two
strings which specifies the caption for off and on states

• value (bool) – specifies initial value

290 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• virtual (bool) – if True, the widget is not added, and a virtual handler is added
instead

Rest of the arguments and the return value are the same as add_simple_widget().

add_virtual_element(name, value=None, multivalued=False, add_indicator=None)
Add a virtual table element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

clear(disconnect=False)
Clear the table (remove all widgets)

If disconnect==True, also disconnect all slots connected to the contained_value_changed signal.

contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()'
id='140147953757904'>

get_all_indicators()

Get indicator values of all widget in the container

get_all_values()

Get values of all widget in the container

get_child(name)
Get the child widget with the given name

get_element_position(element)
Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main
layout), and location is a tuple (row, column, rowspan, colspan). If the given widget is not in
this layout, return None.

get_handler(name)
Get value handler of a widget with the given name

get_indicator(name=None)
Get indicator value for a widget with the given name (None means all indicators)

get_indicator_widget(name)
Get indicator widget for a parameter with the given name, or None if this parameter has no indicator label

get_label_widget(name)
Get label widget for a parameter with the given name, or None if this parameter has no label

get_layout_shape(name=None)
Get shape (rows, cols) of the current layout

get_sublayout(name=None)
Get the previously added sublayout

get_sublayout_kind(name=None)
Get the kind of the previously added sublayout

2.7. pylablib 291

https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_value(name=None)
Get value of a widget with the given name (None means all values)

get_value_changed_signal(name)
Get a value-changed signal for a widget with the given name

get_widget(name)
Get a widget corresponding to a value with the given name

insert_column(col, sublayout=None, stretch=0)
Insert a new column at the given location in the grid layout

insert_row(row, sublayout=None, stretch=0)
Insert a new row at the given location in the grid layout

is_running()

Check if the container is running (started and not yet stopped)

is_stopping()

Check if the container is stopping (stopping initialized and not yet done)

is_timer_running(name)
Check if the timer with the given name is running

iter_sublayout_items(name=None, include=('widget',), nested=False)
Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout". If
nested==True, iterate over items in contained layouts as well.

pad_borders(kind='both', stretch=0)
Add expandable paddings on the bottom and/or right border.

kind can be "bottom", "right", "both", or "none" (do nothing). Note that if more elements are added,
they will be placed after the padding, so the table will be padded in the middle.

remove_child(name, clear=True)
Remove widget from the container and the layout and (if clear==True) clear it, and remove it

remove_layout_element(element)
Remove a previously added layout element

remove_widget(name)
Remove the widget and, if applicable, its indicator and label

set_all_indicators(value, ignore_missing=True)

set_all_values(value, force=True)
Set values of all widgets in the table.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

set_column_stretch(*args, layout=None)
Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

set_enabled(names=None, enabled=True, include_indicator=True, include_label=True)
Enable or disable widgets with the given names (by default, all widgets)

292 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_indicator(name, value, ignore_missing=False)
Set indicator value for a widget or a branch with the given name

set_row_stretch(*args, layout=None)
Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

set_value(name, value, force=True)
Set value of a widget with the given name.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

set_visible(names=None, visible=True, include_indicator=True, include_label=True)
Show or hide widgets with the given names (by default, all widgets)

setup_name(name)
Set the object’s name

start()

Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

start_timer(name)
Start the timer with the given name (also called automatically on start() method)

stop()

Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

stop_timer(name)
Stop the timer with the given name (also called automatically on stop() method)

update_indicators()

Update all indicators to represent current values

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

using_layout(name)
Use a different sublayout as default inside the with block

using_new_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))
Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

2.7. pylablib 293

pylablib Documentation, Release 1.4.2

Module contents

Submodules

pylablib.core.gui.formatter module

pylablib.core.gui.formatter.parse_float(s)
Parse string as a float, with metric prefixes recognition.

Return tuple (sign, integer, dot, fractional, exponent, prefix), where each entry has structure
(begin, end, text). Return None if string is unrecognizable.

pylablib.core.gui.formatter.pos_to_order(s, pos)
For a given string representation of a float and position in the string, get the decimal order for this position.

Return None if string is un-parsable or position is out of range (not in mantissa section of the number).

pylablib.core.gui.formatter.order_to_pos(s, order)
For a given string representation of float and decimal order, get the position in the string corresponding to this
order.

If order is out of range for a given representation, truncates to most/least significant digit position. Return None
if string is un-parsable.

pylablib.core.gui.formatter.str_to_float(s)
Return float value of a string, with metric prefixes recognition.

Raise ValueError if string is unrecognizable.

pylablib.core.gui.formatter.is_integer(n, tolerance=0.0)
Check if n is less than tolerance away from the nearest integer.

pylablib.core.gui.formatter.float_to_str_SI(n, digits=3, trailing_zeros=False)
Represent float using SI metric prefixes.

For orders >=27 and <-24 use usual scientific notation with order being multiple of 3. If
trailing_zeros==True, then digits define precision, rather than number significant digits

class pylablib.core.gui.formatter.FloatFormatter(output_format='auto', digits=3,
add_trailing_zeros=True, leading_zeros=0,
explicit_sign=False)

Bases: object

Floating point number formatter.

Callable object with takes a number as an argument and returns is string representation.

Parameters

• output_format (str) – can be "auto" (use standard Python conversion), "SI" (use SI
prefixes if possible), or "sci" (scientific “E” notation).

• digits (int) – if add_trailing_zeros==False, determines the number of significant
digits; otherwise, determines precision (number of digits after decimal point).

• add_trailing_zeros (bool) – if True, always show fixed number of digits after the
decimal point, with zero padding if necessary.

• leading_zeros (bool) – determines the minimal size of the integer part (before the
decimal point) of the number; pads with zeros if necessary.

294 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• explicit_sign (bool) – if True, always add explicit plus sign.

class pylablib.core.gui.formatter.IntegerFormatter

Bases: object

Simple integer number formatter.

Callable object with takes a number as an argument and returns is string representation.

For more flexibility (e.g., adding leading zeros) it is possible to use FloatFormatter with digits=0 and
add_trailing_zeros=True.

class pylablib.core.gui.formatter.FmtStringFormatter(fmt)
Bases: object

Formatter based on format string.

Callable object with takes a number as an argument and returns is string representation.

pylablib.core.gui.formatter.as_formatter(formatter)
Turn an object into a formatter.

Can be a callable object turning value into a string, a string ("float", "int", or a format string, e.g., ".5f"),
or a tuple starting with "float" which contains arguments to the FloatFormatter.

pylablib.core.gui.limiter module

exception pylablib.core.gui.limiter.LimitError(value, lower_limit=None, upper_limit=None)
Bases: ArithmeticError

Error raised when the value is out of limits and can’t be coerced

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.gui.limiter.NumberLimit(lower_limit=None, upper_limit=None, action='coerce',
value_type=None)

Bases: object

Number limiter, which checks validity of user inputs.

Callable object with takes a number as an argument and either returns its coerced version (or the number itself,
if it is within limits), or raises LimitError if it should be ignored.

Parameters

• lower_limit – lower limit (inclusive), or None if there is no limit.

• upper_limit – upper limit (inclusive), or None if there is no limit.

• action (str) – action taken if the number is out of limits; either "coerce" (return the
closest valid value), or "ignore" (raise LimitError).

• value_type (str) – determines value type coercion; can be None (do nothing, only check
limits), "float" (cast to float), or "int" (cast to integer).

2.7. pylablib 295

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ArithmeticError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

cast(value)

pylablib.core.gui.limiter.filter_limiter(pred)
Turn a predicate into a limiter.

Returns a function that raises LimitError if the predicate is false.

pylablib.core.gui.limiter.as_limiter(limiter)
Turn an object into a limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or raises
LimitError if it should be ignored; or it can be a tuple (lower, upper, action, value_type), where
lower and upper are the limits (None means no limits), action defines out-of-limit action (either "ignore" to
ignore entered value, or "coerce" to truncate to the nearest limit), and value_type can be None (keep value
as is), "float" (cast value to float), "int" (cast value to int). If the tuple is shorter, the missing parts are filled
by default values (None, None, "ignore", None).

pylablib.core.gui.utils module

pylablib.core.gui.utils.get_top_parent(widget)
Find the top-level parent (parent which does not have further parents)

pylablib.core.gui.utils.find_layout_element(layout, element)
Find a layout element.

Can be a widget, a sublayout, or a layout element Return item index within the layout. If layout is empty or item
is not present, return None

pylablib.core.gui.utils.delete_layout_item(layout, idx)
Remove and item with the given index (completely delete it)

pylablib.core.gui.utils.clean_layout(layout, delete_layout=False)
Delete all items from the layout.

If delete_layout==True, delete the layout as well.

pylablib.core.gui.utils.get_layout_container(widget, top=None, kind='widget')
Find a container widget or layout which contains the given widget.

Note that the container widget does not necessarily correspond to the element parent. If no container could be
found, return None. If kind can be either "widget" (return the containing widget), or "layout" (return the
containing layout, which is a layout or sublayout of the containing widget).

This method works by traversing the whole layout tree, so it can be relatively slow. top can specify the top
container (widget or layout) which definitely contains the given widget; if not specified, use the top-level parent
found by get_top_parent().

pylablib.core.gui.utils.get_all_layout_containers(widget, top=None, kind='widget')
Get a list of all widgets or layouts containing the current widget.

The list is arranged from the bottom of the hierarchy (starting from widget) to the top. Note that the container
widget does not necessarily correspond to the element parent. If no containers could be found, return None. If
kind can be either "widget" (return the containing widgets), or "layout" (return the containing layouts, which
are layouts or sublayouts of the containing widgets.

This method works by traversing the whole layout tree, so it can be relatively slow. top can specify the top
container (widget or layout) which definitely contains the given widget; if not specified, use the top-level parent
found by get_top_parent().

296 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.core.gui.utils.delete_widget(widget)
Remove widget from its layout container and delete it

class pylablib.core.gui.utils.TWidgetLocation(layout, position)
Bases: tuple

layout

position

pylablib.core.gui.utils.get_widget_location(widget, layout=None)
Get location of a widget within the given layout.

Return tuple (layout, position), where layout is the layout object, and position is either a single posi-
tion number (for box layouts), or a tuple (row, col, rowspan, colspan) for a grid layout. If layout is not
specified, autodetect it.

pylablib.core.gui.utils.place_widget_at_location(widget, location)
Insert a widget within the given layout location.

location is a tuple tuple (layout, position), where layout is the layout object, and position is either a
single position number (for box layouts), or a tuple (row, col, rowspan, colspan) for a grid layout. The
tuple has the same format as returned by get_widget_location().

pylablib.core.gui.utils.is_layout_row_empty(layout, row)
Check if the given row in a grid layout is empty

pylablib.core.gui.utils.get_last_filled_row(layout, start_row=0)
Find the last non-empty row in a grid layout after start_row (inclusive).

If all rows after (and including) start_row are empty, return None .

pylablib.core.gui.utils.get_first_empty_row(layout, start_row=0)
Find the first completely empty row in a grid layout after start_row (inclusive)

pylablib.core.gui.utils.insert_layout_row(layout, row, stretch=0, compress=False)
Insert row in a grid layout at a given index.

Any multi-column item spanning over the row (i.e., starting at least one row before row and ending at least one
row after row) gets stretched. Anything else either stays in place (if it’s above row), or gets moved one row down.
stretch determines the stretch factor of the new row. If compress==True, try to find an empty row below the
inserted position and shit it to the new row’s place; otherwise, add a completely new row.

pylablib.core.gui.utils.is_layout_column_empty(layout, col)
Check if the given column in a grid layout is empty

pylablib.core.gui.utils.get_last_filled_column(layout, start_col=0)
Find the last non-empty column in a grid layout after start_col (inclusive).

If all rows after (and including) start_col are empty, return None .

pylablib.core.gui.utils.get_first_empty_column(layout, start_col=0)
Find the first completely empty column in a grid layout after start_col (inclusive)

pylablib.core.gui.utils.insert_layout_column(layout, col, stretch=0, compress=False)
Insert column in a grid layout at a given index.

Any multi-row item spanning over the column (i.e., starting at least one column before col and ending at least
one column after col) gets stretched. Anything else either stays in place (if it’s above col), or gets moved one
column to the right. stretch determines the stretch factor of the new column. If compress==True, try to find

2.7. pylablib 297

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

an empty column below the inserted position and shit it to the new column’s place; otherwise, add a completely
new column.

pylablib.core.gui.utils.compress_grid_layout(layout)
Find all empty rows in a grid layout and shift them to the bottom

pylablib.core.gui.utils.get_relative_position(widget, origin=None)
Get widget’s position relative to the origin (top-level parent if None)

pylablib.core.gui.utils.get_relative_rectangle(widget, origin=None, border=0, trim_border=True)
Get widget rectangle area relative to the origin (top-level parent if None).

If border is non-zero, it specifies a border (integer or 2-tuple) around the widget to add to the rectangle. If
trim_border==True, the resulting rectangle is trimmed to lie withing the origin area. Return QRect object.

pylablib.core.gui.utils.get_screenshot(window=None, rect=None, widget=None, border=0,
include_titlebar=True)

Take a screenshot of a given window or a given widget.

Either window or widget must be defined. If rect (type QRect) or widget are defined, they specify the area to
include into screenshot; in this case, border can define an additional border to add to the rectangle. If rectangle
is not defined, then include_titlebar specifies whether the window titlebar is included.

pylablib.core.gui.value_handling module

Uniform representation of values from different widgets: numerical and text edits and labels, combo and check boxes,
buttons.

pylablib.core.gui.value_handling.build_children_tree(root, types_include, is_atomic=None,
is_excluded=None, self_node='#')

pylablib.core.gui.value_handling.has_methods(widget, methods_sets)
Chick if the widget has methods from given set.

methods_sets is a list of method sets. The function returns True if the widget has at least one method from each
of the sets.

pylablib.core.gui.value_handling.get_method_kind(method, add_args=0)
Determine whether the method takes name as its argument

add_args specifies number of additional required arguments. Return "named" is the method has at least
add_args+1 arguments, and the first one is called "name". Otherwise, return "simple".

exception pylablib.core.gui.value_handling.NoParameterError

Bases: KeyError

Error raised by some handlers to indicate that the parameter is missing

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

298 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError

pylablib Documentation, Release 1.4.2

class pylablib.core.gui.value_handling.IValueHandler(widget)
Bases: object

Generic handler of a widget value.

Has method to get and set the value (or all values, if the widget has internal value structure), representing values
as strings, and value changed signal.

Parameters
widget – handled widget.

get_value(name=None)
Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

set_value(value, name=None)
Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

repr_value(value, name=None)
Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

class pylablib.core.gui.value_handling.VirtualValueHandler(value=None, multivalued=False)
Bases: IValueHandler

Virtual value handler (to simulate controls which are not present in the GUI).

Parameters

• value – initial value

• multivalued (bool) – if True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set.

2.7. pylablib 299

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_value(name=None)
Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

set_value(value, name=None)
Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_value(value, name=None)
Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

class pylablib.core.gui.value_handling.PropertyValueHandler(getter=None, setter=None,
default_name=None)

Bases: IValueHandler

Virtual value handler which uses custom getter/setter methods to simulate a value.

If getter or setter are not supplied but are called, they raise NoParameterError; this means that they are ignored
in GUIValues.get_all_values() and GUIValues.set_all_values() methods, but raise an error when
access directly (e.g., using GUIValues.get_value()).

Parameters

• getter – value getter method; takes 0 or 1 (name) arguments and returns the value

• setter – value setter method; takes 1 (value) or 2 (name and value) arguments and sets
the value

• default_name (str) – default name to be supplied to getter and setter methods if
they require a name argument

300 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_value(name=None)
Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

set_value(value, name=None)
Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_value(value, name=None)
Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

class pylablib.core.gui.value_handling.StandardValueHandler(widget, default_name=None)
Bases: IValueHandler

Standard value handler, typically used for custom widgets.

To implement getting and setting values, looks for get/set_value and get/set_all_values methods for
the widget and uses them accordingly. To implement value representing, looks for repr_value method (if not
defined, use simple string conversion). To implement value change signal, looks for value_changed widget
signal.

Parameters

• widget – handled widget

• default_name (str) – default name to be supplied to get/set_value and get/
set_all_values methods if they require a name argument.

get_value(name=None)
Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

2.7. pylablib 301

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

set_value(value, name=None)
Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

repr_value(value, name=None)
Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

class pylablib.core.gui.value_handling.ISingleValueHandler(widget)
Bases: IValueHandler

Base class for single-value widget handler, typically used for built-in Qt widgets.

Defines new functions get/set_single_value which don’t take a name argument; raises an error if the name
is supplied to any of the standard functions.

Parameters
widget – handled widget

get_single_value()

Get the widget value

get_value(name=None)
Get widget value.

If name is not None raise an error.

set_single_value(value)
Set the widget value

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

302 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

repr_single_value(value)
Represent the widget value as a string

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

class pylablib.core.gui.value_handling.LineEditValueHandler(widget)
Bases: ISingleValueHandler

Value handler for QLineEdit widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

2.7. pylablib 303

pylablib Documentation, Release 1.4.2

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

repr_single_value(value)
Represent the widget value as a string

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.LabelValueHandler(widget)
Bases: ISingleValueHandler

Value handler for QLabel widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

304 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_single_value(value)
Represent the widget value as a string

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.IBoolValueHandler(widget, labels=('Off', 'On'))
Bases: ISingleValueHandler

Generic value handler for widgets with boolean values

repr_single_value(value)
Represent the widget value as a string

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_single_value()

Get the widget value

get_value(name=None)
Get widget value.

If name is not None raise an error.

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

2.7. pylablib 305

pylablib Documentation, Release 1.4.2

set_single_value(value)
Set the widget value

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.CheckboxValueHandler(widget, labels=('Off', 'On'))
Bases: IBoolValueHandler

Value handler for QCheckBox widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

repr_single_value(value)
Represent the widget value as a string

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

306 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

class pylablib.core.gui.value_handling.PushButtonValueHandler(widget, labels=('Off', 'On'))
Bases: IBoolValueHandler

Value handler for QPushButton widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_single_value(value)
Represent the widget value as a string

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.ToolButtonValueHandler(widget, labels=('Off', 'On'))
Bases: IBoolValueHandler

Value handler for QToolButton widget

get_single_value()

Get the widget value

2.7. pylablib 307

pylablib Documentation, Release 1.4.2

set_single_value(value)
Set the widget value

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_single_value(value)
Represent the widget value as a string

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.ComboBoxValueHandler(widget)
Bases: ISingleValueHandler

Value handler for QComboBox widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

308 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

repr_single_value(value)
Represent the widget value as a string

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

class pylablib.core.gui.value_handling.ProgressBarValueHandler(widget)
Bases: ISingleValueHandler

Value handler for QProgressBar widget

get_single_value()

Get the widget value

set_single_value(value)
Set the widget value

can_set_value(allow_focus=True)
Check if setting value from the code is allowed.

Parameters
focus – if False, indicates that settings of focused widgets isn’t allowed, with some ex-
ceptions (buttons, check boxes, combo boxes)

2.7. pylablib 309

pylablib Documentation, Release 1.4.2

connect_value_changed_handler(handler, only_signal=True)
Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal()
signal; however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-
in on-changed signals by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads,
but rather directly calls the handler function). If you need to connect a handler to a signal using some other
connection method, you can use get_value_changed_signal() directly.

get_handler(name=None)
Get handler of a contained widget (or same widget, if name==None)

get_value(name=None)
Get widget value.

If name is not None raise an error.

get_value_changed_signal()

Get the Qt signal emitted when the value is changed

repr_single_value(value)
Represent the widget value as a string

repr_value(value, name=None)
Return textual representation of the value.

If name is not None raise an error.

set_value(value, name=None)
Set widget value.

If name is not None raise an error.

pylablib.core.gui.value_handling.is_handled_widget(widget)
Check if the widget can be handles by StandardValueHandler

pylablib.core.gui.value_handling.create_value_handler(widget)
Autodetect value handler for the given widget

class pylablib.core.gui.value_handling.IIndicatorHandler

Bases: object

Generic handler of an indicator.

Has methods to get and set the indicator value.

get_value(name=None)
Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

set_value(value, name=None)
Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

310 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.gui.value_handling.VirtualIndicatorHandler

alias of VirtualValueHandler

class pylablib.core.gui.value_handling.StandardIndicatorHandler(widget, default_name=None)
Bases: IIndicatorHandler

Default indicator handler, typically used for custom widgets.

To implement getting and setting values, looks for get/set_indicator and get/set_all_indicatorsmeth-
ods for the widget and uses them accordingly.

Parameters

• widget – handled widget

• default_name (str) – default name to be supplied to get/set_indicator methods if
they require a name argument.

get_value(name=None)
Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

set_value(value, name=None)
Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

class pylablib.core.gui.value_handling.LabelIndicatorHandler(label, formatter=None,
repr_value_name=None)

Bases: IIndicatorHandler

Indicator handler which uses a label to show the value.

Can takes optional widget or widget handler which converts values into strings using its repr_value method
(by default, use the standard string conversion).

Parameters

• label – widget or value handler used to represent the value (takes string values)

• formatter – specifies a way to turn values into string representation; can be a widget
handler or a widget (its repr_func method is used to represent its value), a function (it
takes either a single value argument or two arguments name and value and returns string
value), or None (use simple string conversion)

• repr_value_name (str) – default name to be supplied to repr_value if it requires a name
argument and name is not supplied

get_value(name=None)
Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

repr_value(value, name=None)
Represent a value with a given name

2.7. pylablib 311

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

set_value(value, name=None)
Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex wid-
gets).

pylablib.core.gui.value_handling.create_indicator_handler(widget, label=None,
require_setter=False)

Autodetect indicator handler for the given widget and optional indicator label

exception pylablib.core.gui.value_handling.MissingGUIHandlerError

Bases: KeyError

Missing GUI handler

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.core.gui.value_handling.GUIValues(gui_thread_safe=True)
Bases: object

A collection of values which can be used to manipulate many value handlers at once and represent them as a
hierarchical structure.

Has four container-like accessor: .h for getting/adding/removing the value handler (i.e., self.
get_handler(name) is equivalent to self.h[name], and self.add_handler(name, handler) is equiva-
lent to self.h[name]=handler, and self.remove_handler(name) is equivalent to del self.h[name]),
.w for getting the underlying widget (i.e., self.get_widget(name) is equivalent to self.w[name]), .
v for settings/getting values (i.e., self.get_value(name) is equivalent to self.v[name], and self.
set_value(name, value) is equivalent to self.v[name]=value), .i for settings/getting indicator val-
ues (i.e., self.get_indicator(name) is equivalent to self.i[name], and self.set_indicator(name,
value) is equivalent to self.i[name]=value) .vs for getting the value changed Qt signal (i.e., self.
get_value_changed_signal(name) is equivalent to self.s[name]),

Parameters
gui_thread_safe (bool) – if True, all value-access and indicator-access calls (get/
set_value, get/set_all_values, get/set_indicator, get/set_all_indicators,
and update_indicators) are automatically called in the GUI thread.

add_handler(name, handler)
Add a value handler under a given name

remove_handler(name, remove_indicator=True, disconnect=False)
Remove the value handler with a given name.

If remove_indicator==True, also try to remove the indicator widget. If disconnect==True, also
disconnect all slots connected to the value_changed signal. Unlike most methods (e.g., get_value()
or get_handler()), does not recursively query the children, so it only works if the handler is contained
in this table.

get_handler(name)
Get the value handler with the given name

312 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_widget(name, widget, add_indicator=True)
Add a widget under a given name (value handler type is auto-detected)

get_widget(name)
Get the widget corresponding to the handler under the given name

add_nested(name, gui_values, add_indicator=True)
Add a nested GUIValues under a given name

add_virtual_element(name, value=None, multivalued=False, add_indicator=True)
Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view (its
value can be set or read, it has on-change events, it can have indicator). The element value is simply stored
on set and retrieved on get. If multivalued==True, the internal value is assumed to be complex, so it is
forced to be a Dictionary every time it is set. If add_indicator==True, add default indicator handler
as well.

add_property_element(name, getter=None, setter=None, add_indicator=True)
Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of
view; each time the value is set or get, the corresponding setter and getter methods are called. If
add_indicator==True, add default (stored value) indicator handler as well.

add_all_children(root, root_name=None, types_include=None, types_exclude=(), names_exclude=None)
Add a widget and all its children to the values set.

The result is organized as a tree using parent-child relations (note that it implies that only children widgets
correspond to tree nodes, i.e., only their values can be get/set).

Parameters

• root – root widget

• root_name – path to the sub-branch where the values will be placed

• types_include – if not None, specifies list of widget classes (e.g., QCheckBox) to
include

• types_include – specifies list of widget classes to exclude

• names_exclude – if not None, specifies list of widget names to exclude

class IndicatorsSet(ind)
Bases: tuple

ind

add_indicator_handler(name, handler, ind_name='__default__')
Add indicator handler with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple
indicators.

remove_indicator_handler(name, ind_name=None)
Remove indicator handler with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple
indicators. By default, remove all indicators with this name

2.7. pylablib 313

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

add_widget_indicator(name, widget, label=None, ind_name='__default__')
Add widget-based indicator with a given name.

If label is None, use widget’s get/set_indicator or get/set_all_indicators functions to indicate
the value. Otherwise, use the given label to indicate the value (label is used to show the value, widget is
used to represent it). ind_name can distinguish different sub-indicators with the same name, if the same
value has multiple indicators.

add_label_indicator(name, label, formatter=None, ind_name='__default__')
Add label-based indicator with a given name.

formatter specifies a way to turn values into string representation; can be a widget handler or a widget (its
repr_funcmethod is used to represent its value), a function (it takes either a single value argument or two
arguments name and value and returns string value), or None (use simple string conversion) ind_name
can distinguish different sub-indicators with the same name, if the same value has multiple indicators.

get_value(name=None)
Get a value or a set of values in a subtree under a given name (all values by default).

Automatically handles complex widgets and sub-names. If name refers to a branch, return a Dictionary
object containing tree structure of the names. If supplied, include and exclude are containers specifying
included and excluded names (relative to the root); by default, include everything and exclude nothing.

get_all_values(root=None)
Get all values in the given sub-branch.

Same as get_value(), but returns an empty dictionary if the name is missing.

set_value(name, value)
Set value under a given name.

Automatically handles complex widgets and sub-names

set_all_values(value, root=None)

get_indicator(name=None, ind_name='__default__')
Get indicator value with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple in-
dicators. If supplied, include and exclude are containers specifying included and excluded names (relative
to the root); by default, include everything and exclude nothing.

get_all_indicators(root=None, ind_name='__default__')
Get all indicator values in the given sub-branch.

Same as get_indicator(), but returns an empty dictionary if the root is missing.

set_indicator(name, value, ind_name=None, ignore_missing=False)
Set indicator value with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple
indicators. By default, set all sub-indicators to the given value. If supplied, include and exclude are
containers specifying included and excluded names (relative to the root); by default, include everything
and exclude nothing. If ignore_missing==True and the given indicator and sub-indicator names are
missing, raise an error; otherwise, do nothing.

set_all_indicators(value, root='', ind_name=None, ignore_missing=True)

314 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

update_indicators(root='')
Update all indicators in a subtree with the given root (all values by default) to represent current values.

If supplied, include and exclude are containers specifying included and excluded names (relative to the
root); by default, include everything and exclude nothing.

repr_value(name, value)
Get a textual representation of a value under a given name.

Automatically handles complex widgets and sub-names.

get_value_changed_signal(name)
Get changed events for a value under a given name

update_value(name=None)
Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots. If name is None, emit
for all values in the table.

pylablib.core.gui.value_handling.get_gui_values(gui_values=None, gui_values_path='')
Get new or existing GUIValues object and the sub-branch path inside it based on the supplied arguments.

If gui_values is None or "new", create a new object and set empty root path. If gui_values itself has gui_values
attribute, get this attribute, and prepend object’s gui_values_path attribute to the given path. Otherwise,
assume that gui_values is GUIValues object, and use the supplied root.

pylablib.core.gui.value_handling.virtual_gui_values(**kwargs)
Create a gui values set with all virtual values.

kwargs define element names and default values.

Module contents

pylablib.core.thread package

Submodules

pylablib.core.thread.callsync module

class pylablib.core.thread.callsync.QCallResultSynchronizer(skippable=True)
Bases: QThreadNotifier

get_progress()

Get the progress of the call execution.

Can be "waiting" (call is not done executing), "done" (call done successfully), "fail" (call failed,
probably due to thread being stopped), "skip" (call was skipped), or "exception" (call raised an excep-
tion).

is_call_done()

Check if the call is done

skipped()

Check if the call was skipped

2.7. pylablib 315

pylablib Documentation, Release 1.4.2

failed()

Check if the call failed

get_value_sync(timeout=None, default=None, error_on_fail=True, error_on_skip=True,
pass_exception=True)

Wait (with the given timeout) for the value passed by the notifier

If error_on_fail==True and the controlled thread notifies of a fail (usually, if it’s stopped before
it executed the call), raise threadprop.NoControllerThreadError; otherwise, return default. If
error_on_skip==True and the call was skipped (e.g., due to full call queue), raise threadprop.
SkippedCallError; otherwise, return default. If pass_exception==True and the returned value rep-
resents exception, re-raise it in the caller thread; otherwise, return default.

done_notify()

Check if notifying is done

done_wait()

Check if waiting is done

get_value()

Get the value passed by the notifier (doesn’t check if it has been passed already)

notify(*args, **kwargs)
Notify the waiting process.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called
before wait(), return immediately.

notifying_state()

success_wait()

Check if waiting is done successfully

wait(*args, **kwargs)
Wait for the notification.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called after
notify(), return immediately.

waiting()

Check if waiting is in progress

waiting_state()

class pylablib.core.thread.callsync.QDummyResultSynchronizer

Bases: object

Dummy result synchronizer for call which don’t require result synchronization (e.g., multicasts)

notify(value)

class pylablib.core.thread.callsync.QDirectResultSynchronizer(value)
Bases: object

Result “synchronizer” for direct calls.

Behaves as a regular result synchronizer with an already executed call.

get_progress()

Get the progress of the call execution (always return "done")

316 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

is_call_done()

Check if the call is done (always return True)

skipped()

Check if the call was skipped (always return False)

failed()

Check if the call failed (always return False)

get_value()

Return stored value

get_value_sync(timeout=None, default=None, error_on_fail=True, error_on_skip=True,
pass_exception=True)

Return stored value.

Parameters are only for compatibility with QCallResultSynchronizer.

wait(*args, **kwargs)
Do nothing (present only for compatibility with QCallResultSynchronizer)

notify(*args, **kwargs)
Do nothing (present only for compatibility with QCallResultSynchronizer)

waiting()

Check if waiting is in progress (always return False)

done_wait()

Check if waiting is done (always return True)

success_wait()

Check if waiting is done successfully (always return True)

done_notify()

Check if notifying is done (always return True)

waiting_state()

notifying_state()

class pylablib.core.thread.callsync.QScheduledCall(func, args=None, kwargs=None, silent=False,
result_synchronizer=None)

Bases: object

Object representing a scheduled remote call.

Can be executed, skipped, or failed in the target thread, in which case it notifies the result synchronizer (if
supplied).

Parameters

• func – callable to be invoked in the destination thread

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• silent – if True, silence the exception in the execution thread and simply pass it to the
caller thread; otherwise, the exception is raised in both threads

2.7. pylablib 317

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• result_synchronizer – result synchronizer object; can be None (create
new QCallResultSynchronizer), "async" (no result synchronization), or a
QCallResultSynchronizer object.

class Callback(func, pass_result, call_on_exception, call_on_unschedule)
Bases: tuple

call_on_exception

call_on_unschedule

func

pass_result

execute(silent=None)
Execute the call and notify the result synchronizer (invoked by the destination thread)

add_callback(callback, pass_result=True, call_on_exception=False, call_on_unschedule=False,
front=False)

Set the callback to be executed after the main call is done.

If pass_result==True, pass function result to the callback (or None if call failed); otherwise, pass
no arguments. If call_on_exception==True, call it even if the original call raised an exception. If
call_on_unschedule==True, call it for any call unscheduling event, including using skip() or fail()
methods (this effectively ignores call_on_exception, since the callback is called regardless of the excep-
tion). If front==True, add the callback in the front of the line (executes first).

fail()

Notify that the call is failed (invoked by the destination thread)

skip()

Notify that the call is skipped (invoked by the destination thread)

class pylablib.core.thread.callsync.TDefaultCallInfo(call_time)
Bases: tuple

call_time

class pylablib.core.thread.callsync.QScheduler(call_info_argname=None)
Bases: object

Generic call scheduler.

Two methods are used by the external scheduling routines: build_call() to create a QScheduledCall with
appropriate parameters, and schedule(), which takes a call and schedules it. The schedule() method should
return True if the scheduling was successful (at least, for now), and False otherwise.

Parameters
call_info_argname – if not None, supplies a name of a keyword argument via which call
info (generated by build_call_info()) is passed on function call

build_call_info()

Build call info tuple which can be passed to scheduled calls

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

318 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

schedule(call)
Schedule the call

clear()

Clear the scheduler

class pylablib.core.thread.callsync.QDirectCallScheduler(call_info_argname=None)
Bases: QScheduler

Simplest call scheduler: directly executes the calls on scheduling in the scheduling thread.

Parameters
call_info_argname – if not None, supplies a name of a keyword argument via which call
info (generated by QScheduler.build_call_info()) is passed on function call

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=False)

Build QScheduledCall for subsequent scheduling.

Parameters

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

schedule(call)
Schedule the call

build_call_info()

Build call info tuple which can be passed to scheduled calls

2.7. pylablib 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

clear()

Clear the scheduler

class pylablib.core.thread.callsync.QQueueScheduler(on_full_queue='skip_current',
call_info_argname=None)

Bases: QScheduler

Call scheduler with a builtin call queue.

Supports placing the calls and retrieving them (from the destination thread). Has ability to skip some calls if,
e.g., the queue is too full. Whether the call should be skipped is determined by can_schedule() (should be
overloaded in subclasses). Used as a default command scheduler.

Parameters

• on_full_queue – action to be taken if the call can’t be scheduled (i.e., can_schedule()
returns False); can be "skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current) "skip_oldest" (skip the
oldest call in the queue; place the current), "call_current" (execute the call which is
being scheduled immediately in the caller thread), "call_newest" (execute the most re-
cent call immediately in the caller thread), "call_oldest" (execute the oldest call in the
queue immediately in the caller thread), or "wait" (wait until the call can be scheduled,
which is checked after every call removal from the queue; place the call)

• call_info_argname – if not None, supplies a name of a keyword argument via which
call info (generated by QScheduler.build_call_info()) is passed on function call

Methods to overload:

• can_schedule(): check if the call can be scheduled

• call_added(): called when a new call has been added to the queue

• call_popped(): called when a call has been removed from the queue (either for execution, or for
skipping)

can_schedule(call)
Check if the call can be scheduled

call_added(call)
Called whenever call has been added to the queue

call_popped(call, idx)
Called whenever call has been removed from the queue

idx determines the call position within the queue.

schedule(call)
Schedule a call

pop_call()

Pop the call from the queue head.

If the queue is empty, return None

unschedule(call)
Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified
elsewhere).

320 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

has_calls()

Check if there are queued calls

clear(close=True)
Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and
fail all calls in the queue; otherwise, skip all calls currently in the queue.

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

build_call_info()

Build call info tuple which can be passed to scheduled calls

class pylablib.core.thread.callsync.QQueueLengthLimitScheduler(max_len=1,
on_full_queue='skip_current',
call_info_argname=None)

Bases: QQueueScheduler

Queued call scheduler with a length limit.

Parameters

• max_len – maximal queue length; non-positive values are interpreted as no limit can also
be a tuple (arg_name, max_len), in which case the length is calculated separately for
every value of the parameter arg_name supplied to the method

• on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can
be "skip_current" (skip the call which is being scheduled), "skip_newest" (skip the
most recent call; place the current) "skip_oldest" (skip the oldest call in the queue;
place the current), "call_current" (execute the call which is being scheduled immedi-
ately in the caller thread), "call_newest" (execute the most recent call immediately in
the caller thread), "call_oldest" (execute the oldest call in the queue immediately in
the caller thread), or "wait" (wait until the call can be scheduled, which is checked after
every call removal from the queue; place the call)

• call_info_argname – if not None, supplies a name of a keyword argument via which
call info (generated by QScheduler.build_call_info()) is passed on function call

2.7. pylablib 321

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

change_max_len(max_len)
Change maximal length of the call queue (doesn’t affect already scheduled calls)

get_current_len()

Get current number of calls in the queue

call_added(call)
Called whenever call has been added to the queue

call_popped(call, idx)
Called whenever call has been removed from the queue

idx determines the call position within the queue.

can_schedule(call)
Check if the call can be scheduled

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

build_call_info()

Build call info tuple which can be passed to scheduled calls

clear(close=True)
Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and
fail all calls in the queue; otherwise, skip all calls currently in the queue.

has_calls()

Check if there are queued calls

pop_call()

Pop the call from the queue head.

If the queue is empty, return None

schedule(call)
Schedule a call

322 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

unschedule(call)
Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified
elsewhere).

class pylablib.core.thread.callsync.QQueueSizeLimitScheduler(max_size=1, size_calc=None,
on_full_queue='skip_current',
call_info_argname=None)

Bases: QQueueScheduler

Queued call scheduler with a generic size limit; similar to QQueueLengthLimitScheduler, but more flexible
and can implement more restrictions (e.g., queue length and arguments RAM size).

Parameters

• max_size – maximal total size of the arguments; can be either a single number, or a tuple
(if several different size metrics are involved); non-positive values are interpreted as no
limit

• size_calc – function that takes a single argument (call to be placed) and returns its
size; can be either a single number, or a tuple (if several different size metrics are in-
volved); by default, simply returns 1, which makes the scheduler behavior identical to
QQueueLengthLimitScheduler

• on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can
be "skip_current" (skip the call which is being scheduled), "skip_newest" (skip the
most recent call; place the current) "skip_oldest" (skip the oldest call in the queue;
place the current), "call_current" (execute the call which is being scheduled immedi-
ately in the caller thread), "call_newest" (execute the most recent call immediately in
the caller thread), "call_oldest" (execute the oldest call in the queue immediately in
the caller thread), or "wait" (wait until the call can be scheduled, which is checked after
every call removal from the queue; place the call)

• call_info_argname – if not None, supplies a name of a keyword argument via which
call info (generated by QScheduler.build_call_info()) is passed on function call

change_max_size(max_size)
Change size restrictions

get_current_size()

Get current size metrics

call_added(call)
Called whenever call has been added to the queue

call_popped(call, idx)
Called whenever call has been removed from the queue

idx determines the call position within the queue.

can_schedule(call)
Check if the call can be scheduled

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

2.7. pylablib 323

pylablib Documentation, Release 1.4.2

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

build_call_info()

Build call info tuple which can be passed to scheduled calls

clear(close=True)
Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and
fail all calls in the queue; otherwise, skip all calls currently in the queue.

has_calls()

Check if there are queued calls

pop_call()

Pop the call from the queue head.

If the queue is empty, return None

schedule(call)
Schedule a call

unschedule(call)
Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified
elsewhere).

pylablib.core.thread.callsync.schedule_multiple_queues(call, queues)
Schedule the call simultaneously in several queues.

Go through queues in the given order and schedule call in every one of them. If one of the schedules failed or
the call has been executed there, unschedule it from all the previous queues and return False; otherwise, return
True.

class pylablib.core.thread.callsync.QMultiQueueScheduler(schedulers, notifiers)
Bases: object

Wrapper around schedule_multiple_queues() which acts as a single scheduler.

Support additional notifiers, which are called if the scheduling is successful (e.g., to notify and wake up the
destination thread).

build_call(*args, **kwargs)

schedule(call)

324 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class pylablib.core.thread.callsync.QThreadCallScheduler(thread=None, tag=None, priority=0,
interrupt=True,
call_info_argname=None)

Bases: QScheduler

Call scheduler via thread calls (QThreadController.call_in_thread_callback())

Parameters

• thread – destination thread (by default, thread which creates the scheduler)

• tag – if supplied, send the call in a message with the given tag; otherwise, use the interrupt
call (generally, higher priority method).

• priority – message priority (only when tag is not None)

• interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or
sleeping), or it should be called in the main event loop

• call_info_argname – if not None, supplies a name of a keyword argument via which
call info (generated by QScheduler.build_call_info()) is passed on function call

schedule(call)
Schedule the call

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

build_call_info()

Build call info tuple which can be passed to scheduled calls

clear()

Clear the scheduler

class pylablib.core.thread.callsync.QMulticastThreadCallScheduler(thread=None, limit_queue=1,
tag=None, priority=0,
interrupt=True,
call_info_argname=None)

Bases: QThreadCallScheduler

Extended call scheduler via thread calls, which can limit number of queued calls.

2.7. pylablib 325

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Parameters

• thread – destination thread (by default, thread which creates the scheduler)

• limit_queue – call queue limit (non-positive numbers are interpreted as no limit)

• tag – if supplied, send the call in a message with the given tag; otherwise, use the interrupt
call (generally, higher priority method).

• priority – message priority (only when tag is not None)

• interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or
sleeping), or it should be called in the main event loop

• call_info_argname – if not None, supplies a name of a keyword argument via which
call info (generated by QScheduler.build_call_info()) is passed on function call

schedule(call)
Schedule the call

build_call(func, args=None, kwargs=None, callback=None, pass_result=True,
callback_on_exception=True, sync_result=True)

Build QScheduledCall for subsequent scheduling.

Parameters

• func – function to be called

• args – arguments to be passed to func

• kwargs – keyword arguments to be passed to func

• callback – optional callback to be called when func is done

• pass_result (bool) – if True, pass func result as a single argument to the callback;
otherwise, give no arguments

• callback_on_exception (bool) – if True, execute the callback on call fail or skip
(if it requires an argument, None is supplied); otherwise, only execute it if the call was
successful

• sync_result – if True, the call has a default result synchronizer; otherwise, no syn-
chronization is made.

build_call_info()

Build call info tuple which can be passed to scheduled calls

clear()

Clear the scheduler

pylablib.core.thread.controller module

pylablib.core.thread.controller.exint(error_msg_template='{}:', pass_stop_exception=False)
Context that intercepts exceptions and stops the execution in a controlled manner (quitting the main thread)

pylablib.core.thread.controller.add_exception_hook(name, func, single_call=False)
Add an exception hook, which is called whenever exception is caught via exint() wrapper.

If single_call==True, the hook is removed from the set when it is called.

326 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.thread.controller.remove_exception_hook(name)
Remove the exception hook with the given name

pylablib.core.thread.controller.exsafe(func)
Decorator that intercepts exceptions raised by func and stops the execution in a controlled manner (quitting the
main thread)

pylablib.core.thread.controller.exsafeSlot(*slargs, **slkwargs)
Wrapper around Qt slot which intercepts exceptions and stops the execution in a controlled manner

pylablib.core.thread.controller.toploopSlot(*slargs, **slkwargs)
Wrapper around Qt slot which intercepts exceptions and stops the execution in a controlled manner

class pylablib.core.thread.controller.QThreadControllerThread(controller)
Bases: object

finalized = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

run()

quit_sync()

pylablib.core.thread.controller.remote_call(func)
Decorator that turns a controller method into a remote call (call from a different thread is passed synchronously)

pylablib.core.thread.controller.call_in_thread(thread_name, interrupt=True, pass_exception=True,
silent=False, sync=True)

Decorator that turns any function into a remote call in a thread with a given name (call from a different thread is
passed synchronously)

pylablib.core.thread.controller.call_in_gui_thread(func=None, interrupt=True,
pass_exception=True, silent=False, sync=True)

Decorator that turns any function into a remote call in a GUI thread (call from a different thread is passed
synchronously)

pylablib.core.thread.controller.gui_thread_method(func)
Decorator for an object’s method that checks if the object’s gui_thread_safe attribute is true, in which case
the call is routed to the GUI thread

class pylablib.core.thread.controller.QThreadController(name=None, kind='loop',
multicast_pool=None)

Bases: object

Generic Qt thread controller.

Responsible for all inter-thread synchronization. There is one controller per thread, and

Parameters

• name (str) – thread name (by default, generate a new unique name); this name can be
used to obtain thread controller via get_controller()

• kind (str) – thread kind; can be "loop" (thread is running in the Qt message loop; be-
havior is implemented in process_message() and remote calls), "run" (thread executes
run() method and quits after it is complete), or "main" (can only be created in the main
GUI thread)

• multicast_pool – MulticastPool for this thread (by default, use the default common
pool)

2.7. pylablib 327

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

Methods to overload:

• on_start(): executed on the thread startup (between synchronization points "start" and "run")

• on_finish(): executed on thread cleanup (attempts to execute in any case, including exceptions)

• run(): executed once per thread; thread is stopped afterwards (only if kind=="run")

• process_message(): function that takes 2 arguments (tag and value) of the message and
processes it; returns True if the message has been processed and False otherwise

(in which case it is stored and can be recovered via wait_for_message()/pop_message());
by default, always return False

• process_interrupt(): function that tales 2 arguments (tag and value) of the interrupt
message (message with a tag starting with "interrupt.") and processes it;

by default, assumes that any value with tag "execute" is a function and executes it

Signals:

• started: emitted on thread start (after on_start() is executed)

• finished: emitted on thread finish (before on_finish() is executed)

started = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

This signal is emitted after the thread has started (after the setup code has been executed, before its lifetime
state is changed)

finished = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

This signal is emitted before the thread has finished (before the cleanup code has been executed, after its
lifetime state is changed)

allowing_toploop(depth=1)
Context manager which temporarily treats the current loop level and several deeper levels as a top loop.

All event loops which lie up to depth below this one are treated as top loops.

blocking_control_signals(kinds='all', ignore=None)
Context manager which temporarily blocks external control signals.

After leaving the wrapped code segment, all of the blocked but not ignored calls are executed. kind deter-
mines the kind of calls to block; it is a collection of elements among "message", "stop", and "call"
and blocks, correspondingly, messages, stop signals, and any call_in_thread-related requests; can be
also be "all", which includes all of these categories. ignore specifies kinds which are completely ignored
if sent during the blocking interval; can also be "all", which includes all of the kinds categories. Useful
to temporarily “suspend” the thread communication with other threads, especially for the main GUI thread
(e.g., to show a blocking message box). Local call method.

wait_for_message(tag, timeout=None, top_loop=False)
Wait for a single message with a given tag.

Return value of a received message with this tag. If timeout is passed, raise threadprop.
TimeoutThreadError. If top_loop==True, treat the waiting as the top message loop (i.e., any top
loop message or signal can be executed here). Local call method.

new_messages_number(tag)
Get the number of queued messages with a given tag.

Local call method.

328 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pop_message(tag)
Pop the latest message with the given tag.

Select the message with the highest priority, and among those the oldest one. If no messages are available,
raise threadprop.NoMessageThreadError. Local call method.

wait_for_sync(tag, uid, timeout=None)
Wait for synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code. If timeout is passed,
raise threadprop.TimeoutThreadError. Local call method.

wait_for_any_message(timeout=None, top_loop=False)
Wait for any message (including synchronization messages or pokes).

If timeout is passed, raise threadprop.TimeoutThreadError. If top_loop==True, treat the waiting
as the top message loop (i.e., any top loop message or signal can be executed here). Local call method.

wait_until(check, timeout=None, top_loop=False)
Wait until a given condition is true.

Condition is given by the check function, which is called after every new received message and should
return True if the condition is met. If top_loop==True, treat the waiting as the top message loop
(i.e., any top loop message or signal can be executed here). If timeout is passed, raise threadprop.
TimeoutThreadError. Local call method.

check_messages(top_loop=False)
Receive new messages.

Runs the underlying message loop to process newly received message and signals (and place them in
corresponding queues if necessary). This method is rarely invoked, and only should be used periodically
during long computations to not ‘freeze’ the thread. If top_loop==True, treat the waiting as the top
message loop (i.e., any top loop message or signal can be executed here). Local call method.

sleep(timeout, wake_on_message=False, top_loop=False)
Sleep for a given time (in seconds).

Unlike time.sleep(), constantly checks the event loop for new messages (e.g., if stop or interrupt com-
mands are issued). In addition, if wake_on_message==True, wake up if any message has been received;
it this case. return True if the wait has been completed, and False if it has been interrupted by a message.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can
be executed here). If timeout is None, wait forever (usually, until the application is closed, or some
interrupt message raises and error). Local call method.

no_stopping()

Context manager, which temporarily suspends stop requests (InterruptExceptionStop exceptions).

If the stop request has been made within this block, raise the exception on exit. Note that stop() method
and, correspondingly, stop_controller() still work, when called from the controlled thread.

process_interrupt(tag, value)
Process a new interrupt.

If the function returns False, the interrupt is put in the corresponding queue. Otherwise, the the message
is interrupt to be already, and it gets ‘absorbed’. Local call method, called automatically.

process_message(tag, value)
Process a new message.

If the function returns False, the message is put in the corresponding queue. Otherwise, the the message
is considered to be already, and it gets ‘absorbed’. Local call method, called automatically.

2.7. pylablib 329

https://docs.python.org/3/library/time.html#time.sleep

pylablib Documentation, Release 1.4.2

on_start()

Method invoked on the start of the thread.

Local call method, called automatically.

on_finish()

Method invoked in the end of the thread.

Called regardless of the stopping reason (normal finishing, exception, application finishing). Local call
method, called automatically.

run()

Method called to run the main thread code (only for "run" thread kind).

Local call method, called automatically.

subscribe_sync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0,
limit_queue=None, call_interrupt=True, add_call_info=False, return_result=False,
sid=None)

Subscribe a synchronous callback to a multicast.

If a multicast is sent, callback is called from the dest_controller thread (by default, thread which is calling
this function) via the thread call mechanism (QThreadController.call_in_thread_callback()). In
Qt, analogous to making a signal connection with a queued call. By default, the subscribed destination is
the thread’s name. Local call method.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• subscription_priority (int) – subscription priority (higher priority subscribers
are called first).

• limit_queue (int) – limits the maximal number of scheduled calls (if the multicast
is sent while at least limit_queue callbacks are already in queue to be executed, ignore
it) 0 or negative value means no limit (not recommended, as it can increase the queue
indefinitely if the multicast rate is high enough)

• call_interrupt – whether the call is an interrupt (call inside any loop, e.g., during
waiting or sleeping), or it should be called in the main event loop

• add_call_info (bool) – if True, add a fourth argument containing a call informa-
tion (tuple with a single element, a timestamps of the call).

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

330 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• sid (int) – subscription ID (by default, generate a new unique name).

subscribe_direct(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0,
scheduler=None, return_result=False, sid=None)

Subscribe asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should
be used with care. In Qt, analogous to making a signal connection with a direct call. By default, the
subscribed destination is the thread’s name. Local call method.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• subscription_priority (int) – subscription priority (higher priority subscribers
are called first).

• scheduler – if defined, multicast call gets scheduled using this scheduler instead of
being called directly (which is the default behavior)

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

• sid (int) – subscription ID (by default, generate a new unique id and return it).

unsubscribe(sid)
Unsubscribe from a subscription with a given ID.

Note that multicasts which are already emitted but not processed will remain in the queue; if they need to
be ignored, it should be handled explicitly. Local call method.

send_multicast(dst='any', tag=None, value=None, src=None, filter_results=True)
Send a multicast to the multicast pool.

By default, the multicast source is the thread’s name. Return result synchronizers for all executed sub-
scribed methods. Local call method.

Parameters

• dst (str) – multicast destination; can be a name, "all" (will pass all subscribers’
destination filters), or "any" (will only be passed to subscribers specifically subscribed
to multicast with "any" destination).

• tag (str) – multicast tag.

• value – multicast value.

2.7. pylablib 331

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• src (str) – multicast source; can be None (current thread name), a specific name,
"all" (will pass all subscribers’ source filters), or "any" (will only be passed to sub-
scribers specifically subscribed to multicast with "any" source).

• filter_results – if True, filter the results to exclude dummy synchronizers, which
correspond to calls which do not return anything

send_multicast_sync(dst='any', tag=None, value=None, src=None, timeout=None, default_result=None,
pass_exception=True)

Send a multicast to the multicast pool and synchronize the results, if available.

By default, the multicast source is the thread’s name. Results are collected and synchronized only from
the subscriptions which return them (i.e., set return_result=True). Local call method.

Parameters

• dst (str) – multicast destination; can be a name, "all" (will pass all subscribers’
destination filters), or "any" (will only be passed to subscribers specifically subscribed
to multicast with "any" destination).

• tag (str) – multicast tag.

• value – multicast value.

• src (str) – multicast source; can be None (current thread name), a specific name,
"all" (will pass all subscribers’ source filters), or "any" (will only be passed to sub-
scribers specifically subscribed to multicast with "any" source).

• timeout – synchronization timeout (None means waiting forever)

• default_result – default result value if synchronization failed (timed out, thread
stopped, etc.)

• pass_exception – if True and the signal processor raised an exception, raise it in
this thread as well If pass_exception==True and the returned value represents ex-
ception, re-raise it in the caller thread; otherwise, return default.

set_variable(name, value, update=False, notify=False, notify_tag='changed/*', simple=False)
Set thread variable.

Can be called in any thread (controlled or external). If notify==True, send an multicast with the given
notify_tag (where "*" symbol is replaced by the variable name). If update==True and the value is a
dictionary, update the branch rather than overwrite it. If simple==True, assume that the result is a single
atomic variable, in which case the lock is not used; note that in this case the threads waiting on this variable
(or branches containing it) will not be notified. Local call method.

delete_variable(name, missing_error=False)
Delete thread variable.

If missing_error==False and no variable exists, do nothing; otherwise, raise and error. Local call
method.

set_func_variable(name, func, use_lock=True)
Set a ‘function’ variable.

Acts as a thread variable to the external user, but instead of reading a stored value, it executed a function
instead. Note, that the function is executed in the caller thread (i.e., the thread which tries to access the
variable), so use of synchronization methods (commands, signals, locks) is highly advised.

If use_lock==True, then the function call will be wrapped into the usual variable lock, i.e., it won’t run
concurrently with other variable access. Local call method.

332 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

add_thread_method(name, method, interrupt=True)
Add a thread method.

Adds a named method to the thread, which can be called later using call_thread_method(). This
method will be called in this thread.

Useful for GUI thread to set up some global access methods, which other threads can safely use. For
QTaskThread threads it’s a better idea to set up a command instead. Local call method.

delete_thread_method(name)
Delete a thread method.

Local call method.

call_thread_method(name, *args, **kwargs)
Call a thread method.

Method needs to be set up beforehand using add_thread_method(). It is always executed in the current
thread. Local call method.

send_message(tag, value, priority=0)
Send a message to the thread with a given tag, value and priority.

External call method.

send_interrupt(tag, value, priority=0)
Send an interrupt message to the thread with a given tag, value and priority.

External call method.

send_sync(tag, uid)
Send a synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code (e.g.,
QThreadNotifier). External call method.

get_variable(name, default=None, copy_branch=True, missing_error=False, simple=False)
Get thread variable.

If missing_error==False and no variable exists, return default; otherwise, raise and error. If
copy_branch==True and the variable is a Dictionary branch, return its copy to ensure that it stays
unaffected on possible further variable assignments. If simple==True, assume that the result is a single
atomic variable, in which case the lock is not used; this only works with actual variables and not function
variables. Universal call method.

sync_variable(name, pred, timeout=None)
Wait until thread variable with the given name satisfies the condition given by pred.

pred can be a variable values, a container (list, set, tuple) of possible values, or a function which takes one
argument (variable value) and returns whether the condition is satisfied. It is executed in the caller thread.
External call method.

start()

Start the thread.

External call method.

request_stop()

Request thread stop (send a stop command).

External call method.

2.7. pylablib 333

pylablib Documentation, Release 1.4.2

stop(code=0, sync=False)
Stop the thread.

If called from the thread, stop immediately by raising a threadprop.InterruptExceptionStop excep-
tion. Otherwise, schedule thread stop. If the thread kind is "main", stop the whole application with the
given exit code. Otherwise, stop the thread. If sync==True and the thread is not main or current, wait
until it is completely stopped. Universal call method.

sync_stop()

Wait until the controller and the thread are stopped.

External call method.

poke()

Send a dummy message to the thread.

A cheap way to notify the thread that something happened (useful for, e.g., making thread leave
wait_for_any_message() method). External call method.

running()

Check if the thread is running

finishing()

Check if the thread is finishing

notify_exec_point(point)
Mark the given execution point as passed.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished). Can be ex-
tended for arbitrary points. Local call method.

fail_exec_point(point)
Mark the given execution point as failed.

Automatically invoked for "run" (thread setup and ready to run) if the startup raised an error before the
thread properly started ("start", "cleanup", and "stop" are notified in any case) Can be extended for
arbitrary points. Local call method.

get_exec_counter(point)
Get the counter (number of notifications) for the given point.

See sync_exec_point() for details. External call.

sync_exec_point(point, timeout=None, counter=1)
Wait for the given execution point.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished). If timeout
is passed, raise threadprop.TimeoutThreadError. counter specifies the minimal number of pre-
requisite notify_exec_point() calls to finish the waiting (by default, a single call is enough). Return
actual number of notifier calls up to date. External call method.

add_stop_notifier(func, call_if_stopped=True)
Add stop notifier: a function which is called when the thread is about to be stopped (left the main message
loop).

The supplied function is called in the controlled thread close to its shutdown, so it should be short, non-
blocking, and thread-safe. If the thread is already stopped and call_if_stopped==True, call func im-
mediately (from the caller’s thread). Return True if the thread is still running and the notifier is added,
and False otherwise. Local call method.

334 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

remove_stop_notifier(func)
Remove the stop notifier from this controller.

Return True if the notifier was in this thread and is now removed, and False otherwise. Local call method.

is_in_controlled()

Check if the thread executing this code is controlled by this controller

call_in_thread_callback(func, args=None, kwargs=None, callback=None, tag=None, priority=0,
interrupt=True)

Call a function in this thread with the given arguments.

If callback is supplied, call it with the result as a single argument (call happens in the controller thread). If
tag is supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally,
higher priority method). If interrupt==True, method can be called inside any control loop (either main
loop, or during waiting); otherwise, only call it in the top loop. Universal call method.

call_in_thread_sync(func, args=None, kwargs=None, sync=True, callback=None, timeout=None,
default_result=None, pass_exception=True, silent=False, tag=None, priority=0,
interrupt=True, error_on_stopped=True, same_thread_shortcut=True)

Call a function in this thread with the given arguments.

If sync==True, calling thread is blocked until the controlled thread executes the function, and the func-
tion result is returned (in essence, the fact that the function executes in a different thread is transpar-
ent). Otherwise, exit call immediately, and return a synchronizer object (QCallResultSynchronizer),
which can be used to check if the call is done (method is_done) and obtain the result (method
QCallResultSynchronizer.get_value_sync()). If callback is not None, call it after the func-
tion is successfully executed (from the target thread), with a single parameter being function result. If
pass_exception==True and func raises an exception, re-raise it in the caller thread (applies only if
sync==True). If silent==True and func raises an exception, silence it in the execution thread and only
re-raise it in the caller thread; note that if pass_exception==False and silent==True, the excep-
tion is ignored in both threads. If tag is supplied, send the call in a message with the given tag and
priority; otherwise, use the interrupt call (generally, higher priority method). If interrupt==True,
method can be called inside any control loop (either main loop, or during waiting); otherwise, only
call it in the top loop. If error_on_stopped==True and the controlled thread is stopped before it ex-
ecuted the call, raise threadprop.NoControllerThreadError; otherwise, return default_result. If
same_thread_shortcut==True (default), the call is synchronous, and the caller thread is the same as
the controlled thread, call the function directly. Universal call method.

class pylablib.core.thread.controller.QTaskThread(name=None, args=None, kwargs=None,
multicast_pool=None)

Bases: QThreadController

Thread which allows to set up and run jobs and batch jobs with a certain time period, and execute commands in
the meantime.

Parameters

• name (str) – thread name (by default, generate a new unique name)

• args – args supplied to setup_task() method

• kwargs – keyword args supplied to setup_task() method

• multicast_pool – MulticastPool for this thread (by default, use the default common
pool)

ca

asynchronous command accessor, which makes calls more function-like; ctl.ca.comm(*args,
**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,sync=False)

2.7. pylablib 335

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

cai

asynchronous command accessor which ignores and silences any exceptions (including missing /stopped
controller) useful for sending queries during thread finalizing / application shutdown, when it’s not guar-
anteed that the command recipient is running ctl.cai.comm(*args,**kwarg) is equivalent to ctl.
call_command("comm",args,kwargs,sync=False,ignore_errors=True)

cad

asynchronous command accessor returning a result synchronizer, which makes calls more function-
like; ctl.cad.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,
sync="delayed")

cs

synchronous command accessor, which makes calls more function-like; ctl.cs.comm(*args,**kwarg)
is equivalent to ctl.call_command("comm",args,kwargs,sync=True)

css

synchronous command accessor which is made ‘exception-safe’ via exsafe() wrapper (i.e., safe to
directly connect to slots) ctl.css.comm(*args,**kwarg) is equivalent to with exint(): ctl.
call_command("comm",args,kwargs,sync=True)

csi

synchronous command accessor which ignores and silences any exceptions (including missing /stopped
controller) useful for sending queries during thread finalizing / application shutdown, when it’s not guar-
anteed that the command recipient is running

m

method accessor; directly calls the method corresponding to the command; ctl.m.comm(*args,
kwarg) is equivalent to ctl.call_command("comm",*args,kwargs), which is often also equiv-
alent to ctl.comm(*args,**kwargs); for most practical purposes it’s the same as directly invoking
the class method, but it makes intent more explicit (as command methods are usually not called directly
from other threads), and it doesn’t invoke warning about calling method instead of command from another
thread.

Methods to overload:

• setup_task(): executed on the thread startup (between synchronization points "start" and
"run")

• finalize_task(): executed on thread cleanup (attempts to execute in any case, including excep-
tions)

class TBatchJob(job, cleanup, min_run_time, priority)
Bases: tuple

cleanup

job

min_run_time

priority

class TCommand(command, scheduler, priority)
Bases: tuple

command

336 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

priority

scheduler

class Job(job, period, queue, jobs_order)
Bases: object

A single job loop.

Deals with scheduling, time counting, pausing, and cleanup.

Parameters

• job – job function

• period – job period

• queue – thread controller’s scheduling queue, to which the job must be added

• jobs_order – thread controller’s job queue which determines the jobs scheduling
order

schedule()

Schedule the job

mark_unscheduled()

Mark the job as unscheduled.

Called automatically on job completion.

unschedule()

Manually unschedule the job (e.g., when paused or removed)

clear()

Clear the job and remove it from the jobs list

change_period(period)
Change the job period

pause(paused=True, unschedule=True)
Pause or resume the job.

If pausing and unschedule==True, remove already scheduled job from the queue.

time_left(t=None)
Get the amount of time left till the next call, or None if the job is paused

add_job(name, job, period, initial_call=True, priority=-10)
Add a recurrent job which is called every period seconds.

The job starts running automatically when the main thread loop start executing. If initial_call==True,
call job once immediately after adding. priority specifies the call priority in the scheduling queue; by
default, it is lower than the command and multicasts (0). Local call method.

change_job_period(name, period)
Change the period of the job name.

Local call method.

remove_job(name)
Remove the job name from the job list.

Local call method.

2.7. pylablib 337

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

add_batch_job(name, job, cleanup=None, min_runtime=0, priority=-10)
Add a batch job which is executed once, but with continuations.

After this call the job is just created, but is not running. To start it, call start_batch_job(). If specified,
cleanup is a finalizing function which is called both when the job terminates normally, and when it is
forcibly stopped (including thread termination). min_runtime specifies minimal expected runtime of a
job; if a job executes faster than this time, it is repeated again unless at least min_runtime seconds passed;
useful for high-throughput jobs, as it reduces overhead from the job scheduling mechanism (repeating
within min_runtime time window is fast)

Unlike the usual recurrent jobs, here job is a generator (usually defined by a function with yield state-
ment). When the job is running, the generator is periodically called until it raises StopIteration ex-
ception, which signifies that the job is finished. From generator function point of view, after the job is
started, the function is executed normally, but every time yield statement is encountered, the execution
is suspended for period seconds (specified in start_batch_job()). priority specifies the call priority in
the scheduling queue; by default, it is lower than the command and multicasts (0). Local call method.

change_batch_job_parameters(name, job='keep', cleanup='keep', min_runtime='keep', priority='keep',
stop=False, restart=False)

Change parameters (main body, cleanup function, and minimal runtime) of the batch job.

The parameters are the same as for add_batch_job(). If any of them are "keep", don’t change them. If
stop==True, stop the job before changing the parameters; otherwise the job is continued with the previous
parameters (including cleanup) until it is stopped and restarted. If restart==True, restart the job after
changing the parameters. Local call method.

remove_batch_job(name)
Remove the batch job name, stopping it if necessary.

Local call method.

start_batch_job(name, period, *args, start_immediate=True, **kwargs)
Start the batch job with the given name.

period specifies suspension period. Optional arguments are passed to the job and the cleanup functions.
If start_immediate==True, start the job (i.e., run the first iteration) immediately during the call; other-
wise, start it only when it is scheduled, after the currently running call is complete. Local call method.

is_batch_job_running(name)
Check if a given batch job running.

Local call method.

stop_batch_job(name, stop_immediate=True, error_on_stopped=False)
Stop a given batch job.

If error_on_stopped==True and the job is not currently running, raise an error. Otherwise, do nothing.
If stop_immediate==True, stop the job (i.e., unschedule it and run the cleanup code) immediately during
the call; otherwise, stop it when its next iteration is called. Local call method.

restart_batch_job(name, start_immediate=True, error_on_stopped=False)
Restart the running batch job with its current arguments.

If error_on_stopped==True and the job is not currently running, raise an error. Otherwise, do nothing.
Local call method.

run_as_batch_job(job, period, cleanup=None, name=None, priority=-10, start_immediate=True,
args=None, kwargs=None)

Create a temporarily batch job and immediately run it.

338 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#StopIteration

pylablib Documentation, Release 1.4.2

If name is None, generate a new unique name. The job is removed after it is complete (i.e., after cleanup).
Note that this implies, that it can not be restarted using restart_batch_job(), as it will be removed
after the stopping before the restart. All the parameters are the same as for add_batch_job() and
start_batch_job(). Return the batch job name (either supplied or newly generated).

run()

Method called to run the main thread code (only for "run" thread kind).

Local call method, called automatically.

on_start()

Method invoked on the start of the thread.

Local call method, called automatically.

on_finish()

Method invoked in the end of the thread.

Called regardless of the stopping reason (normal finishing, exception, application finishing). Local call
method, called automatically.

setup_task(*args, **kwargs)
Setup the thread (called before the main task loop).

Local call method, called automatically.

finalize_task()

Finalize the thread (always called on thread termination, regardless of the reason).

Local call method, called automatically.

update_status(kind, status, text=None, notify=True)
Update status represented in thread variables.

kind is the status kind and status is its value. Status variable name is "status/"+kind. If text is
not None, it specifies new status text stored in "status/"+kind+"_text". If notify==True, send an
multicast about the status change. Local call method.

add_command(name, command=None, scheduler=None, limit_queue=None, on_full_queue='skip_current',
priority=0)

Add a new command to the command set.

Return scheduler, which can be used for adding another command (if the same queue should be used for
several commands). Local call method.

Parameters

• name – command name

• command – command function; if None, look for the method with the given name.

• scheduler – a command scheduler; by default, it is a
QQueueLengthLimitScheduler, which maintains a call queue with the given
length limit and full queue behavior; can also be a name of a different command, with
which it will share a single queue with the same limitations; if supplied, limit_queue
and on_full_queue parameters are ignored

• limit_queue – command call queue limit; None means no limit

• on_full_queue – action to be taken if the call can’t be scheduled (the queue is full);
can be "skip_current" (skip the call which is being scheduled), "skip_newest"
(skip the most recent call; place the current) "skip_oldest" (skip the oldest call

2.7. pylablib 339

pylablib Documentation, Release 1.4.2

in the queue; place the current), "call_current" (execute the call which is being
scheduled immediately in the caller thread), "call_newest" (execute the most re-
cent call immediately in the caller thread), "call_oldest" (execute the oldest call
in the queue immediately in the caller thread), or "wait" (wait until the call can be
scheduled, which is checked after every call removal from the queue; place the call)

• priority – command priority; higher-priority multicasts and commands are always
executed before the lower-priority ones.

add_direct_call_command(name, command=None, error_on_async=True)
Add a direct method call which appears as a command.

Unlike regular commands, the call is executed directly in the caller thread (i.e., it is identical to the direct
method call). Useful for lightweight and/or lock-wrapped methods, which can be called in a thread-safe
way, but which still use command interface for consistency. Note that this kind of commands doesn’t
have the same level of synchronization as regular commands (e.g., it can be executed during execution of
another command, or commsync multicast method). Local call method.

Parameters

• name – command name

• command – command function; if None, look for the method with the given name.

• error_on_async – if True and the command is called asynchronously, raise an error;
otherwise, substitute for a synchronous call

subscribe_commsync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0,
scheduler=None, limit_queue=None, on_full_queue='skip_current', priority=0,
add_call_info=False, return_result=False, sid=None)

Subscribe a callback to a multicast which is synchronized with commands and jobs execution.

Unlike the standard QThreadController.subscribe_sync() method, the subscribed callback will
only be executed between jobs or commands, not during one of these. Local call method.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• subscription_priority (int) – subscription priority (higher priority subscribers
are called first).

• scheduler – if defined, multicast call gets scheduled using this scheduler; by de-
fault, create a new call queue scheduler with the given limit_queue, on_full_queue and
add_call_info arguments.

340 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

• limit_queue (int) – limits the maximal number of scheduled calls (if the multicast
is sent while at least limit_queue callbacks are already in queue to be executed, ignore
it) 0 or negative value means no limit (not recommended, as it can increase the queue
indefinitely if the multicast rate is high enough)

• on_full_queue – action to be taken if the call can’t be scheduled (the queue is full);
can be "skip_current" (skip the call which is being scheduled), "skip_newest"
(skip the most recent call; place the current) "skip_oldest" (skip the oldest call
in the queue; place the current), "call_current" (execute the call which is being
scheduled immediately in the caller thread), "call_newest" (execute the most re-
cent call immediately in the caller thread), "call_oldest" (execute the oldest call
in the queue immediately in the caller thread), or "wait" (wait until the call can be
scheduled, which is checked after every call removal from the queue; place the call)

• add_call_info (bool) – if True, add a fourth argument containing a call informa-
tion (tuple with a single element, a timestamps of the call).

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

• sid (int) – subscription ID (by default, generate a new unique id and return it).

call_command_direct(name, args=None, kwargs=None)
Invoke a command directly and immediately in the current thread.

Universal call method.

call_command(name, args=None, kwargs=None, sync=False, callback=None, timeout=None,
ignore_errors=False)

Invoke command call with the given name and arguments

If callback is not None, call it after the command is successfully executed (from the target thread),
with a single parameter being the command result. If sync==True, pause caller thread execution (for
at most timeout seconds) until the command has been executed by the target thread, and then return
the command result. If sync=="delayed", return QCallResultSynchronizer object which can be
used to wait for and read the command result; otherwise, return None. In the sync==True case, if
ignore_errors==True, ignore all possible problems with the call (controller stopped, call raised an
exception, call was skipped) and return None instead; otherwise, these problems raise exceptions in the
caller thread. Universal call method.

call_in_thread_commsync(func, args=None, kwargs=None, sync=True, timeout=None, priority=0,
ignore_errors=False, same_thread_shortcut=True)

Call a function in this thread such that it is synchronous with other commands, and jobs.

Mostly equivalent to calling a command, only the command function is supplied instead of its name, and the
advanced scheduling (maximal schedule size, sharing with different commands, etc.) is not used. args and
kwargs specify the function arguments. If sync==True, pause caller thread execution (for at most timeout
seconds) until the command has been executed by the target thread, and then return the command result. If
sync=="delayed", return QCallResultSynchronizer object which can be used to wait for and read the
command result; otherwise, return None. priority sets the call priority (by default, the same as the standard
commands). In the sync==True case, if ignore_errors==True, ignore all possible problems with the
call (controller stopped, call raised an exception, call was skipped) and return None instead; otherwise,
these problems raise exceptions in the caller thread. If same_thread_shortcut==True (default) and the
caller thread is the same as the controlled thread, call the function directly. Universal call method.

comm_paused()

Context manager, which allows to temporarily pause all calls (commands, jobs, etc.)

2.7. pylablib 341

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

class CommandAccess(parent, sync, direct=False, timeout=None, safe=False, ignore_errors=False)
Bases: object

Accessor object designed to simplify command syntax.

Automatically created by the thread, so doesn’t need to be invoked externally.

add_stop_notifier(func, call_if_stopped=True)
Add stop notifier: a function which is called when the thread is about to be stopped (left the main message
loop).

The supplied function is called in the controlled thread close to its shutdown, so it should be short, non-
blocking, and thread-safe. If the thread is already stopped and call_if_stopped==True, call func im-
mediately (from the caller’s thread). Return True if the thread is still running and the notifier is added,
and False otherwise. Local call method.

add_thread_method(name, method, interrupt=True)
Add a thread method.

Adds a named method to the thread, which can be called later using call_thread_method(). This
method will be called in this thread.

Useful for GUI thread to set up some global access methods, which other threads can safely use. For
QTaskThread threads it’s a better idea to set up a command instead. Local call method.

allowing_toploop(depth=1)
Context manager which temporarily treats the current loop level and several deeper levels as a top loop.

All event loops which lie up to depth below this one are treated as top loops.

blocking_control_signals(kinds='all', ignore=None)
Context manager which temporarily blocks external control signals.

After leaving the wrapped code segment, all of the blocked but not ignored calls are executed. kind deter-
mines the kind of calls to block; it is a collection of elements among "message", "stop", and "call"
and blocks, correspondingly, messages, stop signals, and any call_in_thread-related requests; can be
also be "all", which includes all of these categories. ignore specifies kinds which are completely ignored
if sent during the blocking interval; can also be "all", which includes all of the kinds categories. Useful
to temporarily “suspend” the thread communication with other threads, especially for the main GUI thread
(e.g., to show a blocking message box). Local call method.

call_in_thread_callback(func, args=None, kwargs=None, callback=None, tag=None, priority=0,
interrupt=True)

Call a function in this thread with the given arguments.

If callback is supplied, call it with the result as a single argument (call happens in the controller thread). If
tag is supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally,
higher priority method). If interrupt==True, method can be called inside any control loop (either main
loop, or during waiting); otherwise, only call it in the top loop. Universal call method.

call_in_thread_sync(func, args=None, kwargs=None, sync=True, callback=None, timeout=None,
default_result=None, pass_exception=True, silent=False, tag=None, priority=0,
interrupt=True, error_on_stopped=True, same_thread_shortcut=True)

Call a function in this thread with the given arguments.

If sync==True, calling thread is blocked until the controlled thread executes the function, and the func-
tion result is returned (in essence, the fact that the function executes in a different thread is transpar-
ent). Otherwise, exit call immediately, and return a synchronizer object (QCallResultSynchronizer),
which can be used to check if the call is done (method is_done) and obtain the result (method

342 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

QCallResultSynchronizer.get_value_sync()). If callback is not None, call it after the func-
tion is successfully executed (from the target thread), with a single parameter being function result. If
pass_exception==True and func raises an exception, re-raise it in the caller thread (applies only if
sync==True). If silent==True and func raises an exception, silence it in the execution thread and only
re-raise it in the caller thread; note that if pass_exception==False and silent==True, the excep-
tion is ignored in both threads. If tag is supplied, send the call in a message with the given tag and
priority; otherwise, use the interrupt call (generally, higher priority method). If interrupt==True,
method can be called inside any control loop (either main loop, or during waiting); otherwise, only
call it in the top loop. If error_on_stopped==True and the controlled thread is stopped before it ex-
ecuted the call, raise threadprop.NoControllerThreadError; otherwise, return default_result. If
same_thread_shortcut==True (default), the call is synchronous, and the caller thread is the same as
the controlled thread, call the function directly. Universal call method.

call_thread_method(name, *args, **kwargs)
Call a thread method.

Method needs to be set up beforehand using add_thread_method(). It is always executed in the current
thread. Local call method.

check_messages(top_loop=False)
Receive new messages.

Runs the underlying message loop to process newly received message and signals (and place them in
corresponding queues if necessary). This method is rarely invoked, and only should be used periodically
during long computations to not ‘freeze’ the thread. If top_loop==True, treat the waiting as the top
message loop (i.e., any top loop message or signal can be executed here). Local call method.

delete_thread_method(name)
Delete a thread method.

Local call method.

delete_variable(name, missing_error=False)
Delete thread variable.

If missing_error==False and no variable exists, do nothing; otherwise, raise and error. Local call
method.

fail_exec_point(point)
Mark the given execution point as failed.

Automatically invoked for "run" (thread setup and ready to run) if the startup raised an error before the
thread properly started ("start", "cleanup", and "stop" are notified in any case) Can be extended for
arbitrary points. Local call method.

finished = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

This signal is emitted before the thread has finished (before the cleanup code has been executed, after its
lifetime state is changed)

finishing()

Check if the thread is finishing

get_exec_counter(point)
Get the counter (number of notifications) for the given point.

See sync_exec_point() for details. External call.

2.7. pylablib 343

pylablib Documentation, Release 1.4.2

get_variable(name, default=None, copy_branch=True, missing_error=False, simple=False)
Get thread variable.

If missing_error==False and no variable exists, return default; otherwise, raise and error. If
copy_branch==True and the variable is a Dictionary branch, return its copy to ensure that it stays
unaffected on possible further variable assignments. If simple==True, assume that the result is a single
atomic variable, in which case the lock is not used; this only works with actual variables and not function
variables. Universal call method.

is_in_controlled()

Check if the thread executing this code is controlled by this controller

new_messages_number(tag)
Get the number of queued messages with a given tag.

Local call method.

no_stopping()

Context manager, which temporarily suspends stop requests (InterruptExceptionStop exceptions).

If the stop request has been made within this block, raise the exception on exit. Note that stop() method
and, correspondingly, stop_controller() still work, when called from the controlled thread.

notify_exec_point(point)
Mark the given execution point as passed.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished). Can be ex-
tended for arbitrary points. Local call method.

poke()

Send a dummy message to the thread.

A cheap way to notify the thread that something happened (useful for, e.g., making thread leave
wait_for_any_message() method). External call method.

pop_message(tag)
Pop the latest message with the given tag.

Select the message with the highest priority, and among those the oldest one. If no messages are available,
raise threadprop.NoMessageThreadError. Local call method.

process_interrupt(tag, value)
Process a new interrupt.

If the function returns False, the interrupt is put in the corresponding queue. Otherwise, the the message
is interrupt to be already, and it gets ‘absorbed’. Local call method, called automatically.

process_message(tag, value)
Process a new message.

If the function returns False, the message is put in the corresponding queue. Otherwise, the the message
is considered to be already, and it gets ‘absorbed’. Local call method, called automatically.

remove_stop_notifier(func)
Remove the stop notifier from this controller.

Return True if the notifier was in this thread and is now removed, and False otherwise. Local call method.

344 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

request_stop()

Request thread stop (send a stop command).

External call method.

running()

Check if the thread is running

send_interrupt(tag, value, priority=0)
Send an interrupt message to the thread with a given tag, value and priority.

External call method.

send_message(tag, value, priority=0)
Send a message to the thread with a given tag, value and priority.

External call method.

send_multicast(dst='any', tag=None, value=None, src=None, filter_results=True)
Send a multicast to the multicast pool.

By default, the multicast source is the thread’s name. Return result synchronizers for all executed sub-
scribed methods. Local call method.

Parameters

• dst (str) – multicast destination; can be a name, "all" (will pass all subscribers’
destination filters), or "any" (will only be passed to subscribers specifically subscribed
to multicast with "any" destination).

• tag (str) – multicast tag.

• value – multicast value.

• src (str) – multicast source; can be None (current thread name), a specific name,
"all" (will pass all subscribers’ source filters), or "any" (will only be passed to sub-
scribers specifically subscribed to multicast with "any" source).

• filter_results – if True, filter the results to exclude dummy synchronizers, which
correspond to calls which do not return anything

send_multicast_sync(dst='any', tag=None, value=None, src=None, timeout=None, default_result=None,
pass_exception=True)

Send a multicast to the multicast pool and synchronize the results, if available.

By default, the multicast source is the thread’s name. Results are collected and synchronized only from
the subscriptions which return them (i.e., set return_result=True). Local call method.

Parameters

• dst (str) – multicast destination; can be a name, "all" (will pass all subscribers’
destination filters), or "any" (will only be passed to subscribers specifically subscribed
to multicast with "any" destination).

• tag (str) – multicast tag.

• value – multicast value.

• src (str) – multicast source; can be None (current thread name), a specific name,
"all" (will pass all subscribers’ source filters), or "any" (will only be passed to sub-
scribers specifically subscribed to multicast with "any" source).

• timeout – synchronization timeout (None means waiting forever)

2.7. pylablib 345

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• default_result – default result value if synchronization failed (timed out, thread
stopped, etc.)

• pass_exception – if True and the signal processor raised an exception, raise it in
this thread as well If pass_exception==True and the returned value represents ex-
ception, re-raise it in the caller thread; otherwise, return default.

send_sync(tag, uid)
Send a synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code (e.g.,
QThreadNotifier). External call method.

set_func_variable(name, func, use_lock=True)
Set a ‘function’ variable.

Acts as a thread variable to the external user, but instead of reading a stored value, it executed a function
instead. Note, that the function is executed in the caller thread (i.e., the thread which tries to access the
variable), so use of synchronization methods (commands, signals, locks) is highly advised.

If use_lock==True, then the function call will be wrapped into the usual variable lock, i.e., it won’t run
concurrently with other variable access. Local call method.

set_variable(name, value, update=False, notify=False, notify_tag='changed/*', simple=False)
Set thread variable.

Can be called in any thread (controlled or external). If notify==True, send an multicast with the given
notify_tag (where "*" symbol is replaced by the variable name). If update==True and the value is a
dictionary, update the branch rather than overwrite it. If simple==True, assume that the result is a single
atomic variable, in which case the lock is not used; note that in this case the threads waiting on this variable
(or branches containing it) will not be notified. Local call method.

sleep(timeout, wake_on_message=False, top_loop=False)
Sleep for a given time (in seconds).

Unlike time.sleep(), constantly checks the event loop for new messages (e.g., if stop or interrupt com-
mands are issued). In addition, if wake_on_message==True, wake up if any message has been received;
it this case. return True if the wait has been completed, and False if it has been interrupted by a message.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can
be executed here). If timeout is None, wait forever (usually, until the application is closed, or some
interrupt message raises and error). Local call method.

start()

Start the thread.

External call method.

started = <Mock name='mock.QtCore.pyqtSignal()' id='140147953757904'>

This signal is emitted after the thread has started (after the setup code has been executed, before its lifetime
state is changed)

stop(code=0, sync=False)
Stop the thread.

If called from the thread, stop immediately by raising a threadprop.InterruptExceptionStop excep-
tion. Otherwise, schedule thread stop. If the thread kind is "main", stop the whole application with the
given exit code. Otherwise, stop the thread. If sync==True and the thread is not main or current, wait
until it is completely stopped. Universal call method.

346 Chapter 2. Citation

https://docs.python.org/3/library/time.html#time.sleep

pylablib Documentation, Release 1.4.2

subscribe_direct(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0,
scheduler=None, return_result=False, sid=None)

Subscribe asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should
be used with care. In Qt, analogous to making a signal connection with a direct call. By default, the
subscribed destination is the thread’s name. Local call method.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• subscription_priority (int) – subscription priority (higher priority subscribers
are called first).

• scheduler – if defined, multicast call gets scheduled using this scheduler instead of
being called directly (which is the default behavior)

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

• sid (int) – subscription ID (by default, generate a new unique id and return it).

subscribe_sync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0,
limit_queue=None, call_interrupt=True, add_call_info=False, return_result=False,
sid=None)

Subscribe a synchronous callback to a multicast.

If a multicast is sent, callback is called from the dest_controller thread (by default, thread which is calling
this function) via the thread call mechanism (QThreadController.call_in_thread_callback()). In
Qt, analogous to making a signal connection with a queued call. By default, the subscribed destination is
the thread’s name. Local call method.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

2.7. pylablib 347

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• subscription_priority (int) – subscription priority (higher priority subscribers
are called first).

• limit_queue (int) – limits the maximal number of scheduled calls (if the multicast
is sent while at least limit_queue callbacks are already in queue to be executed, ignore
it) 0 or negative value means no limit (not recommended, as it can increase the queue
indefinitely if the multicast rate is high enough)

• call_interrupt – whether the call is an interrupt (call inside any loop, e.g., during
waiting or sleeping), or it should be called in the main event loop

• add_call_info (bool) – if True, add a fourth argument containing a call informa-
tion (tuple with a single element, a timestamps of the call).

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

• sid (int) – subscription ID (by default, generate a new unique name).

sync_exec_point(point, timeout=None, counter=1)
Wait for the given execution point.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished). If timeout
is passed, raise threadprop.TimeoutThreadError. counter specifies the minimal number of pre-
requisite notify_exec_point() calls to finish the waiting (by default, a single call is enough). Return
actual number of notifier calls up to date. External call method.

sync_stop()

Wait until the controller and the thread are stopped.

External call method.

sync_variable(name, pred, timeout=None)
Wait until thread variable with the given name satisfies the condition given by pred.

pred can be a variable values, a container (list, set, tuple) of possible values, or a function which takes one
argument (variable value) and returns whether the condition is satisfied. It is executed in the caller thread.
External call method.

unsubscribe(sid)
Unsubscribe from a subscription with a given ID.

Note that multicasts which are already emitted but not processed will remain in the queue; if they need to
be ignored, it should be handled explicitly. Local call method.

wait_for_any_message(timeout=None, top_loop=False)
Wait for any message (including synchronization messages or pokes).

If timeout is passed, raise threadprop.TimeoutThreadError. If top_loop==True, treat the waiting
as the top message loop (i.e., any top loop message or signal can be executed here). Local call method.

348 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

wait_for_message(tag, timeout=None, top_loop=False)
Wait for a single message with a given tag.

Return value of a received message with this tag. If timeout is passed, raise threadprop.
TimeoutThreadError. If top_loop==True, treat the waiting as the top message loop (i.e., any top
loop message or signal can be executed here). Local call method.

wait_for_sync(tag, uid, timeout=None)
Wait for synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code. If timeout is passed,
raise threadprop.TimeoutThreadError. Local call method.

wait_until(check, timeout=None, top_loop=False)
Wait until a given condition is true.

Condition is given by the check function, which is called after every new received message and should
return True if the condition is met. If top_loop==True, treat the waiting as the top message loop
(i.e., any top loop message or signal can be executed here). If timeout is passed, raise threadprop.
TimeoutThreadError. Local call method.

pylablib.core.thread.controller.get_controller(name=None, sync=True, timeout=None,
sync_point=None)

Find a controller with a given name.

If name is not supplied, yield current controller instead. If name is of int type, interpret it as a thread id. If the
controller is not present and sync==True, wait (with the given timeout) until the controller is running; otherwise,
raise error if the controller is not running. If sync_point is not None, synchronize to the thread sync_point point
(by default, "run", i.e., after the setup is done) before returning.

pylablib.core.thread.controller.sync_controller(name, sync_point='run', timeout=None)
Find a controller with a given name and synchronize to the given point.

If the controller is not present and sync==True, wait (with the given timeout) until the controller is running;
otherwise, raise error if the controller is not running. Analogous to get_controller(name, sync=True,
timeout=timeout, sync_point=sync_point).

pylablib.core.thread.controller.get_gui_controller(sync=False, timeout=None,
create_if_missing=True)

Get GUI thread controller.

If the controller is not present and sync==True, wait (with the given timeout) until the controller is running. If
the controller is still not present and create_if_missing==True, initialize the standard GUI controller.

pylablib.core.thread.controller.stop_controller(name=None, code=0, sync=True,
require_controller=False)

Stop a controller with a given name (current controller by default).

code specifies controller exit code (only applies to the main thread controller). If require_controller==True
and the controller is not present, raise and error; otherwise, do nothing. If sync==True, wait until the controller
is stopped.

pylablib.core.thread.controller.stop_all_controllers(sync=True, concurrent=True, stop_self=True)
Stop all running threads.

If sync==True, wait until the all of the controller are stopped. If sync==True and concurrent==True stop
threads in concurrent manner (first issue stop messages to all of them, then wait until all are stopped). If
sync==True and concurrent==False stop threads in consecutive manner (wait for each thread to stop be-
fore stopping the next one). If stop_self==True stop current thread after stopping all other threads.

2.7. pylablib 349

pylablib Documentation, Release 1.4.2

pylablib.core.thread.controller.stop_app(code=0, sync=False)
Initialize stopping the application.

Do this either by stopping the GUI controller (if it exists), or by stopping all controllers. If sync is True and the
thread is not the main one, wait at this point until the process is stopped during the app shutdown; otherwise, the
execution will continue as normal, and the thread will be stopped at a later time during the app shutdown.

pylablib.core.thread.controller.restart_app(code=0, sync=False)
Restart the application.

Equivalent to stop_app() followed by the scrip restart. If sync is True and the thread is not the main one,
wait at this point until the process is stopped during the app shutdown; otherwise, the execution will continue as
normal, and the thread will be stopped at a later time during the app shutdown.

pylablib.core.thread.multicast_pool module

class pylablib.core.thread.multicast_pool.TMulticast(src, tag, value)
Bases: tuple

src

tag

value

class pylablib.core.thread.multicast_pool.MulticastPool

Bases: object

Multicast dispatcher (somewhat similar in functionality to Qt signals).

Manages dispatching multicasts between sources and destinations (callback functions). Each multicast has de-
fined source, destination (both can also be "all" or "any", see methods descriptions for details), tag and value.
Any thread can send a multicast or subscribe for a multicast with given filters (source, destination, tag, additional
filters). If a multicast is emitted, it is checked against filters for all subscribers, and the passing ones are then
called.

subscribe_direct(callback, srcs='any', dsts='any', tags=None, filt=None, priority=0, scheduler=None,
return_result=False, sid=None)

Subscribe an asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should
be used with care. In Qt, analogous to making a signal connection with a direct call.

Parameters

• callback – callback function, which takes 3 arguments: source, tag, and value.

• srcs (str or [str]) – multicast source name or list of source names to filter the
subscription; can be "any" (any source) or "all" (only multicasts specifically having
"all" as a source).

• dsts (str or [str]) – multicast destination name or list of destination names to fil-
ter the subscription; can be "any" (any destination) or "all" (only source specifically
having "all" as a destination).

• tags – multicast tag or list of tags to filter the subscription (any tag by default); can also
contain Unix shell style pattern ("*" matches everything, "?" matches one symbol,
etc.)

350 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• filt (callable) – additional filter function which takes 4 arguments: source, desti-
nation, tag, and value, and checks whether multicast passes the requirements.

• priority (int) – subscription priority (higher priority subscribers are called first).

• scheduler – if defined, multicast call gets scheduled using this scheduler instead of
being called directly (which is the default behavior)

• return_result – if True, use a result synchronizer to return the result of the sub-
scribed call; otherwise, ignore the result

• sid (int) – subscription ID (by default, generate a new unique name).

Returns
subscription ID, which can be used to unsubscribe later.

unsubscribe(sid)
Unsubscribe from a subscription with a given ID

send(src, dst='any', tag=None, value=None)
Send a multicast.

Parameters

• src (str) – multicast source; can be a name, "all" (will pass all subscribers’ source
filters), or "any" (will only be passed to subscribers specifically subscribed to multi-
casts with "any" source).

• dst (str) – multicast destination; can be a name, "all" (will pass all subscribers’
destination filters), or "any" (will only be passed to subscribers specifically subscribed
to multicasts with "any" destination).

• tag (str) – multicast tag.

• value – multicast value.

pylablib.core.thread.notifier module

class pylablib.core.thread.notifier.ISkippableNotifier(skippable=False)
Bases: object

Generic skippable notifier.

The main methods are wait() (wait until the event happened) and notify() (notify that the event happened).
Only calls underlying waiting and notifying methods once, duplicate calls are ignored.

Parameters
skippable (bool) – if True, allows for skippable wait events (if notify() is called before
wait(), neither methods are actually called).

wait(*args, **kwargs)
Wait for the notification.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called after
notify(), return immediately.

notify(*args, **kwargs)
Notify the waiting process.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called
before wait(), return immediately.

2.7. pylablib 351

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

waiting()

Check if waiting is in progress

done_wait()

Check if waiting is done

success_wait()

Check if waiting is done successfully

done_notify()

Check if notifying is done

waiting_state()

notifying_state()

pylablib.core.thread.profile module

pylablib.core.thread.profile.start(reset=True)
Start yappi profile logging.

If reset==True, reset the stats.

pylablib.core.thread.profile.reset()

Reset yappi profiling stats

pylablib.core.thread.profile.stop()

Stop yappi profiling

pylablib.core.thread.profile.get_stats()

Get yappi profiling stats.

Return tuple ((ttime,wtime), (threads,ctls)). Here ttime and wtime are total execution time (sum of
all thread times) and the wall time (since the last reset) respectively. threads are yappi-generated stats, and
ctls is the list [(name,ctl)] with the controller names and thread controllers, which are ordered in the same
way as threads (for any non-controlled or stopped thread these are set to None).

pylablib.core.thread.profile.print_stats(nfunc=None, ntotfunc=None, min_func_frac=0.001)
Print yappi profiling stats.

nfunc is the number of top (most expensive) functions to print per each thread, ntotfunc is the number of global top
function to print; None for either means that they are not printed. min_func_frac specifies the minimal fraction
of the total time for which the function stats are still printed (to prevent lost of printouts for “cheap” threads).

pylablib.core.thread.synchronizing module

class pylablib.core.thread.synchronizing.QThreadNotifier(skippable=True)
Bases: ISkippableNotifier

Wait-notify thread synchronizer for controlled Qt threads based on notifier.ISkippableNotifier.

Like notifier.ISkippableNotifier, the main functions are ISkippableNotifier.wait() (wait in a mes-
sage loop until notified or until timeout expires) and ISkippableNotifier.notify() (notify the waiting
thread). Both of these can only be called once and will raise and error on repeating calls. Along with noti-
fying a variable can be passed, which can be accessed using get_value() and get_value_sync().

352 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Parameters
skippable (bool) – if True, allows for skippable wait events (if ISkippableNotifier.
notify() is called before ISkippableNotifier.wait(), neither methods are actually
called).

get_value()

Get the value passed by the notifier (doesn’t check if it has been passed already)

get_value_sync(timeout=None)
Wait (with the given timeout) for the value passed by the notifier

done_notify()

Check if notifying is done

done_wait()

Check if waiting is done

notify(*args, **kwargs)
Notify the waiting process.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called
before wait(), return immediately.

notifying_state()

success_wait()

Check if waiting is done successfully

wait(*args, **kwargs)
Wait for the notification.

Can only be called once per notifier lifetime. If the notifier allows skipping, and this method is called after
notify(), return immediately.

waiting()

Check if waiting is in progress

waiting_state()

class pylablib.core.thread.synchronizing.QMultiThreadNotifier

Bases: object

Wait-notify thread synchronizer that can be used for multiple threads and called multiple times.

Performs similar function to conditional variables. The synchronizer has an internal counter which is increased
by 1 every time it is notified. The wait functions have an option to wait until the counter reaches the specific
counter value (usually, 1 above the last wait call).

wait(state=1, timeout=None)
Wait until notifier counter is equal to at least state

Return current counter state plus 1, which is the next smallest value resulting in waiting.

wait_until(condition, timeout=None)
Wait until condition is met.

condition is a function which is called (in the waiting thread) every time the synchronizer is notified. If it
return non-False, the waiting is complete and its result is returned.

2.7. pylablib 353

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

notify()

Notify all waiting threads

fail()

Mark notifier as fails

Fails all waiting notifiers. All subsequent wait calls raise an error

class pylablib.core.thread.synchronizing.QLockNotifier

Bases: object

Resource lock.

Behaves similarly to the regular lock, but waiting is done in the message loop, which still allows interrupts.

acquire(timeout=None)

release()

pylablib.core.thread.threadprop module

exception pylablib.core.thread.threadprop.ThreadError(msg=None)
Bases: RuntimeError

Generic thread error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.NoControllerThreadError(msg=None)
Bases: ThreadError

Thread error for a case of thread having no controllers

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.DuplicateControllerThreadError(msg=None)
Bases: ThreadError

Thread error for a case of a duplicate thread controller

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

354 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#RuntimeError

pylablib Documentation, Release 1.4.2

exception pylablib.core.thread.threadprop.TimeoutThreadError(msg=None)
Bases: ThreadError, TimeoutError

Thread error for a case of a wait timeout

add_note()

Exception.add_note(note) – add a note to the exception

args

characters_written

errno

POSIX exception code

filename

exception filename

filename2

second exception filename

strerror

exception strerror

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.NoMessageThreadError(msg=None)
Bases: ThreadError

Thread error for a case of trying to get a non-existing message

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.SkippedCallError(msg=None)
Bases: ThreadError

Thread error for a case of external call getting skipped (unscheduled)

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.InterruptException(msg=None)
Bases: Exception

Generic interrupt exception (raised by some function to signal interrupts from other threads)

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 355

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#Exception

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.thread.threadprop.InterruptExceptionStop(msg=None)
Bases: InterruptException

Interrupt exception denoting thread stop request

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.core.thread.threadprop.get_app()

Get current application instance

pylablib.core.thread.threadprop.get_gui_thread()

Get main (GUI) thread, or None if application is not running

pylablib.core.thread.threadprop.is_gui_running()

Check if GUI is running

pylablib.core.thread.threadprop.is_gui_thread()

Check if the current thread is the one running the GUI loop

pylablib.core.thread.threadprop.current_controller(require_controller=True)
Get controller of the current thread.

If the current thread has not controller and `require_controller==True`, raise an error; otherwise, return None.

pylablib.core.thread.utils module

class pylablib.core.thread.utils.ReadChangeLock

Bases: object

Lock based on condition variables which handles a state which can be read or changed.

Any number of threads can read simultaneously, but changing is incompatible with other reading or changing.

can_read()

Check if the state can be read

can_change()

Check if the state can be changed

reading()

Context manager denoting reading event

changing()

Context manager denoting changing event

356 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

Module contents

pylablib.core.utils package

Submodules

pylablib.core.utils.array_utils module

pylablib.core.utils.array_utils.as_array(data, force_copy=False, try_object=True)
Turn data into a numpy array.

If force_copy==True, copy the data if it’s already a numpy array. If try_object==False, only try to convert
to numerical numpy arrays; otherwise, generic numpy arrays (with dtype=="object") are acceptable.

pylablib.core.utils.array_utils.get_shape(data, strict=False)
Get the data shape.

If the data is a nested list and strict==True, raise an error unless all sublists have the same length (i.e., the data
is rectangular).

pylablib.core.utils.cext_tools module

pylablib.core.utils.cext_tools.try_import_cext()

Context manager for trying to import a possibly missing C extension; if an error arises, re-raises with a more
detailed message

pylablib.core.utils.crc module

pylablib.core.utils.crc.binv(a, l)
Reverse bit order of a treating it as an l-bit number

pylablib.core.utils.crc.calc_table(poly, ref=False)
Calculate CRC byte table for the given polynomial and reflection parameter.

ref specifies whether both input and output bit sequences are reflected.

pylablib.core.utils.crc.crc(msg, poly, refin=False, refout=False, init=0, xorout=0)
Calculate CRC for the given message, polynomial, and additional parameters.

msg should be a bytes object, while poly is an integer with the polynomial coefficients.

pylablib.core.utils.ctypes_wrap module

pylablib.core.utils.ctypes_wrap.get_value(rval)
Get value of a ctypes variable

pylablib.core.utils.ctypes_wrap.setup_func(func, argtypes, restype=None, errcheck=None)
Setup a ctypes function.

Assign argtypes (list of argument types), restype (return value type) and errcheck (error checking function called
for the return value).

2.7. pylablib 357

pylablib Documentation, Release 1.4.2

class pylablib.core.utils.ctypes_wrap.CFunctionWrapper(restype=None, errcheck=None,
tuple_single_retval=False,
return_res='auto', default_rvals='rest',
pointer_byref=False)

Bases: object

Wrapper object for ctypes function.

The main methods are wrap_annotated() and wrap_bare(), which wrap a ctypes function and returns a
Python function with a proper signature. These methods can also handle some standard use cases such as passing
parameters by reference, or setting up the function arguments, or parsing the results. These methods can also be
invoked when the wrapper is used as a callable; in this case, the exact method is determined by the presence of
.argtypes attribute in the supplied function.

Parameters

• restype – default type of the function return value when calling wrap_bare() and
restype is not supplied there explicitly (defaults to ctypes.int)

• errcheck – default error-checking function which is automatically called for the return
value; can also be overridden explicitly when calling wrapping methods if None, no error
checking method

• tuple_single_retval (bool) – determines if a single return values gets turned into a
single-element tuple

• return_res (bool) – determined if the function result gets returned; only used when list
of return arguments (rvals) to wrapping functions is not explicitly supplied; can also be
set to "auto" (default), which means that function returns its return value when no other
rvals are found, and omits it otherwise.

• default_rvals – default value for rvals in wrap_annotated() and wrap_bare(), if
it is specified as None (default for those methods).

• pointer_byref (bool) – if True, use explicit pointer creation instead of byref (in rare
cases use of byref crashes the call).

byref(value)

wrap_bare(func, argtypes, argnames=None, restype=None, args='nonrval', rvals='default', argprep=None,
rconv=None, byref='all', errcheck=None)

Annotate and wrap bare C function in a Python call.

Same as wrap_annotated(), but annotates the function first.

Parameters

• func – C function

• argtypes – list of ctypes types corresponding to function arguments; gets assigned
as func.argtypes

• argnames – list of argument names; if not supplied, generated automatically as
"arg1", "arg2", etc. Same for names which are defined as None.

• restype – type of the function return value; if None, use the value supplied to the
wrapper constructor (defaults to ctypes.int)

• args – names of Python function arguments; can also be "all" (all C function argu-
ments in that order), or "nonrval" (same, but with return value arguments excluded)
by default, use "nonrval"

358 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• rvals – names of return value arguments; can include either a C function argument
name, or None (which means the function return value); can also be "rest" (listsall
the arguments not included into args; if args=="nonrval", assume that there are
no rvals), "pointer" (assume that all pointer arguments are rvals; this does not in-
clude c_void_p, c_char_p, or c_wchar_p); by default, use the value supplied on the
wrapper creation ("rest" by default)

• argprep – dictionary {name: prep} of ways to prepare of C function arguments;
each prep can be a value (which is assumed to be default argument value), or a
callable, which is given values of Python function arguments

• rconv – dictionary {name: conv} of converters of the return values; each conv
is a function which takes 3 arguments: unconverted ctypes value, dictionary of all C
function arguments, and dictionary of all Python function arguments if conv takes less
than 3 argument, then the arguments list is trimmed (e.g., if it takes only one argument,
it will be an unconverted value) conv can also be "ctypes" (return raw ctypes value),
or "raw" (return raw value for buffers).

• byref – list of all argument names which should by passed by reference; by default,
it includes all arguments listed in rvals

• errcheck – error-checking function which is automatically called for the return value;
if None, use the value supplied to the wrapper constructor (none by default)

wrap_annotated(func, args='nonrval', rvals='default', alias=None, argprep=None, rconv=None,
byref='all', errcheck=None)

Wrap annotated C function in a Python call.

Assumes that the functions has defined .argtypes (list of argument types) and .argnames (list of argu-
ment names) attributes.

Parameters

• func – C function

• args – names of Python function arguments; can also be "all" (all C function argu-
ments in that order), or "nonrval" (same, but with return value arguments excluded);
by default, use "nonrval"

• rvals – names of return value arguments; can include either a C function argument
name, or None (which means the function return value); can also be "rest" (lists
all the arguments not included into args; if args=="nonrval", assume that there
are no rvals), "pointer" (assume that all pointer arguments are rvals; this does not
include c_void_p, c_char_p, or c_wchar_p); by default, use the value supplied on
the wrapper creation ("rest" by default)

• alias – either a list of argument names which replace .argnames, or a dictionary
{argname: alias} which transforms names; all names in all other parameters
(rvals, argprep, rconv, and byref) take aliased names

• argprep – dictionary {name: prep} of ways to prepare of C function arguments;
each prep can be a value (which is assumed to be default argument value), or a
callable, which is given values of Python function arguments

• rconv – dictionary {name: conv} of converters of the return values; each conv
is a function which takes 3 arguments: unconverted ctypes value, dictionary of all C
function arguments, and dictionary of all Python function arguments if conv takes less
than 3 argument, then the arguments list is trimmed (e.g., if it takes only one argument,
it will be an unconverted value)

2.7. pylablib 359

pylablib Documentation, Release 1.4.2

• byref – list of all argument names which should by passed by reference; by default,
it includes all arguments listed in rvals

• errcheck – error-checking function which is automatically called for the return value;
if None, use the value supplied to the wrapper constructor (none by default)

pylablib.core.utils.ctypes_wrap.strprep(l, ctype=None, unicode=False)
Make a string preparation function.

Return a function which creates a string with a fixed length of l bytes and returns a pointer to it. ctype can specify
the type of the result (by default, ctypes.c_char_p).

pylablib.core.utils.ctypes_wrap.strconv(l=None, unicode=False)
Make a string conversion function.

Return a function which converts a pointer a string. If unicode==True, use regular single-byte string conversion;
otherwise, use unicode (wchar) string conversion; if specified, l determines the string length (otherwise use the
standard null-terminated string convention).

pylablib.core.utils.ctypes_wrap.buffprep(size_arg_pos, dtype)
Make a buffer preparation function.

Return a function which creates a string with a variable size (specified by an argument at a position size_arg_pos).
The buffer size is given in elements. dtype specifies the datatype of the buffer, whose size is used to determine
buffer size in bytes.

pylablib.core.utils.ctypes_wrap.buffconv(size_arg_pos, dtype)
Make a buffer conversion function.

Return a function which converts a pointer of a variable size (specified by an argument at a position size_arg_pos)
into a numpy array. The buffer size is given in elements. dtype specifies the datatype of the resulting array.

class pylablib.core.utils.ctypes_wrap.CStructWrapper(struct=None)
Bases: object

Wrapper around a ctypes structure, which allows for easier creation of parsing of these structures.

When created, all structure fields can be accessed/modified as attributes of the wrapper object. It can also be
converted into tuple using tup() method, or back into C structure using to_struct() method.

Class variable _struct should be set to the ctypes structure which is being wrapped. Several other class variables
determine the behavior when generating and parsing:

• _prep: dictionary {name: prep} of methods to prepare individual structure parameters; can be either
a value or a function (which takes as ordered arguments all structure fields as ctypes values)

• _conv: dictionary {name: conv} of methods to convert individual structure parameters when parsing a
C structure; can be either a function (which takes ctypes value of the field as a single argument) or a value;
also can be used as a source of default values on wrapper creation

• _tup: dictionary {name: conv} of functions to convert structure values when generating a tuple

• _tup_exc: list of values to exclude from the resulting tuple

• _tup_inc: list of values to include in the resulting tuple (if None, include all)

• _tup_add: list of values to add to the resulting tuple (these values must then exist either as attributes, or
as entries in _tup dictionary)

• _tup_order: order of fields in the returned tuple (by default, same as structure order)

Also specifies two overloaded methods for a more flexible preparation/conversion of structures. conv() takes
no arguments and is called in the end of wrapper creation to finish setting up attributes. prep() takes a single

360 Chapter 2. Citation

https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

argument (C structure) and is called when converting into a C structure to finish setting up the fields (e.g., size
field).

Parameters
struct – C structure to wrap (if None, create a new ‘blank’ structure).

to_struct()

Convert wrapper into a C structure

prep(struct)
Prepare C structure after creation (by default, do nothing)

conv()

Prepare wrapper after setting up the fields from the wrapped structure

tup()

Convert wrapper into a named tuple

classmethod prep_struct(*args, **kwargs)
Prepare a blank C structure

classmethod prep_struct_args(*args, **kwargs)
Prepare a C structure with the given supplied fields

classmethod tup_struct(struct, *args, **kwargs)
Convert C structure into a named tuple

pylablib.core.utils.ctypes_wrap.class_tuple_to_dict(val, norm_strings=True, expand_lists=False)
Convert a named tuple (usually, a tuple returned by CStructWrapper.tup()) into a dictionary.

Iterate recursively over all named tuple elements as well. If norm_strings==True, automatically translate byte
strings into regular ones. If expand_lists==True, iterate recursively over lists members.

pylablib.core.utils.dictionary module

Tree-like multi-level dictionary with advanced indexing options.

pylablib.core.utils.dictionary.split_path(path, omit_empty=True, sep=None)
Split generic path into individual path entries.

Parameters

• path – Generic path. Lists and tuples (possible nested) are flattened; strings are split
according to separators; non-strings are converted into strings first.

• omit_empty (bool) – Determines if empty entries are skipped.

• sep (str) – If not None, defines regex for path separators; default separator is '/'.

Returns
A list of individual entries.

Return type
list

pylablib.core.utils.dictionary.normalize_path_entry(entry, case_normalization=None)
Normalize the case of the entry if it’s not case-sensitive. Normalization is either None (no normalization, names
are case-sensitive), 'lower' or 'upper'

2.7. pylablib 361

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

pylablib Documentation, Release 1.4.2

pylablib.core.utils.dictionary.normalize_path(path, omit_empty=True, case_normalization=None,
sep=None, force=False)

Split and normalize generic path into individual path entries.

Parameters

• path – Generic path. Lists and tuples (possible nested) are flattened; strings are split
according to separators; non-strings are converted into strings first.

• omit_empty (bool) – Determines if empty entries are skipped.

• case_normalization (str) – Case normalization rules; can be None (no normalization,
names are case-sensitive), 'lower' or 'upper'.

• sep (str) – If not None, defines regex for path separators; default separator is '/'.

• force (bool) – If False, treat lists as if they’re already normalized.

Returns
A list of individual normalized entries.

Return type
list

pylablib.core.utils.dictionary.is_dictionary(obj, generic=False)
Determine if the object is a dictionary.

Parameters

• obj – object

• generic (bool) – if False, passes only Dictionary (or subclasses) objects; otherwise,
passes any dictionary-like object.

Returns
bool

pylablib.core.utils.dictionary.as_dictionary(obj, case_normalization=None)
Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

pylablib.core.utils.dictionary.as_dict(obj, style='nested', copy=True)
Convert object into standard dict with the given parameters.

If object is already a dict, return unchanged, even if the parameters are different.

class pylablib.core.utils.dictionary.Dictionary(root=None, case_normalization=None, copy=True)
Bases: object

Multi-level dictionary.

Access is done by path (all path elements are converted into strings and concatenated to form a single string
path). If dictionary is not case-sensitive, all inserted and accessed paths are normalized to lower or upper case.

Parameters

• root (dict or Dictionary) – Initial value.

• case_normalization (str) – Case normalization rules; can be None (no normalization,
names are case-sensitive), 'lower' or 'upper'.

• copy (bool) – If True, make copy of the supplied data; otherwise, just make it the root.

362 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Warning: If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might
be incorrect.

static is_dictionary(obj, generic=True)
Determine if the object is a dictionary.

Parameters

• obj –

• generic (bool) – if False, passes only Dictionary (or subclasses) objects; other-
wise, passes any dictionary-like object.

Returns
bool

static as_dictionary(obj, case_normalization=None)
Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

add_entry(path, value, force=False, branch_option='normalize')
Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

Parameters

• path –

• value –

• force (bool) – If True, change leaf into a branch and vice-versa; otherwise, raises
ValueError if the conversion is necessary.

• branch_option (str) –

Decides what to do if the value is dictionary-like:

– 'attach' – just attach the root,

– 'copy' – copy and attach,

– 'normalize' – copy while normalizing all the keys according to the current
rules.

get_entry(path, as_pointer=False)
Get entry at a given path

Parameters

• path –

• as_pointer (bool) – If True and entry is not a leaf, return DictionaryPointer;
otherwise, return Dictionary

has_entry(path, kind='all')
Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

is_leaf_path(path)
Determine if the path is in the dictionary and points to a leaf

2.7. pylablib 363

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

is_branch_path(path)
Determine if the path is in the dictionary and points to a branch

get_max_prefix(path, kind='all')
Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules
(i.e., these are lists representing normalized paths). kind determines which kind of path to consider and
can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

del_entry(path)
Delete entry from the dictionary.

Return True if the path was present. Note that it never raises KeyError.

size()

Return the total size of the dictionary (number of nodes)

get(path, default=None)
Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

pop(path, default=None)
Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError.

setdefault(path, default=None)
Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not
in D.

items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

364 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

values(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewvalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

itervalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

keys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

2.7. pylablib 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

viewkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

iterkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

paths(ordered=False, topdown=False, path_kind='split')
Return list of all paths (leafs and nodes).

Parameters

• ordered (bool) – If True, loop over paths in alphabetic order.

• topdown (bool) – If True, return node’s leafs before its subtrees leafs.

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

366 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

merge(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

update(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

detach(path)
Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary. If path is missing, raise a KeyError.

collect(paths, detach=False, ignore_missing=True)
Collect a set of subpaths into a separate dictionary.

Parameters

• paths – list or set of paths

• detach – if True, added branches are removed from this dictionary

2.7. pylablib 367

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

pylablib Documentation, Release 1.4.2

• ignore_missing – if True, ignore paths from the list which are not present in this
dictionary; otherwise, raise a KeyError.

branch_copy(branch='')
Get a copy of the branch as a Dictionary

copy()

Get a full copy the dictionary

updated(source, path='', overwrite=True, normalize_paths=True)
Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

as_dict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

asdict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

as_json(style='nested')
Convert into a JSON string.

Parameters
style (str) – Determines style of the result: - 'nested' – subtrees are turned into nested
dictionaries, - 'flat' – single dictionary is formed with full paths as keys.

classmethod from_json(data, case_normalization=None)
Convert JSON representations of a dictionary into a Dictionary object

as_pandas(index_key=True, as_series=True)
Convert into a pandas DataFrame or Series object.

Parameters

• index_key (bool) – If False, create a 2-column table with the first column ("key")
containing string path and the second column ("value") containing value; otherwise,
move key to the table index.

368 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• as_series (bool) – If index_key==True and as_series==True, convert the re-
sulting DataFrame into 1D Series (the key is the index); otherwise, keep it as a single-
column table

get_path()

branch_pointer(branch='')
Get a DictionaryPointer of a given branch

map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')
Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

Parameters

• func (callable) – Mapping function. Leafs are passed by value, branches (if visited)
are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the map function.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to func.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

• branch_option (str) – If the function returns a dict-like object, determines how to
incorporate into the dictionary; can be "normalize" (make a copy with normalized
paths and insert that), "copy" (make a copy without normalization), or "attach"
(simply replace the value without copying and normalization)

filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)
Remove all the nodes from the dictionary for which pred returns False.

Parameters

• pred (callable) – Filter function. Leafs are passed to pred by value, branches (if
visited) are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the predicate.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to pred.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

diff(other)
Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError.

Returns
DictionaryDiff

static diff_flatdict(first, second)
Find the difference between flat dict objects.

Returns
DictionaryDiff

2.7. pylablib 369

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict

pylablib Documentation, Release 1.4.2

static find_intersection(dicts, use_flatten=False)
Find intersection of multiple dictionaries.

Parameters

• dicts ([Dictionary]) –

• use_flatten (bool) – If True flatten all dictionaries before comparison (works
faster for a large number of dictionaries).

Returns
DictionaryIntersection

get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get all paths in the tree that match the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get a subtree containing nodes with paths matching the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

class pylablib.core.utils.dictionary.DictionaryDiff(same, changed_from, changed_to, removed,
added)

Bases: DictionaryDiff

Describes a difference between the two dictionaries.

same

Contains the leafs which is the same.

Type
Dictionary

changed_from

Contains the leafs from the first dictionary which have different values in the second dictionary.

Type
Dictionary

changed_to

Contains the leafs from the second dictionary which have different values in the first dictionary.

Type
Dictionary

370 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

removed

Contains the leafs from the first dictionary which are absent in the second dictionary.

Type
Dictionary

added

Contains the leafs from the second dictionary which are absent in the first dictionary.

Type
Dictionary

added

changed_from

changed_to

removed

same

class pylablib.core.utils.dictionary.DictionaryIntersection(common, individual)
Bases: DictionaryIntersection

Describes the result of finding intersection of multiple dictionaries.

common

Contains the intersection of all dictionaries.

Type
Dictionary

individual

Contains list of difference from intersection for all dictionaries.

Type
[Dictionary]

common

individual

class pylablib.core.utils.dictionary.DictionaryPointer(root=None, pointer=None,
case_normalization=None, copy=True)

Bases: Dictionary

Similar to Dictionary, but can point at one of the branches instead of the full dictionary.

Effect is mostly equivalent to prepending some path to all queries.

Parameters

• root (dict or Dictionary) – Complete tree.

• pointer – Path to the pointer location.

• case_normalization (str) – Case normalization rules; can be None (no normalization,
names are case-sensitive), 'lower' or 'upper'.

• copy (bool) – If True, make copy of the supplied data; otherwise, just make it the root.

2.7. pylablib 371

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Warning: If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might
be incorrect.

get_path()

Return pointer path in the whole dictionary.

move_to(path='', absolute=True)
Move the pointer to a new path.

Parameters

• path –

• absolute (bool) – If True, path is specified with respect to the root; otherwise, it’s
specified with respect to the current position (and can only go deeper).

move_up(levels, strict=True)
Move the pointer by the given number of levels up.

If strict==True and there are not enough levels above, raise an error. Otherwise, stop at the top dictio-
nary level.

branch_pointer(branch='')
Get a DictionaryPointer of a given branch.

add_entry(path, value, force=False, branch_option='normalize')
Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

Parameters

• path –

• value –

• force (bool) – If True, change leaf into a branch and vice-versa; otherwise, raises
ValueError if the conversion is necessary.

• branch_option (str) –

Decides what to do if the value is dictionary-like:

– 'attach' – just attach the root,

– 'copy' – copy and attach,

– 'normalize' – copy while normalizing all the keys according to the current
rules.

as_dict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

372 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

static as_dictionary(obj, case_normalization=None)
Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

as_json(style='nested')
Convert into a JSON string.

Parameters
style (str) – Determines style of the result: - 'nested' – subtrees are turned into nested
dictionaries, - 'flat' – single dictionary is formed with full paths as keys.

as_pandas(index_key=True, as_series=True)
Convert into a pandas DataFrame or Series object.

Parameters

• index_key (bool) – If False, create a 2-column table with the first column ("key")
containing string path and the second column ("value") containing value; otherwise,
move key to the table index.

• as_series (bool) – If index_key==True and as_series==True, convert the re-
sulting DataFrame into 1D Series (the key is the index); otherwise, keep it as a single-
column table

asdict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

branch_copy(branch='')
Get a copy of the branch as a Dictionary

collect(paths, detach=False, ignore_missing=True)
Collect a set of subpaths into a separate dictionary.

Parameters

• paths – list or set of paths

• detach – if True, added branches are removed from this dictionary

• ignore_missing – if True, ignore paths from the list which are not present in this
dictionary; otherwise, raise a KeyError.

copy()

Get a full copy the dictionary

del_entry(path)
Delete entry from the dictionary.

Return True if the path was present. Note that it never raises KeyError.

2.7. pylablib 373

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

pylablib Documentation, Release 1.4.2

detach(path)
Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary. If path is missing, raise a KeyError.

diff(other)
Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError.

Returns
DictionaryDiff

static diff_flatdict(first, second)
Find the difference between flat dict objects.

Returns
DictionaryDiff

filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)
Remove all the nodes from the dictionary for which pred returns False.

Parameters

• pred (callable) – Filter function. Leafs are passed to pred by value, branches (if
visited) are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the predicate.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to pred.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

static find_intersection(dicts, use_flatten=False)
Find intersection of multiple dictionaries.

Parameters

• dicts ([Dictionary]) –

• use_flatten (bool) – If True flatten all dictionaries before comparison (works
faster for a large number of dictionaries).

Returns
DictionaryIntersection

classmethod from_json(data, case_normalization=None)
Convert JSON representations of a dictionary into a Dictionary object

get(path, default=None)
Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

get_entry(path, as_pointer=False)
Get entry at a given path

Parameters

• path –

• as_pointer (bool) – If True and entry is not a leaf, return DictionaryPointer;
otherwise, return Dictionary

374 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get all paths in the tree that match the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get a subtree containing nodes with paths matching the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_max_prefix(path, kind='all')
Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules
(i.e., these are lists representing normalized paths). kind determines which kind of path to consider and
can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

has_entry(path, kind='all')
Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

is_branch_path(path)
Determine if the path is in the dictionary and points to a branch

static is_dictionary(obj, generic=True)
Determine if the object is a dictionary.

Parameters

• obj –

• generic (bool) – if False, passes only Dictionary (or subclasses) objects; other-
wise, passes any dictionary-like object.

Returns
bool

is_leaf_path(path)
Determine if the path is in the dictionary and points to a leaf

items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

2.7. pylablib 375

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iterkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

itervalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

376 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

keys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')
Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

Parameters

• func (callable) – Mapping function. Leafs are passed by value, branches (if visited)
are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the map function.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to func.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

• branch_option (str) – If the function returns a dict-like object, determines how to
incorporate into the dictionary; can be "normalize" (make a copy with normalized
paths and insert that), "copy" (make a copy without normalization), or "attach"
(simply replace the value without copying and normalization)

merge(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

2.7. pylablib 377

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

paths(ordered=False, topdown=False, path_kind='split')
Return list of all paths (leafs and nodes).

Parameters

• ordered (bool) – If True, loop over paths in alphabetic order.

• topdown (bool) – If True, return node’s leafs before its subtrees leafs.

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

pop(path, default=None)
Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError.

setdefault(path, default=None)
Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not
in D.

size()

Return the total size of the dictionary (number of nodes)

update(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

updated(source, path='', overwrite=True, normalize_paths=True)
Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

values(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

378 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

viewvalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

pylablib.core.utils.dictionary.combine_dictionaries(dicts, func, select='all', pass_missing=False)
Combine several dictionaries element-wise (only for leafs) using a given function.

Parameters

• dicts (list or tuple) – list of dictionaries (Dictionary or dict) to be combined

• func (callable) – combination function. Takes a single argument, which is a list of
elements to be combined.

• select (str) – determines which keys are selected for the resulting dictionary. Can be
either "all" (only keep keys which are present in all the dictionaries), or "any" (keep
keys which are present in at least one dictionary). Only keys that point to leafs count;
if a key points to a non-leaf branch in some dictionary, it is considered absent from this
dictionary.

2.7. pylablib 379

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• pass_missing (bool) – if select=="any", this parameter determines whether missing
elements will be passed to func as None, or omitted entirely.

class pylablib.core.utils.dictionary.PrefixTree(root=None, case_normalization=None, wildcard='*',
matchcard='.', copy=True)

Bases: Dictionary

Expansion of a Dictionary designed to store data related to prefixes.

Each branch node can have a leaf with a name given by wildcard ('*' by default) or matchcard ('.' by default).
Wildcard assumes that the branch node path is a prefix; matchcard assumes exact match. These leafs are inspected
when specific prefix tree functions (find_largest_prefix() and find_all_prefixes()) are used.

Parameters

• root (dict or Dictionary) – Complete tree.

• case_normalization (str) – Case normalization rules; can be None (no normalization,
names are case-sensitive), 'lower' or 'upper'.

• wildcard (str) – Symbol for a wildcard entry.

• matchcard (str) – Symbol for a matchcard entry.

• copy (bool) – If True, make copy of the supplied data; otherwise, just make it the root.

Warning: If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might
be incorrect.

copy()

Get a full copy the prefix tree

find_largest_prefix(path, default=None, allow_nomatch_exact=True, return_path=False,
return_subpath=False)

Find the entry which is the largest prefix of a given path.

Parameters

• path –

• default – Default value if the path isn’t found.

• allow_nomatch_exact (bool) – If True, just element with the given path can be
returned; otherwise, only elements stored under wildcards and matchcards are consid-
ered.

• return_path (bool) – If True, return path to the element (i.e., the largest prefix)
instead of the element itself.

• return_subpath (bool) – If True, return tuple with a second element being part of
the path left after subtraction of the prefix.

find_all_prefixes(path, allow_nomatch_exact=True, return_path=True, return_subpath=False)
Find list of all the entries which are prefixes of a given path.

Parameters

• path –

• default – Default value if the path isn’t found.

380 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• allow_nomatch_exact (bool) – If True, just element with the given path can be
returned; otherwise, only elements stored under wildcards and matchcards are consid-
ered.

• return_path (bool) – If True, return path to the element (i.e., the largest prefix)
instead of the element itself.

• return_subpath (bool) – If True, return tuple with a second element being part of
the path left after subtraction of the prefix.

add_entry(path, value, force=False, branch_option='normalize')
Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

Parameters

• path –

• value –

• force (bool) – If True, change leaf into a branch and vice-versa; otherwise, raises
ValueError if the conversion is necessary.

• branch_option (str) –

Decides what to do if the value is dictionary-like:

– 'attach' – just attach the root,

– 'copy' – copy and attach,

– 'normalize' – copy while normalizing all the keys according to the current
rules.

as_dict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

static as_dictionary(obj, case_normalization=None)
Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

as_json(style='nested')
Convert into a JSON string.

Parameters
style (str) – Determines style of the result: - 'nested' – subtrees are turned into nested
dictionaries, - 'flat' – single dictionary is formed with full paths as keys.

as_pandas(index_key=True, as_series=True)
Convert into a pandas DataFrame or Series object.

Parameters

2.7. pylablib 381

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• index_key (bool) – If False, create a 2-column table with the first column ("key")
containing string path and the second column ("value") containing value; otherwise,
move key to the table index.

• as_series (bool) – If index_key==True and as_series==True, convert the re-
sulting DataFrame into 1D Series (the key is the index); otherwise, keep it as a single-
column table

asdict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

branch_copy(branch='')
Get a copy of the branch as a Dictionary

branch_pointer(branch='')
Get a DictionaryPointer of a given branch

collect(paths, detach=False, ignore_missing=True)
Collect a set of subpaths into a separate dictionary.

Parameters

• paths – list or set of paths

• detach – if True, added branches are removed from this dictionary

• ignore_missing – if True, ignore paths from the list which are not present in this
dictionary; otherwise, raise a KeyError.

del_entry(path)
Delete entry from the dictionary.

Return True if the path was present. Note that it never raises KeyError.

detach(path)
Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary. If path is missing, raise a KeyError.

diff(other)
Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError.

Returns
DictionaryDiff

static diff_flatdict(first, second)
Find the difference between flat dict objects.

Returns
DictionaryDiff

382 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict

pylablib Documentation, Release 1.4.2

filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)
Remove all the nodes from the dictionary for which pred returns False.

Parameters

• pred (callable) – Filter function. Leafs are passed to pred by value, branches (if
visited) are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the predicate.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to pred.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

static find_intersection(dicts, use_flatten=False)
Find intersection of multiple dictionaries.

Parameters

• dicts ([Dictionary]) –

• use_flatten (bool) – If True flatten all dictionaries before comparison (works
faster for a large number of dictionaries).

Returns
DictionaryIntersection

classmethod from_json(data, case_normalization=None)
Convert JSON representations of a dictionary into a Dictionary object

get(path, default=None)
Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

get_entry(path, as_pointer=False)
Get entry at a given path

Parameters

• path –

• as_pointer (bool) – If True and entry is not a leaf, return DictionaryPointer;
otherwise, return Dictionary

get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get all paths in the tree that match the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get a subtree containing nodes with paths matching the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

2.7. pylablib 383

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_max_prefix(path, kind='all')
Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules
(i.e., these are lists representing normalized paths). kind determines which kind of path to consider and
can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

get_path()

has_entry(path, kind='all')
Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

is_branch_path(path)
Determine if the path is in the dictionary and points to a branch

static is_dictionary(obj, generic=True)
Determine if the object is a dictionary.

Parameters

• obj –

• generic (bool) – if False, passes only Dictionary (or subclasses) objects; other-
wise, passes any dictionary-like object.

Returns
bool

is_leaf_path(path)
Determine if the path is in the dictionary and points to a leaf

items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

384 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iterkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

itervalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

keys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

2.7. pylablib 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')
Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

Parameters

• func (callable) – Mapping function. Leafs are passed by value, branches (if visited)
are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the map function.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to func.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

• branch_option (str) – If the function returns a dict-like object, determines how to
incorporate into the dictionary; can be "normalize" (make a copy with normalized
paths and insert that), "copy" (make a copy without normalization), or "attach"
(simply replace the value without copying and normalization)

merge(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

paths(ordered=False, topdown=False, path_kind='split')
Return list of all paths (leafs and nodes).

Parameters

386 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• ordered (bool) – If True, loop over paths in alphabetic order.

• topdown (bool) – If True, return node’s leafs before its subtrees leafs.

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

pop(path, default=None)
Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError.

setdefault(path, default=None)
Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not
in D.

size()

Return the total size of the dictionary (number of nodes)

update(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

updated(source, path='', overwrite=True, normalize_paths=True)
Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

values(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

2.7. pylablib 387

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

viewvalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

class pylablib.core.utils.dictionary.FilterTree(root=None, case_normalization=None,
default=False, match_prefix=False, copy=True)

Bases: Dictionary

Expansion of a Dictionary designed to store hierarchical path filtering rules.

Store path templates and the corresponding values (usually True or False for a filter tree, but other values
are possible). The match() method is then tested against this templates, and the value of the closest matching
template (or default value, if none match) is returned. The templates can contain direct matches (e.g., "a/b/c",
which matches only "a/b/c/" path), "*" path entries for a single level wildcard (e.g., "a/*/c" matches "a/b/
c" or 'a/d/c", but not "a/c" or "a/b/d/c"), or "**" path entries for a multi-level wildcard (e.g., "a/**/c"
matches "a/b/c", "a/c", or "a/b/d/c"). The paths are always tested first for direct match, then for "*" match,
then for "**" match starting from the smallest subpath matching "**".

Parameters

• root (dict or Dictionary) – A filter tree or a list of filter tree paths (which are all
assumed to be have the True value).s

• case_normalization (str) – Case normalization rules; can be None (no normalization,
names are case-sensitive), 'lower' or 'upper'.

• default – Default value to return if no match is found.

• match_prefix – if True, match the result even if only its prefix matches the tree content
(same effect as adding "/**" to every tree path)

• copy (bool) – If True, make copy of the supplied data; otherwise, just make it the root.

388 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Warning: If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might
be incorrect.

copy()

Get a full copy the prefix tree

match(path)
Return the match result for the path

add_entry(path, value, force=False, branch_option='normalize')
Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

Parameters

• path –

• value –

• force (bool) – If True, change leaf into a branch and vice-versa; otherwise, raises
ValueError if the conversion is necessary.

• branch_option (str) –

Decides what to do if the value is dictionary-like:

– 'attach' – just attach the root,

– 'copy' – copy and attach,

– 'normalize' – copy while normalizing all the keys according to the current
rules.

as_dict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

static as_dictionary(obj, case_normalization=None)
Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

as_json(style='nested')
Convert into a JSON string.

Parameters
style (str) – Determines style of the result: - 'nested' – subtrees are turned into nested
dictionaries, - 'flat' – single dictionary is formed with full paths as keys.

2.7. pylablib 389

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

as_pandas(index_key=True, as_series=True)
Convert into a pandas DataFrame or Series object.

Parameters

• index_key (bool) – If False, create a 2-column table with the first column ("key")
containing string path and the second column ("value") containing value; otherwise,
move key to the table index.

• as_series (bool) – If index_key==True and as_series==True, convert the re-
sulting DataFrame into 1D Series (the key is the index); otherwise, keep it as a single-
column table

asdict(style='nested', copy=True)
Convert into a dict object.

Parameters

• style (str) –

Determines style of the result:

– 'nested' – subtrees are turned into nested dictionaries,

– 'flat' – single dictionary is formed with full paths as keys.

• copy (bool) – If False and style=='nested', return the root dictionary.

branch_copy(branch='')
Get a copy of the branch as a Dictionary

branch_pointer(branch='')
Get a DictionaryPointer of a given branch

collect(paths, detach=False, ignore_missing=True)
Collect a set of subpaths into a separate dictionary.

Parameters

• paths – list or set of paths

• detach – if True, added branches are removed from this dictionary

• ignore_missing – if True, ignore paths from the list which are not present in this
dictionary; otherwise, raise a KeyError.

del_entry(path)
Delete entry from the dictionary.

Return True if the path was present. Note that it never raises KeyError.

detach(path)
Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary. If path is missing, raise a KeyError.

diff(other)
Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError.

Returns
DictionaryDiff

390 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError

pylablib Documentation, Release 1.4.2

static diff_flatdict(first, second)
Find the difference between flat dict objects.

Returns
DictionaryDiff

filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)
Remove all the nodes from the dictionary for which pred returns False.

Parameters

• pred (callable) – Filter function. Leafs are passed to pred by value, branches (if
visited) are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the predicate.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to pred.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

static find_intersection(dicts, use_flatten=False)
Find intersection of multiple dictionaries.

Parameters

• dicts ([Dictionary]) –

• use_flatten (bool) – If True flatten all dictionaries before comparison (works
faster for a large number of dictionaries).

Returns
DictionaryIntersection

classmethod from_json(data, case_normalization=None)
Convert JSON representations of a dictionary into a Dictionary object

get(path, default=None)
Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

get_entry(path, as_pointer=False)
Get entry at a given path

Parameters

• path –

• as_pointer (bool) – If True and entry is not a leaf, return DictionaryPointer;
otherwise, return Dictionary

get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get all paths in the tree that match the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

2.7. pylablib 391

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)
Get a subtree containing nodes with paths matching the provided pattern.

Parameters

• wildkey (str) – Pattern symbol that matches any key.

• wildpath (str) – Pattern symbol that matches any subpath (possibly empty).

• only_leaves (bool) – If True, only check leaf paths; otherwise, check subtree paths
(i.e., incomplete leaf paths) as well. Basically, only_leaves=False is analogous to
adding wildpath at the end of the pattern.

get_max_prefix(path, kind='all')
Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules
(i.e., these are lists representing normalized paths). kind determines which kind of path to consider and
can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

get_path()

has_entry(path, kind='all')
Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

is_branch_path(path)
Determine if the path is in the dictionary and points to a branch

static is_dictionary(obj, generic=True)
Determine if the object is a dictionary.

Parameters

• obj –

• generic (bool) – if False, passes only Dictionary (or subclasses) objects; other-
wise, passes any dictionary-like object.

Returns
bool

is_leaf_path(path)
Determine if the path is in the dictionary and points to a leaf

items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

392 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

iterkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

itervalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

keys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

2.7. pylablib 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')
Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

Parameters

• func (callable) – Mapping function. Leafs are passed by value, branches (if visited)
are passed as DictionaryPointer.

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary passed to the map function.

• pass_path (bool) – If True, pass the node path (in the form of a normalized list) as
a first argument to func.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

• branch_option (str) – If the function returns a dict-like object, determines how to
incorporate into the dictionary; can be "normalize" (make a copy with normalized
paths and insert that), "copy" (make a copy without normalization), or "attach"
(simply replace the value without copying and normalization)

merge(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)
Iterate over nodes.

Parameters

• to_visit (str) – Can be 'leafs', 'branches' or 'all' and determines which
parts of the dictionary are visited.

• ordered (bool) – If True, loop over paths in alphabetic order.

• include_path (bool) – Include in the return value.

• topdown (bool) – If True, visit node and its leafs before its subtrees leafs.

394 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Yields
Values for leafs and DictionaryPointer for branches. If include_path==True, yields
tuple (path, value), where path is in the form of a normalized list.

paths(ordered=False, topdown=False, path_kind='split')
Return list of all paths (leafs and nodes).

Parameters

• ordered (bool) – If True, loop over paths in alphabetic order.

• topdown (bool) – If True, return node’s leafs before its subtrees leafs.

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

pop(path, default=None)
Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError.

setdefault(path, default=None)
Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not
in D.

size()

Return the total size of the dictionary (number of nodes)

update(source, path='', overwrite=True, normalize_paths=True)
Attach source (dict or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,
force=True) in this case). Compared to add_entry(), merges two branches instead of removing the
old branch completely.

Parameters

• source (dict or Dictionary) –

• branch (tuple or str) – Destination path.

• overwrite (bool) – If True, replaces the old entries with the new ones (it only mat-
ters for leaf assignments).

• normalize_paths (bool) – If True and the dictionary isn’t case sensitive, perform
normalization if the source.

updated(source, path='', overwrite=True, normalize_paths=True)
Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

values(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

2.7. pylablib 395

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)
Analog of dict.items(), by default iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

viewkeys(ordered=False, leafs=False, path_kind='split')
Analog of dict.keys(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• path_kind (str) – either "split" (each path is a tuple of individual keys), or
"joined" (each path is a single string)

viewvalues(ordered=False, leafs=False, wrap_branches=True)
Analog of dict.values(), iterating only over the immediate children of the root.

Parameters

• ordered (bool) – If True, loop over keys in alphabetic order.

• leafs (bool) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary); other-
wise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

• wrap_branches (bool) – if True, wrap sub-branches into DictionaryPointer ob-
jects; otherwise, return them as nested built-in dictionaries

class pylablib.core.utils.dictionary.PrefixShortcutTree(shortcuts=None)
Bases: object

Convenient storage for dictionary path shortcuts.

Parameters
shortcuts (dict) – Dictionary of shortcuts {shortcut: full_path}.

copy()

Return full copy

add_shortcut(source, dest, exact=False)
Add a single shortcut.

Parameters

• source – Shortcut path.

• dest – expanded path corresponding to the shortcut.

• exact (bool) – If True, the shortcut works only for the exact path; otherwise, it works
for any path with ‘source’ as a prefix.

396 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

add_shortcuts(shortcuts, exact=False)
Add a dictionary of shortcuts {shortcut: full_path}.

Arguments are the same as in PrefixShortcutTree.add_shortcut().

remove_shortcut(source)
Remove a shortcut from the tree

updated(shortcuts, exact=False)
Make a copy and add additional shortcuts.

Arguments are the same as in PrefixShortcutTree.add_shortcuts().

class pylablib.core.utils.dictionary.DictionaryNode(**vargs)
Bases: object

pylablib.core.utils.dictionary.dict_to_object_local(data, name=None, object_generator=<function
_default_object_generator>)

class pylablib.core.utils.dictionary.ItemAccessor(getter=None, setter=None, deleter=None,
iterator=None, contains_checker='auto',
normalize_names=True, path_separator=None,
missing_error=None)

Bases: object

Simple wrapper which implements array interface using supplied methods.

Also has an option to normalize requested paths (enabled by default)

Parameters

• getter – method for getting values (None means none is supplied, so getting raises an
error)

• setter – method for setting values (None means none is supplied, so setting raises an
error)

• deleter – method for deleting values (None means none is supplied, so deleting raises
an error)

• contains_checker – method for checking if variable is present (None means none
is supplied, so checking containment raises an error; "auto" means that getter raising
KeyError is used for checking)

• normalize_names – if True, normalize a supplied path using the standard Dictionary
rules and join it into a single string using the supplied separator

• path_separator – path separator regex used for splitting and joining the supplied paths
(by default, the standard "/" separator)

• missing_error – if not None, specifies the error raised on the missing value; used in
__contains__, get() and setdefault() to determine if the value is missing

get(name, default=None)

setdefault(name, default=None)

2.7. pylablib 397

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#KeyError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.files module

Utilities for working with the file system: creating/removing/listing folders, comparing folders and files, working with
zip archives.

pylablib.core.utils.files.eof(f , strict=False)
Standard EOF function.

Return True if the the marker is at the end of the file. If strict==True, only return True if the marker is exactly
at the end of file; otherwise, return True if it’s at the end of further.

pylablib.core.utils.files.get_file_creation_time(path, timestamp=True)
Try to find a file creation time. Return current time if an error occurs.

If timestamp==True, return UNIX timestamp; otherwise, return datetime.datetime.

pylablib.core.utils.files.get_file_modification_time(path, timestamp=True)
Try to find a file modification time. Return current time if an error occurs.

If timestamp==True, return UNIX timestamp; otherwise, return datetime.datetime

pylablib.core.utils.files.touch(fname, times=None)
Update file access and modification times.

Parameters
times (tuple) – Access and modification times; if times is None, use current time.

pylablib.core.utils.files.generate_indexed_filename(name_format, idx_start=0, folder='')
Generate an unused indexed filename in folder.

The name has name_format (using standard Python format() rules, e.g., "data_{:03d}.dat"), and the index
starts with idx_start.

pylablib.core.utils.files.generate_prefixed_filename(prefix='', suffix='', idx_start=None,
idx_fmt='d', folder=None)

Generate an unused filename with the given prefix and suffix in the given folder.

By default, the format is prefix_{:d}_suffix, where the parameter is the index starting with idx_start. If
idx_start is None, first check simply prefix+suffix name before using numbered indices.

pylablib.core.utils.files.generate_temp_filename(prefix='__tmp__', idx_start=0, idx_template='d',
folder='')

Generate a temporary filename with a given prefix.

idx_template is the number index format (only the parameter itself, not the whole string).

pylablib.core.utils.files.fullsplit(path, ignore_empty=True)
Split path into a list.

If ignore_empty==True, exclude empty folder names.

pylablib.core.utils.files.normalize_path(p)
Normalize filesystem path (case and origin). If two paths are identical, they should be equal when normalized

pylablib.core.utils.files.case_sensitive_path()

Check if OS path names are case-sensitive (e.g., Linux)

pylablib.core.utils.files.paths_equal(a, b)
Determine if the two paths are equal (can be local or have different case)

398 Chapter 2. Citation

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#format

pylablib Documentation, Release 1.4.2

pylablib.core.utils.files.relative_path(a, b, check_paths=True)
Determine return path a as seen from b.

If check_paths==True, check if a is contained in b and raise the OSError if it isn’t.

pylablib.core.utils.files.is_path_valid(p)
Check if the string is a valid path.

Not guaranteed to have complete success rate, but catches most likely errors (invalid characters, reserved file
names, too long, etc.) Does not check if the path actually exists or if it can be written into.

class pylablib.core.utils.files.TempFile(folder='', name=None, mode='w', wait_time=None,
rep_time=None)

Bases: object

Temporary file context manager.

Upon creation, generate an unused temporary filename. Upon entry, create the file using supplied mode and
return self. Upon exit, close and remove the file.

Can be mostly substituted by tempfile.TemporaryFile(), but generates file locally, and with speci-
fied/determined name. Preserved largely for legacy reasons.

Parameters

• folder (str) – Containing folder.

• name (str) – File name. If None, generate new temporary name.

• mode (str) – File opening mode.

• wait_time (float) – Waiting time between attempts to create the file if the first try fails.

• rep_time (int) – Number of attempts to create the file if the first try fails.

f

File object.

name

File name.

Type
str

full_name

File name including containing folder.

Type
str

pylablib.core.utils.files.copy_file(source, dest, overwrite=True, cmp_on_overwrite=True,
preserve_metadata=True)

Copy file, creating a containing folder if necessary. Return True if the operation was performed.

Parameters

• overwrite (bool) – If True, overwrite existing file.

• cmp_on_overwrite (bool) – If True and the two files are compared to be the same,
don’t perform overwrite.

• preserve_metadata (bool) – If True, preserve file metadata (such as creation time) by
using shutil.copy2(); otherwise, use shutil.copy()

2.7. pylablib 399

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/shutil.html#shutil.copy2
https://docs.python.org/3/library/shutil.html#shutil.copy

pylablib Documentation, Release 1.4.2

pylablib.core.utils.files.move_file(source, dest, overwrite=True, cmp_on_overwrite=True,
preserve_if_not_move=False)

Move file, creating a containing folder if necessary. Returns True if the operation was performed.

Parameters

• overwrite (bool) – If True, overwrite existing file (if the existing file isn’t overwritten,
preserve the original).

• cmp_on_overwrite (bool) – If True and the two files are compared to be the same,
don’t perform overwrite.

• preserve_if_not_move (bool) – If True and the files are identical, preserve the orig-
inal.

pylablib.core.utils.files.ensure_dir_singlelevel(path, error_on_file=True)

pylablib.core.utils.files.ensure_dir(path, error_on_file=True)
Ensure that the folder exists (create a new one if necessary).

If error_on_file==True, raise OSError if there’s a file with the same name.

pylablib.core.utils.files.remove_dir(path, error_on_file=True)
Remove the folder recursively if it exists.

If error_on_file==True, raise OSError if there’s a file with the same name.

pylablib.core.utils.files.remove_dir_if_empty(path, error_on_file=True)
Remove the folder only if it’s empty.

If error_on_file==True, raise OSError if there’s a file with the same name.

pylablib.core.utils.files.clean_dir(path, error_on_file=True)
Remove the folder and then recreate it.

If error_on_file==True, raise OSError if there’s a file with the same name.

class pylablib.core.utils.files.FolderList(folders, files)
Bases: FolderList

Describes folder content

files

folders

pylablib.core.utils.files.list_dir(folder='', folder_filter=None, file_filter=None, separate_kinds=True,
error_on_file=True)

Return folder content filtered by folder_filter and file_filter.

Parameters

• folder (str) – Path to the folder.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• separate_kinds (bool) – if True, return FolderList with files and folder separate;
otherwise, return a single list (works much faster).

400 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• error_on_file (bool) – if True, raise OSError if there’s a file with the same name as
the target folder.

pylablib.core.utils.files.dir_empty(folder, folder_filter=None, file_filter=None, level='single',
error_on_file=True)

Check if the folder is empty (only checks content filtered by folder_filter and file_filter).

Parameters

• folder (str) – Path to the folder.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• level (str) – if 'single', check only immediate folder content; if 'recursive', fol-
low recursively in all folders passing folder_filter.

• error_on_file (bool) – if True, raise OSError if there’s a file with the same name as
the target folder.

pylablib.core.utils.files.walk_dir(folder, folder_filter=None, file_filter=None, rel_path=True,
topdown=True, visit_folder_filter=None, max_depth=None)

Modification of os.walk() function.

Acts in a similar way, but followlinks is always False and errors of os.listdir() are always passed.

Parameters

• folder (str) – Path to the folder.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• rel_path (bool) – If True, the returned folder path is specified relative to the initial
path.

• topdown (bool) – If True, return folder before its subfolders.

• visit_folder_filter – Filter for visiting folders (more description at string.
get_string_filter()). If not None, specifies filter for visiting folders which is dif-
ferent from folder_filter (filter for returned folders).

• max_depth (int) – If not None, limits the recursion depth.

Yields

For each folder (including the original) yields a tuple (folder_path, folders,
files),

where folder_path is the containing folder name and folders and files are its content (sim-
ilar to list_dir()).

pylablib.core.utils.files.list_dir_recursive(folder, folder_filter=None, file_filter=None,
topdown=True, visit_folder_filter=None,
max_depth=None)

Recursive walk analog of list_dir().

Parameters are the same as walk_dir().

2.7. pylablib 401

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/os.html#os.walk
https://docs.python.org/3/library/os.html#os.listdir
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

Returns
FolderList

pylablib.core.utils.files.copy_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True,
cmp_on_overwrite=True, preserve_metadata=True)

Copy files satisfying the filtering conditions.

Parameters

• source (str) – Source path.

• dest (str) – Destination path.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• overwrite (bool) – If True, overwrite existing files.

• cmp_on_overwrite (bool) – If True and the two files are compared to be the same,
don’t perform overwrite.

• preserve_metadata (bool) – If True, preserve file metadata (such as creation time) by
using shutil.copy2(); otherwise, use shutil.copy()

pylablib.core.utils.files.move_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True,
cmp_on_overwrite=True, preserve_if_not_move=False)

Move files satisfying the filtering conditions.

Parameters

• source (str) – Source path.

• dest (str) – Destination path.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• overwrite (bool) – If True, overwrite existing files (if the existing file isn’t overwritten,
preserve the original).

• cmp_on_overwrite (bool) – If True and the two files are compared to be the same,
don’t perform overwrite.

• preserve_if_not_move (bool) – If True and the files are identical, preserve the orig-
inal.

pylablib.core.utils.files.combine_diff(d1, d2)

pylablib.core.utils.files.cmp_dirs(a, b, folder_filter=None, file_filter=None, shallow=True,
return_difference=False)

Compare the folders based on the content filtered by folder_filter and file_filter.

Parameters

• a (str) – First folder path

• b (str) – Second folder path

402 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/shutil.html#shutil.copy2
https://docs.python.org/3/library/shutil.html#shutil.copy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

• file_filter – File filter function (more description at string.
get_string_filter()).

• shallow – If True, do shallow comparison of the files (see filecmp.cmp()).

• return_difference – If False, simply return bool; otherwise, return difference type
('=', '+', '-' or '*').

pylablib.core.utils.files.retry_copy(source, dest, overwrite=True, cmp_on_overwrite=True,
preserve_metadata=True, try_times=5, delay=0.3)

Retrying version of copy_file().

If the operation raises error, wait for delay (in seconds) and call it again. Try total of try_times times.

pylablib.core.utils.files.retry_move(source, dest, overwrite=True, cmp_on_overwrite=True,
preserve_if_not_move=False, try_times=5, delay=0.3)

Retrying version of move_file() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_remove(path, try_times=5, delay=0.3)
Retrying version of os.remove() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_ensure_dir(path, error_on_file=True, try_times=5, delay=0.3)
Retrying version of ensure_dir() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_copy_dir(source, dest, folder_filter=None, file_filter=None,
overwrite=True, cmp_on_overwrite=True,
preserve_metadata=True, try_times=5, delay=0.3)

Retrying version of copy_dir() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_move_dir(source, dest, folder_filter=None, file_filter=None,
overwrite=True, cmp_on_overwrite=True,
preserve_if_not_move=False, try_times=5, delay=0.3)

Retrying version of move_dir() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_remove_dir(path, error_on_file=True, try_times=5, delay=0.3)
Retrying version of remove_dir() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_remove_dir_if_empty(path, error_on_file=True, try_times=5,
delay=0.3)

Retrying version of remove_dir_if_empty() (see retry_copy() for details on retrying).

pylablib.core.utils.files.retry_clean_dir(path, error_on_file=True, try_times=5, delay=0.3)
Retrying version of clean_dir() (see retry_copy() for details on retrying).

pylablib.core.utils.files.zip_folder(zip_path, source_path, inside_path='', folder_filter=None,
file_filter=None, mode='a', compression=8, compresslevel=None)

Add a folder into a zip archive.

Parameters

• zip_path (str) – Path to the .zip file.

• source_path (str) – Path to the source folder.

• inside_path (str) – Destination path inside the zip archive.

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

2.7. pylablib 403

https://docs.python.org/3/library/filecmp.html#filecmp.cmp
https://docs.python.org/3/library/os.html#os.remove
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• file_filter – File filter function (more description at string.
get_string_filter()).

• mode (str) – Zip archive adding mode (see zipfile.ZipFile).

• compression – Zip archive compression (see zipfile.ZipFile).

• compresslevel – Zip archive compression level (see zipfile.ZipFile); ignored for
Python version below 3.7.

pylablib.core.utils.files.zip_file(zip_path, source_path, inside_name=None, mode='a', compression=8,
compresslevel=None)

Add a file into a zip archive.

Parameters

• zip_path (str) – Path to the .zip file.

• source_path (str) – Path to the source file.

• inside_name (str) – Destination file name inside the zip archive (source name on the
top level by default).

• mode (str) – Zip archive adding mode (see zipfile.ZipFile).

• compression – Zip archive compression (see zipfile.ZipFile).

• compresslevel – Zip archive compression level (see zipfile.ZipFile); ignored for
Python version below 3.7.

pylablib.core.utils.files.zip_multiple_files(zip_path, source_paths, inside_names=None, mode='a',
compression=8, compresslevel=None)

Add a multiple files into a zip archive.

Parameters

• zip_path (str) – Path to the .zip file.

• source_paths ([str]) – List of path to the source files.

• inside_names ([str] or None) – List of destination file names inside the zip archive
(source name on the top level by default).

• mode (str) – Zip archive adding mode (see zipfile.ZipFile).

• compression – Zip archive compression (see zipfile.ZipFile).

• compresslevel – Zip archive compression level (see zipfile.ZipFile); ignored for
Python version below 3.7.

pylablib.core.utils.files.unzip_folder(zip_path, dest_path, inside_path='', folder_filter=None,
file_filter=None)

Extract a folder from a zip archive (create containing folder if necessary).

Parameters

• zip_path (str) – Path to the .zip file.

• dest_path (str) – Path to the destination folder.

• inside_path (str) – Source path inside the zip archive; extracted data paths are relative
(i.e., they don’t include inside_path).

• folder_filter – Folder filter function (more description at string.
get_string_filter()).

404 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• file_filter – File filter function (more description at string.
get_string_filter()).

pylablib.core.utils.files.unzip_file(zip_path, dest_path, inside_path)
Extract a file from a zip archive (create containing folder if necessary).

Parameters

• zip_path (str) – Path to the .zip file.

• dest_path (str) – Destination file path.

• inside_path (str) – Source path inside the zip archive.

pylablib.core.utils.funcargparse module

Contains routines for checking arguments passed into a function for better flexibility.

pylablib.core.utils.funcargparse.parameter_value_error(par_val, par_name, message=None,
error_type=None)

Raise parameter value error (ValueError by default).

pylablib.core.utils.funcargparse.parameter_range_error(par_val, par_name, par_set=None,
message=None, error_type=None)

Raise parameter range error (ValueError by default).

pylablib.core.utils.funcargparse.check_parameter_range(par_val, par_name, par_set, message=None,
error_type=None)

Raise error if par_val is not in in the par_set (par_name is used in the error message).

pylablib.core.utils.funcargparse.getdefault(value, default_value, unassigned_value=None,
conflict_action='ignore', message=None,
error_type=None)

Analog of dict’s getdefault.

If value is unassigned_value, return default_value instead. If conflict_action=='error' and value!
=default_value, raise value error using message and error_type.

pylablib.core.utils.funcargparse.is_sequence(value, sequence_type='builtin;nostring')
Check if value is a sequence.

sequence_type is semicolon separated list of possible sequence types:

• 'builtin' - list, tuple or str

• 'nostring' - str is not allows

• 'array' - list, tuple or numpy.ndarray

• 'indexable' - anything which can be indexed

• 'haslength' - anything with length property

pylablib.core.utils.funcargparse.make_sequence(element, length=1, sequence_type='list')
Turn element into a sequence of sequence_type ('list' or 'tuple') repeated length times.

pylablib.core.utils.funcargparse.as_sequence(value, multiply_length=1,
allowed_type='builtin;nostring', wrapping_type='list',
length_conflict_action='ignore', message=None,
error_type=None)

2.7. pylablib 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pylablib Documentation, Release 1.4.2

Ensure that value is a sequence.

If value is not a sequence of allowed_type (as checked by is_sequence()), turn it into a sequence specified by
wrapping_type and multiply_length.

If value is a sequence and length_conflict_action=='error', raise error with error_type and er-
ror_message if the length doesn’t match multiply_length. Otherwise, return value unchanged.

pylablib.core.utils.functions module

Utilities for dealing with function, methods and function signatures.

class pylablib.core.utils.functions.FunctionSignature(arg_names=None, defaults=None,
varg_name=None, kwarg_name=None,
kwonly_arg_names=None, cls=None,
obj=None, name=None, doc=None)

Bases: object

Description of a function signature, including name, argument names, default values, names of varg and kwarg
arguments, class and object (for methods) and docstring.

Parameters

• arg_names (list) – Names of the arguments.

• default (dict) – Dictionary {name: value} of default values.

• varg_name (str) – Name of *varg parameter (None means no such parameter).

• kwarg_name (str) – Name of **kwarg parameter (None means no such parameter).

• cls – Caller class, for methods.

• obj – Caller object, for methods.

• name (str) – Function name.

• doc (str) – Function docstring.

get_defaults_list()

Get list of default values for arguments in the order specified in the signature.

signature(pass_order=None)
Get string containing a signature (arguments list) of the function (call or definition), including *vargs and
**kwargs.

If pass_order is not None, it specifies the order in which the arguments are passed.

wrap_function(func, pass_order=None)
Wrap a function func into a containing function with this signature.

Sets function name, argument names, default values, object and class (for methods) and docstring. If
pass_order is not None, it determines the order in which the positional arguments are passed to the wrapped
function.

as_kwargs(args, kwargs, add_defaults=False, exclude=None)
Turn args and kwargs into a single kwargs dictionary using the names of positional arguments.

If add_defaults==True, add all the non-specified default arguments as well. If the function takes *args
argument and some of the supplied arguments go there, place them into a list under "*" key in the result.
If exclude is not None is specifies arguments which should be excluded.

406 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

arg_value(argname, args=None, kwargs=None)
Get the value of the argument with the given name for given args and kwargs

mandatory_args_num()

Get minimal number of arguments which have to be passed to the function.

The mandatory arguments are the ones which are not bound to caller object (i.e., not self) and don’t have
default values.

max_args_num(include_positional=True, include_keywords=True)
Get maximal number of arguments which can be passed to the function.

Parameters

• include_positional (bool) – If True and function accepts *vargs, return None
(unlimited number of arguments).

• include_keywords (bool) – If True and function accepts **kwargs, return None
(unlimited number of arguments).

static from_function(func, follow_wrapped=True)
Get signature of the given function or method.

If follow_wrapped==True, follow __wrapped__ attributes until the innermost function (useful for get-
ting signatures of functions wrapped using functools methods).

copy()

Return a copy

as_simple_func()

Turn the signature into a simple function (as opposed to a bound method).

If the signature corresponds to a bound method, get rid of the first argument in the signature (self) and
the bound object. Otherwise, return unchanged.

static merge(inner, outer, add_place='front', merge_duplicates=True, overwrite=None,
hide_outer_obj=False)

Merge two signatures (used for wrapping functions).

The signature describes the function would take arguments according to the outer signature and pass them
according to the inner signature.

The arguments are combined:

• if add_place=='front', the outer arguments are placed in the beginning, followed by inner
arguments not already listed;

• if add_place=='back', the inner arguments are placed in the beginning, followed by outer
arguments not already listed.

The default values are joined, with the outer values superseding the inner values.

overwrite is a set or a list specifying which inner parameters are overwritten by the outer. It includes
'name', 'doc', 'cls', 'obj', 'varg_name' and 'kwarg_name'; the default value is all parameters.

If the inner signature is a bound method and hide_inner_obj==True, treat it as a function (with self
argument missing). In this case, the wrapped signature .obj field will be None.

Returns

(signature, pass_order)

2.7. pylablib 407

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pass_order is the order in which the arguments of the combined signature may be passed to
the inner signature; it may be different from the signature order if add_place=='front'.
If merge_duplicates==True, duplicate entries in pass_order are omitted; otherwise,
they’re repeated.

Return type
tuple

pylablib.core.utils.functions.funcsig(func, follow_wrapped=True)
Return a function signature object

pylablib.core.utils.functions.getargsfrom(source, **merge_params)
Decorator factory.

Returns decorator that conforms function signature to the source function. **merge_params are passed to the
FunctionSignature.merge() method merging wrapped and source signature.

The default behavior (conforming parameter names, default values args and kwargs names) is useful for wrapping
universal functions like g(*args, **kwargs).

Example:

def f(x, y=2):
return x+y

@getargsfrom(f)
def g(*args): # Now g has the same signature as f, including parameter names and␣
→˓default values.
return prod(args)

pylablib.core.utils.functions.call_cut_args(func, *args, **kwargs)
Call func with the given arguments, omitting the ones that don’t fit its signature.

pylablib.core.utils.functions.getattr_call(obj, attr_name, *args, **vargs)
Call the getter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the getter (fget); otherwise, ignore them.

pylablib.core.utils.functions.setattr_call(obj, attr_name, *args, **vargs)
Call the setter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the setter (fset); otherwise, the set value is assumed
to be either the first argument, or the keyword argument with the name 'value'.

pylablib.core.utils.functions.delattr_call(obj, attr_name, *args, **vargs)
Call the deleter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the deleter (fdel); otherwise, ignore them.

class pylablib.core.utils.functions.IObjectCall

Bases: object

Universal interface for object method call (makes methods, attributes and properties look like methods).

Should be called with an object as a first argument.

class pylablib.core.utils.functions.MethodObjectCall(method)
Bases: IObjectCall

Object call created from an object method.

408 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

Parameters
method – Either a method object or a method name which is used for the call.

class pylablib.core.utils.functions.AttrObjectCall(name, as_getter)
Bases: IObjectCall

Object call created from an object attribute (makes attributes and properties look like methods).

Parameters

• name (str) – Attribute name.

• as_getter (bool) – If True, call the getter when invoked; otherwise, call the setter.

If an attribute is a simple attribute, than getter gets no arguments and setter gets one argument (either the first
argument, or the keyword argument named 'value'). If it’s a property, pass all the parameters to the property
call.

class pylablib.core.utils.functions.IObjectProperty

Bases: object

Universal interface for an object property (makes methods, attributes and properties look like properties).

Can be used to get, set or remove a property.

get(obj, params=None)

set(obj, value)

rem(obj, params=None)

class pylablib.core.utils.functions.MethodObjectProperty(getter=None, setter=None,
remover=None, expand_tuple=True)

Bases: IObjectProperty

Object property created from object methods (makes methods look like properties).

Parameters

• getter (callable) – Method invoked on get(). If None, raise RuntimeError when
called.

• setter (callable) – Method invoked on set(). If None, raise RuntimeError when
called.

• remover (callable) – Method invoked on rem(). If None, raise RuntimeError when
called.

• expand_tuple (bool) – If True and if the first argument in the method call is a tuple,
expand it as an argument list for the underlying function call.

get(obj, params=None)

set(obj, value)

rem(obj, params=None)

class pylablib.core.utils.functions.AttrObjectProperty(name, use_getter=True, use_setter=True,
use_remover=True, expand_tuple=True)

Bases: IObjectProperty

Object property created from object attribute. Works with attributes or properties.

Parameters

2.7. pylablib 409

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• name (str) – Attribute name.

• use_getter (bool) – If False, raise RuntimeError when calling get method.

• use_setter (bool) – If False, raise RuntimeError when calling set method.

• use_remover (bool) – If False, raise RuntimeError when calling rem method.

• expand_tuple (bool) – If True and if the first argument in the method call is a tuple,
expand it as an argument list for the underlying function call.

get(obj, params=None)

set(obj, value)

rem(obj, params=None)

pylablib.core.utils.functions.empty_object_property(value=None)
Dummy property which does nothing and returns value on get (None by default).

pylablib.core.utils.functions.obj_prop(*args, **kwargs)
Build an object property wrapper.

If no arguments (or a single None argument) are supplied, return a dummy property. If one argument is supplied,
return AttrObjectProperty for a property with a given name. Otherwise, return MethodObjectProperty
property.

pylablib.core.utils.functions.as_obj_prop(value)
Turn value into an object property using obj_prop() function.

If it’s already IObjectProperty, return unchanged. If value is a tuple, expand as an argument list.

pylablib.core.utils.functions.delaydef(gen)
Wrapper for a delayed definition of a function inside of a module.

Useful if defining a function is computationally costly. The wrapped function should be a generator of the target
function rather than the function itself.

On the first call the generator is executed to define the target function, which is then substituted for all subsequent
calls.

pylablib.core.utils.general module

Collection of small utilities.

pylablib.core.utils.general.set_props(obj, prop_names, props)
Set multiple attributes of obj.

Names are given by prop_names list and values are given by props list.

pylablib.core.utils.general.get_props(obj, prop_names)
Get multiple attributes of obj.

Names are given by prop_names list.

pylablib.core.utils.general.getattr_multivar(obj, attrs, **kwargs)
Try to get an attribute of obj given a list attrs of its potential names.

If no attributes are found and default keyword argument is supplied, return this default value; otherwise, raise
AttributeError.

410 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#AttributeError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.general.using_method(func, method_name=None, inherit_signature=True)
Decorator that makes the function attempt to call the first argument’s method instead of func.

Before calling the function, try and call a method of the first argument named method_name (func name by de-
fault). If the method exists, call it instead of the wrapped function. If inherit_signature==True, completely
copy the signature of the wrapped method (name, args list, docstring, etc.).

pylablib.core.utils.general.to_predicate(x)
Turn x into a predicate.

If x is callable, it will be called with a single argument and returned value determines if the argument passes. If
x is a container, an argument passes if it’s contained in x.

pylablib.core.utils.general.map_container(value, func)
Map values in the container.

value can be a tuple, a list or a dict (mapping is applied to the values) raises ValueError if it’s something
else.

pylablib.core.utils.general.as_container(val, t)
Turn iterable into a container of type t.

Can handle named tuples, which have different constructor signature.

pylablib.core.utils.general.recursive_map(value, func)
Map container recursively.

value can be a tuple, a list or a dict (mapping is applied to the values).

pylablib.core.utils.general.make_flat_namedtuple(nt, fields=None, name=None,
subfield_fmt='{field:}_{subfield:}')

Turn a nested structure of named tuples into a single flat namedtuple.

Parameters

• nt – toplevel namedtuple class to be flattened

• fields – a dictionary {name: desc} of the fields, where name is the named tuple name,
and desc is either a nested namedtuple class, or a list of arguments which are passed
to the recursive call to this function (e.g., [TTuple, {"field": TNestedTuple}]).
Any tuple field which is present in this dictionary gets recursively flattened, and the field
names of the corresponding returned tuple are added to the full list of fields

• name – name of the resulting tuple

• subfield_fmt – format string, which describes how the combined field name is built out
of the original field name and the subtuple field name; by default, connect with "_", i.e.,
t.field.subfiled turns into t.field_subfield.

Returns
a new namedtuple class, which describes the flattened structure

pylablib.core.utils.general.any_item(d)
Return arbitrary tuple (key, value) contained in the dictionary (works both in Python 2 and 3)

pylablib.core.utils.general.merge_dicts(*dicts)
Combine multiple dict objects together.

If multiple dictionaries have the same keys, later arguments have higher priority.

2.7. pylablib 411

https://docs.python.org/3/library/exceptions.html#ValueError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.general.filter_dict(pred, d, exclude=False)
Filter dictionary based on a predicate.

pred can be a callable or a container (in which case the predicate is true if a value is in the container). If
exclude==True, the predicate is inverted.

pylablib.core.utils.general.map_dict_keys(func, d)
Map dictionary keys with func

pylablib.core.utils.general.map_dict_values(func, d)
Map dictionary values with func

pylablib.core.utils.general.to_dict(d, default=None)
Convert a dict or a list of pairs or single keys (or mixed) into a dict.

If a list element is single, default value is used.

pylablib.core.utils.general.to_pairs_list(d, default=None)
Convert a dict or a list of pairs or single keys (or mixed) into a list of pairs.

If a list element is single, default value is used. When converting list into list, the order is preserved.

pylablib.core.utils.general.invert_dict(d, kmap=None)
Invert dictionary (switch keys and values).

If kmap is supplied, it’s a function mapping dictionary values into inverted dictionary keys (identity by default).

pylablib.core.utils.general.flatten_list(l)
Flatten nested list/tuple structure into a single list.

pylablib.core.utils.general.partition_list(pred, l)
Split the lis` l into two parts based on the predicate.

pylablib.core.utils.general.split_in_groups(key_func, l, continuous=True, max_group_size=None)
Split the list l into groups according to the key_func.

Go over the list and group the elements with the same key value together. If continuous==False, groups all
elements with the same key together regardless of where they are in the list. otherwise, group only continuous
sequences of the elements with the same key together (element with different key in the middle will result in two
groups). If continuous==True and max_group_size is not None, it determines the maximal size of a group;
larger groups are split into separate groups.

pylablib.core.utils.general.sort_set_by_list(s, l, keep_duplicates=True)
Convert the set s into a list ordered by a list l.

Elements in s which are not in l are omitted. If keep_duplicates==True, keep duplicate occurrences in l in
the result; otherwise, only keep the first occurrence.

pylablib.core.utils.general.compare_lists(l1, l2, sort_lists=False, keep_duplicates=True)
Return three lists (l1 and l2, l1-l2, l2-l1).

If sort_lists==True, sort the first two lists by l1, and the last one by l2; otherwise, the order is undefined. If
sort_lists==True, keep_duplicated determines if duplicate elements show up in the result.

pylablib.core.utils.general.topological_order(graph, visit_order=None)
Get a topological order of a graph.

Return a list of nodes where each node is listed after its children. If visit_order is not None, it is a list specifying
nodes visiting order (nodes earlier in the list are visited first). Otherwise, the visit order is undefined. graph is a
dictionary {node: [children]}. If graph contains loops, raise ValueError.

412 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#ValueError

pylablib Documentation, Release 1.4.2

class pylablib.core.utils.general.DummyResource

Bases: object

Object that acts as a resource (has __enter__ and __exit__ methods), but doesn’t do anything.

Analog of:

@contextlib.contextmanager
def dummy_resource():

yield

class pylablib.core.utils.general.RetryOnException(tries=None, exceptions=None)
Bases: object

Wrapper for repeating the same block of code several time if an exception occurs

Useful for filesystem or communication operations, where retrying a failed operation is a valid option.

Parameters

• tries (int) – Determines how many time will the chunk of code execute before re-raising
the exception; None (default) means no limit

• exceptions (Exception or list) – A single exception class or a list of exception
classes which are going to be silenced.

Example:

for t in RetryOnException(tries,exceptions):
with t:

... do stuff ...

is analogue of:

for i in range(tries):
try:

... do stuff ...
except exceptions:

if i==tries-1:
raise

class ExceptionCatcher(retrier, try_number)
Bases: object

reraise()

pylablib.core.utils.general.retry_wait(func, try_times=1, delay=0.0, exceptions=None)
Try calling function (with no arguments) at most try_times as long as it keeps raising exception.

If exceptions is not None, it specifies which exception types should be silenced. If an exception has been raised,
wait delay seconds before retrying.

class pylablib.core.utils.general.SilenceException(exceptions=None, on_exception=None,
reraise=False)

Bases: object

Context which silences exceptions raised in a block of code.

Parameters

2.7. pylablib 413

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• exceptions (Exception or list) – A single exception class or a list of exception
classes which are going to be silenced.

• on_exception (callable) – A callback to be invoked if an exception occurs.

• reraise (bool) – Defines if the exception is re-raised after the callback has been invoked.

A simple bit of syntax sugar. The code:

with SilenceException(exceptions,on_exception,reraise):
... do stuff ...

is exactly analogous to:

try:
... do stuff ...

except exceptions:
on_exception()
if reraise:

raise

pylablib.core.utils.general.full_exit(code=Signals.SIGTERM)

Terminate the current process and all of its threads.

Doesn’t perform any cleanup or resource release; should only be used if the process is irrevocably damaged.

class pylablib.core.utils.general.UIDGenerator(thread_safe=False)
Bases: object

Generator of unique numeric IDs.

Parameters
thread_safe (bool) – If True, using lock to ensure that simultaneous calls from different
threads are handled properly.

reset(value=0)
Reset the generator to the given value

class pylablib.core.utils.general.NamedUIDGenerator(name_template='{0}{1:03d}',
thread_safe=False)

Bases: object

Generator of unique string IDs based on a name.

Parameters

• name_template (str) – Format string with two parameters (name and numeric ID) used
to generate string IDs.

• thread_safe (bool) – If True, using lock to ensure that simultaneous calls from differ-
ent threads are handled properly.

pylablib.core.utils.general.call_limit(func, period=1, cooldown=0.0, limit=None, default=None)
Wrap func such that calls to it are forwarded only under certain conditions.

If period>1, then func is called after at least period calls to the wrapped function. If cooldown>0, then func
is called after at least cooldown seconds passed since the last call. if limit is not None, then func is called
only first limit times. If several conditions are specified, they should be satisfied simultaneously. default specifies
return value if func wasn’t called. Returned function also has an added method reset, which resets the internal
call and time counters.

414 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.utils.general.doc_inherit(parent)
Wrapper for inheriting docstrings from parent classes.

Takes parent class as an argument and replaces the docstring of the wrapped function by the docstring of the
same-named function from the parent class (if available).

class pylablib.core.utils.general.Countdown(timeout, start=True)
Bases: object

Object for convenient handling of timeouts and countdowns with interrupts.

Parameters

• timeout (float) – Countdown timeout; if None, assumed to be infinite.

• start (bool) – if True, automatically start the countdown; otherwise, wait until
trigger() is called explicitly

reset(start=True)
Restart the countdown from the current moment

trigger(restart=True)
Trigger the countdown.

If restart==True, restart the countdown if it’s running; otherwise, do nothing in that situation.

running()

Check if the countdown is running

stop()

Stop the timer if currently running

time_left(t=None, bound_below=True)
Return the amount of time left. For infinite timeout, return None.

If bound_below==True, instead of negative time return zero. If t is supplied, it indicates the current time;
otherwise, use time.time().

add_time(dt, t=None, bound_below=True)
Add a given amount of time (positive or negative) to the start time (timeout stays the same).

If bound_below==True, do not let the end time (start time plus timeout) to get below the current time. If
t is supplied, it indicates the current time; otherwise, use time.time().

set_timeout(timeout)
Change the timer timeout

time_passed()

Return the amount of time passed since the countdown start/reset, or None if it is not started

passed()

Check if the timeout has passed

class pylablib.core.utils.general.Timer(period, skip_first=False)
Bases: object

Object for keeping time of repeating tasks.

Parameters
period (float) – Timer period.

2.7. pylablib 415

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

change_period(period, method='current')
Change the timer period.

method specifies the changing method. Could be "current" (change the period of the ongoing tick),
"next" (change the period starting from the next tick), "reset_skip" (reset the timer and skip the first
tick) or "reset_noskip" (reset the timer and don’t skip the first tick).

reset(skip_first=False)
Reset the timer.

If skip_first==False, timer ticks immediately; otherwise, it starts ticking only after one period.

time_left(t=None, bound_below=True)
Return the amount of time left before the next tick.

If bound_below==True, instead of negative time return zero.

passed(t=None)
Return the number of ticks passed.

If timer period is zero, always return 1.

acknowledge(n=None, nmin=0)
Acknowledge the timer tick.

n specifies the number of tick to acknowledge (by default, all passed). Return number of actually acknowl-
edged ticks (0 if the timer hasn’t ticked since the last acknowledgement).

class pylablib.core.utils.general.TimeTracker(verbose='all')
Bases: object

Time tracker used for estimating time for different sections of code.

Parameters
verbose – determines the verbosity level; can be "all" (print on mark and on summary),
"summary" (only print summery), or "none" (do not print anything)

reset()

Reset the internal timer

summary(join_records='auto', exclude_untracked=True, compact=False, reset=True, period=None)
Print the sections runtime summary.

If join_records==True, count all records with the same message as the same event and present total /
per call statistics; otherwise, print one line per record. If join_records=="auto", set to True if there
are several records with the same name. If exclude_untracked==True, exclude code periods marked
with no message (i.e., None) from the total time calculation. If compact==True, only print one line per
record; otherwise, also include header and total time. If reset==True, reset the sections history. If period
is not None, defines the maximal summary printing period.

class pylablib.core.utils.general.StreamFileLogger(path, stream=None, lock=None, autoflush=False)
Bases: object

Stream logger that replaces standard output stream (usually stdout or stderr) and logs them into a file.

Parameters

• path – path to the destination logfile. The file is always appended.

• stream – an optional output stream into which the output will be duplicated; usually, the
original stream which is being replaced

416 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• lock – a thread lock object, which is used for any file writing operation; necessary if
replacing standard streams (such as sys.stdout or sys.stderr) in a multithreading
environment.

• autoflush – if True, flush after any write operation into stream

It is also possible to subclass the file and overload write_header() method to write a header before the first
file write operation during the execution.

The intended use is to log stdout or stderr streams:

import sys, threading
sys.stderr = StreamFileLogger("error_log.txt", stream=sys.stderr, lock=threading.
→˓Lock())

write_header(f)
Write header to file stream f

add_path(path)
Add another logging path to the list

add_stream(stream)

Add another output stream to the list

remove_path(path)
Remove logging path to the list

write(s)

flush()

pylablib.core.utils.general.setbp()

pylablib.core.utils.general.timing(n=1, name=None, profile=False)
Context manager for timing a piece of code.

Measures the time it takes to execute the wrapped code and prints the result.

Parameters

• n – can specify the number of repetitions, which is used to show time per single repetition.

• name – name which is printed alongside the time

• profile – if True, use cProfile and print its output instead of a simple timing

class pylablib.core.utils.general.AccessIterator(obj, access_function=None)
Bases: object

Simple sequential access iterator with customizable access function (by default it’s 1D indexing).

Determines end of iterations by IndexError.

Parameters

• obj – Container to be iterated over.

• access_function (callable) – A function which takes two parameters obj and idx
and either returns the element or raises IndexError. By default, a simple __getitem__
operation.

next()

2.7. pylablib 417

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#IndexError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.general.muxcall(argname, special_args=None, mux_argnames=None,
return_kind='list', allow_partial=False)

Wrap a function such that it can become multiplexable over a given argument.

Parameters

• argname – name of the argument to loop over

• special_args – if not None, defines a dictionary {arg: func} for special values of
the argument (e.g., "all", None, etc.), where arg is its value, and func is the method
taking the same arguments as the called function and returning the substitute argument
(e.g., a list of all arguments)

• mux_argnames – names of additional arguments which, when supplied list or dict values,
and when the argname value is a list, specify different values for different calls

• return_kind – method to combined multiple returned values; can be "list", "dict"
(return dict {arg: result}), or "none" (simply return None)

• allow_partial – if True and some of mux_argnames argument do not specify value
for the full range of argname value, do not call the function for those unspecified values;
otherwise (allow_partial is True), the error will be raised

pylablib.core.utils.general.wait_for_keypress(message='Waiting...')

pylablib.core.utils.general.restart()

Restart the script.

Execution will not resume after this call. Note: due to Windows limitations, this function does not replace the
current process with a new one, but rather calls a new process and makes the current one wait for its execution.
Hence, each nested call adds an additional loaded application into the memory. Therefore, nesting restart calls
(i.e., calling several restarts in a row) should be avoided.

pylablib.core.utils.indexing module

Processing and normalization of different indexing styles.

pylablib.core.utils.indexing.string_list_idx(names_to_find, names_list, only_exact=False)
Index through a list of strings in names_list.

Return corresponding numerical indices. Case sensitive; first look for exact matching, then for prefix matching
(unless only_exact=True).

pylablib.core.utils.indexing.is_slice(idx)
Check if idx is slice.

pylablib.core.utils.indexing.is_range(idx)
Check if idx is iterable (list, numpy array, or builtins.range).

pylablib.core.utils.indexing.is_bool_array(idx)
Check if idx is a boolean array.

pylablib.core.utils.indexing.to_range(idx, length)
Turn list, array, builtins.range, slice into an iterable.

418 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.core.utils.indexing.covers_all(idx, length, strict=False, ordered=True)
Check if idx covers all of the elements (indices from 0 to length).

If strict==True, strictly checks the condition; otherwise may return False even if idx actually covers every-
thing, but takes less time (i.e., can be used for optimization). If ordered==True, only returns Truewhen indices
follow in order.

class pylablib.core.utils.indexing.IIndex

Bases: object

A generic index object.

Used to transform a variety of indexes into a subset applicable for specific objects (numpy arrays or lists).

Allowed input index types:

• scalar: integer, string

• vector: integer lists or numpy arrays, bool lists or numpy arrays, string lists or numpy arrays,
builtin.ranges, slices and string slices

tup()

Represent index as a tuple for easy unpacking.

class pylablib.core.utils.indexing.NumpyIndex(idx, ndim=None)
Bases: IIndex

NumPy compatible index: allows for integers, slices, numpy integer or boolean arrays, integer lists or
builtin.ranges.

Parameters

• idx – raw index

• ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already nor-
malized

tup()

Represent index as a tuple for easy unpacking.

class pylablib.core.utils.indexing.ListIndex(idx, names=None, ndim=None)
Bases: IIndex

List compatible index: allows for integers, slices, numpy integer arrays, integer lists or builtin.ranges.

Parameters

• idx – raw index

• names – list of allowed index string values, which is used to convert them into integers

• ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already nor-
malized

tup()

Represent index as a tuple for easy unpacking.

class pylablib.core.utils.indexing.ListIndexNoSlice(idx, names=None, length=None, ndim=None)
Bases: ListIndex

List compatible index with slice unwrapped into builtin.range: allows for integers, numpy integer arrays, integer
lists or builtin.ranges.

Parameters

2.7. pylablib 419

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• idx – raw index

• names – list of allowed index string values, which is used to convert them into integers

• length – length of the list (used to expand slice indices)

• ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already nor-
malized

tup()

Represent index as a tuple for easy unpacking.

pylablib.core.utils.indexing.to_double_index(idx, names)
Convert double index into a pair of indexes.

Assume that one index is purely numerical, while the other can take names (out of the supplied list).

Parameters

• idx – raw double index

• names – list of allowed index string values, which is used to convert them into integers

pylablib.core.utils.ipc module

Universal interface for inter-process communication.

Focus on higher throughput for large numpy arrays via shared memory.

class pylablib.core.utils.ipc.IIPCChannel

Bases: object

Generic IPC channel interface

send(data)
Send data

recv(timeout=None)
Receive data

send_numpy(data)
Send numpy array

recv_numpy(timeout=None)
Receive numpy array

get_peer_args()

Get arguments required to create a peer connection

classmethod from_args(*args)
Create a peer connection from the supplied arguments

class pylablib.core.utils.ipc.TPipeMsg(id, data)
Bases: tuple

data

id

420 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.core.utils.ipc.PipeIPCChannel(pipe_conn=None)
Bases: IIPCChannel

Generic IPC channel interface using pipe.

get_peer_args()

Get arguments required to create a peer connection

send(data)
Send data

recv(timeout=None)
Receive data

classmethod from_args(*args)
Create a peer connection from the supplied arguments

recv_numpy(timeout=None)
Receive numpy array

send_numpy(data)
Send numpy array

class pylablib.core.utils.ipc.SharedMemIPCChannel(pipe_conn=None, arr=None, arr_size=None)
Bases: PipeIPCChannel

Generic IPC channel interface using pipe and shared memory for large arrays.

get_peer_args()

Get arguments required to create a peer connection

send_numpy(data, method='auto', timeout=None)
Send numpy array

recv_numpy(timeout=None)
Receive numpy array

classmethod from_args(*args)
Create a peer connection from the supplied arguments

recv(timeout=None)
Receive data

send(data)
Send data

class pylablib.core.utils.ipc.TShmemVarDesc(offset, size, kind, fixed_size)
Bases: tuple

fixed_size

kind

offset

size

2.7. pylablib 421

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.core.utils.ipc.SharedMemIPCTable(pipe_conn=None, arr=None, arr_size=None,
lock=True)

Bases: object

Shared memory table for exchanging shared variables between processes.

Can be used instead of channels for variables which are rarely changed but frequently checked (e.g., status), or
when synchronization of sending and receiving might be difficult

add_variable(name, size, kind='pickle')
Add a variable with a given name.

The variable info is also communicated to the other endpoint. size determines maximal variable size in
bytes. If the actual size ever exceeds it, an exception will be raised. kind determines the way to con-
vert variable into bytes; can be "pickle" (universal, but large size overhead), "nps_###"` (where ###
can be any numpy scalar dtype description, e.g., "float" or "<u2") for numpy scalars, or "npa_###"`
(where ### means the same as for nps) for numpy arrays (in this case the array size and shape need to be
communicated separately).

set_variable(name, value)
Set a variable with a given name.

If the variable is missing, raise an exception.

get_variable(name, default=None)
Get a variable with a given name.

If the variable is missing, return default.

is_peer_connected()

Check if the peer is connected (i.e., the other side of the pipe is initialized)

close_connection()

Mark the connection as closed

is_peer_closed()

Check if the peer is closed

get_peer_args()

Get arguments required to create a peer connection

classmethod from_args(*args)
Create a peer connection from the supplied arguments

pylablib.core.utils.library_parameters module

Storage for global library parameters

pylablib.core.utils.library_parameters.temp_library_parameters(restore=None)
Context manager, which restores library parameters upon exit.

If rester is not None, it can specify a list of parameters to be restored (by default, all parameters).

422 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

pylablib.core.utils.module module

Library for dealing with python module properties.

pylablib.core.utils.module.get_package_version(pkg)
Get the version of the package.

If the package version is unavailable, return None.

pylablib.core.utils.module.cmp_versions(ver1, ver2)
Compare two package versions.

Return '<' if the first version is older (smaller), '>' if it’s younger (larger) or '=' if it’s the same.

pylablib.core.utils.module.cmp_package_version(pkg, ver)
Compare current package version to ver.

ver should be a name of the package (rather than the module). Return '<' if current version is older (smaller),
'>' if it’s younger (larger) or '=' if it’s the same. If the package version is unavailable, return None.

pylablib.core.utils.module.expand_relative_path(module_name, rel_path)
Turn a relative module path into an absolute one.

module_name is the absolute name of the reference module, rel_path is the path relative to this module.

pylablib.core.utils.module.get_loaded_package_modules(pkg_name)
Get all modules in the package pkg_name.

Returns a dict {name: module}.

pylablib.core.utils.module.get_imported_modules(module, explicit=False)
Get modules imported within a given module.

If explicit==True, take into account only toplevel objects which are modules (corresponds to import module
or from package import module statements) If explicit==False, also include all modules containing
toplevel objects (corresponds to from module import Class or from package import function state-
ments). Return a dictionary {name: module} (modules with the same name are considered to be the same).

pylablib.core.utils.module.get_reload_order(modules)
Find reload order for modules which respects dependencies (a module is loaded before its dependents).

modules is a dict {name: module}.

The module dependencies (i.e., the modules which the current module depends on) are determined based on
imported modules and modules containing toplevel module objects.

pylablib.core.utils.module.reload_package_modules(pkg_name, ignore_errors=False)
Reload package pkg_name, while respecting dependencies of its submodules.

If ignore_errors=True, ignore ImportError exceptions during the reloading process.

pylablib.core.utils.module.unload_package_modules(pkg_name, ignore_errors=False)
Reload package pkg_name, while respecting dependencies of its submodules.

If ignore_errors=True, ignore ImportError exceptions during the reloading process.

pylablib.core.utils.module.get_library_path()

Get a filesystem path for the pyLabLib library (the one containing current the module).

pylablib.core.utils.module.get_library_name()

Get the name for the pyLabLib library (the one containing current the module).

2.7. pylablib 423

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#ImportError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.module.get_executable(console=False)
Get Python executable.

If console==True and the current executable is windowed (i.e., "pythonw.exe"), return the corresponding
"python.exe" instead.

pylablib.core.utils.module.get_python_folder()

Return Python interpreter folder (the folder containing the python executable)

pylablib.core.utils.module.pip_install(pkg, upgrade=False)
Call pip install for a given package.

If upgrade==True, call with --upgrade key (upgrade current version if it is already installed).

pylablib.core.utils.module.install_if_older(pkg, min_ver='')
Install pkg from the default PyPI repository if its version is lower that min_ver

If min_ver is None, upgrade to the newest version regardless; if min_ver=="", install only if no version is
installed. Return True if the package was installed.

pylablib.core.utils.nbtools module

pylablib.core.utils.nbtools.c_array(base='u1', ndim=1, readonly=False, contiguous='C')
Generate a numba C-ordered array type with the given element type, number of dimensions, and read-only and
contiguous flags

pylablib.core.utils.nbtools.au1(x, off)
Extract a little-endian 1-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.au2(x, off)
Extract a little-endian 2-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.au4(x, off)
Extract a little-endian 4-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.au8(x, off)
Extract a little-endian 8-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.ai1(x, off)
Extract a little-endian 1-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.ai2(x, off)
Extract a little-endian 2-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.ai4(x, off)
Extract a little-endian 4-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.ai8(x, off)
Extract a little-endian 8-byte unsigned integer from a numpy byte array at the given offset

pylablib.core.utils.nbtools.copy_array_chunks(base='u1', par=False, nogil=True)
Generate and compile a numba function for copying an array in chunks. base specifies the base array type (by
default, unsigned byte); if par==True, generate a parallelized implementation. if nogil==True, use the nogil
numba option to release GIL during the execution.

The returned function takes 4 arguments: source array, destination array, number of chunks, and size (in elements)
of each chunk.

424 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.core.utils.nbtools.copy_array_strided(base='u1', par=False, nogil=True)
Generate and compile a numba function for copying an array in chunks with an arbitrary stride. base speci-
fies the base array type (by default, unsigned byte); if par==True, generate a parallelized implementation. if
nogil==True, use the nogil numba option to release GIL during the execution.

The returned function takes 6 arguments: source array, destination array, number of chunks, size (in elements)
of each chunk, chunks stride (in elements) in the source array, and offset (in elements) from the beginning of the
first array. If size is the same as stride and the offset is zero, this function would mimic the one generated by
copy_array_chunks().

pylablib.core.utils.net module

A wrapper for built-in TCP/IP routines.

exception pylablib.core.utils.net.SocketError

Bases: OSError

Base socket error class.

add_note()

Exception.add_note(note) – add a note to the exception

args

characters_written

errno

POSIX exception code

filename

exception filename

filename2

second exception filename

strerror

exception strerror

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.core.utils.net.SocketTimeout

Bases: SocketError

Socket timeout error.

add_note()

Exception.add_note(note) – add a note to the exception

args

characters_written

errno

POSIX exception code

filename

exception filename

2.7. pylablib 425

https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

filename2

second exception filename

strerror

exception strerror

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.core.utils.net.get_local_addr()

Get local IP address

pylablib.core.utils.net.get_all_local_addr()

Get a list of all local IP addresses

pylablib.core.utils.net.get_local_hostname(full=True)
Get a local host name

pylablib.core.utils.net.get_all_remote_addr(hostname)
Get a list of all remote addresses of a remote host by name

pylablib.core.utils.net.get_remote_hostname(addr, error_on_missing=False)
Get a remote host name by its address

pylablib.core.utils.net.as_addr_port(addr, port)
Parse the given address and port combination.

addr can be a host address, a tuple (addr, port), or a string "addr:port"; in the first case the given port is
used, while in the other two it is ignore. Return tuple (addr, port).

class pylablib.core.utils.net.ClientSocket(sock=None, timeout=None, wait_callback=None,
send_method='decllen', recv_method='decllen',
datatype='auto', nodelay=False)

Bases: object

A client socket (used to connect to a server socket).

Parameters

• sock (socket.socket) – Socket to wrap; if None create a new one.

• timeout (float) – The timeout used for connecting and sending/receiving (None means
no timeout).

• wait_callback (callable) – Called periodically (every 100ms by default) while wait-
ing for connecting or sending/receiving.

• send_method (str) – Default sending method.

• recv_method (str) – Default receiving method.

• datatype (str) – Type of the returned data; can be "bytes" (return bytes object), "str"
(return str object), or "auto" (default Python result: str in Python 2 and bytes in Python
3)

• nodelay (bool) – Whether to enable TCP_NODELAY.

Possible sending/receiving methods are:

• 'fixedlen': data is sent as is, and receiving requires to know the length of the message;

426 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• 'decllen': data is prepended by a length, and receiving reads this length and doesn’t need prede-
termined length info.

sock

Corresponding Python socket.

Type
socket.socket

decllen_bo

Byteorder of the prepended length for 'decllen' sending method. Can be either '>' (big-endian, default)
or '<'.

Type
str

decllen_ll

Length of the prepended length for 'decllen' sending method; default is 4 bytes (corresponding to
maximum of 4Gb per single length-prepended message)

Type
int

set_wait_callback(wait_callback=None)
Set callback function for waiting during connecting or sending/receiving

set_timeout(timeout=None)
Set timeout for connecting or sending/receiving

get_timeout()

Get timeout for connecting or sending/receiving

using_timeout(timeout=None)
Context manager for usage of a different timeout inside a block

connect(host, port)
Connect to a remote host

close()

Close the connection

is_connected()

Check if the connection is opened

get_local_name()

Return IP address and port of this socket

get_peer_name()

Return IP address and port of the peer socket

recv_fixedlen(l)
Receive fixed-length message of length l

recv_delimiter(delim, lmax=None, chunk_l=1024, strict=False)
Receive a single message ending with a delimiter delim (can be several characters, or list several possible
delimiter strings).

lmax specifies the maximal received length (None means no limit). chunk_l specifies the size of data chunk
to be read in one try. If strict==False, keep receiving as much data as possible until a delimiter is found

2.7. pylablib 427

https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

in the end (only works properly if a single line is expected); otherwise, receive the data byte-by-byte and
stop as soon as a delimiter is found (equivalent to setting chunk_l=1).

recv_decllen()

Receive variable-length message (prepended by its length).

Length format is described by decllen_bo and decllen_ll attributes.

recv(l=None)
Receive a message using the default method.

recv_all(chunk_l=1024)
Receive all of the data currently in the socket.

chunk_l specifies the size of data chunk to be read in one try. For technical reasons, use 1ms timeout (i.e.,
this operation takes 1ms).

recv_ack(l=None)
Receive a message using the default method and send an acknowledgement (message length)

send_fixedlen(msg)
Send a message as is

send_decllen(msg)
Send a message as a variable-length (prepending its length in the sent message).

Length format is described by decllen_bo and decllen_ll attributes.

send_delimiter(msg, delimiter)
Send a message with a delimiter delim (can be several characters)

send(msg)
Send a message using the default method.

send_ack(msg)
Send a message using default method and wait for acknowledgement (message length).

If the acknowledgement message length doesn’t agree, raise SocketError.

pylablib.core.utils.net.recv_JSON(sock, chunk_l=1024, strict=True)
Receive a complete JSON token from the socket.

chunk_l specifies the size of data chunk to be read in one try. If strict==False, keep receiving as much data
as possible until the received data forms a complete JSON token. otherwise, receive the data byte-by-byte and
stop as soon as a token is formed (equivalent to setting chunk_l=1).

pylablib.core.utils.net.listen(host, port, conn_func, port_func=None, wait_callback=None,
timeout=None, backlog=10, wrap_socket=True,
connections_number=None, socket_kwargs=None)

Run a server socket at the given host and port.

Parameters

• host (str) – Server host address. If None, use the local host defined by socket.
gethostname().

• port (int) – Server port. If 0, generate an arbitrary free port.

• conn_func (callable) – Called with the client socket as a single argument every time
a connection is established.

428 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/socket.html#socket.gethostname
https://docs.python.org/3/library/socket.html#socket.gethostname
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

• port_func (callable) – Called with the port as a single argument when the listening
starts (useful with port=0).

• wait_callback (callable) – A callback function which is called periodically (every
100ms by default) while awaiting for connections.

• timeout (float) – Timeout for waiting for the connections (None is no timeout).

• backlog (int) – Backlog length for the socket (see socket.socket.listen()).

• wrap_socket (bool) – If True, wrap the client socket of the connection into
ClientSocket class; otherwise, return socket.socket object.

• connections_number (int) – Specifies maximal number of connections before the lis-
tening function returns (by default, the number is unlimited).

• socket_kwargs (dict) – additional keyword arguments passed to ClientSocket con-
structor.

Checking for connections is paused until conn_func returns. If multiple simultaneous connections are expected,
conn_func should spawn a separate processing thread and return. If connections_number is None (i.e.,
there’s no limit on the number of connections before closing), this function never returns.

pylablib.core.utils.numerical module

Numerical functions that don’t deal with sequences.

pylablib.core.utils.numerical.gcd(*numbers)
Euclid’s algorithm for GCD. Arguments are cast to integer

pylablib.core.utils.numerical.integer_distance(x)
Get distance to the closes integer

pylablib.core.utils.numerical.gcd_approx(a, b, min_fraction=1e-08, tolerance=1e-05)
Approximate Euclid’s algorithm for possible non-integer values.

Try to find a number d such that a/d and b/d are less than tolerance away from a closest integer. If GCD becomes
less than min_fraction * min(a, b), raise ArithmeticError.

pylablib.core.utils.numerical.round_significant(x, n)
Rounds x to n significant digits (not the same as n decimal places!).

pylablib.core.utils.numerical.limit_to_range(x, min_val=None, max_val=None, default=0)
Confine x to the given limit.

Default limit values are None, which means no limit. default specifies returned value if both x, min_val and
max_val are None.

class pylablib.core.utils.numerical.infinite_list(start=0, step=1)
Bases: object

Mimics the behavior of the usual list, but is infinite and immutable.

Supports accessing elements, slicing (including slices giving infinite lists) and iterating. Iterating over it naturally
leads to an infinite loop, so it should only be used either for finite slices or for loops with break condition.

Parameters

• start – The first element of the list.

• step – List step.

2.7. pylablib 429

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/socket.html#socket.socket.listen
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ArithmeticError
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

class counter(lst)
Bases: object

next()

pylablib.core.utils.numerical.unity()

Return a unity function

pylablib.core.utils.numerical.constant(c)
Return a function which returns a constant c.

c can only be either a scalar, or an array-like object with the shape matching the expected argument.

pylablib.core.utils.numerical.polynomial(coeffs)
Return a polynomial function which with coefficients coeffs.

Coefficients are list lowest-order first, so that coeffs[i] is the coefficient in front of x**i.

pylablib.core.utils.observer_pool module

A simple observer pool (notification pool) implementation.

class pylablib.core.utils.observer_pool.ObserverPool(expand_tuple=True)
Bases: object

An observer pool.

Stores notification functions (callbacks), and calls them whenever notify() is called. The callbacks can have
priority (higher priority ones are called first) and filter (observer is only called if the filter function passes the
notification tag).

Parameters
expand_tuple (bool) – if True and the notification value is a tuple, treat it as an argument
list for the callback functions.

class Observer(filt, callback, priority, attr, cacheable)
Bases: tuple

attr

cacheable

callback

filt

priority

add_observer(callback, name=None, filt=None, priority=0, attr=None, cacheable=False)
Add the observer callback.

Parameters

• callback (callable) – callback function; takes at least one argument (notification
tag), and possible more depending on the notification value.

• name (str) – stored callback name; by default, a unique name is auto-generated

• filt (callable or None) – a filter function for this observer (the observer is called
only if the notify() function tag and value pass the filter); by default, all tags are
accepted

430 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• priority (int) – callback priority; higher priority callback are invoked first.

• attr – additional observer attributes (can be used by ObserverPool subclasses to
change their behavior).

• cacheable (bool) – if True, assumes that the filter function only depends on the tag,
so its calls can be cached.

Returns
callback name (equal to name if supplied; an automatically generated name otherwise).

remove_observer(name)
Remove the observer callback with the given name

find_observers(tag, value)

notify(tag, value=())
Notify the observers by calling their callbacks.

Return a dictionary of the callback results. By default the value is an empty tuple: for
expand_tuple==True this means that only one argument (tag) is passed to the callbacks.

pylablib.core.utils.py3 module

Dealing with Python2 / Python3 compatibility.

pylablib.core.utils.py3.as_str(data)
Convert a string into a text string

pylablib.core.utils.py3.as_bytes(data)
Convert a string into bytes

pylablib.core.utils.py3.as_builtin_bytes(data)
Convert a string into bytes

pylablib.core.utils.py3.as_datatype(data, datatype)
Convert a string into a given datatypes.

datatype can be "str" (text string), "bytes" (byte string), or "auto" (no conversion).

pylablib.core.utils.rpyc_utils module

Routines and classes related to RPyC package

pylablib.core.utils.rpyc_utils.obtain(proxy, serv=None, deep=False, direct=False)
Obtain a remote netref object by value (i.e., copy it to the local Python instance).

Wrapper around rpyc.utils.classic.obtain() with some special cases handling. serv specifies the cur-
rent remote service. If it is of type SocketTunnelService, use its socket tunnel for faster transfer. If
deep==True and proxy is a container (tuple, list, or dict), run the function recursively for all its sub-elements.
If direct==True, directly use RPyC obtain method; otherwise use the custom method, which works better
with large numpy arrays, but worse with composite types (e.g., lists).

pylablib.core.utils.rpyc_utils.transfer(obj, serv)
Send a local object to the remote PC by value (i.e., copy it to the remote Python instance).

A ‘reversed’ version of obtain().

2.7. pylablib 431

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://rpyc.readthedocs.io/en/latest/api/utils_classic.html#rpyc.utils.classic.obtain

pylablib Documentation, Release 1.4.2

class pylablib.core.utils.rpyc_utils.SocketTunnelService(*args: Any, **kwargs: Any)
Bases: SlaveService

Extension of the standard rpyc.core.service.SlaveService with built-in network socket tunnel for faster
data transfer.

In order for the tunnel to work, services on both ends need to be subclasses of SocketTunnelService. Because
of the initial setup protocol, the two services are asymmetric: one should be ‘server’ (corresponding to the
listening server), and one should be ‘client’ (external connection). The roles are decided by the server constructor
parameter.

tunnel_send(obj, packer=None)
Send data through the socket tunnel.

If packer is not None, it defines a function to convert obj to a bytes string.

tunnel_recv(unpacker=None)
Receive data sent through the socket tunnel.

If unpacker is not None, it defines a function to convert the received bytes string into an object.

obtain(proxy)
Execute obtain() on the local instance

transfer(obj)
Execute transfer() on the local instance

on_connect(conn)

on_disconnect(conn)

class pylablib.core.utils.rpyc_utils.DeviceService(*args: Any, **kwargs: Any)
Bases: SocketTunnelService

Device RPyC service.

Expands on SocketTunnelService by adding get_device()method, which opens local devices, tracks them,
and closes them automatically on disconnect.

on_connect(conn)

on_disconnect(conn)

get_device_class(cls)
Get remote device class.

cls is the full class name, including the module within pylablib.devices (e.g., Attocube.ANC300).

get_device(cls, *args, **kwargs)
Connect to a device.

cls is the full class name, including the module within pylablib.devices (e.g., Attocube.ANC300).
Stores reference to the connected device and closes it automatically on disconnect.

obtain(proxy)
Execute obtain() on the local instance

transfer(obj)
Execute transfer() on the local instance

432 Chapter 2. Citation

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://rpyc.readthedocs.io/en/latest/api/core_service.html#rpyc.core.service.SlaveService
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

pylablib Documentation, Release 1.4.2

tunnel_recv(unpacker=None)
Receive data sent through the socket tunnel.

If unpacker is not None, it defines a function to convert the received bytes string into an object.

tunnel_send(obj, packer=None)
Send data through the socket tunnel.

If packer is not None, it defines a function to convert obj to a bytes string.

pylablib.core.utils.rpyc_utils.run_device_service(port=18812, verbose=False)
Start DeviceService at the given port

pylablib.core.utils.rpyc_utils.connect_device_service(addr, port=18812, timeout=3, attempts=2,
error_on_fail=True, config=None)

Connect to the DeviceService running at the given address and port

timeout and attempts define respectively timeout of a single connection attempt, and the number of attempts
(RPyC default is 3 seconds timeout and 6 attempts). If error_on_fail==True, raise error if the connection
failed; otherwise, return None

pylablib.core.utils.strdump module

Utils for converting variables into standard python objects (lists, dictionaries, strings, etc.) and back (e.g., for a more
predictable LAN transfer). Provides an extension for pickle for more customized classes (numpy arrays, Dictionary).

class pylablib.core.utils.strdump.StrDumper

Bases: object

Class for dumping and loading an object.

Stores procedures for dumping and loading, i.e., conversion from complex classes (such as Dictionary) to
simple built-in classes (such as dict or str).

add_class(cls, dumpf=None, loadf=None, name=None, allow_subclass=True, recursive=False)
Add a rule for dumping/loading an object of class cls.

Parameters

• cls –

• dumpf (callable) – Function for dumping an object of the class; Nonemeans identity
function.

• loadf (callable) – Function for loading an object of the class; None means identity
function.

• name (str) – Name of class, which is stored in the packed data (cls.__name__ by
default).

• allow_subclass (bool) – If True, this rule is also used for subclasses of this class.

• recursive (bool) – If True, the functions are given a second argument, which is a
dumping/loading function for their sub-elements.

dump(obj)
Convert an object into a dumped value

load(obj)
Convert a dumped value into an object

2.7. pylablib 433

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

loads(s)
Convert a pickled string of a damped object into an object

dumps(obj)
Dump an object into a pickled string

pylablib.core.utils.strdump.dumper = <pylablib.core.utils.strdump.StrDumper object>

Default dumper for converting into standard Python classes and pickling.

Converts numpy.ndarray and Dictionary objects (these conversion routines are defined when corresponding
modules are imported). The converted values include non-printable characters (conversion uses numpy.load()
and numpy.ndarray.dump()), so they can’t be saved into text files. However, they’re suited for pickling.

pylablib.core.utils.strdump.dump(obj)
Convert obj into standard Python classes using the default dumper

pylablib.core.utils.strdump.load(s)
Convert standard Python class representation s into an object using the default dumper

pylablib.core.utils.strdump.dumps(obj)
Convert obj into a pickled string using the default dumper

pylablib.core.utils.strdump.loads(s)
Convert a pickled string into an object using the default dumper

pylablib.core.utils.string module

String search, manipulation and conversion routines.

pylablib.core.utils.string.string_equal(name1, name2, case_sensitive=True, as_prefix=False)
Determine if name1 and name2 are equal with taking special rules (case_sensitive and as_prefix) into account.

If as_prefix==True, strings match even if name1 is just a prefix of name2 (not the other wait around).

pylablib.core.utils.string.find_list_string(name, str_list, case_sensitive=True, as_prefix=False,
first_matched=False)

Find name in the string list.

Comparison parameters are defined in string_equal(). If first_matched==True, stop at the first match;
otherwise if multiple occurrences happen, raise ValueError.

Returns
tuple (index, value).

pylablib.core.utils.string.find_dict_string(name, str_dict, case_sensitive=True, as_prefix=False)
Find name in the string dictionary.

Comparison parameters are defined in string_equal(). If multiple occurrences happen, raise ValueError.

Returns
tuple (key, value).

pylablib.core.utils.string.find_first_entry(line, elements, start=0, not_found_value=-1)
Find the index of the earliest position inside the line of any of the strings in elements, starting from start.

If none are found, return not_found_value.

434 Chapter 2. Citation

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dump.html#numpy.ndarray.dump
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pylablib Documentation, Release 1.4.2

pylablib.core.utils.string.find_all_first_locations(line, elements, start=0, not_found_value=-1,
known_locations=None)

Find the indices of the earliest position inside the line of all of the strings in elements, starting from start.

Return dict {element: pos}, where pos is either position in the string, or not_found_value if no entries are
present. known_locations can specify a dictionary of already known locations of some of the elements. In this
case, only missing elements or elements located before start will be re-evaluated.

pylablib.core.utils.string.translate_string_filter(filt, syntax, match_case=True, default=False)
Turns filt into a matching function.

The matching function takes single str argument, returns bool value.

filt can be

• None: function always returns default,

• bool: function always returns this value,

• str: pattern, determined by syntax,

• anything else: returned as is (assumed to already be a callable).

syntax can be 're' (re), 'glob' (glob) or 'pred' (simply matching predicate). match_case determines
whether the filter cares about the string case when matching.

class pylablib.core.utils.string.StringFilter(include=None, exclude=None, syntax='re',
match_case=False)

Bases: object

String filter function.

Matches string if it matches include (matches all strings by default) and doesn’t match exclude (matches nothing
by default).

Parameters

• include – Inclusion filter (translated by translate_string_filter() with syntax
specified by syntax); include all by default.

• exclude – Exclusion filter (translated by translate_string_filter() with syntax
specified by syntax); exclude none by default.

• syntax – Default syntax for pattern filters. Can be 're' (re), 'glob' (glob) or 'pred'
(simply matching predicate).

• match_case (bool) – Determines whether filter ignores case when matching.

pylablib.core.utils.string.get_string_filter(include=None, exclude=None, syntax='re',
match_case=False)

Generate StringFilter with the given parameters.

If the first argument is already StringFilter, return as is. If it’s a tuple, expand as argument list.

pylablib.core.utils.string.sfglob(include=None, exclude=None)
Return string filter based on glob syntax

pylablib.core.utils.string.sfregex(include=None, exclude=None, match_case=False)
Return string filter based on re syntax

pylablib.core.utils.string.filter_string_list(l, filt)
Filter string list based on the filter

2.7. pylablib 435

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/re.html#module-re

pylablib Documentation, Release 1.4.2

pylablib.core.utils.string.escape_string(value, location='element', escape_convertible=True,
quote_type='"')

Escape string.

Escaping can be partially skipped depending on location:

• "parameter": escape only if it contains hard delimiters ("\n\t\v\r") anywhere
or _border_escaped (", ' or space) on the sides (suited for parameters taking the full string);

• "entry": same as above, plus containing soft delimiters (, or space) anywhere (suited for entries of
a table);

• "element": always escaped

If escape_convertible==True, escape strings which can be misinterpreted as other values, such as "1"
or "[]";

otherwise, escape only strings which contain special characters.

If quote_type is not None, automatically put the string into the specified quotation marks;
if quote_type is None, all quotation marks are escaped; if it’s not None, only quote_type marks are escaped.

class pylablib.core.utils.string.TConversionClass(label, cls, rep, conv)
Bases: tuple

cls

conv

label

rep

pylablib.core.utils.string.add_conversion_class(label, cls, rep, conv)
Add a string conversion class.

Some values (e.g., numpy arrays or named tuples) lose some of their associated information when converted into
strings. With this function is possible to define custom conversion rules for such classes.

Parameters

• label (str) – class label (e.g., "array")

• cls – class which is used to determine if the value should use this conversion functions
(e.g., np.ndarray)

• rep – function which takes a single argument (object of class cls) and returns its repre-
sentations; can return a string or an object which is easier to convert to a string (e.g., a list
or a tuple)

• conv – function which takes one or several arguments (converted values of the class rep-
resentation) and returns the corresponding object; if rep returns a tuple, treat it as a list
of several arguments, which are passed to conv separately; otherwise, conv gets a single
argument which is the result of rep

When converting to string, if an object of class cls is encountered, it is converted in a string label(str_rep)
(e.g., "array([0, 1, 2])"), where str_rep is the result of calling rep (if this result is a tuple, avoid double
parentheses, e.g., if the result is a tuple (1, 2), the string becomes "label(1, 2)" instead of "label((1,
2))"). When converting from string, the values inside the parentheses are passed as arguments to conv function
to get the resulting value.

436 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

pylablib.core.utils.string.add_namedtuple_class(cls)
Add conversion class for a given named tuple class.

For details, see add_conversion_class().

pylablib.core.utils.string.to_string(value, location='element', value_formats=None,
parenthesis_rules='text', use_classes=False)

Convert value to string with an option of modifying format string.

Parameters

• value –

• location (str) – Used for converting strings (see escape_string()).

• value_formats (dict) – dictionary {value_type: fmt}, where value type can be
int, float or complex and fmt is a format string used to represent value of this type
(e.g., "5.3f"); default formats are {float:".12E", complex:".12E", int:"d"}.

• parenthesis_rules (str) – determine how to deal with single-element tuples and com-
plex numbers can be "text" (single-element tuples are represented with simple parenthe-
ses, e.g., "(1)"; complex number are represented without parentheses, e.g., "1+2j") or
"python" (single-element tuples are represented with a comma in the end, e.g., "(1,)";
complex number are represented with parentheses, e.g., "(1+2j)")

• use_classes (bool) – if True, use additional representation classes for special objects
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1,
2, 3]"). This improves conversion fidelity, but makes result harder to parse (e.g., by
external string parsers). See add_conversion_class() for more explanation.

pylablib.core.utils.string.is_convertible(value)
Check if the value can be converted to a string using standard to_string() function.

pylablib.core.utils.string.extract_escaped_string(line, start=0)
Extract escaped string in quotation marks from the line, starting from start.

line[start] should be a quotation mark (' or ") or r or b followed by a quotation mark (for raw or binary
strings).

Returns
tuple (end position, un-escaped string).

pylablib.core.utils.string.unescape_string(value)
Un-escape string.

Only attempt if the string starts a quotation mark " or '. Otherwise (including strings like 'r""' or 'b""'),
return the string as is. Raise an error if the string starts with a quotation mark, but does not correspond to a
proper escaped string (e.g., '"abc or '"abc"def).

pylablib.core.utils.string.to_range(range_tuple)

pylablib.core.utils.string.from_string(value, case_sensitive=True, parenthesis_rules='text',
use_classes=True)

Parse a string.

Recognizes integers, floats, complex numbers (with i or j for complex part), strings (in quotation marks), dicts,
sets, list and tuples, booleans and None. If item is unrecognizable, assumed to be a string.

Parameters

• case_sensitive (bool) – applied when compared to None, True or False.

2.7. pylablib 437

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

• parenthesis_rules (str) – determines how to deal with empty entries (e.g., [1,,3])
and complex number representation ("1+2j" vs. "(1+2j)"):

– 'text': any empty entries are translated into empty_string (i.e., [,] ->
[empty_string, empty_string]), except for completely empty structures ([] or
()); complex numbers are represented without parentheses, so that "(1+2j)" will
be interpreted as a single-element tuple (1+2j,).

– 'python': empty entries in the middle are not allowed; empty entries at the end are
ignored (i.e., [2,] -> [2]) (single-element tuple can still be expressed in two ways:
(e,) or (e)); complex numbers are by default represented with parentheses, so that
"(1+2j)" will be interpreted as a complex number, and only (1+2j,), ((1+2j))
or ((1+2j),) as a single-element tuple.

• use_classes (bool) – if True, use additional representation classes for special objects
(e.g., "array([1, 2, 3])" will be converted into a numpy array instead of raising an
error). See add_conversion_class() for more explanation.

pylablib.core.utils.string.from_string_partial(value, delimiters=re.compile('\\s*,\\s*|\\s+'),
case_sensitive=True, parenthesis_rules='text',
use_classes=True, return_string=False)

Convert the first part of the supplied string (bounded by delimiters) into a value.

delimiters is a string or a regexp (default is "\s*,\s*|\s+", i.e., comma or spaces). If
return_string==False, convert the value string and return tuple (end_position, converted_value);
otherwise, return tuple (end_position, value_string).

The rest of the parameters is the same as in from_string().

pylablib.core.utils.string.from_row_string(value, delimiters=re.compile('\\s*,\\s*|\\s+'),
case_sensitive=True, parenthesis_rules='text',
use_classes=True, return_string=False)

Convert the row string into a list of values, separated by delimiters.

If return_string==False, return list of converted objects; otherwise, return list of unconverted strings.

The rest of the parameters is the same as in from_string_partial().

pylablib.core.utils.strpack module

Utilities for packing values into bitstrings. Small extension of the struct module.

pylablib.core.utils.strpack.int2bytes(val, l, bo='>')
Convert integer into a list of bytes of length l.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.bytes2int(val, bo='>')
Convert a list of bytes into an integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.int2bits(val, l, bo='>')
Convert integer into a list of bits of length l.

bo determines byte (and bit) order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

438 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

pylablib.core.utils.strpack.bits2int(val, bo='>')
Convert a list of bits into an integer.

bo determines byte (and bit) order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.pack_uint(val, l, bo='>')
Convert an unsigned integer into a bytestring of length l.

Return bytes object. bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.pack_int(val, l, bo='>')
Convert a signed integer into a bytestring of length l.

Return bytes object. bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.unpack_uint(msg, bo='>')
Convert a bytestring into an unsigned integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.unpack_int(msg, bo='>')
Convert a bytestring into an signed integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

pylablib.core.utils.strpack.unpack_numpy_u12bit(buffer, byteorder='<', count=-1)

pylablib.core.utils.units module

Routines for conversion of physical units.

pylablib.core.utils.units.split_units(value)
Split string value with a dimension.

Return tuple (val, unit), where val is the float part of the value, and unit is the string representing units.

pylablib.core.utils.units.convert_length_units(value, value_unit='m', result_unit='m',
case_sensitive=True)

Convert value from value_unit to result_unit.

The possible length units are 'm', 'mm', 'um', 'nm', 'pm', 'fm'. If case_sensitive==True, matching units
is case sensitive.

pylablib.core.utils.units.convert_time_units(value, value_unit='s', result_unit='s',
case_sensitive=True)

Convert value from value_unit to result_unit.

The possible time units are 's', 'ms', 'us', 'ns', 'ps', 'fs', 'as'. If case_sensitive==True, matching
units is case sensitive.

pylablib.core.utils.units.convert_frequency_units(value, value_unit='Hz', result_unit='Hz',
case_sensitive=True)

Convert value from value_unit to result_unit.

The possible frequency units are 'Hz', 'kHz', 'MHz', 'GHz'. If case_sensitive==True, matching units is
case sensitive.

2.7. pylablib 439

pylablib Documentation, Release 1.4.2

pylablib.core.utils.units.convert_power_units(value, value_unit='dBm', result_unit='dBm',
case_sensitive=True, impedance=50.0)

Convert value from value_unit to result_unit.

For conversion between voltage and power, assume RMS voltage and the given impedance. The possible power
units are 'dBm', 'dBmV', 'dBuV', 'W', 'mW', 'uW', 'nW', 'mV', 'nV'. If case_sensitive==True, matching
units is case sensitive.

Module contents

Module contents

pylablib.devices package

Subpackages

pylablib.devices.AWG package

Submodules

pylablib.devices.AWG.generic module

exception pylablib.devices.AWG.generic.GenericAWGError

Bases: DeviceError

Generic AWG error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.AWG.generic.GenericAWGBackendError(exc)
Bases: GenericAWGError, DeviceBackendError

AWG backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.AWG.generic.GenericAWG(addr)
Bases: SCPIDevice

Generic arbitrary wave generator, based on Agilent 33500.

With slight modifications works for many other AWGs using largely the same syntax.

440 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

select_current_channel(channel)
Select current default channel

is_output_enabled(channel=None)
Check if the output is enabled

enable_output(enabled=True, channel=None)
Turn the output on or off

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

get_load(channel=None)
Get the output load

set_load(load=None, channel=None)
Set the output load (None means High-Z)

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

2.7. pylablib 441

pylablib Documentation, Release 1.4.2

get_offset(channel=None)
Get output offset

set_offset(offset, channel=None)
Set output offset

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

get_frequency(channel=None)
Get output frequency

set_frequency(frequency, channel=None)
Set output frequency

get_phase(channel=None)
Get output phase (in degrees)

set_phase(phase, channel=None)
Set output phase (in degrees)

sync_phase()

Synchronize phase between two channels

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

442 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_burst_enabled(channel=None)
Check if the burst mode is enabled

enable_burst(enabled=True, channel=None)
Enable burst mode

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

2.7. pylablib 443

pylablib Documentation, Release 1.4.2

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

444 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

sleep(delay)
Wait for delay seconds

2.7. pylablib 445

pylablib Documentation, Release 1.4.2

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

446 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

pylablib.devices.AWG.specific module

class pylablib.devices.AWG.specific.Agilent33500(addr, channels_number='auto')
Bases: GenericAWG

Agilent 33500 AWG.

Parameters
channels_number – number of channels; if "auto", try to determine automatically (by cer-
tain commands causing errors)

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

static get_arg_type(arg)
Autodetect argument type

2.7. pylablib 447

pylablib Documentation, Release 1.4.2

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

448 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_offset(channel=None)
Get output offset

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

2.7. pylablib 449

pylablib Documentation, Release 1.4.2

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

450 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

2.7. pylablib 451

pylablib Documentation, Release 1.4.2

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

452 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.Agilent33220A(addr)
Bases: GenericAWG

Agilent 33220A AWG.

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

2.7. pylablib 453

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

454 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_offset(channel=None)
Get output offset

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

2.7. pylablib 455

pylablib Documentation, Release 1.4.2

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

456 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

2.7. pylablib 457

pylablib Documentation, Release 1.4.2

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'

458 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.InstekAFG2225(addr)
Bases: GenericAWG

Instek AFG2225 AWG.

Compared to 2000/2100 series, has one extra channel and a bit more capabilities (burst trigger, pulse function)

get_offset(channel=None)
Get output offset

set_offset(offset, channel=None)
Set output offset

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

2.7. pylablib 459

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

460 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 461

pylablib Documentation, Release 1.4.2

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

462 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

2.7. pylablib 463

pylablib Documentation, Release 1.4.2

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

464 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.InstekAFG2000(addr)
Bases: InstekAFG2225

Instek AFG2000/2100 series AWG.

Compared to AFG2225, has only one channel and fewer capabilities.

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

2.7. pylablib 465

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

466 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_offset(channel=None)
Get output offset

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

2.7. pylablib 467

pylablib Documentation, Release 1.4.2

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

468 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

2.7. pylablib 469

pylablib Documentation, Release 1.4.2

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

470 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.RSInstekAFG21000(addr)
Bases: InstekAFG2000

RS Instek AFG21000 series AWG.

Compared to Instek AFG2000, it takes care of the amplitude output bug.

get_offset(channel=None)
Get output offset

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

2.7. pylablib 471

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

472 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

2.7. pylablib 473

pylablib Documentation, Release 1.4.2

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this

474 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

2.7. pylablib 475

pylablib Documentation, Release 1.4.2

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

476 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.TektronixAFG1000(addr, channels_number='auto')
Bases: GenericAWG

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

2.7. pylablib 477

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

478 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_offset(channel=None)
Get output offset

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

2.7. pylablib 479

pylablib Documentation, Release 1.4.2

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

480 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

2.7. pylablib 481

pylablib Documentation, Release 1.4.2

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

sleep(delay)
Wait for delay seconds

sync_phase()

Synchronize phase between two channels

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

482 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.AWG.specific.RigolDG1000(addr)
Bases: GenericAWG

Rigol DG1000 AWG.

2.7. pylablib 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

sync_phase()

Synchronize phase between two channels

BackendError

alias of DeviceBackendError

Error

alias of GenericAWGError

ReraiseError

alias of GenericAWGBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_burst(enabled=True, channel=None)
Enable burst mode

enable_output(enabled=True, channel=None)
Turn the output on or off

enable_sync_output(enabled=True, channel=None)
Enable or disable SYNC output

enable_trigger_output(enabled=True, channel=None)
Enable trigger output

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

get_amplitude(channel=None)
Get output amplitude (i.e., half of the span)

static get_arg_type(arg)
Autodetect argument type

get_burst_mode(channel=None)
Get burst mode.

Can be either "trig" or "gate".

get_burst_ncycles(channel=None)
Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

484 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_channels_number()

Get the number of channels

get_current_channel()

Get current channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_duty_cycle(channel=None)
Get output duty cycle (in percent).

Only applies to "square" output function.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_frequency(channel=None)
Get output frequency

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_function(channel=None)
Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

get_gate_polarity(channel=None)
Get burst gate polarity.

Can be either "norm" or "inv".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_load(channel=None)
Get the output load

get_offset(channel=None)
Get output offset

get_output_polarity(channel=None)
Get output polarity.

Can be either "norm" or "inv".

2.7. pylablib 485

pylablib Documentation, Release 1.4.2

get_output_range(channel=None)
Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and
offset+amplitude).

get_output_trigger_slope(channel=None)
Get output trigger slope.

Can be either "pos", or "neg".

get_phase(channel=None)
Get output phase (in degrees)

get_pulse_width(channel=None)
Get output pulse width (in seconds).

Only applies to "pulse" output function.

get_ramp_symmetry(channel=None)
Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_slope(channel=None)
Get trigger slope.

Can be either "pos", or "neg".

get_trigger_source(channel=None)
Get trigger source.

Can be either "imm", "ext", or "bus".

is_burst_enabled(channel=None)
Check if the burst mode is enabled

is_opened()

Check if the device is connected

is_output_enabled(channel=None)
Check if the output is enabled

is_sync_output_enabled(channel=None)
Check if SYNC output is enabled

is_trigger_output_enabled(channel=None)
Check if the trigger output is enabled

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

486 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_current_channel(channel)
Select current default channel

set_amplitude(amplitude, channel=None)
Set output amplitude (i.e., half of the span)

set_burst_mode(mode, channel=None)
Set burst mode.

Can be either "trig" or "gate".

set_burst_ncycles(ncycles=1, channel=None)
Set burst mode ncycles.

Infinite corresponds to None

set_device_variable(key, value)
Set the value of a settings parameter

2.7. pylablib 487

pylablib Documentation, Release 1.4.2

set_duty_cycle(dcycle, channel=None)
Set output duty cycle (in percent).

Only applies to "square" output function.

set_frequency(frequency, channel=None)
Set output frequency

set_function(func, channel=None)
Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user",
"arb". Not all functions can be available, depending on the particular model of the generator.

set_gate_polarity(polarity='norm', channel=None)
Set burst gate polarity.

Can be either "norm" or "inv".

set_load(load=None, channel=None)
Set the output load (None means High-Z)

set_offset(offset, channel=None)
Set output offset

set_output_polarity(polarity='norm', channel=None)
Set output polarity.

Can be either "norm" or "inv".

set_output_range(rng, channel=None)
Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

set_output_trigger_slope(slope, channel=None)
Set output trigger slope.

Can be either "pos", or "neg".

set_phase(phase, channel=None)
Set output phase (in degrees)

set_pulse_width(width, channel=None)
Set output pulse width (in seconds).

Only applies to "pulse" output function.

set_ramp_symmetry(rsymm, channel=None)
Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

set_trigger_slope(slope, channel=None)
Set trigger slope.

Can be either "pos", or "neg".

set_trigger_source(src, channel=None)
Set trigger source.

Can be either "imm", "ext", or "bus".

488 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

2.7. pylablib 489

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.AlliedVision package

Submodules

pylablib.devices.AlliedVision.Bonito module

exception pylablib.devices.AlliedVision.Bonito.BonitoError

Bases: DeviceError

Generic AlliedVision Bonito error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.AlliedVision.Bonito.TDeviceInfo(version, serial_number, grabber_info)
Bases: tuple

grabber_info

serial_number

version

class pylablib.devices.AlliedVision.Bonito.IBonitoCamera(**kwargs)
Bases: ICamera

Error

alias of DeviceError

GrabberClass = None

open()

Open the connection

serial_query(query, timeout=3.0)

get_serial_parameter(comm, kind='int', timeout=3.0)

set_serial_parameter(comm, value)

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height); as the camera does not provide this
information, use the frame grabber parameters

490 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

get_roi_limits(hbin=1, vbin=1)

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

get_exposure_control_mode()

Get the exposure control mode.

Return tuple (timing_mode, feature_mode), where timing_mode determines how the exposure and
frame period are timed (continuous, external trigger control, internal control, etc.), and feature_mode
controls additional features (permanent exposure, enhanced full well mode). See documentation for details.

set_exposure_control_mode(timing_mode=None, feature_mode=None)
Set the exposure control mode.

timing_mode determines how the exposure and frame period are timed (continuous, external trigger con-
trol, internal control, etc.), and feature_mode controls additional features (permanent exposure, enhanced
full well mode). See documentation for details.

get_exposure()

Get current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.

set_exposure(exposure, setup_mode=True)
Set current exposure.

Note that the actual exposure might be different, depending on the exposure control mode. If
setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.

set_frame_period(frame_period, setup_mode=True)
Set frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode. If
setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

is_status_line_enabled()

Check if the status line is on

2.7. pylablib 491

pylablib Documentation, Release 1.4.2

enable_status_line(enabled=True)
Enable or disable status line

get_black_level_offset()

Get the black level offset

set_black_level_offset(offset)
Set the black level offset

get_digital_gain()

Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

set_digital_gain(gain)
Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

492 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 493

pylablib Documentation, Release 1.4.2

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

494 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

2.7. pylablib 495

pylablib Documentation, Release 1.4.2

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera(imaq_name='img0')
Bases: IBonitoCamera, IMAQFrameGrabber

IMAQ+PFCam interface to a AlliedVision Bonito camera.

Parameters
imaq_name – IMAQ interface name (can be learned by IMAQ.list_cameras(); usually, but
not always, starts with "img")

Error

alias of DeviceError

GrabberClass

alias of IMAQFrameGrabber

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError = <Mock spec='str' id='140147906214224'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear all acquisition details and free all buffers

clear_all_triggers(reset_acquisition=True)
Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if
reset_acquisition==True, perform it automatically.

close()

Close connection to the camera

configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None,
reset_acquisition=True)

Configure input trigger.

Parameters

• trig_type (str) – trigger source type; can be "ext", "rtsi", "iso_in", or
"software"

• trig_line (int) – trigger line number

496 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_action (str) – trigger action; can be "none" (disable trigger), "capture"
(start capturing), "stop" (stop capturing), "buffer" (capture a single frame), or
"bufflist" (capture the whole buffer list once)

• timeout (float) – timeout in seconds; None means not timeout.

• reset_acquisition (bool) – if the input triggers configuration has been changed,
acquisition needs to be restart; if True, perform it automatically

configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')
Configure trigger output.

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", or
"iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_drive (str) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted
when acquisition is done), "unasserted" (force unasserted level), "asserted"
(force asserted level), "hsync" (asserted on start of a single line start), "vsync" (as-
serted on start of a frame scan), "frame_start" (asserted when a single frame is
captured), or "frame_done" (asserted when a single frame is done)

enable_status_line(enabled=True)
Enable or disable status line

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_grabber_attribute_values()

Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepre-
sented.

get_black_level_offset()

Get the black level offset

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height); as the camera does not provide this
information, use the frame grabber parameters

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 497

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_digital_gain()

Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

get_exposure()

Get current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.

get_exposure_control_mode()

Get the exposure control mode.

Return tuple (timing_mode, feature_mode), where timing_mode determines how the exposure and
frame period are timed (continuous, external trigger control, internal control, etc.), and feature_mode
controls additional features (permanent exposure, enhanced full well mode). See documentation for details.

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

498 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_attribute_value(attr, default=None, kind='auto')
Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error. kind is the
attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based on the stored
list of attribute kinds).

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

2.7. pylablib 499

pylablib Documentation, Release 1.4.2

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_serial_parameter(comm, kind='int', timeout=3.0)

get_serial_params()

Return serial parameters as a tuple (write_term, datatype)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

is_status_line_enabled()

Check if the status line is on

open()

Open connection to the camera

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

500 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_trigger(trig_type, trig_line=0, trig_pol='high')
Read current value of a trigger (input or output).

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", "iso_in",
or "iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

reset()

Reset connection to the camera

send_software_trigger()

Send software trigger signal

serial_flush()

Flush CameraLink serial port

serial_query(query, timeout=3.0)

serial_read(n, timeout=3.0, datatype=None)
Read specified number of bytes from CameraLink serial port.

Parameters

• n – number of bytes to read

• timeout – operation timeout (in seconds)

2.7. pylablib 501

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

serial_readline(timeout=3.0, datatype=None, maxn=1024)
Read bytes from CameraLink serial port until the termination character (defined in camera file) is encoun-
tered.

Parameters

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

• maxn – maximal number of bytes to read

serial_write(msg, timeout=3.0, term=None)
Write message into CameraLink serial port.

Parameters

• timeout – operation timeout (in seconds)

• term – additional write terminator character to add to the message; if None, use the
value set up using setup_serial_params() (by default, no additional terminator)

set_black_level_offset(offset)
Set the black level offset

set_device_variable(key, value)
Set the value of a settings parameter

set_digital_gain(gain)
Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

set_exposure(exposure, setup_mode=True)
Set current exposure.

Note that the actual exposure might be different, depending on the exposure control mode. If
setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

set_exposure_control_mode(timing_mode=None, feature_mode=None)
Set the exposure control mode.

timing_mode determines how the exposure and frame period are timed (continuous, external trigger con-
trol, internal control, etc.), and feature_mode controls additional features (permanent exposure, enhanced
full well mode). See documentation for details.

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

502 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_period(frame_period, setup_mode=True)
Set frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode. If
setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

set_grabber_attribute_value(attr, value, kind='int32')
Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based
on the stored list of attribute kinds).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

set_serial_parameter(comm, value)

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

2.7. pylablib 503

pylablib Documentation, Release 1.4.2

setup_serial_params(write_term='', datatype='bytes')
Setup default serial communication parameters.

Parameters

• write_term – default terminator character to be added to the sent messages

• datatype – type of the result of read commands; can be "bytes" (return raw bytes),
or "str" (convert into UTF-8 string)

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

pylablib.devices.AlliedVision.Bonito.check_grabber_association(cam)

Check if the given IMAQ frame grabber corresponds to Bonito camera.

cam should be an opened instance of IMAQCamera.

class pylablib.devices.AlliedVision.Bonito.TStatusLine(framestamp)
Bases: tuple

framestamp

pylablib.devices.AlliedVision.Bonito.get_status_lines(frames)
Get frame info from the binary status line.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D
arrays. Assume that the status line is present; if it isn’t, the returned frame info will be a random noise. Return a
1D or 2D numpy array, where the first axis (if present) is the frame number, and the last is the status line entry.

class pylablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker

Bases: StatusLineChecker

get_framestamp(frames)
Get framestamps from status lines in the given frames

check_indices(indices, step=1)
Check if indices are consistent with the given step

504 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Andor package

Submodules

pylablib.devices.Andor.AndorSDK2 module

class pylablib.devices.Andor.AndorSDK2.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Andor.AndorSDK2.restart_lib()

pylablib.devices.Andor.AndorSDK2.get_SDK_version()

Get version of Andor SDK2

pylablib.devices.Andor.AndorSDK2.get_cameras_number()

Get number of connected Andor cameras

class pylablib.devices.Andor.AndorSDK2.TDeviceInfo(controller_model, head_model, serial_number)
Bases: tuple

controller_model

head_model

serial_number

class pylablib.devices.Andor.AndorSDK2.TCycleTimings(exposure, accum_cycle_time,
kinetic_cycle_time)

Bases: tuple

2.7. pylablib 505

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

accum_cycle_time

exposure

kinetic_cycle_time

class pylablib.devices.Andor.AndorSDK2.TAcqProgress(frames_done, cycles_done)
Bases: tuple

cycles_done

frames_done

class pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera(idx=0, ini_path='', temperature=None,
fan_mode='off', amp_mode=None)

Bases: IBinROICamera, IExposureCamera

Andor SDK2 camera.

Due to the library features, the camera needs to set up all of the parameters to some default values upon con-
nection. Most of these parameters are chosen as reasonable defaults: full ROI, minimal exposure time, closed
shutter, internal trigger, fastest recommended verticals shift speed, no EMCCD gain. However, some should
be supplied during the connection: temperature setpoint (where appropriate), fan mode, and amplifier mode;
while there is still a possibility to have default values of these parameters, they might not be appropriate in some
settings, and frequently need to be changed.

Caution: the manufacturer DLL is designed such that if the camera is not closed on the program termination, the
allocated resources are never released. If this happens, these resources are blocked until the complete OS restart.

Parameters

• idx (int) – camera index (use get_cameras_number() to get the total number of con-
nected cameras)

• ini_path (str) – path to .ini file, if required by the camera

• temperature – initial temperature setpoint (in C); can also be None (select the bottom
20% of the whole range), or "off" (turn the cooler off and set the maximal of the whole
range)

• fan_mode – initial fan mode

• amp_mode – initial amplifier mode (a tuple like the one returned by get_amp_mode());
can also be None, which selects the slowest, smallest gain mode

Error

alias of AndorError

TimeoutError

alias of AndorTimeoutError

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

506 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_device_info()

Get camera device info.

Return tuple (controller_mode, head_model, serial_number).

get_status()

Get camera status.

Return either "idle" (no acquisition), "acquiring" (acquisition in progress) or "temp_cycle" (tem-
perature cycle in progress).

acquisition_in_progress()

Check if acquisition is in progress

get_capabilities()

Get camera capabilities.

For description of the structure, see Andor SDK manual.

get_pixel_size()

Get camera pixel size (in m)

is_cooler_on()

Check if the cooler is on

set_cooler(on=True)
Set the cooler on or off

get_temperature_status()

Get temperature status.

Can return "off" (cooler off), "not_reached" (cooling in progress), "not_stabilized" (reached but
not stabilized yet), "stabilized" (completely stabilized) or "drifted".

get_temperature()

Get the current camera temperature (in C)

set_temperature(temperature, enable_cooler=True)
Change the temperature setpoint (in C).

If enable_cooler==True, turn the cooler on automatically.

get_temperature_setpoint()

Get the temperature setpoint (in C)

get_temperature_range()

Return the available range of temperatures (in C)

get_all_amp_modes()

Get all available preamp modes.

Each preamp mode is characterized by an AD channel index, amplifier index, channel speed (horizontal
scan speed) index and preamp gain index. Return list of tuples (channel, channel_bitdepth, oamp,
oamp_kind, hsspeed, hsspeed_MHz, preamp, preamp_gain), where channel, oamp, hsspeed
and preamp are indices, while channel_bitdepth, oamp_kind, hsspeed_MHz and preamp_gain are
descriptions.

get_max_vsspeed()

Get maximal recommended vertical scan speed

2.7. pylablib 507

pylablib Documentation, Release 1.4.2

get_all_vsspeeds()

Get all available vertical shift speeds modes.

Return list of the vertical shift periods in microseconds for the corresponding indices (starting from 0).

set_amp_mode(channel=None, oamp=None, hsspeed=None, preamp=None)
Setup preamp mode.

Can specify AD channel index, amplifier index, channel speed (horizontal scan speed) index and preamp
gain index. None (default) means leaving the current value.

get_amp_mode(full=True)
Return the current amplifier mode.

If full==True, return a full description (e.g., actual preamp gain or channel name); otherwise, return just
the essential indices information (enough to set the mode for this camera, but no explanations).

set_vsspeed(vsspeed)
Set vertical scan speed index

get_channel()

Get current channel index

get_channel_bitdepth(channel=None)
Get channel bit depth corresponding to the given channel index (current by default)

get_oamp()

Get current output amplifier index

get_oamp_desc(oamp=None)
Get output amplifier kind corresponding to the given oamp index (current by default)

get_hsspeed()

Get current horizontal speed index

get_hsspeed_frequency(hsspeed=None)
Get horizontal scan frequency (in Hz) corresponding to the given hsspeed index (current by default)

get_preamp()

Get current preamp index

get_preamp_gain(preamp=None)
Get preamp gain corresponding to the given preamp index (current by default)

get_vsspeed()

Get current vertical speed index

get_vsspeed_period(vsspeed=None)
Get vertical scan period corresponding to the given vsspeed index (current by default)

get_EMCCD_gain()

Get current EMCCD gain.

Return tuple (gain, advanced).

set_EMCCD_gain(gain, advanced=None)
Set EMCCD gain.

Gain goes up to 300 if advanced==False or higher if advanced==True (in this mode the sensor can be
permanently damaged by strong light).

508 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

init_amp_mode(mode=None)
Initialize the camera channel, frequencies and amp settings to some default mode.

If mode is supplied, use this mode; otherwise, use the slowest, lowest gain mode (the first one returned by
get_all_amp_modes()). Also set the maximal recommended vertical shift speed and no EMCCD gain.

get_min_shutter_times()

Get minimal shutter opening and closing times

setup_shutter(mode, ttl_mode=0, open_time=None, close_time=None)
Setup shutter.

mode can be "auto", "open" or "closed", ttl_mode can be 0 (low is open) or 1 (high is open), open_time
and close_time specify opening and closing times (required to calculate the minimal exposure times). By
default, these time are minimal allowed times.

get_shutter_parameters()

Return shutter parameters as a tuple (mode, ttl_mode, open_time, close_time)

get_shutter()

Get shutter state ("auto", "open", or "closed")

set_fan_mode(mode)
Set fan mode.

Can be "full", "low" or "off".

get_fan_mode()

Return fan mode ("full", "low", or "off")

read_in_aux_port(port)
Get state at a given auxiliary port

set_out_aux_port(port, state)
Set state at a given auxiliary port

set_trigger_mode(mode)
Set trigger mode.

Can be "int" (internal), "ext" (external), "ext_start" (external start), "ext_exp" (external exposure),
"ext_fvb_em" (external FVB EM), "software" (software trigger) or "ext_charge_shift" (external
charge shifting).

For description, see Andor SDK manual.

get_trigger_mode()

Return trigger mode

get_trigger_level_limits()

Get limits on the trigger level

setup_ext_trigger(level=None, invert=None, term_highZ=None)
Setup external trigger (level, inversion, and high-Z termination).

Any None values are not changed. If any returned values are None, it means that this option is not sup-
ported.

get_ext_trigger_parameters()

Return external trigger parameters (level, inversion, high-Z termination).

If any returned values are None, it means that this option is not supported.

2.7. pylablib 509

pylablib Documentation, Release 1.4.2

send_software_trigger()

Send software trigger signal

set_acquisition_mode(mode, setup_params=True)
Set the acquisition mode.

Can be "single", "accum", "kinetic", "fast_kinetic" or "cont" (continuous). If
setup_params==True, make sure that the last specified parameters for this mode are set up. For
description of each mode, see Andor SDK manual and corresponding setup_*_mode functions.

get_acquisition_mode()

Get the current acquisition mode

setup_accum_mode(num_acc, cycle_time_acc=0)
Switch into the accum acquisition mode and set up its parameters.

num_acc is the number of accumulated frames, cycle_time_acc is the acquisition period (by default the
minimal possible based on exposure and transfer time).

get_accum_mode_parameters()

Return accum acquisition mode parameters (num_acc, cycle_time_acc)

setup_kinetic_mode(num_cycle, cycle_time=0.0, num_acc=1, cycle_time_acc=0, num_prescan=0)
Switch into the kinetic acquisition mode and set up its parameters.

num_cycle is the number of kinetic cycles frames, cycle_time is the acquisition period between accum
frames, num_accum is the number of accumulated frames, cycle_time_acc is the accum acquisition period,
num_prescan is the number of prescans.

get_kinetic_mode_parameters()

Return kinetic acquisition mode parameters (num_cycle, cycle_time, num_acc,
cycle_time_acc, num_prescan)

setup_fast_kinetic_mode(num_acc, cycle_time_acc=0.0)
Switch into the fast kinetic acquisition mode and set up its parameters.

num_acc is the number of accumulated frames, cycle_time_acc is the acquisition period (by default the
minimal possible based on exposure and transfer time).

get_fast_kinetic_mode_parameters()

Return fast kinetic acquisition mode parameters (num_acc, cycle_time_acc)

setup_cont_mode(cycle_time=0)
Switch into the continuous acquisition mode and set up its parameters.

cycle_time is the acquisition period (by default the minimal possible based on exposure and transfer time).

get_cont_mode_parameters()

Return continuous acquisition mode parameters cycle_time

set_exposure(exposure)
Set camera exposure

get_exposure()

Get current exposure

set_frame_period(frame_period)
Set frame acquisition period for the continuous mode

510 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

enable_frame_transfer_mode(enable=True)
Enable frame transfer mode.

For description, see Andor SDK manual.

is_frame_transfer_enabled()

Return whether the frame transfer mode is enabled

get_cycle_timings()

Get acquisition timing.

Return tuple (exposure, accum_cycle_time, kinetic_cycle_time). In continuous mode, the rel-
evant cycle time is kinetic_cycle_time.

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period). Frame period is the rate of frame generation, not of internal
frame acquisition (e.g., in accumulator or kinetic mode this is the rate of generating a single accumulated
frame, which is num_acc times larger than the internal frame period).

get_readout_time()

Get frame readout time

get_keepclean_time()

Get sensor keep-clean time

set_read_mode(mode)
Set camera read mode.

Can be "fvb" (average all image vertically and return it as one row), "single_track" (read a single
row or several rows averaged together), "multi_track" (read multiple rows or averaged sets of rows),
"random_track" (read several arbitrary lines), or "image" (read a whole image or its rectangular part).

get_read_mode()

Get the current read mode

setup_single_track_mode(center=0, width=1)
Switch into the singe-track read mode and set up its parameters.

center and width specify selection of the rows to be averaged together.

get_single_track_mode_parameters()

Return singe-track read mode parameters (center, width)

setup_multi_track_mode(number=1, height=1, offset=0)
Switch into the multi-track read mode and set up its parameters.

number is the number of rows (or row sets) to read, height is number of one row set (1 for a single row),
offset is the distance between the row sets. Return a tuple (number, height, offset, top, gap),
where top is the offset of the first row from the top, and gap is the gap between the tracks.

get_multi_track_mode_parameters()

Return multi-track read mode parameters (number, height, offset)

setup_random_track_mode(tracks=None)
Switch into the random-track read mode and set up its parameters.

tracks is a list of tuples (start, stop) specifying track span (start are inclusive, stop are exclu-
sive, starting from 0). Note that it does not affect the current read mode, which should be set using
set_read_mode().

2.7. pylablib 511

pylablib Documentation, Release 1.4.2

get_random_track_mode_parameters()

Return random-track read mode parameters, i.e., the list of track positions

setup_image_mode(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Switch into the image read mode and set up its parameters.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start are
inclusive, stop are exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values.

get_image_mode_parameters()

Return image read mode parameters, (hstart, hend, vstart, vend, hbin, vbin)

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

setup_acquisition(mode=None, nframes=None)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

512 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_acquisition_progress()

Get acquisition progress.

Return tuple (frames_done, acc_done) with the number of full transferred frames and the number of
acquired sub-frames in the current accumulation cycle.

get_buffer_size()

Get the size of the image ring buffer

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

2.7. pylablib 513

pylablib Documentation, Release 1.4.2

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

514 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),

2.7. pylablib 515

pylablib Documentation, Release 1.4.2

"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

pylablib.devices.Andor.AndorSDK3 module

class pylablib.devices.Andor.AndorSDK3.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

516 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Andor.AndorSDK3.restart_lib()

pylablib.devices.Andor.AndorSDK3.get_cameras_number()

Get number of connected Andor cameras

class pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute(handle, name, kind='auto')
Bases: object

Andor SDK3 camera attribute.

Allows to query and set values and get additional information. Usually created automatically by a Andor SDK3
camera instance, but could also be created manually.

Parameters

• handle – Andor SDK3 camera handle

• pid – attribute id

• kind – attribute kind; can be "float", "int", "str", "bool", "enum", or "comm"
(command); can also be "auto" (default), in which case it is obtained from the stored
feature table; newer features might be missing, in which case kind needs to be supplied
explicitly, or it raises an error

name

attribute name

kind

attribute kind; can be "float", "int", "str", "bool", "enum", or "comm" (command)

implemented

whether attribute is implemented

Type
bool

readable

whether attribute is readable

Type
bool

writable

whether attribute is writable

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

2.7. pylablib 517

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

max

maximal attribute value (if applicable)

Type
float or int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

is_command

whether attribute is a command (same as kind=="comm")

Type
bool

update_properties()

Update all attribute properties: implemented, readable, writable, limits

get_value(enum_as_str=True, not_implemented_error=True, default=None)
Get current value.

If enum_as_str==True, return enum values as strings; otherwise, return as indices. If
not_implemented_error==True and the feature is not implemented, raise AndorError; otherwise,
return default if it is not implemented.

set_value(value, not_implemented_error=True)
Set current value.

If not_implemented_error==True and the feature is not implemented, raise AndorError; otherwise,
do nothing.

call_command()

Execute the given command

get_range(enum_as_str=True)
Get allowed range of the given value.

For "int" or "float" values return tuple (min, max) (inclusive); for "enum" return list of possible
values (if enum_as_str==True, return list of string values, otherwise return list of indices). For all other
value kinds return None.

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max)

truncate_value(value)
Limit value to lie within the allowed range

518 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

class pylablib.devices.Andor.AndorSDK3.TDeviceInfo(camera_name, camera_model, serial_number,
firmware_version, software_version)

Bases: tuple

camera_model

camera_name

firmware_version

serial_number

software_version

class pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus(skipped, overflows)
Bases: tuple

overflows

skipped

class pylablib.devices.Andor.AndorSDK3.TFrameInfo(frame_index, timestamp_dev, size, pixeltype,
stride)

Bases: tuple

frame_index

pixeltype

size

stride

timestamp_dev

class pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera(idx=0)
Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Andor SDK3 camera.

Parameters
idx (int) – camera index (use get_cameras_number() to get the total number of connected
cameras)

Error

alias of AndorError

TimeoutError

alias of AndorTimeoutError

FrameTransferError

alias of AndorFrameTransferError

open()

Open connection to the camera

close()

Close connection to the camera

2.7. pylablib 519

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

add_attribute(name, kind)
Add a new attribute which is not currently present in the dictionary.

kind can be "float", "int", "str", "bool", "enum", or "comm" (command).

get_attribute(name, update_properties=False, error_on_missing=True)
Get the camera attribute with the given name.

If update_properties==True, automatically update all attribute properties.

get_attribute_value(name, enum_as_str=True, update_properties=False, error_on_missing=True,
default=None)

Get value of an attribute with the given name.

If update_properties==True, automatically update all attribute properties before settings. If the value
doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default. If
default is not None, assume that error_on_missing==False.

set_attribute_value(name, value, update_properties=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If update_properties==True, automatically update all attribute properties before settings.

get_all_attribute_values(root='', enum_as_str=True, update_properties=False)
Get values of all attributes.

If update_properties==True, automatically update all attribute properties before settings.

set_all_attribute_values(settings, update_properties=True)
Set values of all attribute in the given dictionary.

If update_properties==True, automatically update all attribute properties before settings.

call_command(name)
Execute the given command

get_device_info()

Get camera info.

Return tuple (camera_name, camera_model, serial_number, firmware_version,
software_version).

get_trigger_mode()

Get trigger mode.

Can be "int" (internal), "ext" (external), "software" (software trigger),
"ext_start" (external start), or "ext_exp" (external exposure).

set_trigger_mode(mode)
Set trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

get_shutter()

Get current shutter mode

520 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_shutter(mode)
Set trigger mode.

Can be "open", "closed", or "auto".

is_cooler_on()

Check if the cooler is on

set_cooler(on=True)
Set the cooler on or off

get_temperature()

Get the current camera temperature

get_temperature_setpoint()

Get current temperature setpoint

set_temperature(temperature, enable_cooler=True)
Change the temperature setpoint.

If enable_cooler==True, turn the cooler on automatically.

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

is_metadata_enabled()

Check if the metadata enabled

enable_metadata(enable=True)
Enable or disable metadata streaming

class BufferManager(cam)

Bases: object

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

allocate_buffers(nbuff , size, queued_buffers=None)
Allocate and queue buffers.

queued_buffers` specifies number of allocated buffers to keep queued at a given time (by default, all
of them)

deallocate_buffers()

Deallocated buffers (flushing should be done manually)

2.7. pylablib 521

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

readn(idx, n, size=None, off=0)
Return n buffers starting from idx, taking size bytes from each

reset()

Reset counter (on frame acquisition)

start_loop()

Start loop serving the given buffer manager

stop_loop()

Stop the loop thread

get_status()

Get the current loop status, which is the tuple (acquired,)

on_overflow()

Process buffer overflow event

new_overflow()

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). nframes determines number of frames to acquire in the single mode, or size of the ring buffer
in the "sequence" mode (by default, 100).

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

get_missed_frames_status()

Get missed frames status.

Return tuple (skipped, overflows) with the number skipped frames (sent from camera to the PC, but
not read and overwritten) and number of buffer overflows (events when the frame rate is too for the data
transfer, so some unknown number of frames is skipped).

reset_overflows_counter()

Reset buffer overflows counter

set_overflow_behavior(behavior)
Choose the camera behavior if buffer overflow is encountered when waiting for a new frame.

Can be "error" (raise AndorFrameTransferError), "restart" (restart the acquisition), or "ignore"
(ignore the overflow, which will cause the wait to time out).

522 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Set current ROI.

By default, all non-supplied parameters take extreme values. Binning is the same for both axes.

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning.

Note that the minimal ROI size depends on the current (not just supplied) binning settings. For more
accurate results, is it only after setting up the binning.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame

2.7. pylablib 523

pylablib Documentation, Release 1.4.2

format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,

524 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

2.7. pylablib 525

pylablib Documentation, Release 1.4.2

If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is
a list of TFrameInfo instances describing frame index and frame metadata, which contains timestamp,
image size, pixel format, and row stride; if some frames are missing and missing_frame!="skip", the
corresponding frame info is None. if return_rng==True, return the range covered resulting frames; if
missing_frame=="skip", the range can be smaller than the supplied rng if some frames are skipped.

pylablib.devices.Andor.Shamrock module

class pylablib.devices.Andor.Shamrock.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

526 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Andor.Shamrock.restart_lib()

pylablib.devices.Andor.Shamrock.list_spectrographs()

Return list of serial numbers of all connected Shamrock spectrographs

pylablib.devices.Andor.Shamrock.get_spectrographs_number()

Get number of connected Shamrock spectrographs

class pylablib.devices.Andor.Shamrock.TDeviceInfo(serial_number)
Bases: tuple

serial_number

class pylablib.devices.Andor.Shamrock.TOpticalParameters(focal_length, angular_deviation,
focal_tilt)

Bases: tuple

angular_deviation

focal_length

focal_tilt

class pylablib.devices.Andor.Shamrock.TGratingInfo(lines, blaze_wavelength, home, offset)
Bases: tuple

blaze_wavelength

home

lines

offset

class pylablib.devices.Andor.Shamrock.ShamrockSpectrograph(idx=0)
Bases: IDevice

Shamrock spectrograph.

Parameters
idx (int) – spectrograph index (starting from 0; use list_spectrographs() to get the list
of all connected spectrographs)

2.7. pylablib 527

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

get_device_info()

Get spectrograph device info.

Return tuple (serial_number).

get_optical_parameters()

Get device optical parameters.

Return tuple (focal_length, angular_deviation, focal_tilt).

get_gratings_number()

Get number of gratings

get_grating()

Get current grating index (counting from 1)

set_grating(grating, force=False)
Set current grating (counting from 1)

Call blocks until the grating is exchanged (up to 10-20 seconds). If force==False and the current grating
index is the same as requested, skip the call; otherwise, call the grating set command regardless (takes about
a second in the grating is unchanged).

get_grating_info(grating=None)
Get info of a given grating (by default, current grating).

Return tuple (lines, blaze_wavelength, home, offset) (blazing wavelength is in nm).

get_grating_offset(grating=None)
Get grating offset (in steps) for a given grating (by default, current grating)

set_grating_offset(offset, grating=None)
Set grating offset (in steps) for a given grating (by default, current grating)

get_detector_offset()

Get detector offset (in steps)

set_detector_offset(offset)
Set detector offset (in steps)

get_turret()

Get turret

set_turret(turret)
Set turret

is_wavelength_control_present()

Check if wavelength control is present

get_wavelength()

Get current central wavelength (in m)

528 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_wavelength(wavelength)
Get current central wavelength (in m)

get_wavelength_limits(grating=None)
Get wavelength limits (in m) for a given grating (by default, current grating)

reset_wavelength()

Reset current wavelength to 0 nm

is_at_zero_order()

Check if current grating is at zero order

goto_zero_order()

Set current grating to zero order

is_slit_present(slit)
Check if the slit is present.

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct",
"output_side", or "output_direct".

get_slit_width(slit)
Get slit width (in m).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct",
"output_side", or "output_direct".

set_slit_width(slit, width)
Set slit width (in m).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct",
"output_side", or "output_direct".

reset_slit(slit)
Reset slit to the default width (10 um).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct",
"output_side", or "output_direct".

is_shutter_present()

Check if the shutter is present

get_shutter()

Get shutter mode.

Can return "closed", "opened", "bnc", or "not_set".

is_shutter_mode_possible(mode)
Check if the shutter mode ("closed", "opened", or "bnc") is supported

set_shutter(mode)
Set shutter mode ("closed" or "opened")

is_filter_present()

Check if the filter is present

get_filter()

Get current filter

2.7. pylablib 529

pylablib Documentation, Release 1.4.2

set_filter(flt)
Set current filter

get_filter_info(flt)
Get info of the given filter

reset_filter()

Reset filter to default position

is_flipper_present(flipper)
Check if the flipper is present.

flipper can be a flipper index (starting from 1), "input", or “output”`.

get_flipper_port(flipper)
Get flipper port.

flipper can be a flipper index (starting from 1), "input", or “output”`. Return either "direct" or "side".

set_flipper_port(flipper, port)
Set flipper port.

flipper can be a flipper index (starting from 1), "input", or “output”`. Port can be "direct" or "side".

reset_flipper(flipper)
Reset flipper to the default state.

flipper can be a flipper index (starting from 1), "input", or “output”`.

is_accessory_present()

Check if the accessory is present

get_accessory_state(line)
Get current accessory state on a given line (1 or 2)

set_accessory_state(line, state)
Set current accessory state (0 or 1) on a given line (1 or 2)

get_pixel_width()

Get current set detector pixel width (in m)

set_pixel_width(width)
Set current detector pixel width (in m)

get_number_pixels()

Get current set detector number of pixels

set_number_pixels(number)
Set current detector number of pixels

setup_pixels_from_camera(cam)

Setup detector parameters (number of pixels, pixel width) from the camera

get_calibration()

Get wavelength calibration.

Return numpy array which specifies wavelength (in m) corresponding to each pixel. Prior to calling this
method, the total number of pixels and the pixel width of the sensor should be set up using the correspond-
ing methods (set_number_pixels() and set_pixel_width(), or setup_pixels_from_camera()
to set both parameters using and AndorSDK2 camera instance)

530 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

set_device_variable(key, value)
Set the value of a settings parameter

pylablib.devices.Andor.atcore_features module

pylablib.devices.Andor.base module

exception pylablib.devices.Andor.base.AndorError

Bases: DeviceError

Generic Andor error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Andor.base.AndorTimeoutError

Bases: AndorError

Andor timeout error

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 531

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Andor.base.AndorFrameTransferError

Bases: AndorError

Andor frame transfer error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Andor.base.AndorNotSupportedError

Bases: AndorError

Option not supported error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Module contents

pylablib.devices.Arcus package

Submodules

pylablib.devices.Arcus.base module

exception pylablib.devices.Arcus.base.ArcusError

Bases: DeviceError

Generic Arcus error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Arcus.base.ArcusBackendError(exc)
Bases: ArcusError, DeviceBackendError

Generic Arcus backend communication error

532 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Arcus.performax module

pylablib.devices.Arcus.performax.get_usb_device_info(devid)
Get info for the given device index (starting from 0).

Return tuple (index, serial, model, desc, vid, pid).

pylablib.devices.Arcus.performax.list_usb_performax_devices()

List all performax devices.

Return list of tuples (index, serial, model, desc, vid, pid), one per device.

class pylablib.devices.Arcus.performax.GenericPerformaxStage(idx=0, conn=None)
Bases: IMultiaxisStage

Generic Arcus Performax translation stage.

Parameters

• idx (int) – stage index; if using a USB connection, specifies a USB device index; if using
RS485 connection, specifies device index on the bus

• conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-
to-RS485 adapters) this is a serial connection, which either a name (e.g., "COM1"), or a
tuple (name, baudrate) (e.g., ("COM1", 9600)); if conn is None, assume direct USB
connection and use the manufacturer-provided DLL

Error

alias of ArcusError

open()

Open the connection to the stage

close()

Close the connection to the stage

is_opened()

Check if the device is connected

get_device_info()

Get the device info

query(comm)

Send a query to the stage and return the reply

get_device_number()

Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

2.7. pylablib 533

https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

set_device_number(number, store=True)
Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99. In order
for the change to take effect, the device needs to be power-cycled. If store==True, automatically store
settings to the memory; otherwise, the settings will be lost unless store_defaults() is called at some
point before the power-cycle.

store_defaults()

Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

class pylablib.devices.Arcus.performax.Performax4EXStage(idx=0, conn=None, enable=True)
Bases: GenericPerformaxStage

Arcus Performax 4EX/4ET translation stage.

Parameters

534 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

• idx (int) – stage index; if using a USB connection, specifies a USB device index; if using
RS485 connection, specifies device index on the bus

• conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-
to-RS485 adapters) this is a serial connection, which either a name (e.g., "COM1"), or a
tuple (name, baudrate) (e.g., ("COM1", 9600)); if conn is None, assume direct USB
connection and use the manufacturer-provided DLL

• enable – if True, enable all axes on startup

get_baudrate()

Get current baud rate

set_baudrate(baudrate, store=True)
Set current baud rate.

Acceptable values are 9600 (default), 19200, 38400, 57600, and 115200. In order for the change to take
effect, the device needs to be power-cycled. If store==True, automatically store settings to the memory;
otherwise, the settings will be lost unless store_defaults() is called at some point before the power-
cycle.

enable_absolute_mode(enable=True)
Set absolute motion mode

enable_limit_errors(enable=True, autoclear=True)
Enable limit errors.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other
axes; any further motion command on this axis will raise an error (it is still possible to restart motion on
other axes); the axis motion can only be resumed by calling clear_limit_error(). If off, the limited
axis still stops, but the other axes are unaffected. If autoclear==True and enable==False, also clear
the current limit errors on all exs.

limit_errors_enabled()

Check if global limit errors are enabled.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other
axes; any further motion command on this axis will raise an error (it is still possible to restart motion on
other axes); the axis motion can only be resumed by calling clear_limit_error(). If off, the limited
axis still stops, but the other axes are unaffected.

is_enabled(axis='all')
Check if the axis output is enabled

enable_axis(axis='all', enable=True)
Enable axis output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

get_position(axis='all')
Get the current axis pulse position

set_position_reference(axis, position=0)
Set the current axis pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

get_encoder(axis='all')
Get the current axis encoder value

2.7. pylablib 535

https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

set_encoder_reference(axis, position=0)
Set the current axis encoder value as a reference.

Re-calibrate the encoder counter so that the current position is set as position (0 by default).

move_to(axis, position)
Move a given axis to a given position

move_by(axis, steps=1)
Move a given axis for a given number of steps

jog(axis, direction)
Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive). The motion continues until it is explicitly stopped,
or until a limit is hit.

stop(axis='all', immediate=False)
Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

home(axis, direction, home_mode)
Home the given axis using a given home mode.

direction can be "+" or "-" The mode can be "only_home_input", "only_home_input_lowspeed",
"only_limit_input", "only_zidx_input", or "home_and_zidx_input". For meaning, see Arcus
PMX manual.

get_global_speed()

Get the global speed setting (in Hz); overridden by a non-zero axis speed

get_axis_speed(axis='all')
Get the individual axis speed setting (in Hz); 0 means that the global speed is used

set_global_speed(speed)
Set the global speed setting (in Hz); overridden by a non-zero axis speed

set_axis_speed(axis, speed)
Set the individual axis speed setting (in Hz); 0 means that the global speed is used

get_current_axis_speed(axis='all')
Get the instantaneous speed (in Hz)

get_status_n(axis='all')
Get the axis status as an integer

get_status(axis='all')
Get the axis status as a set of string descriptors

is_moving(axis='all')
Check if a given axis is moving

wait_move(axis, timeout=None, period=0.05)
Wait until motion is done

check_limit_error(axis='all')
Check if the axis hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

536 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

clear_limit_error(axis='all')
Clear axis limit errors

get_analog_input(channel)
Get voltage (in V) at a given input (starting with 1)

get_digital_input(channel)
Get value (0 or 1) at a given digital input (1 through 8)

get_digital_input_register()

Get all 8 digital inputs as a single 8-bit integer

get_digital_output(channel)
Get value (0 or 1) at a given digital output (1 through 8)

get_digital_output_register()

Get all 8 digital inputs as a single 8-bit integer

set_digital_output(channel, value)
Set value (0 or 1) at a given digital output (1 through 8)

set_digital_output_register(value)
Set all 8 digital inputs as a single 8-bit integer

Error

alias of ArcusError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection to the stage

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_info()

Get the device info

get_device_number()

Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 537

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

open()

Open the connection to the stage

query(comm)

Send a query to the stage and return the reply

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_number(number, store=True)
Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99. In order
for the change to take effect, the device needs to be power-cycled. If store==True, automatically store
settings to the memory; otherwise, the settings will be lost unless store_defaults() is called at some
point before the power-cycle.

set_device_variable(key, value)
Set the value of a settings parameter

store_defaults()

Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

class pylablib.devices.Arcus.performax.Performax2EXStage(idx=0, conn=None, enable=True)
Bases: Performax4EXStage

Arcus Performax 2EX/2ED translation stage.

Parameters

• idx (int) – stage index; if using a USB connection, specifies a USB device index; if using
RS485 connection, specifies device index on the bus

• conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-
to-RS485 adapters) this is a serial connection, which either a name (e.g., "COM1"), or a
tuple (name, baudrate) (e.g., ("COM1", 9600)); if conn is None, assume direct USB
connection and use the manufacturer-provided DLL

• enable – if True, enable all axes on startup

538 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

Error

alias of ArcusError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

check_limit_error(axis='all')
Check if the axis hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

clear_limit_error(axis='all')
Clear axis limit errors

close()

Close the connection to the stage

enable_absolute_mode(enable=True)
Set absolute motion mode

enable_axis(axis='all', enable=True)
Enable axis output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

enable_limit_errors(enable=True, autoclear=True)
Enable limit errors.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other
axes; any further motion command on this axis will raise an error (it is still possible to restart motion on
other axes); the axis motion can only be resumed by calling clear_limit_error(). If off, the limited
axis still stops, but the other axes are unaffected. If autoclear==True and enable==False, also clear
the current limit errors on all exs.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_analog_input(channel)
Get voltage (in V) at a given input (starting with 1)

get_axis_speed(axis='all')
Get the individual axis speed setting (in Hz); 0 means that the global speed is used

get_baudrate()

Get current baud rate

get_current_axis_speed(axis='all')
Get the instantaneous speed (in Hz)

get_device_info()

Get the device info

get_device_number()

Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

2.7. pylablib 539

pylablib Documentation, Release 1.4.2

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_digital_input(channel)
Get value (0 or 1) at a given digital input (1 through 8)

get_digital_input_register()

Get all 8 digital inputs as a single 8-bit integer

get_digital_output(channel)
Get value (0 or 1) at a given digital output (1 through 8)

get_digital_output_register()

Get all 8 digital inputs as a single 8-bit integer

get_encoder(axis='all')
Get the current axis encoder value

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_global_speed()

Get the global speed setting (in Hz); overridden by a non-zero axis speed

get_position(axis='all')
Get the current axis pulse position

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status(axis='all')
Get the axis status as a set of string descriptors

get_status_n(axis='all')
Get the axis status as an integer

home(axis, direction, home_mode)
Home the given axis using a given home mode.

direction can be "+" or "-" The mode can be "only_home_input", "only_home_input_lowspeed",
"only_limit_input", "only_zidx_input", or "home_and_zidx_input". For meaning, see Arcus
PMX manual.

540 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_enabled(axis='all')
Check if the axis output is enabled

is_moving(axis='all')
Check if a given axis is moving

is_opened()

Check if the device is connected

jog(axis, direction)
Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive). The motion continues until it is explicitly stopped,
or until a limit is hit.

limit_errors_enabled()

Check if global limit errors are enabled.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other
axes; any further motion command on this axis will raise an error (it is still possible to restart motion on
other axes); the axis motion can only be resumed by calling clear_limit_error(). If off, the limited
axis still stops, but the other axes are unaffected.

move_by(axis, steps=1)
Move a given axis for a given number of steps

move_to(axis, position)
Move a given axis to a given position

open()

Open the connection to the stage

query(comm)

Send a query to the stage and return the reply

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_axis_speed(axis, speed)
Set the individual axis speed setting (in Hz); 0 means that the global speed is used

set_baudrate(baudrate, store=True)
Set current baud rate.

Acceptable values are 9600 (default), 19200, 38400, 57600, and 115200. In order for the change to take
effect, the device needs to be power-cycled. If store==True, automatically store settings to the memory;
otherwise, the settings will be lost unless store_defaults() is called at some point before the power-
cycle.

set_device_number(number, store=True)
Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99. In order
for the change to take effect, the device needs to be power-cycled. If store==True, automatically store
settings to the memory; otherwise, the settings will be lost unless store_defaults() is called at some
point before the power-cycle.

2.7. pylablib 541

pylablib Documentation, Release 1.4.2

set_device_variable(key, value)
Set the value of a settings parameter

set_digital_output(channel, value)
Set value (0 or 1) at a given digital output (1 through 8)

set_digital_output_register(value)
Set all 8 digital inputs as a single 8-bit integer

set_encoder_reference(axis, position=0)
Set the current axis encoder value as a reference.

Re-calibrate the encoder counter so that the current position is set as position (0 by default).

set_global_speed(speed)
Set the global speed setting (in Hz); overridden by a non-zero axis speed

set_position_reference(axis, position=0)
Set the current axis pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

stop(axis='all', immediate=False)
Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

store_defaults()

Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

wait_move(axis, timeout=None, period=0.05)
Wait until motion is done

class pylablib.devices.Arcus.performax.PerformaxDMXJSAStage(idx=0, conn=None, enable=True,
autoclear=True)

Bases: GenericPerformaxStage

Arcus Performax DMX-J-SA translation stage.

Parameters

• idx (int) – stage index; if using a USB connection, specifies a USB device index; if using
RS485 connection, specifies device index on the bus

• conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-
to-RS485 adapters) this is a serial connection, which either a name (e.g., "COM1"), or a
tuple (name, baudrate) (e.g., ("COM1", 9600)); if conn is None, assume direct USB
connection and use the manufacturer-provided DLL

• enable – if True, enable all axes on startup

• autoclear – if True, automatically clear limit error before the motion start

enable_absolute_mode(enable=True)
Set absolute motion mode

is_enabled()

Check if the output is enabled

542 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

enable_axis(enable=True)
Enable output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

get_position()

Get the current pulse position

set_position_reference(position=0)
Set the current pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

move_to(position)
Move to a given position

move_by(steps=1)
Move for a given number of steps

jog(direction)
Jog in a given direction.

direction can be either "-" (negative) or "+" (positive). The motion continues until it is explicitly stopped,
or until a limit is hit.

stop(immediate=False)
Stop motion.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

home(direction, home_mode)
Home using a given home mode.

direction can be "+" or "-" The mode can be "only_home_input", "only_home_input_lowspeed",
or "only_limit_input". For meaning, see Arcus PMX manual.

get_axis_speed()

Get the speed setting (in Hz)

set_axis_speed(speed)
Set the speed setting (in Hz)

get_status_n()

Get the status as an integer

get_status()

Get the status as a set of string descriptors

is_moving()

Check if motor is moving

wait_move(timeout=None, period=0.05)
Wait until motion is done

check_limit_error()

Check if the motor hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

2.7. pylablib 543

pylablib Documentation, Release 1.4.2

clear_limit_error()

Clear limit error

get_digital_input(channel)
Get value (0 or 1) at a given digital input (1 through 5)

get_digital_input_register()

Get all 5 digital inputs as a single 5-bit integer

get_digital_output(channel)
Get value (0 or 1) at a given digital output (1 through 2)

get_digital_output_register()

Get all 2 digital outputs as a single 2-bit integer

Error

alias of ArcusError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection to the stage

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_info()

Get the device info

get_device_number()

Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

544 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

open()

Open the connection to the stage

query(comm)

Send a query to the stage and return the reply

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_number(number, store=True)
Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99. In order
for the change to take effect, the device needs to be power-cycled. If store==True, automatically store
settings to the memory; otherwise, the settings will be lost unless store_defaults() is called at some
point before the power-cycle.

set_device_variable(key, value)
Set the value of a settings parameter

set_digital_output(channel, value)
Set value (0 or 1) at a given digital output (1 through 2)

store_defaults()

Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

set_digital_output_register(value)
Set all 2 digital inputs as a single 2-bit integer

Module contents

pylablib.devices.Arduino package

Submodules

pylablib.devices.Arduino.base module

exception pylablib.devices.Arduino.base.ArduinoError

Bases: DeviceError

Generic Arduino devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

2.7. pylablib 545

pylablib Documentation, Release 1.4.2

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Arduino.base.ArduinoBackendError(exc)
Bases: ArduinoError, DeviceBackendError

Generic Arduino backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Arduino.base.IArduinoDevice(port, rate=9600, timeout=10.0, term_write='\n',
term_read='\n', flush_before_op=True,
dtrrts=True)

Bases: ICommBackendWrapper

Generic Arduino device.

Parameters

• port – serial port name

• rate – baud rate

• timeout – default communication timeout

• term_write – default write terminating character (automatically appended on every sent
message)

• term_read – default read terminating character (used to determine when the incoming
message is received completely)

• flush_before_op – if True (default), automatically flush input buffer on comm/query

• dtrrts – determines whether to use DTR/RTS signals for communication; generally,
should be set to True on newer boards (e.g., Leonardo) and to False on older boards (e.g.,
Uno); settings dtrrts=True on older boards leads to the board reset upon connection,
and settings dtrrts=False on newer boards leads to the communications getting frozen

Error

alias of ArduinoError

reopen()

Close and reopen the device connection

reset_board()

Reset the board by pulsing the DTR and RTS lines

comm(comm, timeout=None, flush=False, flush_delay=0.02)
Send a device command.

If timeout is not None, it specifies a custom timeout for the operation. If flush==True, then wait for
flush_delay seconds after the write and read everything returned by the device.

546 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

query(query, timeout=None, query_delay=0, flush=False, flush_delay=0.02)
Send a device query and return the reply.

If timeout is not None, it specifies a custom timeout for the reply read operation. If query_delay>0, it
specifies the delay between write and subsequent read attempt. If flush==True, then wait for flush_delay
seconds after the write and read everything returned by the device.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 547

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Attocube package

Submodules

pylablib.devices.Attocube.anc300 module

pylablib.devices.Attocube.anc300.muxaxis(*args, **kwargs)

class pylablib.devices.Attocube.anc300.TDeviceInfo(serial, version)
Bases: tuple

serial

version

class pylablib.devices.Attocube.anc300.ANC300(conn, backend='auto', pwd='123456')
Bases: ICommBackendWrapper, IMultiaxisStage

Attocube ANC300 controller.

Parameters

• conn – connection parameters; for Ethernet connection is a tuple (addr, port), a string
"addr:port", or a string "addr" (default port 7240 us assumed)

• backend (str) – communication backend; by default, try to determine from the commu-
nication parameters

• pwd (str) – connection password for Ethernet connection (default is "123456")

Error

alias of AttocubeError

open()

Open the connection to the stage

query(msg)
Send a query to the stage and return the reply

update_available_axes()

Update the list of available axes.

Need to call only if the hardware configuration of the ANC module has changed.

get_device_info()

Get the device info of the controller board: (serial, version)

get_axis_serial(axis='all')
Get serial number of the controller board

set_mode(axis='all', mode='stp')
Set axis mode.

axis is either an axis index (starting from 1), or "all" (all axes). mode can be "gnd" (ground), "stp"
(step), "cap" (measure capacitance, then ground), "offs" (offset only, no stepping), "stp+" (offset with
added stepping waveform), "stp-" (offset with subtracted stepping). Note that not all modes are supported

548 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

by all modules: ANM150 doesn’t support offset voltage ("offs", "stp+", "stp-" modes), ANM200
doesn’t support stepping ("stp", "stp+", "stp-" modes).

get_mode(axis='all')
Get axis mode.

axis is either an axis index (starting from 1), or "all" (all axes). See set_mode() for the description of
the modes.

is_enabled(axis='all')
Check if the axis is enabled

enable_axis(axis='all', mode='stp')
Enable specific axis (set to step mode)

disable_axis(axis='all')
Disable specific axis (set to ground mode)

measure_capacitance(axis='all', wait=True)
Measure axis capacitance; finish in the GND mode.

If wait==True, wait until the capacitance measurement is finished (takes about a second per axis).

get_voltage(axis='all')
Get axis step amplitude in Volts

set_voltage(axis, voltage)
Set axis step amplitude in Volts

get_offset(axis='all')
Get axis offset voltage in Volts

set_offset(axis, voltage)
Set axis offset voltage in Volts

get_output(axis='all')
Get axis current output voltage in Volts

get_frequency(axis='all')
Get axis step frequency in Hz

set_frequency(axis, freq)
Set axis step frequency in Hz

get_capacitance(axis='all', measure=False)
Get capacitance measurement on the axis.

If measure==True, re-measure axis capacitance (takes about a second); otherwise, get the last measure-
ment value.

get_voltage_pattern(axis, kind)
Get axis voltage pattern.

kind be either "up" for up pattern or "down" for down pattern. The pattern is a numpy array of 256
numbers from 0 to 255 corresponding to the output voltage from 0 to the axis voltage. This pattern is
output (repeatedly) for each step. The default is a simple linear ramp.

2.7. pylablib 549

pylablib Documentation, Release 1.4.2

set_voltage_pattern(axis, kind, pattern=None)
Set axis voltage pattern.

kind be either "up" for up pattern or "down" for down pattern. The pattern is an array of 256 numbers from
0 to 255 corresponding to the output voltage from 0 to the axis voltage. This pattern is output (repeatedly)
for each step. The default is a simple linear ramp, which is set if pattern is None.

get_trigger_input(axis='all')
Get trigger input lines for the given axis.

Return tuple (up, down) with values for up and down step triggers, which can be either integer with the
trigger line number, or "off" if the trigger is off.

set_trigger_input(axis, up=None, down=None)
Set trigger input lines for the given axis.

up and down are can be integer with the trigger line number, "off" if the trigger is off, or None (keep the
value unchanged).

get_external_input_modes(axis='all')
Get external BNC input modes.

Return tuple (acin, dcin) indicating whether AC-IN and DC-IN channels are enabled.

set_external_input_modes(axis, acin=None, dcin=None)
Enable or disable external BNC inputs.

acin and dcin are can be boolean indicating if the corresponding input is enabled, or None (keep the value
unchanged).

get_axis_correction(axis)
Get axis correction factor.

The factor is automatically applied when the motion is in the negative direction.

set_axis_correction(axis, factor=1.0)
Set axis correction factor.

The factor is automatically applied when the motion is in the negative direction.

jog(axis, direction)
Jog continuously in the given direction ("+" or "-").

The motion will continue until another move or stop command is called.

move_by(axis, steps=1)
Move a given axis for a given number of steps

wait_move(axis, timeout=30.0)
Wait for a given axis to stop moving.

If the motion is not finished after timeout seconds, raise a backend error.

is_moving(axis)
Check if a given axis is moving

stop(axis='all')
Stop motion of a given axis

550 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 551

pylablib Documentation, Release 1.4.2

pylablib.devices.Attocube.anc350 module

pylablib.devices.Attocube.anc350.get_usb_devices_number()

Get the number of controllers connected via USB

class pylablib.devices.Attocube.anc350.ANC350(conn=0, timeout=5.0)
Bases: ICommBackendWrapper, IMultiaxisStage

Attocube ANC350 controller.

Parameters

• conn – connection parameters - index of the Attocube ANC350 in the system (for a single
controller leave 0)

• timeout (float) – default operation timeout

Error

alias of AttocubeError

class Telegram(opcode, address, index, data, corr_number)
Bases: tuple

address

corr_number

data

index

opcode

class Reply(address, index, reason, data)
Bases: tuple

address

data

index

reason

check_tell(timeout=0.01)
Check for queued TELL (periodic value update) commands

set_value(address, index, value, ack=False)
Set device value at the given address and index.

If ack==True, request ACK responds and return its value; otherwise, return immediately after set.

get_value(address, index, as_int=True)
Get device value at the given address and index.

If as_int==True, convert the result into a signed integer; otherwise return raw byte string.

enable_updates(enabled=True)
Enable or disable periodic TELL updates

552 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_hardware_id()

Return device HWID (by default -1)

set_hardware_id(hwid, persist=False)
Set device HWID (can be used to identify different devices).

If persist==True, the value persists after power cycling.

is_connected(axis='all')
Check if axis is connected

is_enabled(axis='all')
Check if axis is enabled

enable_axis(axis='all', enabled=True)
Enable a specific axis or all axes

disable_axis(axis='all')
Disable a specific axis or all axes

is_moving(axis='all')
Move a given axis for a given number of steps

check_limit(axis='all')
Check if the ent of travel has been reached.

Return None if no limits are reached, "fwd" if forward limit is reached, "bwd" if backward limit is reached,
or "both" if both are reached together (normally shouldn’t happen).

get_status_n(axis='all')
Get numerical status of the axis.

For details, see ANC350 protocol.

status_bits = [(1, 'running'), (2, 'limit'), (256, 'sens_err'), (1024,
'sens_disconn'), (2048, 'ref_valid')]

get_status(axis='all')
Get device status.

Return list of status strings, which can include "running" (axis is moving), "limit" (one of the lim-
its is reached), "sens_err" (sensor error), "sens_disconn" (sensor disconnected), or "ref_valid"
(reference is valid).

get_target_position(axis='all')
Get the target position for the given axis (the position towards which it is moving)

get_precision(axis='all')
Get the axis precision in m (used for checking if the target is reached)

set_precision(axis='all', precision=1e-06)
Set the axis precision in m (used for checking if the target is reached)

is_target_reached(axis='all', precision=None)
Check if the target position is reached.

If precision is not None, it sets final position tolerance (in m).

get_sensor_voltage()

Get position sensor voltage in Volts

2.7. pylablib 553

pylablib Documentation, Release 1.4.2

set_sensor_voltage(voltage)
Set position sensor voltage in Volts

get_voltage(axis='all')
Get axis step voltage in Volts

set_voltage(axis, voltage)
Set axis step voltage in Volts

get_offset(axis='all')
Get axis offset voltage in Volts

set_offset(axis, voltage)
Set axis offset voltage in Volts

get_frequency(axis='all')
Get axis step frequency in Hz

set_frequency(axis, freq)
Set axis step frequency in Hz

get_capacitance(axis='all', measure=False, delay=0.5)
Get axis capacitance in F.

If measure==True, initialize the measurement and get the result after the measurement delay. Otherwise,
return the last measured value.

get_position(axis='all')
Get axis position (in m)

move_to(axis, position, precision=None)
Move to target position (in m).

If precision is not None, it sets final position tolerance.

move_by(axis, dist)
Move along a given axis by a given distance (in m)

move_by_steps(axis, steps=1, delay=0)
Move along a given axis by a given number of steps

wait_move(axis, precision=1e-06, timeout=10.0, period=0.01)
Wait for a given axis to stop moving or to reach target position.

If the motion is not finished after timeout seconds, raise a backend error. Precision sets the final positioning
precision (in m).

stop(axis='all')
Stop motion of a given axis

jog(axis, direction)
Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive). The motion continues until it is explicitly stopped,
or until a limit is hit.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

554 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

close()

Close the backend

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 555

pylablib Documentation, Release 1.4.2

pylablib.devices.Attocube.base module

exception pylablib.devices.Attocube.base.AttocubeError

Bases: DeviceError

Generic Attocube error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Attocube.base.AttocubeBackendError(exc)
Bases: AttocubeError, DeviceBackendError

Attocube backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Module contents

pylablib.devices.Basler package

Submodules

pylablib.devices.Basler.pylon module

class pylablib.devices.Basler.pylon.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

556 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Basler.pylon.restart_lib()

class pylablib.devices.Basler.pylon.TCameraInfo(name, model, serial, devclass, devversion, vendor,
friendly_name, user_name, props)

Bases: tuple

devclass

devversion

friendly_name

model

name

props

serial

user_name

vendor

pylablib.devices.Basler.pylon.get_device_info(index)
Get Pylon camera info for a camera with the given index

pylablib.devices.Basler.pylon.list_cameras(desc=True)
List all cameras available through Basler Pylon interface

If desc==True, return complete camera descriptions; otherwise, simply return the names.

pylablib.devices.Basler.pylon.get_cameras_number()

Get number of connected Basler Pylon cameras

class pylablib.devices.Basler.pylon.BaslerPylonAttribute(node, full_name=None)
Bases: object

Object representing an Pylon GenAPI attribute.

Allows to query and set values and get additional information. Usually created automatically by an
BaslerPylonCamera instance.

Parameters

• node – pylon GenApi node handler

• full_name – if supplied, attribute’s full name, including the tree structure

name

attribute name

2.7. pylablib 557

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

kind

attribute kind; can be "int", "float", "bool", "enum", "str", "command", "category", or
"unknown"

display_name

attribute display name (short description name)

tooltip

longer attribute description

description

full attribute description (usually, same as tooltip)

visibility

attribute visibility; can be "simple", "intermediate", "advanced", "invisible", or "unknown"

access

attribute access level; can be "read_only", "write_only", "read_write", "na" (not applicable, e.g.,
command), or "not_implemented"

readable

whether attribute is readable

Type
bool

writable

whether attribute is writable

Type
bool

implemented

whether the attribute is implemented in the given camera (normally always True)

Type
bool

available

whether the attribute can be changed or called

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

inc

minimal attribute increment value (if applicable)

Type
float or int

558 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

units

attribute units (if applicable)

repr

shows what a numerical unit represents; can be "lin", "log", "bool", "pure", "hex", or "unknown"

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max, inc)

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Set attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

call_command()

Execute the given command

class pylablib.devices.Basler.pylon.TDeviceInfo(name, model, serial, devclass, devversion, vendor,
friendly_name, user_name, props)

Bases: tuple

devclass

devversion

friendly_name

model

name

props

serial

user_name

2.7. pylablib 559

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

vendor

class pylablib.devices.Basler.pylon.BaslerPylonCamera(idx=0, name=None)
Bases: IROICamera, IAttributeCamera, IExposureCamera

Generic Basler pylon camera interface.

Parameters

• idx – camera index among the cameras listed using list_cameras()

• name – camera name; if specified, then idx is ignored and the camera is determined based
on the provided name

Error = <Mock name='mock.BaslerError' id='140147792384784'>

TimeoutError = <Mock spec='str' id='140147790286544'>

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

post_open()

Additional setup after camera opening

get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. If enum_as_str==True, return enum-style
values as strings; otherwise, return corresponding integer values.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

call_command(name)
Execute the given command

get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)
Get values of all attributes with the given root

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

get_device_info()

Get camera information.

Return tuple (name, model, serial, devclass, devversion, vendor, friendly_name,
user_name, props).

560 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

class BufferManager(strm, size, nbuff)
Bases: object

Buffer manager, which deals with buffer memory allocation, registering and deregistering, and retrieving
the result and the leftovers

register()

Register buffers

deregister()

Deregister buffers

get_buffer(fidx)
Get buffer corresponding to the given frame index

get_handle(fidx)
Get buffer handle corresponding to the given frame index

2.7. pylablib 561

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_all_handles()

Get all buffer handles as a ctypes array

queue(fidx=None)
Queue a buffer with the given index or all buffers

retrieve()

Retrieve the next buffer and return its info and whether it is ready

flush()

Retrieve all leftover buffers

class ScheduleLooper

Bases: object

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

start_loop(buff_mgr)
Start loop serving the given buffer manager

stop_loop()

Stop the loop thread

is_looping()

Check if the loop is running

get_status()

Get the current loop status, which is the tuple (acquired,)

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). nframes sets up number of frame buffers.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

enable_raw_readout(enable='rows')
Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format. Can be "frame" (return the whole frame as
a 1D "u1" numpy array), "rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default)

562 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

2.7. pylablib 563

pylablib Documentation, Release 1.4.2

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,

564 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

2.7. pylablib 565

pylablib Documentation, Release 1.4.2

If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

Module contents

pylablib.devices.BitFlow package

Submodules

pylablib.devices.BitFlow.BitFlow module

exception pylablib.devices.BitFlow.BitFlow.BitFlowError

Bases: DeviceError

Generic BitFlow devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

566 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

exception pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError

Bases: BitFlowError

BitFlow frame timeout error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.BitFlow.BitFlow.TDeviceInfo(idx, model, idreg)
Bases: tuple

idreg

idx

model

pylablib.devices.BitFlow.BitFlow.list_cameras()

List all cameras available through BitFlow interface

pylablib.devices.BitFlow.BitFlow.get_cameras_number()

Get number of connected BitFlow cameras

class pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber(bitflow_idx=0, bitflow_camfile=None,
do_open=True, **kwargs)

Bases: IROICamera

Generic BitFlow frame grabber interface.

Compared to BitFlowCamera, has more permissive initialization arguments, which simplifies its use as a base
class for expanded cameras.

Parameters

• bitflow_idx – board index, starting from 0

• bitflow_camfile – if not None, a path to a valid camera file used for this frame grabber
and camera combination; in this case, a temporary camera file is generated based on the
provided one and used to change some otherwise unavailable camera parameters such as
ROI and pixel bit depth (they are otherwise fixed to whatever is specified in the default
camera file)

• do_open – if False, skip the last step of opening the device (should be opened in a
subclass)

Error

alias of BitFlowError

TimeoutError

alias of BitFlowTimeoutError

open()

Open connection to the camera

close()

Close connection to the camera

2.7. pylablib 567

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

get_device_info()

Get camera model data.

Return tuple (idx, model, idreg)with the board index, model number and the setting of the ID switch
on the board

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

568 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

class BufferManager(cam)

Bases: object

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and
buffer overflow events

reset()

Reset counter (on frame acquisition)

start_loop()

Start buffer scheduling loop

stop_loop()

Stop buffer scheduling loop

is_running()

Check if the buffer loop is running

get_status()

Get counter status: tuple (acquired,)

setup_acquisition(mode='sequence', nframes=100, frame_merge=1)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acqui-
sition). nframes sets up number of frames in the acquisition buffer. frame_merge specifies the number of
frames to merge together to from one buffer; if it is larger than 1, several camera frames will be merged into
a single frame grabber “super-frame” for acquisition, to lower the effective frame rate (which is capped at
2-4kFPS due to the necessity of Python loops). This is done transparently for the user, so the only visible
change is the fact that the number of acquired frames is always updated in quanta of frame_merge.

clear_acquisition()

Clear all acquisition details and free all buffers

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

2.7. pylablib 569

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

570 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

2.7. pylablib 571

pylablib Documentation, Release 1.4.2

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

572 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.BitFlow.BitFlow.BitFlowCamera(idx=0, camfile=None)
Bases: BitFlowFrameGrabber

Generic BitFlow camera interface.

Parameters
idx – board index, starting from 0

class BufferManager(cam)

Bases: object

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and
buffer overflow events

get_status()

Get counter status: tuple (acquired,)

is_running()

Check if the buffer loop is running

reset()

Reset counter (on frame acquisition)

start_loop()

Start buffer scheduling loop

stop_loop()

Stop buffer scheduling loop

Error

alias of BitFlowError

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of BitFlowTimeoutError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear all acquisition details and free all buffers

close()

Close connection to the camera

2.7. pylablib 573

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (idx, model, idreg)with the board index, model number and the setting of the ID switch
on the board

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

574 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 575

pylablib Documentation, Release 1.4.2

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open connection to the camera

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

576 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

2.7. pylablib 577

pylablib Documentation, Release 1.4.2

setup_acquisition(mode='sequence', nframes=100, frame_merge=1)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acqui-
sition). nframes sets up number of frames in the acquisition buffer. frame_merge specifies the number of
frames to merge together to from one buffer; if it is larger than 1, several camera frames will be merged into
a single frame grabber “super-frame” for acquisition, to lower the effective frame rate (which is capped at
2-4kFPS due to the necessity of Python loops). This is done transparently for the user, so the only visible
change is the fact that the number of acquired frames is always updated in quanta of frame_merge.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.BitFlow.BitFlow.CameraFileEditor

Bases: object

Camera file editor based on XML ElementTree parser.

Provides methods for loading and saving the tree, and to change basic parameters in the default operational mode.

load(path, clean=True)
Load file from the given path and optionally check the structure remove the non-default modes

save(path)
Save file to the given path

clean_modes()

Check the loaded tree structure and remove non-default operational modes

get_mode_parameters()

Get default operational mode parameters.

Return tuple (size, fmt, bpp) with the acquisition size (xsize, ysize), format (e.g., "1X2-1Y")
and the number of bits per pixel. If the tree is not loaded or mode is not present, return None.

578 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

set_mode_parameters(size=None, fmt=None, bpp=None)
Get default operational mode parameters.

size is the acquisition size (xsize, ysize), fmt is the tap format (e.g., "1X2-1Y"), and bpp is the number
of bits per pixel. Parameters set to None stay unchanged. Return True if any parameters have changed
their values and False otherwise.

Module contents

pylablib.devices.Conrad package

Submodules

pylablib.devices.Conrad.base module

exception pylablib.devices.Conrad.base.ConradError

Bases: DeviceError

Generic Conrad devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Conrad.base.ConradBackendError(exc)
Bases: ConradError, DeviceBackendError

Generic Conrad backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Conrad.base.RelayBoard(conn, start_addr=1)
Bases: ICommBackendWrapper

Conrad relay board controller

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• start_addr – address which is assigned to the first board in the chain upon initialization;
all following boards increase the address by 1

Error

alias of ConradError

2.7. pylablib 579

pylablib Documentation, Release 1.4.2

open()

Open the connection to the board

class TMessage(comm, addr, data)
Bases: tuple

addr

comm

data

query(comm, addr=1, data=0, multi_result=False)
Send a query with the given command, address and data.

If multi_result==False, read a single reply frame; otherwise, keep reading until reply with the same
command as sent is received (used in initialization and broadcast queries).

get_all_relays(addr=1)
Get all relay states.

If addr is not 0, return dictionary {relay:value}, where relay is the relay index on the board (between 1
and 8 inclusive). If addr==0 (broadcast), return dictionary {addr:board_state}, where board_state
is in turn a state dictionary is described above.

set_all_relays(values, addr=1)
Set all relay states.

values can be a list (listing relay states from lowest to highest), or a dictionary {relay:value}, where
relays are numbered from 1 to 8. Relays without values are kept unchanged. If addr==0, broadcast to all
boards

get_relay(relay, addr=1)
Get the state at a given relay (indexed from 1 to 8 inclusive)

set_relay(relay, enable=True, addr=1)
Get the state at a given relay (indexed from 1 to 8 inclusive)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

580 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Cryocon package

Submodules

pylablib.devices.Cryocon.base module

exception pylablib.devices.Cryocon.base.CryoconError

Bases: DeviceError

Generic Cryocon devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Cryocon.base.CryoconBackendError(exc)
Bases: CryoconError, DeviceBackendError

Generic Lakeshore backend communication error

2.7. pylablib 581

pylablib Documentation, Release 1.4.2

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Cryocon.base.Cryocon1x(conn, nchannels='auto')
Bases: SCPIDevice

Cryocon 1x series (12C, 14C, 18C) temperature controller.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of CryoconError

ReraiseError

alias of CryoconBackendError

get_number_of_channels()

Return total number of channels in the device (2, 4, or 8)

get_display_units(channel)

set_display_units(channel, units)

get_temperature(channel, display_units=False)
Get a reading on a given channel.

If display_units==True, return reading in the display units; otherwise, return reading in Kelvin. If in
this case the display units are "S" (sensor), set them to Kelvin to get the reading. If sensor is disconnected,
return None.

get_all_temperatures(display_units=False)
Get readings on all channels.

If display_units==True, return reading in the display units; otherwise, return reading in Kelvin. If in
this case the display units are "S" (sensor), set them to Kelvin to get the reading. If sensor is disconnected,
return None.

get_sensor_reading(channel)
Get readings (in sensor units) on a given channel (1 to 8)

get_all_sensor_readings()

Get readings (in sensor units) on all channels

get_sensor_kind(channel)
Get sensor kind of a given channel (1 to 8)

get_all_sensor_kinds()

Get readings (in sensor units) on all channels

set_sensor_kind(channel, kind)
Set sensor kind of a given channel (1 to 8).

Can be an integer using internal classification (see manual), or one of "none", "S900", "DT670",
"DT470", "S950", "SI410", "Pt100", "Pt1k", "Pt10k", "ThFe", "RO105", "RO600". Setting kind
to "none" disables the sensor.

582 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 583

pylablib Documentation, Release 1.4.2

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

584 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

2.7. pylablib 585

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Cryomagnetics package

Submodules

pylablib.devices.Cryomagnetics.base module

exception pylablib.devices.Cryomagnetics.base.CryomagneticsError

Bases: DeviceError

Generic Cryomagnetics devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError(exc)
Bases: CryomagneticsError, DeviceBackendError

Generic Cryomagnetics backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Cryomagnetics.base.LM500(conn)
Bases: SCPIDevice

Cryomagnetics LM500/510 level monitor.

Channels are enumerated from 1. To abort filling or reset a timeout, call SCPIDevice.reset() method.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of CryomagneticsError

ReraiseError

alias of CryomagneticsBackendError

close()

Close connection to the device

get_channel()

Get current measurement channel

select_channel(channel=1)
Select the current measurement channel

586 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_type(channel=None)
Get type of a given channel ("lhe" or "ln")

get_mode(channel=None)
Get measurement mode at the given channel (None for the currently selected channel).

Can be either 'sample_hold', or 'continuous'.

set_mode(mode, channel=None)
Set measurement mode at the given channel (None for the current channel).

Can be either 'sample_hold', or 'continuous'.

get_interval(channel=None)
Get measurement interval (in seconds) in sample/hold mode at the given channel (None for the current
channel)

set_interval(intvl, channel=None)
Set measurement interval (in seconds) in sample/hold mode at the given channel (None for the current
channel)

start_measurement(channel=None)
Initialize measurement on a given channel

wait_for_measurement(channel=None, timeout=None)
Wait for the measurement on a given channel to finish

get_level(channel=None)
Get level reading on a given channel

measure_level(channel=None)
Measure the level (perform the measurement and return the result) on a given channel

start_fill(channel=None)
Initialize filling at a given channel (None for the current channel)

get_fill_status(channel=None)
Get filling status at a given channels (None for the current channel).

Return either "off" (filling is off), "timeout" (filling timed out) or a float (time since filling started, in
seconds).

get_low_level(channel=None)
Get low level (automated refill start) setting on a given channel (None for the current channel)

set_low_level(level, channel=None)
Set low level (automated refill start) setting on a given channel (None for the current channel)

get_high_level(channel=None)
Get high level (automated refill stop) setting on a given channel (None for the current channel)

set_high_level(level, channel=None)
Set high level (automated refill stop) setting on a given channel (None for the current channel)

BackendError

alias of DeviceBackendError

2.7. pylablib 587

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

588 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

2.7. pylablib 589

pylablib Documentation, Release 1.4.2

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Cryomagnetics.base.LM510(conn)
Bases: LM500

Cryomagnetics 510 level monitor.

Compared to LM500, adds additional specific methods to enable/disable automatic refill.

Channels are enumerated from 1. To abort filling or reset a timeout, call SCPIDevice.reset() method.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

set_control_mode(mode, channel=None)
Set automated refill mode on a given channel (None for the current channel); can be "off" or "auto"

BackendError

alias of DeviceBackendError

590 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Error

alias of CryomagneticsError

ReraiseError

alias of CryomagneticsBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close connection to the device

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_channel()

Get current measurement channel

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_fill_status(channel=None)
Get filling status at a given channels (None for the current channel).

Return either "off" (filling is off), "timeout" (filling timed out) or a float (time since filling started, in
seconds).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_high_level(channel=None)
Get high level (automated refill stop) setting on a given channel (None for the current channel)

2.7. pylablib 591

pylablib Documentation, Release 1.4.2

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_interval(channel=None)
Get measurement interval (in seconds) in sample/hold mode at the given channel (None for the current
channel)

get_level(channel=None)
Get level reading on a given channel

get_low_level(channel=None)
Get low level (automated refill start) setting on a given channel (None for the current channel)

get_mode(channel=None)
Get measurement mode at the given channel (None for the currently selected channel).

Can be either 'sample_hold', or 'continuous'.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_type(channel=None)
Get type of a given channel ("lhe" or "ln")

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

measure_level(channel=None)
Measure the level (perform the measurement and return the result) on a given channel

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

592 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_channel(channel=1)
Select the current measurement channel

set_device_variable(key, value)
Set the value of a settings parameter

set_high_level(level, channel=None)
Set high level (automated refill stop) setting on a given channel (None for the current channel)

set_interval(intvl, channel=None)
Set measurement interval (in seconds) in sample/hold mode at the given channel (None for the current
channel)

set_low_level(level, channel=None)
Set low level (automated refill start) setting on a given channel (None for the current channel)

set_mode(mode, channel=None)
Set measurement mode at the given channel (None for the current channel).

Can be either 'sample_hold', or 'continuous'.

sleep(delay)
Wait for delay seconds

start_fill(channel=None)
Initialize filling at a given channel (None for the current channel)

start_measurement(channel=None)
Initialize measurement on a given channel

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

2.7. pylablib 593

pylablib Documentation, Release 1.4.2

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_for_measurement(channel=None, timeout=None)
Wait for the measurement on a given channel to finish

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

594 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.DCAM package

Submodules

pylablib.devices.DCAM.DCAM module

class pylablib.devices.DCAM.DCAM.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.DCAM.DCAM.restart_lib()

pylablib.devices.DCAM.DCAM.get_cameras_number()

Get number of connected DCAM cameras

class pylablib.devices.DCAM.DCAM.DCAMAttribute(handle, pid)
Bases: object

DCAM camera attribute.

Allows to query and set values and get additional information. Usually created automatically by a DCAM camera
instance, but could also be created manually.

Parameters

• handle – DCAM camera handle

• pid – attribute id

name

attribute name

2.7. pylablib 595

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

kind

attribute kind; can be "int", "float", "enum", or "none" (can’t determine)

Type
str

readable

whether attribute is readable

Type
bool

writable

whether attribute is writable

Type
bool

min

minimal attribute value (if applicable)

Type
float

max

maximal attribute value (if applicable)

Type
float

step

attribute value step (if applicable)

Type
float

unit

attribute units (index value)

Type
int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

as_text(value=None)
Get the given attribute value as text (by default, current value)

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max)

596 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

get_value(enum_as_str=False)
Get current attribute value.

If enum_as_str==True, try to represent enums as their string values; otherwise, return their integer values
(only integers can be used for setting).

set_value(value)
Set attribute value

class pylablib.devices.DCAM.DCAM.TDeviceInfo(vendor, model, serial_number, camera_version)
Bases: tuple

camera_version

model

serial_number

vendor

class pylablib.devices.DCAM.DCAM.TFrameInfo(frame_index, framestamp, timestamp_us, camerastamp,
position, pixeltype)

Bases: tuple

camerastamp

frame_index

framestamp

pixeltype

position

timestamp_us

class pylablib.devices.DCAM.DCAM.DCAMCamera(idx=0)
Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Error = <Mock name='mock.DCAMError' id='140147781148112'>

TimeoutError = <Mock spec='str' id='140147780083984'>

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

get_device_info()

Get camera model data.

Return tuple (vendor, model, serial_number, camera_version).

2.7. pylablib 597

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_attribute_value(name, enum_as_str=False, error_on_missing=True, default=None)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If enum_as_str==True, try
to represent enums as their string values; otherwise, return their integer values (only integers can be used
for setting).

set_attribute_value(name, value, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing.

get_all_attribute_values(root='', enum_as_str=False)
Get values of all attributes.

If enum_as_str==True, try to represent enums as their string values; otherwise, return their integer values
(only integers can be used for setting).

set_all_attribute_values(settings)
Set values of all attribute in the given dictionary

set_trigger_mode(mode)
Set trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

get_trigger_mode()

Get trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

get_all_trigger_modes()

Return the list of all available trigger modes

setup_ext_trigger(invert=False, delay=0.0)
Setup external trigger (inversion and delay)

get_ext_trigger_parameters()

Return external trigger parameters (inversion and delay)

send_software_trigger()

Send software trigger signal

set_exposure(exposure)
Set camera exposure

get_exposure()

Set current exposure

set_readout_speed(speed='fast')
Set readout speed (can be "fast" or "slow")

get_readout_speed()

Set current readout speed

get_all_readout_speeds()

Return the list of all available readout speeds

598 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_readout_time()

Set current frame readout time

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_defect_correct_mode()

Check if the defect pixel correction mode is on

set_defect_correct_mode(enabled=True)
Enable or disable the defect pixel correction mode

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Set current ROI.

By default, all non-supplied parameters take extreme values. Binning is the same for both axes, so value
of vbin is ignored (it is left for compatibility).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). nframes determines number of frames to acquire in the single mode, or size of the ring buffer
in the "sequence" mode (by default, 100).

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

get_status()

Get acquisition status.

Can be "busy" (capturing in progress), "ready" (ready for capturing), "stable" (not prepared for cap-
turing), "unstable" (can’t be prepared for capturing), or "error" (some other error).

2.7. pylablib 599

pylablib Documentation, Release 1.4.2

acquisition_in_progress()

Check if acquisition is in progress

get_transfer_info()

Get frame transfer info.

Return tuple (last_buff, frame_count), where last_buff is the index of the last filled buffer, and
frame_count is the total number of acquired frames.

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

600 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,

2.7. pylablib 601

pylablib Documentation, Release 1.4.2

return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

602 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of TFrameInfo instances describing frame index, framestamp and timestamp, camera stamp, frame
location on the sensor, and pixel type; if some frames are missing and missing_frame!="skip", the
corresponding frame info is None. if return_rng==True, return the range covered resulting frames; if
missing_frame=="skip", the range can be smaller than the supplied rng if some frames are skipped.

Module contents

pylablib.devices.ElektroAutomatik package

Submodules

pylablib.devices.ElektroAutomatik.base module

2.7. pylablib 603

pylablib Documentation, Release 1.4.2

exception pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError

Bases: DeviceError

Generic Elektro Automatik device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError(exc)
Bases: ElektroAutomatikError, DeviceBackendError

Generic Elektro Automatik backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.ElektroAutomatik.base.TDeviceInfo(model, manufacturer, serial_no,
article_no, sw_ver)

Bases: tuple

article_no

manufacturer

model

serial_no

sw_ver

class pylablib.devices.ElektroAutomatik.base.TOutputLimits(voltage, current, power)
Bases: tuple

current

power

voltage

class pylablib.devices.ElektroAutomatik.base.TStatus(enabled, mode, ovp, ocp, opp, otp)
Bases: tuple

enabled

mode

ocp

opp

604 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

otp

ovp

class pylablib.devices.ElektroAutomatik.base.PS2000B(conn, remote_mode='force')
Bases: ICommBackendWrapper

Elektro Automatik PS2000B series power supply.

Parameters

• conn – serial connection parameters (usually, COM-port address)

• remote_mode – approach to setting the remote mode; can be "force" (enable on con-
nection, disable on disconnection) or "manual" (do nothing about it, should be enabled
or disabled automatically). In the remote mode the device is controlled from the PC (front
panel controls are disabled), while in the local mode it can only be queried remotely, but
not changed.

Error

alias of ElektroAutomatikError

class TTelegram(obj, data, dnode)
Bases: tuple

data

dnode

obj

open()

Open the backend

close()

Close the backend

query(obj, dlen, dnode=0, kind='raw')
Query value of the given object.

dlen specifies the value length and dnode sets the device node (only relevant for multi-source models). kind
specifies the result kind; can be "raw" (raw bytes), "str" (string), "int" (2-byte integer) or "float"
(r-byte float).

comm(obj, value, dnode=0, kind='int')
Set value of the given object.

dnode sets the device node (only relevant for multi-source models). kind specifies the value kind; can be
"raw" (raw bytes), or "int" (2-byte integer).

get_device_info()

Get device information.

Return tuple (model, manufacturer, serial_no, article_no, sw_ver).

get_output_limits()

Get nominal output limits.

Return tuple (voltage, current, power).

2.7. pylablib 605

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

is_remote_enabled()

Check if the remote-control mode is enabled (if it is disabled, output and limit values can be read but not
set)

enable_remote(enable=True)
Enable or disable the remote-control mode (if it is disabled, output and limit values can be read but not
set)

is_output_enabled()

Check if the output is enabled

enable_output(enable=True)
Enable or disable the output

get_status()

Get device status.

Return tuple (mode, ovp, ocp, opp, otp), where mode is the output mode ("cv" or "cc") and the
rest of the values show if the corresponding protection is tripped.

get_voltage_setpoint()

Get output voltage setpoint

get_voltage()

Get the actual output voltage

set_voltage(value)
Set output voltage setpoint

get_current_setpoint()

Get output current setpoint

get_current()

Get the actual output current

set_current(value)
Set output current setpoint

get_ovp_threshold()

Get over-voltage protection threshold

set_ovp_threshold(value)
Set over-voltage protection threshold

get_ocp_threshold()

Get over-current protection threshold

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

606 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

set_device_variable(key, value)
Set the value of a settings parameter

set_ocp_threshold(value)
Set over-current protection threshold

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.HighFinesse package

Submodules

pylablib.devices.HighFinesse.wlm module

pylablib.devices.HighFinesse.wlm.muxchannel(*args, **kwargs)
Multiplex the function over its channel argument

class pylablib.devices.HighFinesse.wlm.TDeviceInfo(model, serial_number, revision_number,
compilation_number)

Bases: tuple

compilation_number

2.7. pylablib 607

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

model

revision_number

serial_number

class pylablib.devices.HighFinesse.wlm.WLM(version=None, dll_path=None, app_path=None,
autostart=True)

Bases: IDevice

Generic HighFinesse wavemeter.

Parameters

• version (int) – wavemeter version; if None, use any available version

• dll_path – path to wlmData.dll; if None, use standard locations or search based on the
version

• app_path – path to the wavemeter server application (looks like wlm_ws.exe or
wlm_ws7.exe); if None, try to autodetect, or rely on the server already running

• autostart – if True, start measurements automatically (if the wavemeter server app is
not running, it will launch with the measurements stopped).

Error = <Mock name='mock.HighFinesseError' id='140147771601936'>

open()

Open the connection to the wavemeter

close()

Close the connection to the wavemeter

is_opened()

Check if the device is connected

get_device_info()

Get the wavemeter info.

Return tuple (model, serial_number, revision_number, compilation_number).

start_measurement()

Start wavemeter measurement

stop_measurement()

Stop wavemeter measurement

is_measurement_running()

Check if the measurement is running

set_read_mode(mode)
Set value read mode, which applies to get_frequency() and get_wavelength().

Can be "latest" (always return the latest measurement result; default), or "single" (if there’s no new
measurement since the last call, the result is "noval" which, depending on the arguments, causes wait, is
returned as is, or raises an error).

608 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

get_read_mode()

Get value read mode, which applies to get_frequency() and get_wavelength().

Can be "latest" (always return the latest measurement result; default), or "single" (if there’s no new
measurement since the last call, the result is "noval" which, depending on the arguments, causes wait, is
returned as is, or raises an error).

get_channels_number(refresh=True)
Get number of channels in the wavemeter

get_default_channel()

Get the default channel (starting from 1) which is used for querying

set_default_channel(channel)
Set the default channel (starting from 1) which is used for querying

get_frequency(channel=None, error_on_invalid=True, wait=True, timeout=5.0)
Get the wavemeter readings (in Hz) on a given channel.

channel is the measurement channel (starting from 1); if None, use the default channel. If
error_on_invalid==True, raise an error if the measurement is invalid (e.g., over- or underexposure);
otherwise, the method can return "under" if the meter is underexposed or "over" is it is overexposed,
"badsig" if there is no calculable signal, "noval" if there are no values acquired yet, "nosig" if there
is no signal, or "nowlm" if there is no connection to the wavemeter. If wait==True and the result is
"noval" (e.g., if the read mode is "single" and no new value has been acquired since the last call), wait
for at most timeout until a new value appears; if the timeout has passed, use the default behavior (error
or "noval" result).

get_wavelength(channel=None, error_on_invalid=True, wait=True, timeout=5.0)
Get the wavemeter readings (in m, and in vacuum).

channel is the measurement channel (starting from 1); if None, use the default channel. If
error_on_invalid==True, raise an error if the measurement is invalid (e.g., over- or underexposure);
otherwise, the method can return "under" if the meter is underexposed or "over" is it is overexposed,
"badsig" if there is no calculable signal, "noval" if there are no values acquired yet, "nosig" if there
is no signal, or "nowlm" if there is no connection to the wavemeter. If wait==True and the result is
"noval" (e.g., if the read mode is "single" and no new value has been acquired since the last call), wait
for at most timeout until a new value appears; if the timeout has passed, use the default behavior (error
or "noval" result).

get_exposure_mode(channel=None)
Get the exposure mode ("manual" or "auto") at the given channel

set_exposure_mode(mode='auto', channel=None)
Set the exposure mode ("manual" or "auto") at the given channel

get_exposure(sensor=1, channel=None)
Get the exposure for a given channel and sensor (starting from 1)

set_exposure(exposure, sensor=1, channel=None)
Manually set the exposure for a given channel and sensor (starting from 1)

get_switcher_mode()

Get the switcher mode ("off" for manual switching or "on" for cycling mode)

set_switcher_mode(mode='on')
Set the switcher mode ("off" for manual switching or "on" for cycling mode)

2.7. pylablib 609

pylablib Documentation, Release 1.4.2

get_active_channel()

Get the current active channel

set_active_channel(channel, automode=True)
Set the current switcher channel.

Only makes sense in the manual ("off") switcher mode. If automode==True, switch to this mode auto-
matically.

is_switcher_channel_enabled(channel, automode=True)
Check whether the switcher channel enabled.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

is_switcher_channel_shown(channel, automode=True)
Check whether the switcher channel is shown in the wavemeter control application.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

enable_switcher_channel(channel, enable=True, show=None, automode=True)
Enable or disable the current switcher channel in the switch mode.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

get_pulse_mode()

Get the current pulse mode.

Can be "cw" (CW laser mode), "int" (standard single-laser internally triggered mode), "ext" (single-
or double-laser mode with external TTL trigger), or "opt" (double-laser mode with optical triggering).

set_pulse_mode(mode)
Set the current pulse mode.

Can be "cw" (CW laser mode), "int" (standard single-laser internally triggered mode), "ext" (single-
or double-laser mode with external TTL trigger), or "opt" (double-laser mode with optical triggering).

get_precision_mode()

Set the current precision mode ("fine", "wide", or "grating")

set_precision_mode(mode)
Set the current precision mode ("fine", "wide", or "grating")

get_measurement_interval()

Set measurement interval (per channel), or None if the interval mode is off

set_measurement_interval(interval=None)
Set measurement interval (per channel).

None means that the interval mode is off.

calibrate(source_type, source_frequency, channel=None)
Initialize the calibration.

source_type is the calibration source type, which can be "hene_633" (HeNe 633nm laser), "hene_1152"
(HeNe 1152nm laser), "hene_free" (free-running HeNe laser), "nel" (Ne lamp), or "other" (other
source). source_frequency is the exact source frequency (in Hz) sent through the given channel.

610 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_autocalibration_parameters()

Get up the automatic calibration parameters.

Return tuple (enable, unit, period), where enable determines if it is enabled, and unit and
period together specify the calibration period. unit can be "start" (once on the measurement start;
period is irrelevant here), "meas" (once every period frequency measurements), "min" (once every
period minutes), "hours", or "days".

setup_autocalibration(enable=True, unit=None, period=None)
Set up the automatic calibration parameters.

enable determines if it is enabled. unit and period together specify the calibration period. unit can be
"start" (once on the measurement start; period is irrelevant here), "meas" (once every period frequency
measurements), "min" (once every period minutes), "hours", or "days". Any None parameters are kept
at the present value.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

set_device_variable(key, value)
Set the value of a settings parameter

Module contents

pylablib.devices.IMAQ package

Submodules

pylablib.devices.IMAQ.IMAQ module

2.7. pylablib 611

pylablib Documentation, Release 1.4.2

pylablib.devices.IMAQ.IMAQ.list_cameras()

List all cameras available through IMAQ interface

pylablib.devices.IMAQ.IMAQ.get_cameras_number()

Get number of connected IMAQ cameras

class pylablib.devices.IMAQ.IMAQ.TDeviceInfo(serial_number, interface)
Bases: tuple

interface

serial_number

class pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber(imaq_name='img0', do_open=True, **kwargs)
Bases: IROICamera

Generic IMAQ frame grabber interface.

Compared to IMAQCamera, has more permissive initialization arguments, which simplifies its use as a base class
for expanded cameras.

Parameters

• imaq_name – interface name (can be learned by list_cameras(); usually, but not al-
ways, starts with "cam" or "img")

• do_open – if False, skip the last step of opening the device (should be opened in a
subclass)

Error = <Mock name='mock.IMAQError' id='140147842593616'>

TimeoutError = <Mock spec='str' id='140147906214224'>

open()

Open connection to the camera

close()

Close connection to the camera

reset()

Reset connection to the camera

is_opened()

Check if the device is connected

get_grabber_attribute_value(attr, default=None, kind='auto')
Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error. kind is the
attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based on the stored
list of attribute kinds).

set_grabber_attribute_value(attr, value, kind='int32')
Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based
on the stored list of attribute kinds).

612 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_all_grabber_attribute_values()

Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepre-
sented.

get_device_info()

Get camera model data.

Return tuple (serial, interface)with the board serial number and an the interface type (e.g., "1430"
for NI PCIe-1430)

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

2.7. pylablib 613

pylablib Documentation, Release 1.4.2

configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None,
reset_acquisition=True)

Configure input trigger.

Parameters

• trig_type (str) – trigger source type; can be "ext", "rtsi", "iso_in", or
"software"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_action (str) – trigger action; can be "none" (disable trigger), "capture"
(start capturing), "stop" (stop capturing), "buffer" (capture a single frame), or
"bufflist" (capture the whole buffer list once)

• timeout (float) – timeout in seconds; None means not timeout.

• reset_acquisition (bool) – if the input triggers configuration has been changed,
acquisition needs to be restart; if True, perform it automatically

send_software_trigger()

Send software trigger signal

configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')
Configure trigger output.

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", or
"iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_drive (str) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted
when acquisition is done), "unasserted" (force unasserted level), "asserted"
(force asserted level), "hsync" (asserted on start of a single line start), "vsync" (as-
serted on start of a frame scan), "frame_start" (asserted when a single frame is
captured), or "frame_done" (asserted when a single frame is done)

read_trigger(trig_type, trig_line=0, trig_pol='high')
Read current value of a trigger (input or output).

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", "iso_in",
or "iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

clear_all_triggers(reset_acquisition=True)
Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if
reset_acquisition==True, perform it automatically.

614 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

setup_serial_params(write_term='', datatype='bytes')
Setup default serial communication parameters.

Parameters

• write_term – default terminator character to be added to the sent messages

• datatype – type of the result of read commands; can be "bytes" (return raw bytes),
or "str" (convert into UTF-8 string)

get_serial_params()

Return serial parameters as a tuple (write_term, datatype)

serial_write(msg, timeout=3.0, term=None)
Write message into CameraLink serial port.

Parameters

• timeout – operation timeout (in seconds)

• term – additional write terminator character to add to the message; if None, use the
value set up using setup_serial_params() (by default, no additional terminator)

serial_read(n, timeout=3.0, datatype=None)
Read specified number of bytes from CameraLink serial port.

Parameters

• n – number of bytes to read

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

serial_readline(timeout=3.0, datatype=None, maxn=1024)
Read bytes from CameraLink serial port until the termination character (defined in camera file) is encoun-
tered.

Parameters

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

• maxn – maximal number of bytes to read

serial_flush()

Flush CameraLink serial port

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

clear_acquisition()

Clear all acquisition details and free all buffers

2.7. pylablib 615

pylablib Documentation, Release 1.4.2

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

616 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

2.7. pylablib 617

pylablib Documentation, Release 1.4.2

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),

618 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.IMAQ.IMAQ.IMAQCamera(name='img0')
Bases: IMAQFrameGrabber

Generic IMAQ camera interface.

Parameters
name – interface name (can be learned by list_cameras(); usually, but not always, starts
with "cam" or "img")

Error = <Mock name='mock.IMAQError' id='140147842593616'>

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError = <Mock spec='str' id='140147906214224'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

2.7. pylablib 619

pylablib Documentation, Release 1.4.2

clear_acquisition()

Clear all acquisition details and free all buffers

clear_all_triggers(reset_acquisition=True)
Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if
reset_acquisition==True, perform it automatically.

close()

Close connection to the camera

configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None,
reset_acquisition=True)

Configure input trigger.

Parameters

• trig_type (str) – trigger source type; can be "ext", "rtsi", "iso_in", or
"software"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_action (str) – trigger action; can be "none" (disable trigger), "capture"
(start capturing), "stop" (stop capturing), "buffer" (capture a single frame), or
"bufflist" (capture the whole buffer list once)

• timeout (float) – timeout in seconds; None means not timeout.

• reset_acquisition (bool) – if the input triggers configuration has been changed,
acquisition needs to be restart; if True, perform it automatically

configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')
Configure trigger output.

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", or
"iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_drive (str) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted
when acquisition is done), "unasserted" (force unasserted level), "asserted"
(force asserted level), "hsync" (asserted on start of a single line start), "vsync" (as-
serted on start of a frame scan), "frame_start" (asserted when a single frame is
captured), or "frame_done" (asserted when a single frame is done)

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_grabber_attribute_values()

Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepre-
sented.

620 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (serial, interface)with the board serial number and an the interface type (e.g., "1430"
for NI PCIe-1430)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 621

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_attribute_value(attr, default=None, kind='auto')
Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error. kind is the
attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based on the stored
list of attribute kinds).

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_serial_params()

Return serial parameters as a tuple (write_term, datatype)

622 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open connection to the camera

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

2.7. pylablib 623

pylablib Documentation, Release 1.4.2

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_trigger(trig_type, trig_line=0, trig_pol='high')
Read current value of a trigger (input or output).

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", "iso_in",
or "iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

reset()

Reset connection to the camera

send_software_trigger()

Send software trigger signal

serial_flush()

Flush CameraLink serial port

serial_read(n, timeout=3.0, datatype=None)
Read specified number of bytes from CameraLink serial port.

Parameters

• n – number of bytes to read

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

serial_readline(timeout=3.0, datatype=None, maxn=1024)
Read bytes from CameraLink serial port until the termination character (defined in camera file) is encoun-
tered.

Parameters

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

• maxn – maximal number of bytes to read

624 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

serial_write(msg, timeout=3.0, term=None)
Write message into CameraLink serial port.

Parameters

• timeout – operation timeout (in seconds)

• term – additional write terminator character to add to the message; if None, use the
value set up using setup_serial_params() (by default, no additional terminator)

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_grabber_attribute_value(attr, value, kind='int32')
Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based
on the stored list of attribute kinds).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

2.7. pylablib 625

pylablib Documentation, Release 1.4.2

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

setup_serial_params(write_term='', datatype='bytes')
Setup default serial communication parameters.

Parameters

• write_term – default terminator character to be added to the sent messages

• datatype – type of the result of read commands; can be "bytes" (return raw bytes),
or "str" (convert into UTF-8 string)

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

626 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.devices.IMAQ.niimaq_attrtypes module

Module contents

pylablib.devices.IMAQdx package

Submodules

pylablib.devices.IMAQdx.IMAQdx module

class pylablib.devices.IMAQdx.IMAQdx.TCameraInfo(name, type, version, flags, serial_number, bus,
vendor, model, camera_file, attr_url)

Bases: tuple

attr_url

bus

camera_file

flags

model

name

serial_number

type

vendor

version

pylablib.devices.IMAQdx.IMAQdx.list_cameras(connected=True, desc=True)
List all cameras available through IMAQdx interface

If desc==True, return complete camera descriptions; otherwise, simply return the names.

pylablib.devices.IMAQdx.IMAQdx.get_cameras_number()

Get number of connected dx cameras

class pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute(sid, name)
Bases: object

Object representing an IMAQdx camera parameter.

Allows to query and set values and get additional information. Usually created automatically by an
IMAQdxCamera instance, but could be created manually.

Parameters

• sid – camera session ID

• name – attribute text name

name

attribute name

2.7. pylablib 627

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

kind

attribute kind; can be "u32", "i64", "f64", "str", "enum", "bool", "command", or "blob"

display_name

attribute display name (short description name)

tooltip

longer attribute description

description

full attribute description (usually, same as tooltip)

units

attribute units (if applicable)

visibility

attribute visibility ("simple", "intermediate", or "advanced")

readable

whether attribute is readable

Type
bool

writable

whether attribute is writable

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

inc

minimal attribute increment value (if applicable)

Type
float or int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

628 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max, inc)

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

class pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo(vendor, model, serial_number, bus_type)
Bases: tuple

bus_type

model

serial_number

vendor

class pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera(name='cam0', mode='controller',
visibility='advanced')

Bases: IROICamera, IAttributeCamera

Generic IMAQdx camera interface.

Parameters

• name – interface name (can be learned by list_cameras(); usually, but not always,
starts with "cam")

• mode – connection mode; can be "controller" (full control) or "listener" (only
reading)

• visibility – attribute visibility when listing attributes; can be "simple",
"intermediate" or "advanced" (higher mode exposes more attributes).

Error = <Mock name='mock.IMAQdxError' id='140147769483408'>

TimeoutError = <Mock spec='str' id='140147769487696'>

open()

Open connection to the camera

close()

Close connection to the camera

reset()

Reset connection to the camera

is_opened()

Check if the device is connected

2.7. pylablib 629

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

post_open()

Additional setup after camera opening

get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. If enum_as_str==True, return enum-style
values as strings; otherwise, return corresponding integer values.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)
Get values of all attributes with the given root

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

get_device_info()

Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

class CallbackManager

Bases: object

get_callback_ptr()

630 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

register(sid)

reset()

start()

stop()

get_nbuff()

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acqui-
sition). (note that IMAQdxCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

refresh_acquisition(delay=0.005)
Stop and restart the acquisition, waiting delay seconds in between

enable_raw_readout(enable='rows', bytes_per_pixel=None, bytes_per_image=None)
Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format. Can be "frame" (return the whole frame as
a 1D "u1" numpy array), "rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default). In addition, for
cameras which incorrectly implement "PayloadSize" parameter, one can explicitly specify the number
of bytes per pixel (possibly fractional) which will be used to calculate the total byte size of the frame, or the
total number of bytes per image (if specified, takes priority over bytes_per_pixel). Both bytes_per_pixel
and bytes_per_image only apply if enable is set to "frame" or "rows".

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

2.7. pylablib 631

pylablib Documentation, Release 1.4.2

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

632 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

2.7. pylablib 633

pylablib Documentation, Release 1.4.2

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

634 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera(name='cam0', mode='controller',
visibility='advanced',
small_packet=False)

Bases: IMAQdxCamera

LAN-controlled IMAQdx camera.

Compared to the standard camera, has an option of automatically switching to a smaller TCP/IP packet size (can
be useful if the PC network adapter can’t handle jumbo packets).

Parameters

• name – interface name (can be learned by list_cameras(); usually, but not always,
starts with "cam")

• mode – connection mode; can be "controller" (full control) or "listener" (only
reading)

• visibility – default attribute visibility when listing attributes; can be "simple",
"intermediate" or "advanced" (higher mode exposes more attributes).

• small_packet – if True, automatically set small packet size (1500 bytes).

post_open()

Additional setup after camera opening

class CallbackManager

Bases: object

get_callback_ptr()

get_nbuff()

register(sid)

reset()

start()

2.7. pylablib 635

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

stop()

Error = <Mock name='mock.IMAQdxError' id='140147769483408'>

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError = <Mock spec='str' id='140147769487696'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close connection to the camera

enable_raw_readout(enable='rows', bytes_per_pixel=None, bytes_per_image=None)
Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format. Can be "frame" (return the whole frame as
a 1D "u1" numpy array), "rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default). In addition, for
cameras which incorrectly implement "PayloadSize" parameter, one can explicitly specify the number
of bytes per pixel (possibly fractional) which will be used to calculate the total byte size of the frame, or the
total number of bytes per image (if specified, takes priority over bytes_per_pixel). Both bytes_per_pixel
and bytes_per_image only apply if enable is set to "frame" or "rows".

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)
Get values of all attributes with the given root

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. If enum_as_str==True, return enum-style
values as strings; otherwise, return corresponding integer values.

636 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

2.7. pylablib 637

pylablib Documentation, Release 1.4.2

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open connection to the camera

638 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

refresh_acquisition(delay=0.005)
Stop and restart the acquisition, waiting delay seconds in between

reset()

Reset connection to the camera

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

2.7. pylablib 639

pylablib Documentation, Release 1.4.2

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acqui-
sition). (note that IMAQdxCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

snap(timeout=5.0, return_info=False)
Snap a single frame

640 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

Module contents

pylablib.devices.KJL package

Submodules

pylablib.devices.KJL.base module

exception pylablib.devices.KJL.base.KJLError

Bases: DeviceError

Generic KJL device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.KJL.base.KJLBackendError(exc)
Bases: KJLError, DeviceBackendError

Generic KJL backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.7. pylablib 641

pylablib Documentation, Release 1.4.2

class pylablib.devices.KJL.base.TKJL300DeviceInfo(swver)
Bases: tuple

swver

class pylablib.devices.KJL.base.KJL300(conn, addr=1)
Bases: ICommBackendWrapper

KJL300 series pressure gauge.

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• addr – RS485 address (required both for RS-485 and for RS-232 communication; factory
default is 1)

Error

alias of KJLError

comm(msg)
Send a command to the device

query(msg)

get_device_info()

Get device info (a tuple (swver))

reset(confirm_addr=False)
Reset the controller.

If confirm_addr==True, set current RS485 address again (required for resetting after some commands).

get_pressure()

Get current pressure in Pa

get_relay_setpoints(relay=1)
Get relay setpoints (in Pa).

relay is the relay index (either 1 or 2). Return tuple (on, off) for on-below and off-above pressures (on
is always smaller than off)

set_relay_setpoints(relay=1, on=None, off=None, reset=True)
Set relay setpoints (in Pa).

relay is the relay index (either 1 or 2). on and off are on-below and off-above pressures (on is always
smaller than off). If reset==True, reset the device after changing the setpoints (required to take effect).
None values are left unchanged.

set_zero(pressure=0)
Set vacuum calibration point (in Pa)

set_span(pressure=100000.0)
Set atmosphere calibration point (in Pa)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

642 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Keithley package

Submodules

pylablib.devices.Keithley.base module

2.7. pylablib 643

pylablib Documentation, Release 1.4.2

exception pylablib.devices.Keithley.base.GenericKeithleyError

Bases: DeviceError

Generic Keithley error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Keithley.base.GenericKeithleyBackendError(exc)
Bases: GenericKeithleyError, DeviceBackendError

Keithley backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Keithley.multimeter module

class pylablib.devices.Keithley.multimeter.TGenericFunctionParameters(rng, resolution, autorng)
Bases: tuple

autorng

resolution

rng

class pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters(rng, aperture)
Bases: tuple

aperture

rng

class pylablib.devices.Keithley.multimeter.TConfigurationParameters(function, rng, resolution)
Bases: tuple

function

resolution

rng

class pylablib.devices.Keithley.multimeter.TAveragingParameters(mode, count, enabled)
Bases: tuple

count

644 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

enabled

mode

class pylablib.devices.Keithley.multimeter.Keithley2110(addr)
Bases: SCPIDevice

Keithley 2110 bench-top multimeter.

Parameters
addr – device address (usually a VISA name).

Error

alias of GenericKeithleyError

ReraiseError

alias of GenericKeithleyBackendError

get_function(channel='primary')
Get measurement function for the given measurement channel ("primary" or "secondary", or "all"
for both channels)

set_function(function, channel='primary', reset_secondary=True)
Set measurement function for the given measurement channel ("primary", "secondary", or "all" for
both channels).

If reset_secondary==True and the primary function is changed, set the secondary function to "none"
to avoid conflicts.

get_vcr_function_parameters(function=None)
Get parameters for the given voltage, current or resistance measurement function.

Supported functions are "volt_dc", "volt_ac", "curr_dc", "curr_ac", "res", and "fres". Re-
turn tuple (rng, resolution, autorng) with, correspondingly, measurement range, resolution, and
whether autorange is enabled.

get_cap_function_parameters(function=None)
Get parameters for the given capacitance measurement function.

The only supported function is "cap". Return tuple (rng, autorng) with, correspondingly, measure-
ment range and whether autorange is enabled.

get_freq_function_parameters(function=None)
Set parameters for the given frequency or period measurement function.

Supported functions are "freq_volt", "freq_curr", "per_volt", "per_curr". Return tuple (rng,
aperture) with, correspondingly, measurement range, and the averaging aperture.

get_function_parameters(function=None)
Get function parameters for any supported function.

Result depends on the function kind. See get_vcr_function_parameters(),
get_cap_function_parameters() and get_freq_function_parameters() for details.

set_vcr_function_parameters(function=None, rng=None, resolution=None, autorng=None)
Set parameters for the given voltage, current or resistance measurement function.

Supported functions are "volt_dc", "volt_ac", "curr_dc", "curr_ac", "res", and "fres". rng,
resolution and autorng are correspondingly, measurement range, resolution, and whether autorange is
enabled. rng and resolution can also have values "min", "max" or "def" for, correspondingly, minimal
possible, maximal possible, and default value.

2.7. pylablib 645

pylablib Documentation, Release 1.4.2

set_cap_function_parameters(function=None, rng=None, autorng=None)
Set parameters for the given capacitance measurement function.

The only supported function is "cap". rng and autorng are correspondingly, measurement range and
whether autorange is enabled. rng can also have values "min", "max" or "def" for, correspondingly,
minimal possible, maximal possible, and default value.

set_freq_function_parameters(function=None, rng=None, aperture=None)
Set parameters for the given frequency or period measurement function.

Supported functions are "freq_volt", "freq_curr", "per_volt", "per_curr". rng and aperture are
correspondingly, measurement range and the averaging aperture. rng and aperture can also have values
"min", "max" or "def" for, correspondingly, minimal possible, maximal possible, and default value.

set_function_parameters(function=None, **kwargs)
Set function parameters for any supported function.

Arguments depend on the function kind. See set_vcr_function_parameters(),
set_cap_function_parameters() and set_freq_function_parameters() for details.

get_configuration()

Get current measurement configuration on the primary channel.

Return tuple (function, rng, resolution) with, correspondingly, measurement function, measure-
ment range and resolution.

set_configuration(function=None, rng=None, resolution=None)
Set current measurement configuration on the primary channel.

function, rng and resolution are, correspondingly, measurement function, measurement range and resolu-
tion.

get_reading(channel='primary')
Initiate and return the reading of the given measurement channel ("primary", "secondary", or "all"
for both channels)

get_averaging_parameters()

Get result averaging parameters.

Return tuple (mode, count, enabled) with, correspondingly, averaging mode ("moving" or
"repeat"), number of counts to average, and whether it is enabled.

setup_averaging(mode=None, count=None, enabled=None)
Set result averaging parameters.

mode, count and enabled are , correspondingly, averaging mode ("moving" or "repeat"), number of
counts to average, and whether it is enabled.

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

646 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

2.7. pylablib 647

pylablib Documentation, Release 1.4.2

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

648 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

Module contents

pylablib.devices.Lakeshore package

Submodules

pylablib.devices.Lakeshore.base module

exception pylablib.devices.Lakeshore.base.LakeshoreError

Bases: DeviceError

Generic Lakeshore devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.7. pylablib 649

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

exception pylablib.devices.Lakeshore.base.LakeshoreBackendError(exc)
Bases: LakeshoreError, DeviceBackendError

Generic Lakeshore backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings(bipolar, mode, channel,
source, high_value,
low_value, man_value)

Bases: tuple

bipolar

channel

high_value

low_value

man_value

mode

source

class pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings(enabled, points, window)
Bases: tuple

enabled

points

window

class pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader(name, serial, fmt, limit, coeff)
Bases: tuple

coeff

fmt

limit

name

serial

class pylablib.devices.Lakeshore.base.Lakeshore218(conn)
Bases: SCPIDevice

Lakeshore 218 temperature controller.

The channels are enumerated from 1 to 8 and are split into 2 groups: "A" for 1-4 and "B" for 5-8.

650 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of LakeshoreError

ReraiseError

alias of LakeshoreBackendError

is_enabled(channel)
Check if a given channel is enabled

set_enabled(channel, enabled=True)
Enable or disable a given channel

get_sensor_type(group)
Get sensor type for a given group ("A" for sensors 1-4 or "B" for sensors 5-8).

For types, see INTYPE command description in the Lakeshore 218 programming manual.

set_sensor_type(group, sensor_type)
Set sensor type for a given group ("A" for sensors 1-4 or "B" for sensors 5-8).

For types, see INTYPE command description in the Lakeshore 218 programming manual.

get_sensor_curve_index(channel)
Get sensor curve index for a given channel (1 to 8).

For curve descriptions, see INCRV command description in the Lakeshore 218 programming manual.

set_sensor_curve_index(channel, index)
Get sensor curve index for a given channel (1 to 8).

For curve descriptions, see INCRV command description in the Lakeshore 218 programming manual.

get_curve_header(index)
Get header of a given curve (1-9 or 21-28).

Return tuple (name, serial, fmt, limit, coeff). For values descriptions, see CRVHDR command
description in the Lakeshore 218 programming manual.

set_curve_header(index, name=None, serial=None, fmt=None, limit=None, coeff=None)
Set header of a given user curve (21-28).

For values descriptions, see CRVHDR command description in the Lakeshore 218 programming manual.

get_curve(index, trim_zeros=True)
Get values of a given curve (1-9 or 21-28).

Return 2-column numpy array with up to 200 points, where the first column is sensor reading, and the
second is temperature; for associated sensor units, see get_curve_header(). If trim_zeros==True,
trim the trailing zero-valued points. Note, that it takes about 10 seconds to complete.

set_curve(index, curve)
Set values of a given user curve (21-28).

curve is a 2-column numpy array with up to 200 points, where the first column is sensor reading, and the
second is temperature; for associated sensor units, see get_curve_header(). Note, that it takes about
20 seconds to complete.

2.7. pylablib 651

pylablib Documentation, Release 1.4.2

get_temperature(channel)
Get readings (in Kelvin) on a given channel (1 to 8)

get_all_temperatures()

Get readings (in Kelvin) on all channels

get_sensor_reading(channel)
Get readings (in sensor units) on a given channel (1 to 8)

get_all_sensor_readings()

Get readings (in sensor units) on all channels

get_analog_output_settings(output)
Get analog output settings for a given output (1 or 2).

For parameters, see setup_analog_output() and ANALOG command description in the Lakeshore 218
programming manual.

setup_analog_output(output, bipolar=None, mode=None, channel=None, source=None,
high_value=None, low_value=None, man_value=None)

Setup analog output settings for a given output (1 or 2).

For parameters, see ANALOG command description in the Lakeshore 218 programming manual. Value of
None means keeping the current parameter value.

set_analog_output_value(output, value, bipolar=False, enabled=True)
Set manual analog output value.

A simplified version of setup_analog_output().

get_analog_output(output)
Get value (in percents of the total range) at a given output (1 or 2)

get_filter_settings(channel)
Get input filter settings for a given channel (1 to 8).

For parameters, see setup_filter() and FILTER command description in the Lakeshore 218 program-
ming manual.

setup_filter(channel, enabled=None, points=None, window=None)
Setup input filter settings for a given channel (1 to 8).

For parameters, see FILTER command description in the Lakeshore 218 programming manual. Value of
None means keeping the current parameter value.

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

652 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

2.7. pylablib 653

pylablib Documentation, Release 1.4.2

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

654 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings(exc_mode, exc_range,
res_range, autorange, enable)

Bases: tuple

autorange

enable

exc_mode

exc_range

res_range

class pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings(bipolar, mode, channel,
source, high_value,
low_value, man_value)

Bases: tuple

bipolar

channel

high_value

low_value

2.7. pylablib 655

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

man_value

mode

source

class pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings(enabled, settle_time, window)
Bases: tuple

enabled

settle_time

window

class pylablib.devices.Lakeshore.base.Lakeshore370(conn)
Bases: SCPIDevice

Lakeshore 370 resistance bridge / temperature controller.

All channels are enumerated from 0.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of LakeshoreError

ReraiseError

alias of LakeshoreBackendError

get_temperature(channel)
Get temperature readings (in K) on a given channel

get_resistance(channel)
Get resistance readings (in Ohm) on a given channel

get_sensor_power(channel)
Get dissipated power (in W) on a given channel

select_channel(channel)
Select measurement channel

get_channel()

Get current measurement channel

get_channel_range_settings(channel)
Setup the current measurement channel range parameters.

For parameters, see setup_channel_range() and RDGRNG command description in the Lakeshore 370
programming manual.

setup_channel_range(channel=None, exc_mode='v', exc_range=1, res_range=22, autorange=True,
enable=True)

Setup the measurement channel range (all channels by default).

exc_mode is the excitation mode ("i" or "v"), exc_range is the excitation range (1 is smallest), res_range
is the resistance range (1 is smallest). For range descriptions, see Lakeshore 370 programming manual.

656 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_analog_output_settings(output)
Get analog output settings for a given output (1 or 2).

For parameters, see setup_analog_output() and ANALOG command description in the Lakeshore 370
programming manual.

setup_analog_output(output, bipolar=None, mode=None, channel=None, source=None,
high_value=None, low_value=None, man_value=None)

Setup analog output settings for a given output (1 or 2).

For parameters, see ANALOG command description in the Lakeshore 370 programming manual. Value of
None means keeping the current parameter value.

set_analog_output_value(output, value, bipolar=False, enabled=True)
Set manual analog output value.

A simplified version of setup_analog_output().

get_analog_output(output)
Get value (in percents of the total range) at a given output (1 or 2)

get_filter_settings(channel)
Get input filter settings for a given channel (1 to 16).

For parameters, see setup_filter() and FILTER command description in the Lakeshore 370 program-
ming manual.

setup_filter(channel, enabled=None, settle_time=None, window=None)
Setup input filter settings for a given channel (1 to 16).

For parameters, see FILTER command description in the Lakeshore 370 programming manual. Value of
None means keeping the current parameter value.

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 657

pylablib Documentation, Release 1.4.2

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

658 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

2.7. pylablib 659

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

Module contents

pylablib.devices.LaserQuantum package

Submodules

pylablib.devices.LaserQuantum.base module

exception pylablib.devices.LaserQuantum.base.LaserQuantumError

Bases: DeviceError

Generic Laser Quantum devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.LaserQuantum.base.LaserQuantumBackendError(exc)
Bases: LaserQuantumError, DeviceBackendError

Generic Laser Quantum backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

660 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

class pylablib.devices.LaserQuantum.base.TDeviceInfo(serial, software_version, cal_date)
Bases: tuple

cal_date

serial

software_version

class pylablib.devices.LaserQuantum.base.TWorkHours(psu, laser_enabled, laser_threshold)
Bases: tuple

laser_enabled

laser_threshold

psu

class pylablib.devices.LaserQuantum.base.TTemperatures(head, psu)
Bases: tuple

head

psu

class pylablib.devices.LaserQuantum.base.Finesse(conn)
Bases: ICommBackendWrapper

Laser Quantum Finesse pump laser.

Parameters
conn – serial connection parameters (usually port)

Error

alias of LaserQuantumError

query(comm, reply_lines=1)
Send a query to the device and read the reply.

reply_lines specify the number of lines to read as a reply (almost all queries have only one line).

get_device_info()

Get device information (serial, software_version, cal_date)

get_work_hours()

Get the work hours (PSU run time, laser run time, laser above threshold time)

get_temperatures()

Get device status, head temperature, and PSU temperature

get_output_status()

Get output status.

Can be "enabled" or "disabled".

get_interlock_status()

Get manual interlock status

get_shutter_status()

Get the shutter status

2.7. pylablib 661

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

is_shutter_opened()

Check if shutter is opened

set_shutter(opened=True)
Open or close the shutter

is_enabled()

Check if the output is enabled

enable(enabled=True)
Turn the output on or off

get_output_power()

Get the output power (in Watts)

get_output_setpoint()

Get the output setpoint power (in Watts)

set_output_power(level)
Set the output power setpoint (in Watts)

get_current()

Get the laser drive current (in %)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

662 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Leybold package

Submodules

pylablib.devices.Leybold.base module

exception pylablib.devices.Leybold.base.LeyboldError

Bases: DeviceError

Generic Leybold device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Leybold.base.LeyboldBackendError(exc)
Bases: LeyboldError, DeviceBackendError

Generic Leybold backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Leybold.base.TDeviceInfo(sensor, page, swver)
Bases: tuple

page

sensor

2.7. pylablib 663

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

swver

class pylablib.devices.Leybold.base.TUpdateValue(value, display_units, status, error, device_info)
Bases: tuple

device_info

display_units

error

status

value

class pylablib.devices.Leybold.base.GenericITR(conn)
Bases: ICommBackendWrapper

Generic Leybold ITR pressure gauge.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of LeyboldError

get_update(refresh=True)
Get device state update.

Return tuple (value, display_units, status, error, device_info), where value is the pres-
sure in Pa, display_units are display units ("pa", "mbar", or "torr"), status is the devices status
(e.g., emission status), error is the device error ("ok" if no errors), and device_info is a tuple (sensor,
page, swver) with the sensor kind ID, data page, and software version.

If refresh==True, get the latest update value; otherwise, get the latest read value.

send_command(byte1, byte2, byte3)
Send command to the device.

Arguments represent the three command bytes. Values of these bytes for different commands are described
in the manual.

get_device_info()

Get device info.

Return tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

get_units()

Get device readout units ("mbar", "pa", or "torr")

get_pressure(display_units=False)
Get pressure.

If display_units==False, return result in Pa; otherwise, use display units obtained using
get_units().

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

664 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.Leybold.base.TITR90Status(emission, atm_adj)
Bases: tuple

atm_adj

emission

class pylablib.devices.Leybold.base.ITR90(conn)
Bases: GenericITR

Leybold ITR90 pressure gauge.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

2.7. pylablib 665

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

set_units(units, store=True)
Get device readout units ("mbar", "pa", or "torr").

If store==True, store the value in the non-volatile power-independent memory.

start_degas()

Start degas (turns off automatically after 3 minutes)

stop_degas()

Stop degas

Error

alias of LeyboldError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_info()

Get device info.

Return tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_pressure(display_units=False)
Get pressure.

If display_units==False, return result in Pa; otherwise, use display units obtained using
get_units().

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_units()

Get device readout units ("mbar", "pa", or "torr")

666 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_update(refresh=True)
Get device state update.

Return tuple (value, display_units, status, error, device_info), where value is the pres-
sure in Pa, display_units are display units ("pa", "mbar", or "torr"), status is the devices status
(e.g., emission status), error is the device error ("ok" if no errors), and device_info is a tuple (sensor,
page, swver) with the sensor kind ID, data page, and software version.

If refresh==True, get the latest update value; otherwise, get the latest read value.

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

send_command(byte1, byte2, byte3)
Send command to the device.

Arguments represent the three command bytes. Values of these bytes for different commands are described
in the manual.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.LighthousePhotonics package

Submodules

pylablib.devices.LighthousePhotonics.base module

exception pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError

Bases: DeviceError

Generic Lighthouse Photonics devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.7. pylablib 667

pylablib Documentation, Release 1.4.2

exception pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError(exc)
Bases: LighthousePhotonicsError, DeviceBackendError

Generic Lighthouse Photonics backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.LighthousePhotonics.base.TDeviceInfo(product, version, serial,
configuration)

Bases: tuple

configuration

product

serial

version

class pylablib.devices.LighthousePhotonics.base.TWorkHours(controller, laser)
Bases: tuple

controller

laser

class pylablib.devices.LighthousePhotonics.base.SproutG(conn)
Bases: ICommBackendWrapper

Lighthouse Photonics Sprout G laser.

Parameters
conn – serial connection parameters (usually port)

Error

alias of LighthousePhotonicsError

query(comm, allowed_replies=('0',))
Send a query to the device and parse the reply

get_device_info()

Get device information (product name, product version, serial number, configuration)

get_work_hours()

Return device operation hours (controller on) and run hours (laser on)

get_warning_status()

Get device warnings

get_interlock_status()

Get manual interlock status

get_shutter_status()

Get manual shutter status ("open" or "close")

668 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_output_mode()

Get output mode.

Can be "on", "off", "idle" (power standby mode), "calibrate", "interlock" (manual interlock is
off), "warmup" (warmup mode), or "calibration" (calibration mode).

set_output_mode(mode='on')
Set output mode.

mode can be "on", "off", "idle" (power standby mode), or "calibrate" (calibration mode).

is_enabled()

Check if the output is on (idle or warmup don’t count as on)

enable(enabled=True)
Turn the output on or off

get_output_power()

Set the actual output power (in Watts)

get_output_setpoint()

Get the output setpoint power (in Watts)

set_output_power(level)
Get the output power setpoint (in Watts)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

2.7. pylablib 669

pylablib Documentation, Release 1.4.2

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Lumel package

Submodules

pylablib.devices.Lumel.base module

class pylablib.devices.Lumel.base.TDeviceInfo(model)
Bases: tuple

model

class pylablib.devices.Lumel.base.LumelRE72Controller(conn, daddr=1)
Bases: GenericModbusRTUDevice

Lumel RE72 temperature controller.

Parameters

• conn – serial connection parameters for RS485 adapter (usually port, a tuple containing
port and baudrate, or a tuple with full specification such as ("COM1", 9600, 8, 'N',
1))

• daddr – default device Modbus address

get_device_info()

Return device info as a tuple (model)

get_reg(address, kind='auto')
Get value of a register at the given address.

kind is a register kind and can be "int" (2-byte signed integer), "uint" (2-byte unsigned integer),
"float" (4-byte float), or "auto" (either signed integer or float depending on the address).

set_reg(address, value)
Set value of an integer register at the given address

get_measurementf()

Return measurement value as a floating point number.

The result is returned in the current display units.

670 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_setpointf(setpoint=None)
Get setpoint value as a floating point number.

The result is returned in the current display units. setpoint specifies the setpoint kind and can be None
(current), 1, or 2.

get_outputf(output=1)
Get output value in percents.

output specifies the output channel and can be 1 or 2.

get_measurementi()

Return measurement value as an integer number

The result is returned in the current display units. For temperature units (C and F) this value is degrees
multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point
position.

get_setpointi(setpoint=None)
Get setpoint value as an integer point number.

The result is returned in the current display units. For temperature units (C and F) this value is degrees
multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point
position. setpoint specifies the setpoint kind and can be None (current), or an integer from 1 to 4.

set_setpointi(value, setpoint=None)
Get setpoint value as an integer point number.

The result is returned in the current display units. For temperature units (C and F) this value is degrees
multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point
position. setpoint specifies the setpoint kind and can be None (current), or an integer from 1 to 4.

Error

alias of ModbusError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 671

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

mb_get_default_address()

Get device address used by default in Modbus methods

mb_get_device_id(daddr=None)
Get Modbus device ID (function 17)

mb_read_coils(address, quantity=1, daddr=None)
Read Modbus one-bit discrete coils with the given starting address and quantity

mb_read_discrete_inputs(address, quantity, daddr=None)
Read Modbus one-bit discrete inputs with the given starting address and quantity

mb_read_holding_registers(address, quantity, daddr=None)
Read Modbus two-byte holding registers with the given starting address and quantity

mb_read_input_registers(address, quantity, daddr=None)
Read Modbus two-byte input registers with the given starting address and quantity

mb_scan_devices(daddrs='all', timeout=0.1, func=1, payload=b'')
Scan for devices on the bus by sending a specified command and waiting for the reply.

daddrs is a list of addresses to check ("all" means all addresses from 1 to 247 inclusive) timeout is the
timeout to wait for each device reply. func and payload specify the message to send (by default, ‘read
coil’ command with no arguments, which should always return and error) Since the addresses are polled
consecutively, this function can take a long time (~25s for the default settings).

mb_set_default_address(daddr)
Set device address used by default in Modbus methods

mb_using_address(daddr)
Context manager for temporary using a different default device address

mb_write_multiple_coils(address, value, quantity=None, daddr=None)
Write multiple Modbus one-bit discrete coils with the given starting address and quantity.

value is a bytes object with the bit values listed LSB first.

mb_write_multiple_holding_registers(address, value, daddr=None)
Write a multiple Modbus two-byte holding registers at the given address.

value is a bytes object with the values listed LSB first.

672 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

mb_write_single_coil(address, value, daddr=None)
Write a single Modbus one-bit discrete coil at the given address

mb_write_single_holding_register(address, value, daddr=None)
Write a single Modbus two-byte holding register at the given address

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.M2 package

Submodules

pylablib.devices.M2.base module

exception pylablib.devices.M2.base.M2Error

Bases: DeviceError

Generic M2 error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.M2.base.M2ParseError(*args, code=None)
Bases: M2Error

M2 parse error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.M2.base.M2CommunicationError(exc)
Bases: M2Error, DeviceBackendError

M2 network communication error

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 673

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.M2.base.ICEBlocDevice(addr, port, timeout=5.0, start_link=True)
Bases: IDevice

Generic M2 Ice Bloc device.

Parameters

• addr (str) – IP address of the Ice Bloc device.

• port (int) – port of the Ice Bloc device.

• timeout (float) – default timeout of synchronous operations.

• start_link (bool) – if True, initialize device link on creation.

Error

alias of M2Error

ReraiseError

alias of M2CommunicationError

BackendError

alias of OSError

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

set_timeout(timeout)
Set timeout for connecting or sending/receiving

flush()

Flush read buffer

noreply(exhaust_when_done=False)
Context manager within which the code switches to the no-reply mode, where it does not wait for a reply
to certain commands (usually element setting commands). This allows for faster command issuing, but ig-
nores possible errors returned by the commands. If exhaust_when_done==True, receive all sent replies
upon exiting the context; otherwise, receive them the next time a communication with the device is done.

query(op, params, reply_op='auto', report=False, allow_noreply=False)
Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply"). If
report==True, request completion report (does not apply to all operation). If allow_noreply==True,
allow skipping the reply, which allows for faster consecutive command issuing; this only works if the no-
reply mode is also activated using noreply(). Return tuple (command, args) with the reply command
name and the corresponding arguments (in no-reply mode return (None, None)).

674 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

update_reports(timeout=0.0, ignore_replies=None, max_replies=None)
Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list
of replies which do not raise an error. If max_replies is supplied, it is the maximal number of replies to
read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

get_last_report(op)
Get the latest report for the given operation

check_report(op)
Check and return the latest report for the given operation

wait_for_report(op, error_msg=None, timeout=None)
Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

start_link()

Initialize device link (called automatically on creation)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

set_device_variable(key, value)
Set the value of a settings parameter

2.7. pylablib 675

pylablib Documentation, Release 1.4.2

pylablib.devices.M2.emm module

class pylablib.devices.M2.emm.EMM(addr, port, timeout=5.0, start_link=True)
Bases: ICEBlocDevice

M2 EMM Ice Bloc device.

Parameters

• addr (str) – IP address of the Ice Bloc device.

• port (int) – port of the Ice Bloc device.

• timeout (float) – default timeout of synchronous operations.

• start_link (bool) – if True, initialize device link on creation.

get_laser_status()

Get the device system status

fine_tune_wavelength(wavelength, beam='visible', sync=True, timeout=None)
Fine-tune the wavelength.

If sync==True, wait until the operation is complete (might take from several seconds up to several min-
utes).

check_fine_tuning_report()

Check wavelength fine-tuning report

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

wait_for_fine_tuning(timeout=None)
Wait until wavelength fine-tuning is complete

is_fine_tuning()

check if fine tuning is in progress

get_fine_tuning_status()

Get fine-tuning status.

Return either "idle" (no tuning or locking) or "active" (tuning in progress).

get_fine_wavelength()

Get fine-tuned wavelength

stop_fine_tuning()

Stop fine wavelength tuning

setup_terascan(scan_type, scan_range, rate, trunc_rate=True)
Setup terascan.

Parameters

• scan_type (str) – scan type. Can be "medium" (BRF+etalon, rate from 100 GHz/s
to 1 GHz/s), "fine" (all elements, rate from 20 GHz/s to 1 MHz/s), "ir_medium" or
"ir_fine" (same as "medium" or "fine", but defined for the IR laser)

• scan_range (tuple) – tuple (start, stop) with the scan range (in Hz).

• rate (float) – scan rate (in Hz/s).

• trunc_rate (bool) – if True, truncate the scan rate to the nearest available rate
(otherwise, incorrect rate would raise an error).

676 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

start_terascan(scan_type, sync=False, sync_done=False)
Start terascan.

Scan parameters are set up separately using setup_terascan(). Scan type can be "medium"
(BRF+etalon, rate from 100 GHz/s to 1 GHz/s), "fine" (all elements, rate from 20 GHz/s to 1 MHz/s),
"ir_medium" or "ir_fine" (same as "medium" or "fine", but defined for the IR laser) If sync==True,
wait until the scan is set up (not until the whole scan is complete). If sync_done==True, wait until the
whole scan is complete (not recommended, as it can take hours).

enable_terascan_updates(enable=True, update_period=0.01, update_delay=0)
Enable sending periodic terascan updates.

If enabled, laser will send updates in the beginning and in the end of every terascan segment. If
update_period!=0, it will also send updates every update_period percents of the segment (this option
is not currently supported by M2 firmware).

check_terascan_update()

Check the latest terascan update.

Return None if none are available, or a dictionary {"wavelength":current_wavelength,
"activity":op}, where op is "scanning" (scanning in progress), "stitching" (stitching in progress),
or "repeat" (segment is repeated).

wait_for_terascan_update()

Wait until a new terascan update is available

check_terascan_start_report()

Check report on terascan start.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

stop_terascan(scan_type, sync=False)
Stop terascan of the given type.

If sync==True, wait until the operation is complete.

get_terascan_status(scan_type)
Get status of a terascan of a given type (or all statuses if scan_type=="all").

Return a dictionary with 3 items:
"current": current laser frequency (or None if no scan is in progress) "range": tuple with the
fill scan range (or None if no frequency is available) "status": can be "stopped" (scan is not in
progress), "scanning" (scan is in progress), or "stitching" (scan is in progress, but currently
stitching)

stop_all_operation(repeated=True, attempt=0)
Stop all laser operations (tuning and scanning).

If repeated==True, repeat trying to stop the operations until succeeded (more reliable, but takes more
time). If attempt>0, it can supply the number of already tried attempts to stop (with repeated=False);
the more attempts failed, the more drastic measures will be taken to stop (e.g., initialize short terascan)
Return True if the operation is success and False otherwise.

BackendError

alias of OSError

Error

alias of M2Error

2.7. pylablib 677

https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

ReraiseError

alias of M2CommunicationError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

check_report(op)
Check and return the latest report for the given operation

close()

Close the connection

flush()

Flush read buffer

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_last_report(op)
Get the latest report for the given operation

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

noreply(exhaust_when_done=False)
Context manager within which the code switches to the no-reply mode, where it does not wait for a reply
to certain commands (usually element setting commands). This allows for faster command issuing, but ig-
nores possible errors returned by the commands. If exhaust_when_done==True, receive all sent replies
upon exiting the context; otherwise, receive them the next time a communication with the device is done.

open()

Open the connection

678 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

query(op, params, reply_op='auto', report=False, allow_noreply=False)
Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply"). If
report==True, request completion report (does not apply to all operation). If allow_noreply==True,
allow skipping the reply, which allows for faster consecutive command issuing; this only works if the no-
reply mode is also activated using noreply(). Return tuple (command, args) with the reply command
name and the corresponding arguments (in no-reply mode return (None, None)).

set_device_variable(key, value)
Set the value of a settings parameter

set_timeout(timeout)
Set timeout for connecting or sending/receiving

start_link()

Initialize device link (called automatically on creation)

update_reports(timeout=0.0, ignore_replies=None, max_replies=None)
Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list
of replies which do not raise an error. If max_replies is supplied, it is the maximal number of replies to
read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

wait_for_report(op, error_msg=None, timeout=None)
Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

pylablib.devices.M2.solstis module

class pylablib.devices.M2.solstis.Solstis(addr, port, timeout=5.0, start_link=True,
use_websocket='auto', use_cavity=True)

Bases: ICEBlocDevice

M2 Solstis Ice Bloc device.

Parameters

• addr (str) – IP address of the Ice Bloc device.

• port (int) – port of the Ice Bloc device.

• timeout (float) – default timeout of synchronous operations.

• start_link (bool) – if True, initialize device link on creation.

• use_websocket (bool) – if True, use websocket interface (same as used by the web
interface) for additional functionality (wavemeter connection, etalon value, improved op-
eration stopping); "auto" enables it if websocket package is installed, and disables oth-
erwise

• use_cavity – if False and any reference cavity methods are used, either ignore them,
or use closest available methods instead

connect_wavemeter(sync=True)
Connect to the wavemeter (if sync==True, wait until the connection is established)

2.7. pylablib 679

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

disconnect_wavemeter(sync=True)
Disconnect from the wavemeter (if sync==True, wait until the connection is broken)

is_wavemeter_connected()

Check if the wavemeter is connected

get_system_status()

Get the device system status

get_full_web_status()

Get full websocket status.

Return a large dictionary containing all the information available in the web interface.

get_full_fine_tuning_status()

Get full fine-tuning status (see M2 Solstis JSON protocol manual for "poll_wave_m" command)

lock_wavemeter(lock=True, sync=True, error_on_fail=True)
Lock or unlock the laser to the wavemeter (if sync==True, wait until the operation is complete)

is_wavemeter_lock_on()

Check if the laser is locked to the wavemeter

fine_tune_wavelength(wavelength, sync=True, timeout=None)
Fine-tune the wavelength.

Only works if the wavemeter is connected. If sync==True, wait until the operation is complete (might
take from several seconds up to several minutes).

check_fine_tuning_report()

Check wavelength fine-tuning report

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

wait_for_fine_tuning(timeout=None)
Wait until wavelength fine-tuning is complete

get_fine_tuning_status()

Get fine-tuning status.

Return either "idle" (no tuning or locking), "nolink" (no wavemeter link), "tuning" (tuning in
progress), or "locked" (tuned and locked to the wavemeter).

get_fine_wavelength()

Get fine-tuned wavelength.

Only works if the wavemeter is connected.

stop_fine_tuning()

Stop fine wavelength tuning

coarse_tune_wavelength(wavelength, sync=True)
Coarse-tune the wavelength.

Only works if the wavemeter is disconnected. If sync==True, wait until the operation is complete.

get_full_coarse_tuning_status()

Get full coarse-tuning status (see M2 M2 Solstis JSON protocol manual for "poll_move_wave_t" com-
mand)

680 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_coarse_tuning_status()

Get coarse-tuning status.

Return either "done" (tuning is done), "tuning" (tuning in progress), or "fail" (tuning failed).

get_coarse_wavelength()

Get course-tuned wavelength.

Only works if the wavemeter is disconnected.

stop_coarse_tuning()

Stop coarse wavelength tuning

tune_etalon(value, sync=True)
Tune the etalon to value percent.

Only works if the wavemeter is disconnected. If sync==True, wait until the operation is complete.

lock_etalon(sync=True)
Lock the etalon.

If sync==True, wait until the operation is complete.

unlock_etalon(sync=True)
Unlock the etalon .

If sync==True, wait until the operation is complete. Automatically unlock the reference cavity first (oth-
erwise the operation fails).

get_etalon_lock_status()

Get etalon lock status.

Return either "off" (lock is off), "on" (lock is on), "debug" (lock in debug condition), "error" (lock
had an error), "search" (lock is searching), or "low" (lock is off due to low output).

tune_laser_resonator(value, fine=False, sync=True)
Tune the laser cavity to value percent.

If fine==True, adjust fine tuning; otherwise, adjust coarse tuning. Only works if the wavemeter is dis-
connected. If sync==True, wait until the operation is complete.

tune_reference_cavity(value, fine=False, sync=True)
Tune the reference cavity to value percent.

If fine==True, adjust fine tuning; otherwise, adjust coarse tuning. Only works if the wavemeter is dis-
connected. If sync==True, wait until the operation is complete. If reference cavity is disabled by setting
use_cavity=False on creation, do nothing.

lock_reference_cavity(sync=True)
Lock the laser to the reference cavity.

Automatically lock etalon first (otherwise the operation fails). If sync==True, wait until the operation is
complete. If reference cavity is disabled by setting use_cavity=False on creation, do nothing.

unlock_reference_cavity(sync=True)
Unlock the laser from the reference cavity.

If sync==True, wait until the operation is complete. If reference cavity is disabled by setting
use_cavity=False on creation, do nothing.

2.7. pylablib 681

pylablib Documentation, Release 1.4.2

get_reference_cavity_lock_status()

Get the reference cavity lock status.

Return either "off" (lock is off), "on" (lock is on), "debug" (lock in debug condition), "error" (lock had
an error), "search" (lock is searching), "low" (lock is off due to low output), or "disabled" (reference
cavity is disabled by setting use_cavity=False on creation).

setup_terascan(scan_type, scan_range, rate, trunc_rate=True)
Setup terascan.

Parameters

• scan_type (str) – scan type. Can be "medium" (BRF+etalon, rate from 100 GHz/s
to 1 GHz/s), "fine" (all elements, rate from 20 GHz/s to 1 MHz/s), or "line" (all
elements, rate from 20 GHz/s to 50 kHz/s).

• scan_range (tuple) – tuple (start, stop) with the scan range (in Hz).

• rate (float) – scan rate (in Hz/s).

• trunc_rate (bool) – if True, truncate the scan rate to the nearest available rate
(otherwise, incorrect rate would raise an error).

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use
"fine" instead.

start_terascan(scan_type, sync=False, sync_done=False)
Start terascan.

Scan parameters are set up separately using setup_terascan(). Scan type can be "medium"
(BRF+etalon, rate from 100 GHz/s to 1 GHz/s), "fine" (all elements, rate from 20 GHz/s to 1 MHz/s),
or "line" (all elements, rate from 20 GHz/s to 50 kHz/s). If reference cavity is disabled by setting
use_cavity=False on creation and scan_type is "line", use "fine" instead. If sync==True, wait
until the scan is set up (not until the whole scan is complete). If sync_done==True, wait until the whole
scan is complete (not recommended, as it can take hours).

enable_terascan_updates(enable=True, update_period=0)
Enable sending periodic terascan updates.

If enabled, laser will send updates in the beginning and in the end of every terascan segment. If
update_period!=0, it will also send updates every update_period percents of the segment (this option
is not currently supported by M2 firmware).

check_terascan_update()

Check the latest terascan update.

Return None if none are available, or a dictionary {"wavelength":current_wavelength,
"activity":op}, where op is "scanning" (scanning in progress), "stitching" (stitching in progress),
"finished" (scan is finished), or "repeat" (segment is repeated).

wait_for_terascan_update()

Wait until a new terascan update is available

check_terascan_start_report()

Check report on terascan start.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

682 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

stop_terascan(scan_type, sync=False)
Stop terascan of the given type.

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use
"fine" instead. If sync==True, wait until the operation is complete.

get_terascan_status(scan_type, web_status=True)
Get status of a terascan of a given type.

Return a dictionary with 4 items:
"current": current laser frequency (or None if no scan is in progress) "range": tuple with the
fill scan range (or None if no frequency is available) "status": can be "stopped" (scan is not
in progress), "scanning" (scan is in progress), or "stitching" (scan is in progress, but cur-
rently stitching) "web": whether scan is running in web interface (some failure modes still report
"scanning" through the usual interface); only available if the laser web connection is on and if
web_status==True.

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use
"fine" instead.

start_fast_scan(scan_type, width, period, sync=False, setup_locks=True)
Setup and start fast scan.

Parameters

• scan_type (str) – scan type. Can be "cavity_continuous", "cavity_single",
"cavity_triangular", "etalon_continuous", "etalon_single",
"resonator_continuous", "resonator_single", "resonator_ramp",
"resonator_triangular", "ecd_continuous", "ecd_ramp", or
"fringe_test" (see M2 Solstis JSON protocol manual for details)

• width (float) – scan width (in Hz).

• period (float) – scan time/period (in s).

• sync (bool) – if True, wait until the scan is set up (not until the whole scan is com-
plete).

• setup_locks (bool) – if True, automatically setup etalon and reference cavity locks
in the appropriate states for etalon, cavity, or resonator scans.

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of
cavity scans.

check_fast_scan_start_report()

Check fast scan start report.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

stop_fast_scan(scan_type, return_to_start=True, sync=False)
Stop fast scan of the given type.

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of
cavity scans. If return_to_start==True, return to the center frequency after stopping; otherwise, stay
at the current instantaneous frequency. If sync==True, wait until the operation is complete.

get_fast_scan_status(scan_type)
Get status of a fast scan of a given type.

Return dictionary with 2 items:
"status": can be "stopped" (scan is not in progress), "scanning" (scan is in progress). "value":
current tuner value (in percent); does not necessary correspond to the scan progress.

2.7. pylablib 683

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of
cavity scans.

stop_scan_web(scan_type)
Stop scan of the current type (terascan or fine scan) using web interface.

More reliable than native programming interface, but requires activated web interface. If reference cavity
is disabled by setting use_cavity=False on creation, use resonator scans instead of cavity scans.

stop_all_operation(repeated=True, attempt=0)
Stop all laser operations (tuning and scanning).

More reliable than native programming interface, but requires activated web interface. If
repeated==True, repeat trying to stop the operations until succeeded (more reliable, but takes more
time). If attempt>0, it can supply the number of already tried attempts to stop (with repeated=False);
the more attempts failed, the more drastic measures will be taken to stop (e.g., initialize short terascan or a
fast scan, cycle wavemeter connection, etc.) Return True if the operation is success and False otherwise.

BackendError

alias of OSError

Error

alias of M2Error

ReraiseError

alias of M2CommunicationError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

check_report(op)
Check and return the latest report for the given operation

close()

Close the connection

flush()

Flush read buffer

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_last_report(op)
Get the latest report for the given operation

684 Chapter 2. Citation

https://docs.python.org/3/library/exceptions.html#OSError

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

noreply(exhaust_when_done=False)
Context manager within which the code switches to the no-reply mode, where it does not wait for a reply
to certain commands (usually element setting commands). This allows for faster command issuing, but ig-
nores possible errors returned by the commands. If exhaust_when_done==True, receive all sent replies
upon exiting the context; otherwise, receive them the next time a communication with the device is done.

open()

Open the connection

query(op, params, reply_op='auto', report=False, allow_noreply=False)
Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply"). If
report==True, request completion report (does not apply to all operation). If allow_noreply==True,
allow skipping the reply, which allows for faster consecutive command issuing; this only works if the no-
reply mode is also activated using noreply(). Return tuple (command, args) with the reply command
name and the corresponding arguments (in no-reply mode return (None, None)).

set_device_variable(key, value)
Set the value of a settings parameter

set_timeout(timeout)
Set timeout for connecting or sending/receiving

start_link()

Initialize device link (called automatically on creation)

update_reports(timeout=0.0, ignore_replies=None, max_replies=None)
Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list
of replies which do not raise an error. If max_replies is supplied, it is the maximal number of replies to
read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

wait_for_report(op, error_msg=None, timeout=None)
Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

2.7. pylablib 685

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Mightex package

Submodules

pylablib.devices.Mightex.MightexSSeries module

class pylablib.devices.Mightex.MightexSSeries.TCameraInfo(idx, model, serial)
Bases: tuple

idx

model

serial

class pylablib.devices.Mightex.MightexSSeries.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Mightex.MightexSSeries.restart_lib()

pylablib.devices.Mightex.MightexSSeries.list_cameras()

List all cameras available through Mightex S-series interface

pylablib.devices.Mightex.MightexSSeries.get_cameras_number()

Get number of connected Mightex S-series cameras

class pylablib.devices.Mightex.MightexSSeries.TDeviceInfo(model, serial)
Bases: tuple

model

686 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

serial

class pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera(idx=1)
Bases: IBinROICamera, IExposureCamera

Generic Mightex S Series camera interface.

Parameters
idx – camera index among the cameras listed using list_cameras(), starting with 1

Error

alias of MightexError

TimeoutError

alias of MightexTimeoutError

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

get_device_info()

Get camera information.

Return tuple (model, serial).

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

2.7. pylablib 687

pylablib Documentation, Release 1.4.2

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_pixel_clock()

Get pixel clock speed ("slow", "medium", or "fast")

set_pixel_clock(pixel_clock)
Set pixel clock speed ("slow", "medium", or "fast")

get_hblanking()

Get hblanking speed ("normal", "longer", or "longest")

set_hblanking(hblanking)
Set hblanking speed ("normal", "longer", or "longest")

send_software_trigger()

Send software trigger signal

class ReceiveLooper

Bases: object

enable_callback()

Register and enable the frame callback

disable_callback()

Stop and deregister the frame callback

is_looping()

Check if the loop is running

get_status()

Get the current loop status, which is the tuple (acquired,)

allocate(nbuff , size)
Allocate given number of buffers of the given size

deallocate()

Deallocate the buffers

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). nframes sets up number of frame buffers.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

688 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frames_status()

Get acquisition and buffer status.

2.7. pylablib 689

pylablib Documentation, Release 1.4.2

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,

690 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

2.7. pylablib 691

pylablib Documentation, Release 1.4.2

If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

pylablib.devices.Mightex.base module

exception pylablib.devices.Mightex.base.MightexError

Bases: DeviceError

Generic Mightex error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Mightex.base.MightexTimeoutError

Bases: MightexError

Mightex frame timeout error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

692 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Modbus package

Submodules

pylablib.devices.Modbus.modbus module

exception pylablib.devices.Modbus.modbus.ModbusError

Bases: DeviceError

Generic Modbus device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Modbus.modbus.ModbusBackendError(exc)
Bases: ModbusError, DeviceBackendError

Generic Modbus backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Modbus.modbus.TModbusFrame(address, function, data)
Bases: tuple

address

data

function

class pylablib.devices.Modbus.modbus.GenericModbusRTUDevice(conn, daddr=1)
Bases: ICommBackendWrapper

Generic Modbus-connected RTU protocol device.

Parameters

• conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

• daddr – default device address

Error

alias of ModbusError

2.7. pylablib 693

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

mb_get_default_address()

Get device address used by default in Modbus methods

mb_set_default_address(daddr)
Set device address used by default in Modbus methods

mb_using_address(daddr)
Context manager for temporary using a different default device address

mb_read_coils(address, quantity=1, daddr=None)
Read Modbus one-bit discrete coils with the given starting address and quantity

mb_read_discrete_inputs(address, quantity, daddr=None)
Read Modbus one-bit discrete inputs with the given starting address and quantity

mb_read_holding_registers(address, quantity, daddr=None)
Read Modbus two-byte holding registers with the given starting address and quantity

mb_read_input_registers(address, quantity, daddr=None)
Read Modbus two-byte input registers with the given starting address and quantity

mb_write_single_coil(address, value, daddr=None)
Write a single Modbus one-bit discrete coil at the given address

mb_write_single_holding_register(address, value, daddr=None)
Write a single Modbus two-byte holding register at the given address

mb_write_multiple_coils(address, value, quantity=None, daddr=None)
Write multiple Modbus one-bit discrete coils with the given starting address and quantity.

value is a bytes object with the bit values listed LSB first.

mb_write_multiple_holding_registers(address, value, daddr=None)
Write a multiple Modbus two-byte holding registers at the given address.

value is a bytes object with the values listed LSB first.

mb_get_device_id(daddr=None)
Get Modbus device ID (function 17)

mb_scan_devices(daddrs='all', timeout=0.1, func=1, payload=b'')
Scan for devices on the bus by sending a specified command and waiting for the reply.

daddrs is a list of addresses to check ("all" means all addresses from 1 to 247 inclusive) timeout is the
timeout to wait for each device reply. func and payload specify the message to send (by default, ‘read
coil’ command with no arguments, which should always return and error) Since the addresses are polled
consecutively, this function can take a long time (~25s for the default settings).

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

694 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.NI package

Submodules

pylablib.devices.NI.daq module

exception pylablib.devices.NI.daq.NIError

Bases: DeviceError

Generic NI error

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 695

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.NI.daq.NIDAQmxError(exc)
Bases: NIError, DeviceBackendError

NI DAQmx backend operation error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.NI.daq.TDeviceInfo(name, model, serial_number)
Bases: tuple

model

name

serial_number

class pylablib.devices.NI.daq.TVoltageOutputClockParameters(rate, sync_with_ai, continuous,
samps_per_chan, autoloop)

Bases: tuple

autoloop

continuous

rate

samps_per_chan

sync_with_ai

pylablib.devices.NI.daq.get_device_info(name)
Get device info.

Return tuple (name, model, serial).

pylablib.devices.NI.daq.list_devices()

List all connected NI DAQ devices

class pylablib.devices.NI.daq.NIDAQ(dev_name='dev0', rate=100.0, buffer_size=100000.0, reset=False)
Bases: IDevice

National Instruments DAQ device interface (wrapper around nidaqmx library).

Simplified interface to NI DAQ devices. Supports voltage, digital, and counter inputs (all synchronized to the
same clock), and digital and voltage outputs (asynchronous).

Parameters

• dev_name (str) – root device name.

• rate (float) – analog input sampling rate (can be adjusted later).

696 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

• buffer_size (int) – size of the input buffer.

• reset (int) – if True, reset the device upon connection.

Error

alias of NIError

ReraiseError

alias of NIDAQmxError

open()

Open the connection

close()

Close the connection

is_opened()

Check if the device is connected

reset()

Reset the device. All channels will be removed

get_device_info()

Get device info.

Return tuple (name, model, serial).

setup_clock(rate, src=None)
Setup analog input clock (which is the main system clock).

If src==None, use internal clock with the given rate; otherwise use src terminal as a clock source (in this
case, rate should be higher than the expected source rate).

get_clock_parameters()

Get analog input clock configuration.

Return tuple (rate, src).

export_clock(terminal)
Export system clock to the given terminal (None to disconnect all terminals)

Only terminal one can be active at a time.

get_export_clock_terminal()

Return terminal which outputs system clock (None if none is connected)

add_voltage_input(name, channel, rng=(-10, 10), terminal_cfg='default')
Add analog voltage input.

Readout is synchronized to the system clock.

Parameters

• name (str) – channel name to refer to it later.

• channel (str) – terminal name (e.g., "ai0").

• rng – voltage range

• terminal_cfg – terminal configuration; can be "default", "rse" (single-ended,
referenced to AI SENSE input), "nrse" (single-ended, referenced to AI GND),
"diff" (differential), or "pseudodiff" (see NI DAQ manual for details).

2.7. pylablib 697

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

add_counter_input(name, counter, terminal, clk_src='ai/SampleClock', output_format='rate')
Add counter input (value is related to the number of counts).

Readout is synchronized to the system clock.

Parameters

• name (str) – channel name.

• counter (str) – on-board counter name (e.g., "ctr0").

• terminal (str) – terminal name (e.g., "pfi0").

• clk_src (str) – source of the counter sampling clock. By default it is the analog input
clock, which requires at least one voltage input channel (could be a dummy channel)
to be set up first.

• output_format (str) – output format. Can be "acc" (return accumulated number
of counts since the sampling start), "diff" (return number of counts passed between
the two consecutive sampling points; essentially, a derivative of "acc"), or "rate"
(return count rate based on the "diff" samples).

add_clock_period_input(counter, clk_src='ai/SampleClock')
Add clock period counter.

Useful when using external sample clock with unknown period. The clock input can be returned during
read() operation, and it is used to calculate counter inputs in "rate" mode. Readout is synchronized to
the system clock.

Parameters

• counter (str) – on-board counter name (e.g., "ctr0") to be used for clock measure.

• clk_src (str) – source of the counter sampling clock. By default it is the analog input
clock, which requires at least one voltage input channel (could be dummy channel) to
operate.

add_digital_input(name, channel)
Add digital input.

Readout is synchronized to the system clock. :param name: channel name. :type name: str :param channel:
terminal name (e.g., "port0/line12"). :type channel: str

get_input_channels(include=('ai', 'ci', 'di'))
Get names of all input channels (voltage input and counter input).

include specifies which channel types to include into the list ("ai" for voltage inputs, "ci" for counter
inputs, "di" for digital inputs, "cpi" for clock period channel). The channels order is always fixed: first
voltage inputs, then counter inputs, then digital inputs.

get_voltage_input_parameters()

Get parameters (names, channels, output ranges, and terminal configurations) of all analog voltage input
channels

get_counter_input_parameters()

Get parameters (names, counters, terminals, clock sources, and output formats) of all counter input chan-
nels

get_digital_input_parameters()

Get parameters (names and channels) of all digital input channels

698 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_clock_period_input_parameters()

Get parameters (counter input) of the clock period input channel

start(flush_read=0, finite=None)
Start the sampling and output task.

flush_read specifies number of samples to read and discard after start. If finite is not None, it specifies
finite number of sample to acquire before stopping.

If counter channels are used, the first sample is usually unreliable, so flush_read=1 is recommended;
however, if exactly finite pulses are required at the clock export channel, flush_read=0 is needed (the
total number of pulses is flush_read+finite).

stop()

Stop the sampling task

is_running()

Check if the task is running

available_samples()

Get number of available samples to read (return 0 if the task is not running)

get_buffer_size()

Get the sampling buffer size

wait_for_sample(num=1, timeout=10.0, wait_time=0.001)
Wait until at least num samples are available.

If they are not available immediately, loop while checking every wait_time interval until enough samples
are accumulated. Return the number of available samples if successful, or 0 if the execution timed out.

read(n=1, flush_read=0, timeout=10.0, include=('ai', 'ci', 'di'))
Read n samples. If the task is not running, automatically start before reading and stop after.

Parameters

• n (int) – number of samples to read. If n<=0, read all available samples.

• flush_read (int) – number of initial samples to skip if the task is currently stopped
and needs to be started. If counter channels are used, the first sample is usually unre-
liable, so flush_read=1 is recommended; however, if exactly n pulses are required
at the clock export channel, flush_read=0 is needed.

• include (tuple) – specifies which channel types to include into the list ("ai" for
voltage inputs, "ci" for counter inputs, "di" for digital inputs, "cpi" for clock period
channel).

Returns
2D numpy array of values arranged according to get_input_channels() order with the
given include parameter.

add_digital_output(name, channel)
Add digital output.

Parameters

• name (str) – channel name.

• channel (str) – terminal name (e.g., "do0").

2.7. pylablib 699

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_digital_output_channels()

Get names of all digital output channels

get_digital_output_parameters()

Get parameters (names and channels) of all digital output channels

set_digital_outputs(names, values)
Set values of one or several digital outputs.

Parameters

• names (str or [str]) – name or list of names of outputs.

• values – output value or list of values.

get_digital_outputs(names=None)
Get values of one or several digital outputs.

Parameters
names (str or [str] or None) – name or list of names of outputs (None means all
outputs).

Return list of values ordered by names (or by get_digital_output_channels() if names==None).

add_voltage_output(name, channel, rng=(-10, 10), initial_value=0.0)
Add analog voltage output.

Parameters

• name (str) – channel name.

• channel (str) – terminal name (e.g., "ao0").

• rng – voltage range.

• initial_value (float) – initial output value (has to be initialized).

get_voltage_output_channels()

Get names of all analog voltage output channels

get_voltage_output_parameters()

Get parameters (names, channels and output ranges) of all analog voltage output channels

set_voltage_outputs(names, values, minsamp=1, force_restart=True, single_shot=0)
Set values of one or several analog voltage outputs.

Parameters

• names (str or [str]) – name or list of names of outputs.

• values – output value or list values. These can be single numbers, or arrays if the
output clock is setup (see setup_voltage_output_clock()). In the latter case it
sets up the output waveforms; note that waveforms for all channels must have the same
length (a single number signifying a constant output is also allowed) If the analog out-
put is set up to the finite mode (continuous==False), the finite waveform output
happens right away, with the number of samples determined by samps_per_channel
parameter of setup_voltage_output_clock(). In this case, if the supplied wave-
form is shorter than the number of samples, it gets repeated; if it’s longer, it gets cut
off.

• minsamp – in non-autoloop mode, specifies the minimal number of samples to write
to the output buffer; if the length of values is less than this number, than the waveform
is repeated by a required integer number of times to produce at least minsamp samples

700 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• force_restart – if True, restart the output after writing to immediately start out-
putting the new waveforms; otherwise, add it to the end of the buffer; only applies in
non-autoloop mode (autoloop mode always restarts)

• single_shot – specifies some number of samples from the start as “single-shot”,
so whenever the waveform is repeated (either to reach minsamp samples, or when
fill_voltage_output_buffer() is called), this part is ignored, and only the rest
is repeated

get_voltage_output_buffer_fill()

Get the number of samples still in the output buffer.

Only applies to non-autoloop mode, and return None otherwise.

fill_voltage_output_buffer(minsamp=1)
Add samples to the output buffer until there are at least minsamp samples there.

Only applies to non-autoloop mode, and does nothing otherwise. The added samples are determined based
on the last data written by set_voltage_outputs() and the single_shot argument specified there.

get_voltage_outputs(names=None)
Get values of one or several analog voltage outputs.

Parameters
names (str or [str] or None) – name or list of names of outputs (None means all
outputs).

Return list of values ordered by names (or by get_voltage_output_channels() if names==None).
For continuous waveforms, return the array containing a single repetition of the waveform. For finite
waveforms, repeat the array containing the last outputted waveform.

setup_voltage_output_clock(rate=0, sync_with_ai=False, continuous=True, samps_per_chan=1000,
autoloop=True, minsamp=1)

Setup analog output clock configuration.

Parameters

• rate – clock rate; if 0, assume constant voltage output (default)

• sync_with_ai – if True, the clock is synchronized to the analog input clock (the
main clock); note that in this case output changes only when the analog read task is
running

• continuous – if True, any written waveform gets repeated continuously; otherwise,
it outputs written waveform only once, and then latches the output on the last value

• samps_per_chan – if continuous==False, it determines number of samples to out-
put before stopping; otherwise, it determines the size of the output buffer

• autoloop – if it is True, then the specified output waveforms are automatically re-
peated to create a periodic output signal (referred to as “regeneration mode” in NI DAQ
terminology); otherwise, written output data is “exhausted” once sent to the output, so
the application needs to continuously write output waveforms to avoid output buffer
from running empty (which causes an error). This mode gives better control over the
output and allows to seamlessly adjust it in real time, but it is more demanding on the
application.

• minsamp – if the waveform has been specified before, this argument sets the minimal
number of samples to write to the output buffer after the clock is set up and the output
is restarted

2.7. pylablib 701

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_voltage_output_clock_parameters()

Get analog output clock configuration.

Return tuple (rate, sync_with_ai, continuous, samps_per_chan, autoloop).

add_pulse_output(name, counter, terminal, kind='time', on=0.001, off=0.001, clk_src=None,
continuous=True, samps=1000)

Add counter pulse input.

Parameters

• name (str) – channel name.

• counter (str) – on-board counter name (e.g., "ctr0").

• terminal (str) – output terminal name (e.g., "pfi0").

• kind (str) – pulse output kind; can be either "time" (use internal timebase; specify
the pulse on and off times in seconds) or "ticks" (use internal or external timebase;
specify the pulse on and off times in number of ticks of the clock)

• on – on time or number of ticks for the pulse

• off – off time or number of ticks for the pulse

• clk_src (str) – source of the counter sampling clock. By default it is the device
timebase (usually 100MHz); can be a name of an external terminal (e.g., "pfi1"), or
"ai" to use the analog input sampling clock

• continuous (bool) – if True, the pulses are generated as long as the output is run-
ning; otherwise, output the number of samples specified in samps and then stop

• samps – number of samples to output if continuous==False

get_pulse_output_channels()

Get names of all pulse output channels

get_pulse_output_parameters()

Get parameters (names, counters, terminals, kinds, on times, off times, clock sources, continuous, number
of samples) of all pulse output channels

set_pulse_output(name, on=None, off=None, continuous=None, samps=None, terminal=None,
restart=True)

Change pulse output parameters.

Parameter meanings are the same as in add_pulse_output(). Parameters with values if None are left
unchanged. If any parameters are not None, the output pulse task is stopped before parameter changing.
If the task is currently running and restart==True, restart the task after changing the parameters.

start_pulse_output(names=None, autostop=True)
Start specified pulse output or a set of outputs (by default, all of them)

stop_pulse_output(names=None)
Stop specified pulse output or a set of outputs (by default, all of them)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_device_variable(key)
Get the value of a settings, status, or full info parameter

702 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_pulse_output_running(names=None)
Check if pulse outputs with the given name or set of names are running

set_device_variable(key, value)
Set the value of a settings parameter

Module contents

pylablib.devices.NKT package

Submodules

pylablib.devices.NKT.interbus module

exception pylablib.devices.NKT.interbus.InterbusError

Bases: DeviceError

Generic Interbus device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.NKT.interbus.InterbusBackendError(exc)
Bases: InterbusError, DeviceBackendError

Generic Interbus backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 703

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.NKT.interbus.TInterbusTelegram(dest, src, typ, payload)
Bases: tuple

dest

payload

src

typ

class pylablib.devices.NKT.interbus.GenericInterbusDevice(conn)
Bases: ICommBackendWrapper

Generic Interbus-connected device.

Parameters
conn – serial connection parameters (usually port, a tuple containing port and baudrate, or a
tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

Error

alias of InterbusError

ib_get_default_address()

Get destination address used by default in Interbus methods

ib_set_default_address(dest)
Set destination address used by default in Interbus methods

ib_using_address(dest)
Context manager for temporary using a different default destination address

ib_get_reg(dest, address, dtype='raw', array='auto')
Get register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string), "u8", "u16", "u32", "i8",
"i16", "i32" (different integer values).

ib_set_reg(dest, address, value, dtype='raw', array='auto', echo=True)
Set register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string), "u8", "u16", "u32", "i8",
"i16", "i32" (different integer values).

If echo==True, return the subsequent value of the register.

ib_scan_devices(dests='all', timeout=0.05)
Scan for devices on the bus and return their addresses and types.

dests is a list of addresses to check ("all" means all addresses from 1 to 48 inclusive) timeout is the
timeout to wait for each device reply. func and payload specify the message to send (by default, ‘read
coil’ command with no arguments, which should always return and error) Since the addresses are polled
consecutively, this function can take a long time (~25s for the default settings).

704 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.NKT.interbus.IInterbusModule(ib_device, dest)
Bases: IDevice

Specific Interbus module.

Deals with specific registers available for this module.

Parameters

• ib_device – instance of the generic Interbus controller used to access the module.

2.7. pylablib 705

pylablib Documentation, Release 1.4.2

• dest – module address on the bus.

get_register(name)
Get value of the given register based on its name

get_all_registers()

Get values of all defined registers

set_register(name, value)
Set value of the given register based on its name

get_status()

Get device status as a set of set bits

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

class pylablib.devices.NKT.interbus.GenericInterbusModule(ib_device, dest)
Bases: IInterbusModule

706 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_all_registers()

Get values of all defined registers

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_register(name)
Get value of the given register based on its name

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status()

Get device status as a set of set bits

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

set_register(name, value)
Set value of the given register based on its name

class pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule(ib_device, dest)
Bases: IInterbusModule

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

2.7. pylablib 707

pylablib Documentation, Release 1.4.2

close()

Close the connection

get_all_registers()

Get values of all defined registers

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_register(name)
Get value of the given register based on its name

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status()

Get device status as a set of set bits

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

set_register(name, value)
Set value of the given register based on its name

class pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule(ib_device, dest)
Bases: IInterbusModule

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

708 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_all_registers()

Get values of all defined registers

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_register(name)
Get value of the given register based on its name

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status()

Get device status as a set of set bits

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

set_register(name, value)
Set value of the given register based on its name

class pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule(ib_device, dest)
Bases: IInterbusModule

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_all_registers()

Get values of all defined registers

2.7. pylablib 709

pylablib Documentation, Release 1.4.2

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_register(name)
Get value of the given register based on its name

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status()

Get device status as a set of set bits

i = 7

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

set_register(name, value)
Set value of the given register based on its name

class pylablib.devices.NKT.interbus.SuperKSelectInterbusModule(ib_device, dest)
Bases: IInterbusModule

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_all_registers()

Get values of all defined registers

710 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_register(name)
Get value of the given register based on its name

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_status()

Get device status as a set of set bits

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

set_register(name, value)
Set value of the given register based on its name

class pylablib.devices.NKT.interbus.InterbusSystem(conn, modules='auto')
Bases: GenericInterbusDevice

A collection of NKT modules connected to the same Interbus.

Parameters

• conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

• modules – Interbus modules identifiers; can be "auto" (detect all connected modules),
a list of module addresses, or a dictionary {addr: name} of the aliases for the modules
(e.g., {'laser':15, 'varia':18})

m

dictionary of modules, defined either by their address or by their name (if provided upon creation)

2.7. pylablib 711

pylablib Documentation, Release 1.4.2

Error

alias of InterbusError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_all_module_registers()

Get all registers

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

ib_get_default_address()

Get destination address used by default in Interbus methods

ib_get_reg(dest, address, dtype='raw', array='auto')
Get register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string), "u8", "u16", "u32", "i8",
"i16", "i32" (different integer values).

ib_scan_devices(dests='all', timeout=0.05)
Scan for devices on the bus and return their addresses and types.

dests is a list of addresses to check ("all" means all addresses from 1 to 48 inclusive) timeout is the
timeout to wait for each device reply. func and payload specify the message to send (by default, ‘read
coil’ command with no arguments, which should always return and error) Since the addresses are polled
consecutively, this function can take a long time (~25s for the default settings).

ib_set_default_address(dest)
Set destination address used by default in Interbus methods

712 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

ib_set_reg(dest, address, value, dtype='raw', array='auto', echo=True)
Set register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string), "u8", "u16", "u32", "i8",
"i16", "i32" (different integer values).

If echo==True, return the subsequent value of the register.

ib_using_address(dest)
Context manager for temporary using a different default destination address

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Newport package

Submodules

pylablib.devices.Newport.base module

exception pylablib.devices.Newport.base.NewportError

Bases: DeviceError

Generic Newport device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Newport.base.NewportBackendError(exc)
Bases: NewportError, DeviceBackendError

Newport backend communication error

2.7. pylablib 713

pylablib Documentation, Release 1.4.2

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Newport.picomotor module

pylablib.devices.Newport.picomotor.get_usb_devices_number()

Get the number of controllers connected via USB

pylablib.devices.Newport.picomotor.muxaddr(*args, **kwargs)
Multiplex the function over its addr argument

class pylablib.devices.Newport.picomotor.TDeviceInfo(id)
Bases: tuple

id

class pylablib.devices.Newport.picomotor.Picomotor8742(conn=0, backend='auto', timeout=5.0,
multiaddr=False, scan=True)

Bases: ICommBackendWrapper, IMultiaxisStage

Picomotor 8742 4-axis controller.

Parameters

• conn – connection parameters; can be an index (starting from 0) for USB devices, or an IP
address (e.g., "192.168.0.2") or host name (e.g., "8742-12345") for Ethernet devices

• backend – communication backend; by default, try to determine from the communication
parameters

• timeout (float) – default operation timeout

• multiaddr – if True, assume that there are several daisy-chained devices connected to
the current one; in this case, get_device_info and related methods return dictionar-
ies {addr: value} for all connected controllers instead of simply values for the given
controller

• scan – if True and multiaddr==True, scan for all connected devices (call
scan_devices()) upon connection

Error

alias of NewportError

query(comm, axis=None, addr=None, read_reply=None)

get_id(addr=None)
Get the device identification string

get_device_info(addr=None)
Get the device info of the controller board: (id_string,)

714 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

reset(addr=None)
Restart the device.

Reboots the CPU and restores all saved settings from the parameter memory.

save_parameters(addr=None)
Store current parameters to the non-volatile memory.

Affects axes speed and acceleration, motor types, and Ethernet parameters.

restore_parameters(src='memory', addr=None)
Restore parameters from the non-volatile memory (if src=="memory") for factory parameters (if
src=="factory").

Affects axes speed and acceleration, motor types, and Ethernet parameters.

scan_devices(reassign='conflict', sync=True)
Scan for devices connected to the current host device via RS-485 daisy-chaining.

reassign controls how device addresses are assigned during the scan; can be "none" (keep current values;
can lead to conflicts if several devices have the same address), "conflict" (change conflicting addresses),
or "all" (assigned all new addresses in sequence starting from the host)

If sync==True, wait until the scan is done (might take several seconds).

get_addr_map()

Get address map for devices connected to the current host device via RS-485 daisy-chaining.

Return tuple (addresses, conflict), where addresses is the list of all device addresses, and
conflict==True if there address conflicts (several devices having the same address).

wait_for_scan(timeout=10.0)
Wait for the device connection scan to finish

get_addr(addr=None)
Get RS-485 address of the given device (host if addr is None)

set_addr(new_addr, addr=None)
Set RS-485 address of the given device (host if addr is None)

get_ethernet_parameters(addr=None)
Get Ethernet connection parameters.

Return tuple (hostname, ipaddr, ipmode, gateway, netmask).

setup_ethernet(hostname=None, ipmode=None, ipaddr=None, gateway=None, netmask=None,
addr=None)

Setup Ethernet connection parameters.

Any None value remains unchanged. Note that these settings only take effect after saving parameters to the
memory (save_parameters()) and restarting the device (reset()). If the connection is made through
Ethernet, then it will likely be invalidated, in which case a new device object with the updated parameters
should be created after reset.

autodetect_motors(addr=None)
Autodetect connected motors.

The command involves sending single-step commands to the motors, so it requires all axes to be stopped,
and it might slightly affect the current position. After the detection the types can be stored in the memory
via save_parameters().

2.7. pylablib 715

pylablib Documentation, Release 1.4.2

get_motor_type(axis='all', addr=None)
Get type of the given axis motor

set_motor_type(axis='all', motor_type='standard', addr=None)
Manually set type of the given axis motor

move_to(axis, position, addr=None)
Move to a given position

move_by(axis, steps=1, addr=None)
Move by a given number of steps

get_position(axis='all', addr=None)
Get the current axis position

set_position_reference(axis, position=0, addr=None)
Set the current axis position as a reference (the actual motor position stays the same)

jog(axis, direction, addr=0)
Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive). The motion continues until it is explicitly stopped.

is_moving(axis='all', addr=None)
Check if the axis is moving

wait_move(axis='all', addr=None)
Wait until axis motion is done

stop(axis='all', immediate=False, addr=None)
Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually. Note that immediate stop
has to stop all axes simultaneously, so it only takes axis=="all".

get_velocity_parameters(axis='all', addr=None)
Return velocity parameters (speed, accel) for the given axis and controller.

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration
in steps/s and steps/s^2.

setup_velocity(axis='all', speed=None, accel=None, addr=None)
Setup velocity parameters (speed, accel) for the given axis and controller.

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration
in steps/s and steps/s^2. None values are left unchanged.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

716 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.OZOptics package

Submodules

pylablib.devices.OZOptics.base module

2.7. pylablib 717

pylablib Documentation, Release 1.4.2

exception pylablib.devices.OZOptics.base.OZOpticsError

Bases: DeviceError

Generic OZOptics devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.OZOptics.base.OZOpticsBackendError(exc)
Bases: OZOpticsError, DeviceBackendError

Generic OZOptics backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.OZOptics.base.OZOpticsDevice(conn, timeout=20.0)
Bases: ICommBackendWrapper

Generic OZOptics device.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of OZOpticsError

query(comm, prefix=None, prefix_line=None, timeout=None)
Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the
reply. If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised. If
prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not
such line is present).

restart()

Restart the device

get_config()

Get device configuration

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

718 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.OZOptics.base.TF100(conn, timeout=20.0)
Bases: OZOpticsDevice

OZOptics TF100 tunable filter.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

get_wavelength_correction()

Get the current wavelength correction parameters (shift, scale).

The relation between the set/get wavelength and the wavelength set to the device is calculated as
device_wavelength = set_wavelength*scale + shift

set_wavelength_correction(shift=0.0, scale=1.0)
Set the wavelength correction parameters.

The relation between the set/get wavelength and the wavelength set to the device is calculated as
device_wavelength = set_wavelength*scale + shift

2.7. pylablib 719

pylablib Documentation, Release 1.4.2

home()

Home the motor (needs to be called first after startup)

get_wavelength()

Get the currently set wavelength (or None if unknown / not homed)

set_wavelength(wavelength)
Set the current wavelength

Error

alias of OZOpticsError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_config()

Get device configuration

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

720 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

query(comm, prefix=None, prefix_line=None, timeout=None)
Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the
reply. If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised. If
prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not
such line is present).

restart()

Restart the device

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.OZOptics.base.DD100(conn, timeout=20.0)
Bases: OZOpticsDevice

OZOptics DD100 variable attenuator.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

home()

Home the motor (needs to be called first after startup)

get_min_attenuation()

Get the minimal possible attenuation (i.e., insertion loss)

get_max_attenuation()

Get the maximal possible possible attenuation in dB

get_attenuation()

Get the current attenuation in dB

set_attenuation(att)
Set the current attenuation in dB

Error

alias of OZOpticsError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_config()

Get device configuration

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 721

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(comm, prefix=None, prefix_line=None, timeout=None)
Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the
reply. If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised. If
prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not
such line is present).

restart()

Restart the device

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.OZOptics.base.EPC04(conn, timeout=20.0)
Bases: ICommBackendWrapper

OZOptics EPC04 polarization controller.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of OZOpticsError

722 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

query(comm)

get_voltages()

Get all voltages

set_voltage(channel, voltage)
Set voltage at a given channel (0 through 3)

set_all_voltages(voltages)
Set all channel voltages.

voltages is a list of size 4 containing the voltage values.

step_voltage(channel, step)
Step voltage at the given channel by the given step

get_mode()

Get current operating mode.

Can be "dc" (constant voltage) or "ac" (scrambling).

set_mode(mode='dc')
Set current operating mode.

Can be "dc" (constant voltage) or "ac" (scrambling).

get_frequencies()

Get all scrambling frequencies

set_frequency(channel, frequency)
Set scrambling frequency a given channel (0 through 3)

set_all_frequencies(frequencies)
Set all channel scrambling frequencies.

frequencies is a list of size 4 containing the frequency values.

get_waveform()

Get current scrambling waveform.

Can be "sin" (sine wave) or "tri" (triangle wave).

set_waveform(waveform)

Set current scrambling waveform.

Can be "sin" (sine wave) or "tri" (triangle wave).

save_preset()

Save current state as a power-up preset

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 723

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Ophir package

Submodules

pylablib.devices.Ophir.base module

exception pylablib.devices.Ophir.base.OphirError

Bases: DeviceError

Generic Ophir device error

add_note()

Exception.add_note(note) – add a note to the exception

724 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Ophir.base.OphirBackendError(exc)
Bases: OphirError, DeviceBackendError

Generic Ophir backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Ophir.base.OphirDevice(conn)
Bases: ICommBackendWrapper

Generic Ophir device.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of OphirError

query(comm)

Send a query to the device and parse the reply

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 725

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.Ophir.base.THeadInfo(type, serial, name, capabilities)
Bases: tuple

capabilities

name

serial

type

class pylablib.devices.Ophir.base.TDeviceInfo(id, serial, name, rom_version)
Bases: tuple

id

name

rom_version

serial

class pylablib.devices.Ophir.base.TWavelengthInfo(mode, rng, curr_idx, presets, curr_wavelength)
Bases: tuple

curr_idx

curr_wavelength

mode

presets

rng

726 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.Ophir.base.TRangeInfo(curr_idx, ranges, curr_range)
Bases: tuple

curr_idx

curr_range

ranges

class pylablib.devices.Ophir.base.VegaPowerMeter(conn)
Bases: OphirDevice

Ophir Vega power meter.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

get_head_info()

Get head information.

Return tuple (type, serial, name, capabilities).

get_device_info()

Get device information.

Return tuple (id, serial, name, rom_version).

reset()

Reset the device

get_power()

Get the current power readings.

Return either measured power, or "over", if the power is overrange.

get_energy()

Get the current energy readings.

Return either measured energy, or "over", if the energy is overrange.

get_frequency()

Get the current frequency readings.

Return either measured frequency, or "over", if the power is overrange.

get_units()

Get device reading units

get_wavelength_info()

Get wavelength setting info.

Return tuple (mode, rng, curr_idx, presets, curr_wavelength), where mode is the measure-
ment mode ("continuous" or "discrete"), rng is a 2-tuple with the full wavelength range (in m) for
continuous mode or a set of all wavelengths for discrete mode, curr_idx is the current wavelength preset
index, presets is the list of all preset wavelengths (in m) for continuous mode or a set of all wavelengths for
discrete mode, and curr_wavelength is the current measurement wavelength (in m) for continuous mode
or the current wavelength name for discrete mode.

get_wavelength()

Get current wavelength (in nm)

2.7. pylablib 727

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

set_wavelength(wavelength)
Set current wavelength (in nm).

wavelength is either a wavelength (in m) for the continuous mode, or a wavelength preset (as a string) for
a discrete mode.

get_range_info()

Get power range info.

Return tuple (curr_idx, ranges, curr_range), where curr_idx is the current power range index,
ranges is the list of ranges (in W) for all indices and curr_range is the current range (in W).

get_range()

Get current power range (maximal power in W)

get_range_idx()

Get current power range index

Index goes from 0 (highest) to maximal (lowest); auto-ranging is -1.

set_range_idx(rng_idx)
Set current range index.

rng_idx is the range index from 0 (highest) to maximal (lowest); auto-ranging is -1. The corresponding
ranges are given by get_range_info().

set_range(rng)
Set current power range.

Select the smallest available range which is larger than rng (or maximal range, if the requested range is too
large) If rng is "auto", enable autorange; if rng is None, set to the maximal range.

get_battery_condition()

Check if the batter is OK

get_baudrate()

Get current baud rate

get_supported_baudrates()

Get a list of all supported baud rates

set_baudrate(baudrate)
Set current baud rate.

If the baudrate is different from the current one, close the device connection. The device object will need
to be re-created with the newly specified baud rate.

is_filter_in()

Check if the filter is set to be on at the power meter

set_filter(filter_in=True)
Change the filter setting at the power meter (on or off)

is_diffuser_in()

Check if the diffuser is set to be on at the power meter

set_diffuser(diffuser_in=True)
Change the diffuser setting at the power meter (on or off)

728 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Error

alias of OphirError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(comm)

Send a query to the device and parse the reply

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 729

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.PCO package

Submodules

pylablib.devices.PCO.SC2 module

pylablib.devices.PCO.SC2.list_cameras(cam_interface=None)
List camera connections (interface kind and camera index).

If cam_interface is supplied, it defines one of camera interfaces to check (e.g., "usb3" or "clhs"). Otherwise,
check all interfaces.

pylablib.devices.PCO.SC2.get_cameras_number(cam_interface=None)
Get the total number of connected PCOSC2 cameras.

If cam_interface is supplied, it defines one of camera interfaces to check (e.g., "usb3" or "clhs"). Otherwise,
check all interfaces.

pylablib.devices.PCO.SC2.reset_api()

Reset API.

All cameras must be closed; otherwise, the prompt to reboot will appear.

class pylablib.devices.PCO.SC2.TDeviceInfo(model, interface, sensor, serial_number)
Bases: tuple

interface

model

sensor

serial_number

class pylablib.devices.PCO.SC2.TCameraStatus(status, warnings, errors)
Bases: tuple

errors

status

warnings

class pylablib.devices.PCO.SC2.TInternalBufferStatus(scheduled, scheduled_max, overruns)
Bases: tuple

overruns

scheduled

scheduled_max

class pylablib.devices.PCO.SC2.TFrameInfo(frame_index)
Bases: tuple

frame_index

730 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.PCO.SC2.PCOSC2Camera(idx=0, cam_interface=None, reboot_on_fail=True)
Bases: IBinROICamera, IExposureCamera

PCO SC2 camera.

Parameters

• idx (int) – camera index (use get_cameras_number() to get the total number of con-
nected cameras)

• cam_interface – camera interface; if it is None, get the first available connected camera
(in this case idx is ignored); if not, then value of idx is used to connect to a particular
camera (interfaces and indices can be obtain from list_cameras())

• reboot_on_fail (bool) – if True and the camera raised an error during initialization
(but after opening), reboot the camera and try to connect again useful when the camera is
in a broken state (e.g., wrong ROI or pixel clock settings)

Error = <Mock name='mock.PCOSC2Error' id='140147725003536'>

TimeoutError = <Mock spec='str' id='140147729937680'>

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

reboot(wait=True)
Reboot the camera.

If wait==True, wait for the recommended time (10 seconds) after reboot for the camera to fully restart;
attempt to open the camera before that can lead to an error.

get_full_camera_data()

Get a dictionary the all camera data available through the SDK

update_full_data()

Update internal full camera data settings.

Takes some time (about 50ms), so more specific function are preferable for specific parameters.

get_device_info()

Get camera model data.

Return tuple (model, interface, sensor, serial_number).

get_capabilities()

Get camera capabilities.

For description of the capabilities, see PCO SC2 manual.

get_camera_status(full=False)
Get camera status.

If full==True, return current camera status as a set of enabled status states; otherwise, return tuple
(status, warnings, errors) with additional information about warnings and error.

2.7. pylablib 731

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

get_temperature()

Get the current camera temperature

Return tuple (CCD, cam, power) with temperatures of the sensor, camera, and power supply respec-
tively.

get_conversion_factor()

Get camera conversion factor (electrons per pixel value)

get_trigger_mode()

Get current trigger mode (see set_trigger_mode() for description)

set_trigger_mode(mode)
Set trigger mode.

Can be "int" (internal), "software" (software), "ext" (external+software), "ext_exp" (external expo-
sure), "ext_sync" (external PLL sync), "ext_exp_fast" (fast external exposure), "ext_cds" (external
CDS control), "ext_exp_slow" (slow external exposure)`, or "ext_sync_hdsdi" (external synchro-
nized SD/HDI).

For description, see PCO SDK manual.

send_software_trigger()

Send software trigger signal

class ScheduleLooper

Bases: object

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

loop(handle, nbuff , buffers, buffer_size, set_idx)

reset()

notify()

class BufferManager(nbuff , size, metadata_size=0)
Bases: object

Frame buffer managers.

Stores and accesses frame buffer and status arrays and buffer info.

get_buffer_ptr(n)
Get address of n’th frame buffer

get_internal_buffer_status()

Get the status of the internal smaller API buffer, showing the number of scheduled frames there, and the
maximal number that can be scheduled

set_exposure(exposure)
Set camera exposure

get_exposure()

Get current exposure

set_frame_delay(frame_delay)
Set camera frame delay

732 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_frame_delay()

Get current frame delay

set_frame_period(frame_time=0, adjust_exposure=False)
Set frame time (frame acquisition period).

If the time can’t be achieved even with zero frame delay and adjust_exposure==True, try to reduce the
exposure to get the desired frame time; otherwise, keep the exposure the same.

get_frame_period()

Get current frame time (frame acquisition period)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_pixel_rate()

Get camera pixel rate (in Hz)

get_available_pixel_rates()

Get all available pixel rates

set_pixel_rate(rate=None)
Set camera pixel rate (in Hz)

The rate is always rounded to the closest available. If rate is None, set the maximal possible rate.

setup_acquisition(nframes=100)
Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition.

Clears buffers as well, so any readout afterwards is impossible.

acquisition_in_progress()

Check if the acquisition is in progress

clear_acquisition()

Clear acquisition settings

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

2.7. pylablib 733

pylablib Documentation, Release 1.4.2

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1, symmetric=False)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning). If symmetric==True and
camera requires symmetric ROI (see requires_symmetric_roi()), respect this symmetry in the result-
ing ROI; otherwise, try to use software ROI feature to set up the required ranges (note: while software ROI
does affect the size of the read out frame, it does not change the readout time, which would be the same as
with symmetric==True).

requires_symmetric_roi()

Check if the camera requires horizontally or vertically symmetric ROI.

Return a tuple (horizontal, vertical). If True, one might still set up an asymmetric ROI for some
cameras using the software ROI feature, but it does not affect camera readout rate

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

enable_pixel_correction(enable=True)
Enable or disable hotpixel correction

is_pixel_correction_enabled()

Check if hotpixel correction is enabled

get_noise_filter_mode()

Get the noise filter mode (for details, see set_noise_filter_mode())

set_noise_filter_mode(mode='on')
Set the noise filter mode.

Can be "off", "on", or "on_hpc" (on + hot pixel correction).

set_status_line_mode(binary=True, text=False)
Set status line mode.

binary determines if the binary line is present (it occupies first 14 pixels of the image). text determines if
the text line is present (it is plane text timestamp, which takes first 8 rows and about 300 columns).

It is recommended to always have binary option on, since it is used to determine frame index for checking
if there are any missing frames.

get_status_line_mode()

Get status line mode.

Return tuple (binary, text) (see set_status_line_mode() for description)

get_bit_alignment()

Get data bit alignment

Can be "LSB" (normal alignment) or "MSB" (if camera data is less than 16 bit, it is padded with zeros on
the right to match 16 bit).

734 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_bit_alignment(mode)
Get data bit alignment

Can be "LSB" (normal alignment) or "MSB" (if camera data is less than 16 bit, it is padded with zeros on
the right to match 16 bit).

set_metadata_mode(mode=True)
Set metadata mode

get_metadata_mode()

Get metadata mode.

Return tuple (enabled, size, version)

get_double_image_mode()

Check if the double image mode is active

set_double_image_mode(enable)
Enable or disable the double image mode

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

2.7. pylablib 735

pylablib Documentation, Release 1.4.2

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

736 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the

2.7. pylablib 737

pylablib Documentation, Release 1.4.2

frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.PCO.SC2.TStatusLine(framestamp)
Bases: tuple

framestamp

pylablib.devices.PCO.SC2.get_status_line(frame)
Get frame info from the binary status line.

Assume that the status line is present; if it isn’t, the returned frame info will be a random noise.

pylablib.devices.PCO.SC2.get_status_lines(frames)
Get frame info from the binary status line.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D
arrays. Assume that the status line is present; if it isn’t, the returned frame info will be a random noise. Return a
1D or 2D numpy array, where the first axis (if present) is the frame number, and the last is the status line entry.

738 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.PCO.SC2.StatusLineChecker

Bases: StatusLineChecker

get_framestamp(frames)
Get framestamps from status lines in the given frames

check_indices(indices, step=1)
Check if indices are consistent with the given step

Module contents

pylablib.devices.Pfeiffer package

Submodules

pylablib.devices.Pfeiffer.base module

exception pylablib.devices.Pfeiffer.base.PfeifferError

Bases: DeviceError

Generic Pfeiffer device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Pfeiffer.base.PfeifferBackendError(exc)
Bases: PfeifferError, DeviceBackendError

Generic Pfeiffer backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings(channel, low_thresh, high_thresh)
Bases: tuple

channel

high_thresh

low_thresh

class pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings(activation_control,
deactivation_control,
on_thresh, off_thresh)

Bases: tuple

2.7. pylablib 739

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

activation_control

deactivation_control

off_thresh

on_thresh

class pylablib.devices.Pfeiffer.base.TPG260(conn)
Bases: ICommBackendWrapper

TPG260 series (TPG261/262) pressure gauge.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of PfeifferError

comm(msg)
Send a command to the device

query(msg, data_type='str')
Send a query to the device and return the reply

get_units()

Get device units for indication/reading ("mbar", "torr", or "pa")

set_units(units)
Set device units for indication/reading ("mbar", "torr", or "pa")

to_Pa(value, units=None)
Convert value in the given units to Pa.

If units is None, use the current display units.

from_Pa(value, units=None)
Convert value in the given units from Pa.

If units is None, use the current display units.

get_display_channel()

Get controller display channel

set_display_channel(channel=1)
Set controller display channel

get_display_resolution()

Get controller display resolution (number of digits)

set_display_resolution(resolution=2)
Set controller display resolution (number of digits)

is_enabled(channel=1)
Check if the gauge at the given channel is enabled.

If the gauge cannot be turned on/off (e.g., not connected), return None.

enable(enable=True, channel=1)
Enable or disable the gauge at the given channel

740 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_channel_status(channel=1)
Get channel status.

Can be "ok", "under" (underrange), "over" (overrange), "sensor_error", "sensor_off",
"no_sensor", or "id_error".

get_pressure(channel=1, display_units=False, status_error=True)
Get pressure at a given channel.

If display_units==False, return result in Pa; otherwise, use display units obtained using
get_units(). If status_error==True and the channel status is not "ok", raise and error; otherwise,
return None.

get_gauge_kind(channel=1)

get_measurement_filter(channel=1)
Get gauge measurement filter ("fast", "medium", or "slow")

set_measurement_filter(meas_filter, channel=1)
Set gauge measurement filter ("fast", "medium", or "slow")

get_calibration_factor(channel=1)
Get gauge calibration factor

set_calibration_factor(coefficient, channel=1)
Set gauge calibration factor

get_switch_settings(switch_function)
Get settings for the given switch function (between 1 and 4).

Return tuple (channel, low_thresh, high_thresh). The thresholds are given in Pa.

setup_switch(switch_function, channel, low_thresh, high_thresh)
Get settings for the given switch function (between 1 and 4).

Return tuple (channel, low_thresh, high_thresh). The thresholds are given in Pa.

get_switch_status()

Return status of the 4 switch functions

get_gauge_control_settings(channel)
Get settings for the gauge control on the given channel.

Return tuple (activation_control, deactivation_control, on_thresh, off_thresh). The
thresholds are given in Pa.

setup_gauge_control(channel, activation_control, deactivation_control, on_thresh, off_thresh)
Setup gauge control on the given channel.

Return tuple (activation_control, deactivation_control, on_thresh, off_thresh). The
thresholds are given in Pa.

get_current_errors()

Get a list of all present error messages.

If there are no errors, return a single-element list ["no_error"].

reset_error()

Cancel currently active errors and return to measurement mode.

Return the list of currently present errors. If there are no errors, return a single-element list ["no_error"].

2.7. pylablib 741

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.Pfeiffer.base.DPG202(conn)
Bases: ICommBackendWrapper

DPG202/TPG202 control unit.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of PfeifferError

742 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

query(parameter, value='=?', action=0, address=1, send_type=None, recv_type=None)
Send a query to the device and parse the reply.

Parameters

• parameter – parameter number

• value – value to send ("=?" for a value request)

• action – request action (0 for value request, 1 for a command)

• address – unit address

• send_type – data type for the sent value (ignored for value requests)

• recv_type – data type for the received value (None means returning a raw string
value)

get_value(parameter, data_type, address=1)
Send a data request to the device.

Parameters

• parameter – parameter number

• data_type – data type for the received value

• address – unit address

comm(parameter, value, data_type, address=1)
Send a control command to the device.

Parameters

• parameter – parameter number

• value – associated command value

• data_type – data type for the sent value

• address – unit address

get_pressure(address=1)
Get pressure at a given unit address

get_error_code(address=1)
Get the current error code at a given unit address

get_software_version(address=1)
Get the software version at a given unit address

get_device_name(address=1)
Get the name of the gauge at a given unit address

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 743

pylablib Documentation, Release 1.4.2

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Photometrics package

Submodules

pylablib.devices.Photometrics.pvcam module

class pylablib.devices.Photometrics.pvcam.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

744 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Photometrics.pvcam.list_cameras()

List all cameras available through Pvcam interface

pylablib.devices.Photometrics.pvcam.get_cameras_number()

Get number of connected Pvcam cameras

class pylablib.devices.Photometrics.pvcam.PvcamAttribute(handle, pid, cam=None)
Bases: object

Object representing an Pvcam camera parameter.

Allows to query and set values and get additional information. Usually created automatically by an PvcamCamera
instance, but could be created manually.

Parameters

• handle – camera handle

• pid – parameter id of the attribute

name

attribute name

kind

attribute kind; can be "INT8", "INT16", "INT32", "INT64", "UNS8", "UNS16", "UNS32", "UNS64",
"FLT32", "FLT64", "ENUM", "BOOLEAN", or "CHAR_PTR"

available

whether attribute is available on the current hardware

Type
bool

readable

whether attribute is readable

Type
bool

2.7. pylablib 745

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

writable

whether attribute is writable

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

inc

minimal attribute increment value (if applicable)

Type
float or int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

default

default values of the attribute

update_limits()

Update attribute constraints

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True, error_on_noacq=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Set attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

class pylablib.devices.Photometrics.pvcam.TDeviceInfo(vendor, product, chip, system, part, serial)
Bases: tuple

746 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

chip

part

product

serial

system

vendor

class pylablib.devices.Photometrics.pvcam.TFrameInfo(frame_index, timestamp_start_ns,
timestamp_end_ns, framestamp, flags,
exposure_ns)

Bases: tuple

exposure_ns

flags

frame_index

framestamp

timestamp_end_ns

timestamp_start_ns

class pylablib.devices.Photometrics.pvcam.TReadoutInfo(port_idx, port_name, speed_idx, speed_freq,
gain_idx, gain_name)

Bases: tuple

gain_idx

gain_name

port_idx

port_name

speed_freq

speed_idx

class pylablib.devices.Photometrics.pvcam.PvcamCamera(name=None)
Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Generic Pvcam camera interface.

Parameters
serial_number – camera serial number; if None, connect to the first non-used camera

Error = <Mock name='mock.PvcamError' id='140147723076112'>

TimeoutError = <Mock spec='str' id='140147732327056'>

open()

Open connection to the camera

2.7. pylablib 747

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

close()

Close connection to the camera

is_opened()

Check if the device is connected

get_attribute_value(name, error_on_missing=True, error_on_noacq=False, default=None,
enum_as_str=True)

Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. If enum_as_str==True, return enum-style
values as strings; otherwise, return corresponding integer values.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

get_all_attribute_values(root='', enum_as_str=True, error_on_noacq=False)
Get values of all attributes with the given root

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

get_attribute_range(name, error_on_missing=True, default=None, parameter=None)
Return attribute range.

For numerical attributes it is a tuple (min, max), while for enum attributes it is a dictionary {index:
name}. If parameter is specified, it is a parameter class used to convert the index for a enum attribute.

get_all_readout_modes()

Get a list of all possible readout modes.

Return a list of tuples (port_idx, port_name, speed_idx, speed_freq, gain_idx,
gain_name). The indices (port, speed, and gain) can be used to set up a particular mode using
set_readout_mode().

get_readout_mode(full=True)
Get current readout mode.

If full==True, return a full tuple (port_idx, port_name, speed_idx, speed_freq, gain_idx,
gain_name) containing the descriptions; otherwise, return only indices (port_idx, speed_idx,
gain_idx).

set_readout_mode(port_idx=None, speed_idx=None, gain_idx=None)
Set the readout mode.

Any None value stays unchanged.

get_device_info()

Get camera information.

Return tuple (vendor, product, chip, system, part, serial).

748 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_pixel_size()

Get camera pixel size (in m)

get_pixel_distance()

Get camera pixel distance (in m)

get_temperature_setpoint()

Get the temperature setpoint (in C)

get_temperature()

Get the current camera temperature (in C)

set_temperature(temp)
Change the temperature setpoint (in C)

get_fan_mode()

Get current fan mode

set_fan_mode(fan_mode='high')
Set current fan mode

is_metadata_enabled()

Check if metadata is enabled

enable_metadata(enable=True)
Enable or disable metadata

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

get_clear_mode()

Get sensor clear mode

set_clear_mode(mode)
Set sensor clear mode

get_clear_cycles()

Get sensor clear cycles

set_clear_cycles(ncycles)
Set sensor clear cycles

get_clearing_time()

Get sensor clearing time (regardless of the mode)

get_readout_time(include_clear=True)
Get frame readout time.

If include_clear==True and the clear mode is per-exposure ("Pre-Exposure" or "Pre-Exposure
and Post-Sequence"), include it into this time.

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

2.7. pylablib 749

pylablib Documentation, Release 1.4.2

get_trigger_mode()

Get trigger mode

set_trigger_mode(mode, out_mode=None)
Set trigger mode

send_software_trigger()

Send software trigger signal and return whether it has been accepted

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

get_supported_binning_modes()

Get all possible binning combinations as a list [(hbin, vbin)]

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). nframes sets up number of frame buffers.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

750 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of TFrameInfo instances describing frame index and frame metadata, which contains start and stop
timestamps, framestamp, frame flags, and exposure; if some frames are missing and missing_frame!
="skip", the corresponding frame info is None. if return_rng==True, return the range covered resulting
frames; if missing_frame=="skip", the range can be smaller than the supplied rng if some frames are
skipped.

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame

2.7. pylablib 751

pylablib Documentation, Release 1.4.2

format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have

752 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),

2.7. pylablib 753

pylablib Documentation, Release 1.4.2

"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

pylablib.devices.Photometrics.pvcam.get_roi_parameters(buffer)
Extract ROI parameters from the buffer.

buffer is the buffer represented as bytes numpy byte array. Return numpy array with one row per ROI and 4
columns: data offset from the frame start, data bytes per pixel, ROI height, and ROI width.

pylablib.devices.Photometrics.pvcam.parse_metainfo_v1(buffer, nframes, stride)
Extract frames metainfo for frames with v1 or v2 header.

buffer is the buffer represented as bytes numpy byte array, nframes is the number of frames in it, and stride is the
frame stride (in bytes).

Return a 2D array with nframes rows and 7 columns: framestamp, timestampBOF, timestampEOF,
timestampRes, exposure, exposureRes, flags.

pylablib.devices.Photometrics.pvcam.parse_metainfo_v3(buffer, nframes, stride)
Extract frames metainfo for frames with v3 header.

buffer is the buffer represented as bytes numpy byte array, nframes is the number of frames in it, and stride is the
frame stride (in bytes).

Return a 2D array with nframes rows and 5 columns: framestamp, timestampBOF, timestampEOF,
exposure, flags.

754 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.PhotonFocus package

Submodules

pylablib.devices.PhotonFocus.PhotonFocus module

class pylablib.devices.PhotonFocus.PhotonFocus.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.PhotonFocus.PhotonFocus.query_camera_name(port)
Query cameras name at a given port in PFCam interface

class pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo(manufacturer, port, version, type)
Bases: tuple

manufacturer

port

type

version

pylablib.devices.PhotonFocus.PhotonFocus.list_cameras(only_supported=True)
List all cameras available through PFCam interface.

If only_supported==True, only return cameras which support PFCam protocol (this check only works if
the camera is not currently accessed by some other software). Return a list [(port, info)], where port
is the pfcam port given to IPhotonFocusCamera and its subclasses, and info is the information returned by
query_camera_name().

2.7. pylablib 755

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

pylablib.devices.PhotonFocus.PhotonFocus.get_cameras_number(only_supported=True)
Get the total number of connected PFCam cameras

pylablib.devices.PhotonFocus.PhotonFocus.get_port_index(manufacturer, port)
Find PhotonFocus port index based on the manufacturer and port

class pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute(port, name)
Bases: object

PFCam camera attribute.

Allows to query and set values and get additional information. Usually created automatically by a PhotonFocus
camera instance, but could also be created manually.

Parameters

• sid – camera session ID

• name – attribute text name

name

attribute name

kind

attribute kind; can be "INT", "UINT", "FLOAT", "BOOL", "MODE", "STRING", or "COMMAND"

readable

whether attribute is readable

Type
bool

writable

whether attribute is writable

Type
bool

is_command

whether attribute is a command

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

756 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max)

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

call_command(arg=0)
If attribute is a command, call it with a given argument; otherwise, raise an error

class pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo(model, serial_number, grabber_info)
Bases: tuple

grabber_info

model

serial_number

class pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera(pfcam_port=0, **kwargs)
Bases: IAttributeCamera

Generic PFCam interface to a PhotonFocus camera. Does not handle frames acquisition, so needs to be mixed
with a frame grabber class to be fully operational. In this mixing, the class attribute GrabberClass should be
set to this frame grabber class.

Parameters

• pfcam_port – port number for pfcam interface (can be learned by list_cameras();
port number is the first element of the camera data tuple) can also be a tuple
(manufacturer, port), e.g., ("National Instruments", "port0").

• kwargs – keyword arguments passed to the frame grabber initialization

Error

alias of DeviceError

GrabberClass = None

setup_max_baudrate()

Setup the maximal available baudrate

2.7. pylablib 757

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_baudrate()

Get the current baud rate

open()

Open connection to the camera

close()

Close connection to the camera

get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If enum_as_str==True, try
to represent enums as their string values; If name points at a dictionary branch, return a dictionary with all
values in this branch.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

get_all_attribute_values(root='', enum_as_str=True)
Get values of all attributes with the given root

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

update_attribute_value(name, value, error_on_missing=True, truncate=True)
Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms). Arguments
are the same as set_attribute_value().

call_command(name, arg=0, error_on_missing=True)
Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

fast_shift_roi(hstart=0, vstart=0)
Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which
might lead to errors later.

758 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

get_roi_limits(hbin=1, vbin=1)

get_exposure()

Get current exposure

set_exposure(exposure)
Set current exposure

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

is_CFR_enabled()

Check if the constant frame rate mode is enabled

enable_CFR(enabled=True)
Enable constant frame rate mode

get_trigger_interleave()

Check if the trigger interleave is on

set_trigger_interleave(enabled)
Set the trigger interleave option on or off

is_status_line_enabled()

Check if the status line is on

enable_status_line(enabled=True)
Enable or disable status line

get_black_level_offset()

Get the black level offset

set_black_level_offset(offset)
Set the black level offset

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

2.7. pylablib 759

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

760 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

2.7. pylablib 761

pylablib Documentation, Release 1.4.2

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),

762 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name='img0',
pfcam_port=0)

Bases: IPhotonFocusCamera, IMAQFrameGrabber

IMAQ+PFCam interface to a PhotonFocus camera.

Parameters

2.7. pylablib 763

pylablib Documentation, Release 1.4.2

• imaq_name – IMAQ interface name (can be learned by IMAQ.list_cameras(); usually,
but not always, starts with "img")

• pfcam_port – port number for pfcam interface (can be learned by list_cameras();
port number is the first element of the camera data tuple) can also be a tuple
(manufacturer, port), e.g., ("National Instruments", "port0").

Error

alias of DeviceError

GrabberClass

alias of IMAQFrameGrabber

open()

Open connection to the camera

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError = <Mock spec='str' id='140147906214224'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

call_command(name, arg=0, error_on_missing=True)
Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

clear_acquisition()

Clear all acquisition details and free all buffers

clear_all_triggers(reset_acquisition=True)
Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if
reset_acquisition==True, perform it automatically.

close()

Close connection to the camera

configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None,
reset_acquisition=True)

Configure input trigger.

Parameters

• trig_type (str) – trigger source type; can be "ext", "rtsi", "iso_in", or
"software"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_action (str) – trigger action; can be "none" (disable trigger), "capture"
(start capturing), "stop" (stop capturing), "buffer" (capture a single frame), or
"bufflist" (capture the whole buffer list once)

764 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• timeout (float) – timeout in seconds; None means not timeout.

• reset_acquisition (bool) – if the input triggers configuration has been changed,
acquisition needs to be restart; if True, perform it automatically

configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')
Configure trigger output.

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", or
"iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

• trig_drive (str) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted
when acquisition is done), "unasserted" (force unasserted level), "asserted"
(force asserted level), "hsync" (asserted on start of a single line start), "vsync" (as-
serted on start of a frame scan), "frame_start" (asserted when a single frame is
captured), or "frame_done" (asserted when a single frame is done)

enable_CFR(enabled=True)
Enable constant frame rate mode

enable_status_line(enabled=True)
Enable or disable status line

fast_shift_roi(hstart=0, vstart=0)
Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which
might lead to errors later.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attribute_values(root='', enum_as_str=True)
Get values of all attributes with the given root

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_all_grabber_attribute_values()

Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepre-
sented.

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

2.7. pylablib 765

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If enum_as_str==True, try
to represent enums as their string values; If name points at a dictionary branch, return a dictionary with all
values in this branch.

get_baudrate()

Get the current baud rate

get_black_level_offset()

Get the black level offset

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_exposure()

Get current exposure

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

766 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_attribute_value(attr, default=None, kind='auto')
Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error. kind is the
attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based on the stored
list of attribute kinds).

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

2.7. pylablib 767

pylablib Documentation, Release 1.4.2

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_serial_params()

Return serial parameters as a tuple (write_term, datatype)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_interleave()

Check if the trigger interleave is on

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_CFR_enabled()

Check if the constant frame rate mode is enabled

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

is_status_line_enabled()

Check if the status line is on

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

768 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_trigger(trig_type, trig_line=0, trig_pol='high')
Read current value of a trigger (input or output).

Parameters

• trig_type (str) – trigger drive destination type; can be "ext", "rtsi", "iso_in",
or "iso_out"

• trig_line (int) – trigger line number

• trig_pol (str) – trigger polarity; can be "high" or "low"

reset()

Reset connection to the camera

send_software_trigger()

Send software trigger signal

2.7. pylablib 769

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

serial_flush()

Flush CameraLink serial port

serial_read(n, timeout=3.0, datatype=None)
Read specified number of bytes from CameraLink serial port.

Parameters

• n – number of bytes to read

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

serial_readline(timeout=3.0, datatype=None, maxn=1024)
Read bytes from CameraLink serial port until the termination character (defined in camera file) is encoun-
tered.

Parameters

• timeout – operation timeout (in seconds)

• datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert
into UTF-8 string) if None, use the value set up using setup_serial_params() (by
default, "bytes")

• maxn – maximal number of bytes to read

serial_write(msg, timeout=3.0, term=None)
Write message into CameraLink serial port.

Parameters

• timeout – operation timeout (in seconds)

• term – additional write terminator character to add to the message; if None, use the
value set up using setup_serial_params() (by default, no additional terminator)

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

set_black_level_offset(offset)
Set the black level offset

set_device_variable(key, value)
Set the value of a settings parameter

set_exposure(exposure)
Set current exposure

770 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

set_grabber_attribute_value(attr, value, kind='int32')
Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double", or "auto" (autodetect based
on the stored list of attribute kinds).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

set_trigger_interleave(enabled)
Set the trigger interleave option on or off

2.7. pylablib 771

pylablib Documentation, Release 1.4.2

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

setup_max_baudrate()

Setup the maximal available baudrate

setup_serial_params(write_term='', datatype='bytes')
Setup default serial communication parameters.

Parameters

• write_term – default terminator character to be added to the sent messages

• datatype – type of the result of read commands; can be "bytes" (return raw bytes),
or "str" (convert into UTF-8 string)

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

update_attribute_value(name, value, error_on_missing=True, truncate=True)
Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms). Arguments
are the same as set_attribute_value().

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera(siso_board,
siso_applet=None,
siso_port=0,
pfcam_port=0)

Bases: IPhotonFocusCamera, SiliconSoftwareFrameGrabber

IMAQ+PFCam interface to a PhotonFocus camera.

Parameters

772 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

• siso_board – Silicon Software board index, starting from 0; available boards can be
learned by fgrab.list_boards()

• siso_applet – Silicon Software applet name, which can be learned by
fgrab.list_applets(); usually, a simple applet like "DualLineGray16" or
"MediumLineGray16 are most appropriate; can be either an applet name, or a direct
path to the applet DLL

• siso_port – Silicon Software port number, if several ports are supported by the camera
and the applet

• pfcam_port – port number for pfcam interface (can be learned by list_cameras();
port number is the first element of the camera data tuple) can also be a tuple
(manufacturer, port), e.g., ("National Instruments", "port0").

Error

alias of DeviceError

GrabberClass

alias of SiliconSoftwareFrameGrabber

open()

Open connection to the camera

class BufferManager(fg, siso_port)
Bases: object

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

allocate(nframes, frame_size)
Allocate and schedule buffers with the given number and size

deallocate()

Deallocate and remove the buffers

get_frames_data(idx, nframes=1)
Get buffer chunk addresses for the given number of frames starting from the given index

get_status()

Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

start_loop(run_nframes)
Start the copying loop and, optionally, run the acquisition loop with the given number of frames

stop_loop()

Stop the copying loop

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError = <Mock spec='str' id='140147713164112'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

2.7. pylablib 773

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

call_command(name, arg=0, error_on_missing=True)
Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

clear_acquisition()

Clear all acquisition details and free all buffers

close()

Close connection to the camera

enable_CFR(enabled=True)
Enable constant frame rate mode

enable_status_line(enabled=True)
Enable or disable status line

fast_shift_roi(hstart=0, vstart=0)
Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which
might lead to errors later.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attribute_values(root='', enum_as_str=True)
Get values of all attributes with the given root

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_all_grabber_attribute_values(root='', **kwargs)
Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

get_all_grabber_attributes(copy=False)
Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If enum_as_str==True, try
to represent enums as their string values; If name points at a dictionary branch, return a dictionary with all
values in this branch.

774 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_available_camlink_pixel_formats()

Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

get_baudrate()

Get the current baud rate

get_black_level_offset()

Get the black level offset

get_camlink_pixel_format()

Get CamLink pixel format and the output pixel format as a tuple

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_exposure()

Get current exposure

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

2.7. pylablib 775

pylablib Documentation, Release 1.4.2

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_genicam_info_xml()

Get description in Genicam-compatible XML format

get_grabber_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)
Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default. If de-
fault is not None, automatically assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. Additional arguments are passed to get_value
methods of the individual attribute.

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

776 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_system_info()

Get the dictionary with all system information parameters

get_trigger_interleave()

Check if the trigger interleave is on

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_CFR_enabled()

Check if the constant frame rate mode is enabled

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

2.7. pylablib 777

pylablib Documentation, Release 1.4.2

is_status_line_enabled()

Check if the status line is on

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

set_all_grabber_attribute_values(settings, root='', **kwargs)
Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

778 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

set_black_level_offset(offset)
Set the black level offset

set_device_variable(key, value)
Set the value of a settings parameter

set_exposure(exposure)
Set current exposure

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_merge(frame_merge=1)

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)
Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing. If name
points at a dictionary branch, set all values in this branch (in this case value must be a dictionary). Addi-
tional arguments are passed to set_value methods of the individual attribute.

2.7. pylablib 779

pylablib Documentation, Release 1.4.2

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

set_trigger_interleave(enabled)
Set the trigger interleave option on or off

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None,
bit_alignment='right_custom')

Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the for-
mat; otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel if fmt is
None, or 16 bit grayscale otherwise. bit_alignment can specify the alignment of the resulting data (applica-
ble when bits_per_pixel is not divisible by 8); can be "left", "right", "right_custom" (explicitly
calculate and set the number of bits to shift by whenever possible; this solves some issues on ME5 cards),
or an integer specifying the number of bits to shift.

setup_max_baudrate()

Setup the maximal available baudrate

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

780 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

update_attribute_value(name, value, error_on_missing=True, truncate=True)
Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms). Arguments
are the same as set_attribute_value().

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera(bitflow_idx=0,
bitflow_camfile=None,
pfcam_port=0)

Bases: IPhotonFocusCamera, BitFlowFrameGrabber

BitFlow+PFCam interface to a PhotonFocus camera.

Parameters

• bitflow_idx – board index, starting from 0

• bitflow_camfile – if not None, a path to a valid camera file used for this frame grabber
and camera combination; in this case, a temporary camera file is generated based on the
provided one and used to change some otherwise unavailable camera parameters such as
ROI and pixel bit depth (they are otherwise fixed to whatever is specified in the default
camera file)

• pfcam_port – port number for pfcam interface (can be learned by list_cameras();
port number is the first element of the camera data tuple) can also be a tuple
(manufacturer, port), e.g., ("National Instruments", "port0").

Error

alias of DeviceError

GrabberClass

alias of BitFlowFrameGrabber

open()

Open connection to the camera

setup_acquisition(mode='sequence', nframes=100, frame_merge=None)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

class BufferManager(cam)

Bases: object

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and
buffer overflow events

2.7. pylablib 781

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

get_status()

Get counter status: tuple (acquired,)

is_running()

Check if the buffer loop is running

reset()

Reset counter (on frame acquisition)

start_loop()

Start buffer scheduling loop

stop_loop()

Stop buffer scheduling loop

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of BitFlowTimeoutError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

call_command(name, arg=0, error_on_missing=True)
Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

clear_acquisition()

Clear all acquisition details and free all buffers

close()

Close connection to the camera

enable_CFR(enabled=True)
Enable constant frame rate mode

enable_status_line(enabled=True)
Enable or disable status line

fast_shift_roi(hstart=0, vstart=0)
Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which
might lead to errors later.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attribute_values(root='', enum_as_str=True)
Get values of all attributes with the given root

782 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If enum_as_str==True, try
to represent enums as their string values; If name points at a dictionary branch, return a dictionary with all
values in this branch.

get_baudrate()

Get the current baud rate

get_black_level_offset()

Get the black level offset

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (model, serial_number, grabber_info).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_exposure()

Get current exposure

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

2.7. pylablib 783

pylablib Documentation, Release 1.4.2

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

784 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_interleave()

Check if the trigger interleave is on

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_CFR_enabled()

Check if the constant frame rate mode is enabled

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

is_status_line_enabled()

Check if the status line is on

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,

2.7. pylablib 785

pylablib Documentation, Release 1.4.2

stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

set_black_level_offset(offset)
Set the black level offset

set_device_variable(key, value)
Set the value of a settings parameter

set_exposure(exposure)
Set current exposure

786 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_period(frame_period)
Set frame period (time between two consecutive frames in the internal trigger mode)

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

By default, all non-supplied parameters take extreme values.

set_trigger_interleave(enabled)
Set the trigger interleave option on or off

setup_max_baudrate()

Setup the maximal available baudrate

snap(timeout=5.0, return_info=False)
Snap a single frame

2.7. pylablib 787

pylablib Documentation, Release 1.4.2

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

update_attribute_value(name, value, error_on_missing=True, truncate=True)
Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms). Arguments
are the same as set_attribute_value().

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

pylablib.devices.PhotonFocus.PhotonFocus.check_grabber_association(cam)

Check if PhotonFocus camera has correct association between the frame grabber and the PFRemote interface.

cam should be an opened instance of PhotonFocusIMAQCamera or PhotonFocusSiSoCamera. Note that this
function changes camera parameters such as exposure, frame period, ROI, trigger source, and status line.

pylablib.devices.PhotonFocus.PhotonFocus.get_status_lines(frames, check_transposed=True,
drop_magic=True)

Extract status lines (up to first 6 entries) from the given frames.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D
arrays. Automatically check if the status line is present; return None if it’s not. If check_transposed==True,
check for the case where the image is transposed (i.e., line becomes a column). If drop_magic==True, remove
the first status line entry, which is simply a special number marking the status line presence. Return a 1D or 2D
numpy array, where the first axis (if present) is the frame number, and the last is the status line entry The entries
after the magic are the frame index, timestamp (in us), missed trigger counters (up to 255), average frame value,
and the integration time (in pixel clock cycles, which depend on the camera).

pylablib.devices.PhotonFocus.PhotonFocus.get_status_line_position(frame,
check_transposed=True)

Check whether status line is present in the frame, and return its location.

Return tuple (row, transposed), where row is the status line row (can be -1 or -2) and transposed is True if
the line is present in the transposed image. If no status line is found, return None. If check_transposed==True,
check for the case where the image is transposed (i.e., line becomes a column).

pylablib.devices.PhotonFocus.PhotonFocus.remove_status_line(frame, sl_pos='calculate',
policy='duplicate', copy=True)

Remove status line from the frame.

Parameters

788 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

• frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame
number)

• sl_pos – status line position (returned by get_status_line_position()); if equal to
"calculate", calculate here; for a 3D array, assumed to be the same for all frames

• policy – determines way to deal with the status line; can be "keep" (keep as is), "cut"
(cut off the status line row), "zero" (set it to zero), "median" (set it to the image median),
or "duplicate" (set it equal to the previous row; default)

• copy – if True, make copy of the original frames; otherwise, attempt to remove the line
in-place

pylablib.devices.PhotonFocus.PhotonFocus.find_skipped_frames(lines, step=1)
Check if there are skipped frames based on status line reading.

step specifies expected index step between neighboring frames.

Return list [(idx, skipped)], where idx is the index after which skipped frames were skipped.

class pylablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker

Bases: StatusLineChecker

check_indices(indices, step=1)
Check if indices are consistent with the given step

get_framestamp(frames)
Get framestamps from status lines in the given frames

Module contents

pylablib.devices.PhysikInstrumente package

Submodules

pylablib.devices.PhysikInstrumente.base module

exception pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError

Bases: DeviceError

Generic Physik Instrumente error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError(exc)
Bases: PhysikInstrumenteError, DeviceBackendError

Generic Physik Instrumente backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

2.7. pylablib 789

pylablib Documentation, Release 1.4.2

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.PhysikInstrumente.base.GenericPIController(conn, auto_online=True)
Bases: ICommBackendWrapper, IMultiaxisStage

Generic Physik Instrumente controller.

Parameters

• conn – connection parameters (usually port or a tuple containing port and baudrate)

• auto_online – if True, switch to the online mode upon connection; in this online mode
controller parameters are controlled remotely instead of the front panel (including external
voltages), while in the offline mode most of the parameters are still controlled manually,
and the remote connection is mostly used for readout

Error

alias of PhysikInstrumenteError

open()

Open the backend

query(comm, multiline=False, reply=True)
Query a single command to the controller.

If multiline==True, expect a multi-line reply and return a list with separate reply lines; otherwise,
expect a single-line reply and raise an error if multi-line reply is received.

If reply==False, expect no reply at all (used for, e.g., set commands).

query_axis(comm, axis=None, subidx=None, kind='str')
Query the given command for the given axis.

axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes. If axis is a single
axis, simply return the corresponding value; otherwise, return a dict {axis: value}. kind can specify
value kind: "str" (return as is), "float", "int", or "bool".

set_axis(comm, value, axis=None, subidx=None, reply=False)
Query the given value for the given axis.

value can be a single value (set the same for all specified axes), a list of values (one per axis), or a dict
{axis: value}. axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all
axes. If reply==False, expect no reply.

get_id()

Get the device ID string

get_help()

Get the help for all commands; might take a long time on low-speed serial connections

is_online_enabled()

Check if online mode is enabled

enable_online(enable=True)
Enable or disable online mode

get_axis_parameter(pid, axis=None, kind='str')
Get value of the given parameter id for the given axis (all axes by default)

790 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_axis_parameter(pid, value, axis=None, kind='str')
Get value of the given parameter id for the given axis (all axes by default)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 791

pylablib Documentation, Release 1.4.2

class pylablib.devices.PhysikInstrumente.base.PIE516(conn, auto_online=True)
Bases: GenericPIController

Physik Instrumente E-516 controller.

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• auto_online – if True, switch to the online mode upon connection; in this online mode
controller parameters such as voltages or positions are controlled remotely instead of the
front panel (including external voltages), while in the offline mode most of the parameters
are still controlled manually, and the remote connection is mostly used for readout

is_servo_enabled(axis=None)
Check if the servo is enabled on the given axis (all axes by default)

enable_servo(enable=True, axis=None)
Enable or disable servo on the given axis (all axes by default)

is_drift_compensation_enabled(axis=None)
Check if the drift compensation is enabled on the given axis (all axes by default)

enable_drift_compensation(enable=True, axis=None)
Enable or disable drift compensation on the given axis (all axes by default)

is_velocity_control_enabled(axis=None)
Check if the velocity control is enabled on the given axis (all axes by default)

enable_velocity_control(enable=True, axis=None)
Enable or disable velocity control on the given axis (all axes by default)

get_voltage_setpoint(axis=None)
Get the current voltage setpoint on the given axis (all axes by default)

get_voltage(axis=None)
Get the actual voltage value on the given axis (all axes by default)

set_voltage(voltage, axis=None)
Get the target voltage on the given axis (all axes by default)

get_voltage_lower_limit(axis=None)
Get the lower output voltage limit on the given axis (all axes by default)

set_voltage_lower_limit(voltage, axis=None)
Get the lower output voltage limit on the given axis (all axes by default)

get_voltage_upper_limit(axis=None)
Get the upper output voltage limit on the given axis (all axes by default)

set_voltage_upper_limit(voltage, axis=None)
Get the upper output voltage limit on the given axis (all axes by default)

get_velocity(axis=None)
Get velocity on the given axis (all axes by default)

set_velocity(velocity, axis=None)
Set velocity on the given axis (all axes by default)

792 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_position(axis=None)
Get the current position on the given axis

get_target_position(axis=None)
Get the target motion position on the given axis

move_to(position, axis=None)
Move the given axis to the given position

move_by(distance, axis=None)
Move the given axis by the given distance

stop(axis=None)
Stop motion on the given axis (all axes by default)

get_position_lower_limit(axis=None)
Get the lower position limit on the given axis (all axes by default)

set_position_lower_limit(position, axis=None)
Get the lower position limit on the given axis (all axes by default)

get_position_upper_limit(axis=None)
Get the upper position limit on the given axis (all axes by default)

set_position_upper_limit(position, axis=None)
Get the upper position limit on the given axis (all axes by default)

Error

alias of PhysikInstrumenteError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

enable_online(enable=True)
Enable or disable online mode

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_axis_parameter(pid, axis=None, kind='str')
Get value of the given parameter id for the given axis (all axes by default)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 793

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_help()

Get the help for all commands; might take a long time on low-speed serial connections

get_id()

Get the device ID string

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_online_enabled()

Check if online mode is enabled

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(comm, multiline=False, reply=True)
Query a single command to the controller.

If multiline==True, expect a multi-line reply and return a list with separate reply lines; otherwise,
expect a single-line reply and raise an error if multi-line reply is received.

If reply==False, expect no reply at all (used for, e.g., set commands).

query_axis(comm, axis=None, subidx=None, kind='str')
Query the given command for the given axis.

axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes. If axis is a single
axis, simply return the corresponding value; otherwise, return a dict {axis: value}. kind can specify
value kind: "str" (return as is), "float", "int", or "bool".

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_axis(comm, value, axis=None, subidx=None, reply=False)
Query the given value for the given axis.

794 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

value can be a single value (set the same for all specified axes), a list of values (one per axis), or a dict
{axis: value}. axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all
axes. If reply==False, expect no reply.

set_axis_parameter(pid, value, axis=None, kind='str')
Get value of the given parameter id for the given axis (all axes by default)

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.PhysikInstrumente.base.PIE515(conn, auto_online=True)
Bases: IMultiaxisStage, SCPIDevice

Physik Instrumente E-515 controller.

Parameters

• conn – connection parameters (usually port or a tuple containing port and baudrate)

• auto_online – if True, switch to the online mode upon connection; in this online mode
controller parameters are controlled remotely instead of the front panel (including external
voltages), while in the offline mode most of the parameters are still controlled manually,
and the remote connection is mostly used for readout

Error

alias of PhysikInstrumenteError

ReraiseError

alias of PhysikInstrumenteBackendError

open()

Open the connection

close()

Close the connection

is_online_enabled()

Check if online mode is enabled

enable_online(enable=True, safe=False)
Enable or disable online mode.

If safe==True and enable==True, set the current voltage and position setpoints to be equal to the cur-
rently read values; this avoids sudden change of output voltages when enabling the online mode. Note
that this only works if all servo modes are off (enabling online mode always forcibly turns them off, which
might lead to the output voltage jump).

get_current_axis()

Select the current measurement channel

select_axis(axis)
Select the current default axis

is_servo_enabled(axis=None)
Check if the servo is enabled on the given axis (current axis by default)

2.7. pylablib 795

pylablib Documentation, Release 1.4.2

enable_servo(enable=True, axis=None)
Enable or disable servo on the given axis (current axis by default)

get_voltage_setpoint(axis=None)
Get the current voltage setpoint on the given axis (current axis by default)

get_voltage(axis=None)
Get the actual voltage value on the given axis (current axis by default)

set_voltage(voltage, axis=None)
Get the target voltage on the given axis (current axis by default)

get_voltage_lower_limit(axis=None)
Get the lower output voltage limit on the given axis (current axis by default)

set_voltage_lower_limit(voltage, axis=None)
Get the lower output voltage limit on the given axis (current axis by default)

get_voltage_upper_limit(axis=None)
Get the upper output voltage limit on the given axis (current axis by default)

set_voltage_upper_limit(voltage, axis=None)
Get the upper output voltage limit on the given axis (current axis by default)

get_position(axis=None)
Get current measured position on the given axis (current axis by default)

get_target_position(axis=None)
Get the target motion position on the given axis

move_to(position, axis=None)
Move the given axis to the given position

move_by(distance, axis=None)
Move the given axis by the given distance

get_position_lower_limit(axis=None)
Get the lower position limit on the given axis (current axis by default)

set_position_lower_limit(position, axis=None)
Get the lower position limit on the given axis (current axis by default)

get_position_upper_limit(axis=None)
Get the upper position limit on the given axis (current axis by default)

set_position_upper_limit(position, axis=None)
Get the upper position limit on the given axis (current axis by default)

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

796 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

get_all_axes()

Get the list of all available axes (taking mapping into account)

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

2.7. pylablib 797

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

798 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

2.7. pylablib 799

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.PrincetonInstruments package

Submodules

pylablib.devices.PrincetonInstruments.picam module

class pylablib.devices.PrincetonInstruments.picam.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

class pylablib.devices.PrincetonInstruments.picam.TCameraInfo(name, serial_number, model,
interface)

Bases: tuple

interface

model

name

serial_number

pylablib.devices.PrincetonInstruments.picam.list_cameras()

List all cameras available through Picam interface

pylablib.devices.PrincetonInstruments.picam.get_cameras_number()

Get number of connected Picam cameras

class pylablib.devices.PrincetonInstruments.picam.TROIConstraints(flags, nrois, xrng, wrng, xbins,
yrng, hrng, ybins)

Bases: tuple

800 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

flags

hrng

nrois

wrng

xbins

xrng

ybins

yrng

class pylablib.devices.PrincetonInstruments.picam.PicamAttribute(handle, pid)
Bases: object

Object representing an Picam camera parameter.

Allows to query and set values and get additional information. Usually created automatically by an PicamCamera
instance, but could be created manually.

Parameters

• handle – camera handle

• pid – parameter id of the attribute

name

attribute name

kind

attribute kind; can be "Integer", "Large Integer", "Floating Point", "Enumeration",
"Boolean", or "Rois"

exists

whether attribute is available on the current hardware

Type
bool

relevant

whether attribute value is applicable to the hardware

Type
bool

read_directly

whether value can be read directly from the device; if True, then get_value()will automatically use the
appropriate method

Type
bool

value_access

value access kind, which shows whether value can be written

Type
str

2.7. pylablib 801

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

writable

whether value is read-only

Type
bool

default

default parameter value (only for writable parameters)

can_set_online

whether value can be changed during acquisition

Type
bool

cons_type

constraint type, e.g., "Collection", "Range", or "None"

Type
str

cons_permanent

whether the constraint is permanent, or dependent on other parameters; if False, then use
update_limits() to update the constraints

Type
bool

cons_error

whether setting the out-of-range parameter causes error or just warning

Type
bool

cons_novalid

whether no parameter value is valid

Type
bool

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

inc

minimal attribute increment value (if applicable)

Type
float or int

cons_excluded

list of special parameters which are within the range but are excluded

802 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

cons_included

list of special parameters which are outside the range but are included

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

update_limits(force=False)
Update attribute constraints.

If force==False and the constraints are permanent, skip the update.

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

class pylablib.devices.PrincetonInstruments.picam.TDeviceInfo(name, serial_number, model,
interface)

Bases: tuple

interface

model

name

serial_number

class pylablib.devices.PrincetonInstruments.picam.TFrameInfo(frame_index, timestamp_start,
timestamp_end, framestamp)

Bases: tuple

frame_index

framestamp

timestamp_end

timestamp_start

2.7. pylablib 803

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.PrincetonInstruments.picam.PicamCamera(serial_number=None)
Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Generic Picam camera interface.

Parameters
serial_number – camera serial number; if None, connect to the first non-used camera

Error = <Mock name='mock.PicamError' id='140147701191184'>

TimeoutError = <Mock spec='str' id='140147697778064'>

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)
Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return
default. If default is not None, assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. If enum_as_str==True, return enum-style
values as strings; otherwise, return corresponding integer values.

set_attribute_value(name, value, truncate=True, error_on_missing=True)
Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do
nothing. If name points at a dictionary branch, set all values in this branch (in this case value must be a
dictionary). If truncate==True, truncate value to lie within attribute range.

get_all_attribute_values(root='', enum_as_str=True)
Get values of all attributes with the given root

set_all_attribute_values(settings, root='', truncate=True)
Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

get_device_info()

Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

get_pixel_size()

Get camera pixel size (in m)

enable_metadata(enable=True)
Enable or disable metadata

is_metadata_enabled(individual=False)
Check if metadata is enabled.

If individual==True, return individual metadata info (time_stamp_start, time_stamp_end,
frame_stamp, gate_delay, modulation_phase). Otherwise, return simply True or False depend-
ing on whether the basic group (time- and frame-stamps) is enabled. In this case, if the value is inconsistent
with either for the groups, fix this to be consistent.

804 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

get_frame_period(per_readout=False)
Get frame period (time between two consecutive frames in the internal trigger mode)

If per_readout==True, return time difference between readouts, which can contain more than one frame;
otherwise, return average time per frame (keep in mind that the frames still come in single unbroken
readout).

get_frame_timings(per_readout=False)
Get acquisition timing.

Return tuple (exposure, frame_period). If per_readout==True, frame period difference between
readouts, which can contain more than one frame; otherwise, it is the time per frame (keep in mind that
the frames still come in single unbroken readout).

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acqui-
sition). nframes sets up number of frame buffers. If there are multiple frames per readout, it still means
the number of frames, and the number of readouts is set up to contain all required frames (e.g., 10 frames
per readout and 15 frames result in 2 readouts).

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).

2.7. pylablib 805

pylablib Documentation, Release 1.4.2

Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

806 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

2.7. pylablib 807

pylablib Documentation, Release 1.4.2

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

808 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images
but not mark them as read. missing_frame determines what to do with frames which are out of range
(missing or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled
frame), or "skip" (skipping them). If return_info==True, return tuple (frames, infos), where
infos is a list of TFrameInfo instances describing frame index and frame metadata, which contains start
and stop timestamps, and framestamp; if some frames are missing and missing_frame!="skip", the
corresponding frame info is None. if return_rng==True, return the range covered resulting frames; if
missing_frame=="skip", the range can be smaller than the supplied rng if some frames are skipped.

Module contents

pylablib.devices.Rigol package

Submodules

pylablib.devices.Rigol.base module

exception pylablib.devices.Rigol.base.GenericRigolError

Bases: DeviceError

Generic Rigol error

2.7. pylablib 809

pylablib Documentation, Release 1.4.2

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Rigol.base.GenericRigolBackendError(exc)
Bases: GenericRigolError, DeviceBackendError

Rigol backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Rigol.power_supply module

class pylablib.devices.Rigol.power_supply.DP1116A(addr)
Bases: SCPIDevice

Rigol DP1116A DC power supply.

Parameters
addr – device address (usually a VISA name).

Error

alias of GenericRigolError

ReraiseError

alias of GenericRigolBackendError

is_output_enabled()

Check if the output is enabled

enable_output(enable=True)
Enable or disable the output

get_output_range()

Get output range.

Can be either "16V" (16V/10A) or "32V" (32V/5A).

set_output_range(value='16V')
Set output range.

Can be either "16V" (16V/10A) or "32V" (32V/5A).

get_voltage_setpoint()

Get output voltage setpoint

get_voltage()

Get the actual output voltage

810 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_voltage(value)
Set output voltage setpoint

get_current_setpoint()

Get output current setpoint

get_current()

Get the actual output current

set_current(value)
Set output current setpoint

get_power()

Get the actual output power

get_ovp_threshold()

Get over-voltage protection threshold

set_ovp_threshold(value)
Set over-voltage protection threshold

is_ovp_enabled()

Check if the over-voltage protection is enabled

enable_ovp(enable=True)
Enable or disable the over-voltage protection

get_ocp_threshold()

Get over-current protection threshold

set_ocp_threshold(value)
Set over-current protection threshold

is_ocp_enabled()

Check if the over-current protection is enabled

enable_ocp(enable=True)
Enable or disable the over-current protection

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

2.7. pylablib 811

pylablib Documentation, Release 1.4.2

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this

812 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

2.7. pylablib 813

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

Module contents

pylablib.devices.SiliconSoftware package

Submodules

pylablib.devices.SiliconSoftware.fgrab module

class pylablib.devices.SiliconSoftware.fgrab.TBoardInfo(name, full_name, serial)
Bases: tuple

full_name

name

serial

pylablib.devices.SiliconSoftware.fgrab.TFullBoardInfo

alias of TBoardInfo

pylablib.devices.SiliconSoftware.fgrab.get_board_info(board, full_desc=False)
Get board info for a given index (starting from 0)

pylablib.devices.SiliconSoftware.fgrab.list_boards(full_desc=False)
List all boards available through Silicon Software interface

pylablib.devices.SiliconSoftware.fgrab.get_boards_number()

List number of connected Silicon Software boards

814 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.SiliconSoftware.fgrab.TAppletInfo(name, file)
Bases: tuple

file

name

class pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo(name, uid, desc, category, platform,
tags, version, path, file, flags, info)

Bases: tuple

category

desc

file

flags

info

name

path

platform

tags

uid

version

pylablib.devices.SiliconSoftware.fgrab.list_applets(board, full_desc=False, valid=True,
on_board=False)

List all applets available for this board.

board is the board index (starting from 0) given by its position in the list returned by list_boards(). If
full_desc==True, return full description for each applet; otherwise, return only name and file name. If
valid==True, list only valid and compatible applets; otherwise, list all applets. If on_board==True, list applets
running on board; otherwise, list all applets contained in the system.

pylablib.devices.SiliconSoftware.fgrab.get_applet_info(board, **kwargs)
Return full information for an applet with the given parameters (e.g., name, or full path)

class pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute(fg, aid, port=0, system=False,
idx=None)

Bases: object

Object representing an Silicon Software frame grabber parameter.

Allows to query and set values and get additional information. Usually created automatically by an :class:``
instance, but could be created manually.

Parameters

• fg – opened frame grabber handle

• aid – attribute ID

• port – camera port within the frame grabber

2.7. pylablib 815

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• system – if True, this is a system attribute; otherwise, it is a camera attribute

• idx – if system==True and fg is None, it can specify a board index for a not yet opened
grabber

name

attribute name

kind

attribute kind; can be "i32", "i64", "u32", "u64", "f64", or "str"

min

minimal attribute value (if applicable)

Type
float or int

max

maximal attribute value (if applicable)

Type
float or int

inc

minimal attribute increment value (if applicable)

Type
float or int

ivalues

list of possible integer values for enum attributes

values

list of possible text values for enum attributes

labels

dict {label: index} which shows all possible values of an enumerated attribute and their correspond-
ing numerical values

ilabels

dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

update_limits()

Update minimal and maximal attribute limits and return tuple (min, max, inc)

truncate_value(value)
Truncate value to lie within attribute limits

get_value(enum_as_str=True)
Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer
values.

set_value(value, truncate=True)
Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

816 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

class pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo(applet_info, system_info,
software_version)

Bases: tuple

applet_info

software_version

system_info

class pylablib.devices.SiliconSoftware.fgrab.TFrameInfo(frame_index, framestamp, timestamp,
timestamp_long)

Bases: tuple

frame_index

framestamp

timestamp

timestamp_long

class pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber(siso_board=0,
siso_applet=None,
siso_port=0,
siso_detector_size=None,
do_open=True,
**kwargs)

Bases: IGrabberAttributeCamera, IROICamera

Generic Silicon Software frame grabber interface.

Compared to SiliconSoftwareCamera, has more permissive initialization arguments, which simplifies its use
as a base class for expanded cameras.

Parameters

• siso_board – board index, starting from 0; available boards can be learned by
list_boards()

• siso_applet – applet name, which can be learned by list_applets(); usually, a sim-
ple applet like "DualLineGray16" or "MediumLineGray16 are most appropriate; can
be either an applet name, or a direct path to the applet DLL

• siso_port – port number, if several ports are supported by the grabber and the applet

• siso_detector_size – if not None, can specify the maximal detector size; by default,
use the maximal available for the frame grabber (usually, 16384x16384)

Error = <Mock name='mock.SiliconSoftwareError' id='140147713351504'>

TimeoutError = <Mock spec='str' id='140147713164112'>

open()

Open connection to the camera

close()

Close connection to the camera

2.7. pylablib 817

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

get_all_grabber_attribute_values(root='', **kwargs)
Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

set_all_grabber_attribute_values(settings, root='', **kwargs)
Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

get_system_info()

Get the dictionary with all system information parameters

get_genicam_info_xml()

Get description in Genicam-compatible XML format

get_device_info()

Get camera model data.

Return tuple (applet_info, system_info, software_version) with the board serial number and
an the interface type (e.g., "1430" for NI PCIe-1430)

set_frame_merge(frame_merge=1)

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

818 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

class BufferManager(fg, siso_port)
Bases: object

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

allocate(nframes, frame_size)
Allocate and schedule buffers with the given number and size

deallocate()

Deallocate and remove the buffers

start_loop(run_nframes)
Start the copying loop and, optionally, run the acquisition loop with the given number of frames

stop_loop()

Stop the copying loop

get_status()

Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

get_frames_data(idx, nframes=1)
Get buffer chunk addresses for the given number of frames starting from the given index

setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None,
bit_alignment='right_custom')

Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the for-
mat; otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel if fmt is
None, or 16 bit grayscale otherwise. bit_alignment can specify the alignment of the resulting data (applica-
ble when bits_per_pixel is not divisible by 8); can be "left", "right", "right_custom" (explicitly
calculate and set the number of bits to shift by whenever possible; this solves some issues on ME5 cards),
or an integer specifying the number of bits to shift.

get_camlink_pixel_format()

Get CamLink pixel format and the output pixel format as a tuple

get_available_camlink_pixel_formats()

Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

2.7. pylablib 819

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

clear_acquisition()

Clear all acquisition details and free all buffers

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_grabber_attributes(copy=False)
Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

820 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_grabber_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)
Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default. If de-
fault is not None, automatically assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. Additional arguments are passed to get_value
methods of the individual attribute.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

2.7. pylablib 821

pylablib Documentation, Release 1.4.2

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

822 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)
Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing. If name
points at a dictionary branch, set all values in this branch (in this case value must be a dictionary). Addi-
tional arguments are passed to set_value methods of the individual attribute.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

2.7. pylablib 823

pylablib Documentation, Release 1.4.2

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera(board, applet=None, port=0,
detector_size=None)

Bases: SiliconSoftwareFrameGrabber

Generic Silicon Software frame grabber interface.

Parameters

• board – board index, starting from 0; available boards can be learned by list_boards()

• applet – applet name, which can be learned by list_applets(); usually, a simple
applet like "DualLineGray16" or "MediumLineGray16 are most appropriate; can be
either an applet name, or a direct path to the applet DLL

• port – port number, if several ports are supported by the camera and the applet

• detector_size – if not None, can specify the maximal detector size; by default, use the
maximal available for the frame grabber (usually, 16384x16384)

class BufferManager(fg, siso_port)
Bases: object

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

allocate(nframes, frame_size)
Allocate and schedule buffers with the given number and size

deallocate()

Deallocate and remove the buffers

get_frames_data(idx, nframes=1)
Get buffer chunk addresses for the given number of frames starting from the given index

get_status()

Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

start_loop(run_nframes)
Start the copying loop and, optionally, run the acquisition loop with the given number of frames

stop_loop()

Stop the copying loop

Error = <Mock name='mock.SiliconSoftwareError' id='140147713351504'>

FrameTransferError

alias of DefaultFrameTransferError

824 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

TimeoutError = <Mock spec='str' id='140147713164112'>

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear all acquisition details and free all buffers

close()

Close connection to the camera

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_all_grabber_attribute_values(root='', **kwargs)
Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

get_all_grabber_attributes(copy=False)
Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_available_camlink_pixel_formats()

Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

get_camlink_pixel_format()

Get CamLink pixel format and the output pixel format as a tuple

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_info()

Get camera model data.

Return tuple (applet_info, system_info, software_version) with the board serial number and
an the interface type (e.g., "1430" for NI PCIe-1430)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

2.7. pylablib 825

pylablib Documentation, Release 1.4.2

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_genicam_info_xml()

Get description in Genicam-compatible XML format

get_grabber_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)
Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default. If de-
fault is not None, automatically assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. Additional arguments are passed to get_value
methods of the individual attribute.

get_grabber_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

826 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_grabber_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_grabber_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_system_info()

Get the dictionary with all system information parameters

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

2.7. pylablib 827

pylablib Documentation, Release 1.4.2

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open connection to the camera

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_all_grabber_attribute_values(settings, root='', **kwargs)
Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

828 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_merge(frame_merge=1)

set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)
Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing. If name
points at a dictionary branch, set all values in this branch (in this case value must be a dictionary). Addi-
tional arguments are passed to set_value methods of the individual attribute.

set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

2.7. pylablib 829

pylablib Documentation, Release 1.4.2

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

setup_acquisition(mode='sequence', nframes=100)
Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous ac-
quisition). (note that IMAQCamera.acquisition_in_progress() would still return True in this case,
even though new frames are no longer acquired). nframes sets up number of frame buffers.

setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None,
bit_alignment='right_custom')

Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the for-
mat; otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel if fmt is
None, or 16 bit grayscale otherwise. bit_alignment can specify the alignment of the resulting data (applica-
ble when bits_per_pixel is not divisible by 8); can be "left", "right", "right_custom" (explicitly
calculate and set the number of bits to shift by whenever possible; this solves some issues on ME5 cards),
or an integer specifying the number of bits to shift.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

830 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.Sirah package

Submodules

pylablib.devices.Sirah.Matisse module

class pylablib.devices.Sirah.Matisse.TThinetCtlParameters(setpoint, P, I , avg)
Bases: tuple

I

P

avg

setpoint

class pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters(amplitude, rate, oversamp)
Bases: tuple

amplitude

oversamp

rate

class pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters(P, avg, phase)
Bases: tuple

P

avg

phase

class pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters(ampl, phase)
Bases: tuple

ampl

phase

class pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters(setpoint, P, I , freeP)
Bases: tuple

I

P

freeP

setpoint

class pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters(setpoint, I , lockpoint)
Bases: tuple

2.7. pylablib 831

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

I

lockpoint

setpoint

class pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters(lower_limit, upper_limit,
oversamp, mode)

Bases: tuple

lower_limit

mode

oversamp

upper_limit

class pylablib.devices.Sirah.Matisse.TScanMode(falling, stop_lower, stop_upper)
Bases: tuple

falling

stop_lower

stop_upper

class pylablib.devices.Sirah.Matisse.TScanParameters(device, mode, lower_limit, upper_limit,
rise_speed, fall_speed)

Bases: tuple

device

fall_speed

lower_limit

mode

rise_speed

upper_limit

class pylablib.devices.Sirah.Matisse.SirahMatisse(addr)
Bases: SCPIDevice

Sirah Matisse laser control.

Parameters
addr – device address (usually a VISA name).

Error

alias of GenericSirahError

ReraiseError

alias of GenericSirahBackendError

832 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

ask(*args, **kwargs)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

get_diode_power()

Get the current laser resonator power

get_diode_power_waveform()

Get the current laser resonator power waveform

get_diode_power_lowlevel()

Get the low-level cutoff current laser resonator power

set_diode_power_lowlevel(cutoff)
Set the low-level cutoff current laser resonator power

get_thinet_power()

Get the current thin etalon reflex power

get_refcell_waveform()

Get the reference cell signal waveform

bifi_get_position()

Get the current position of the birefringent filter motor

bifi_get_range()

Get the maximum position of the birefringent filter motor

bifi_get_status_n()

Get the numerical status of the birefringent filter motor

bifi_get_status()

Get the parsed status of the birefringent filter motor.

Return tuple (code, bits) with, correspondingly, the general status/error code (e.g., "idle",
"moving_abs", or "position_out_of_range"), and a set of active status bits (e.g., "moving",
"error", or "limit_sw1").

bifi_clear_errors()

Clear the indicated errors of the birefringent filter motor

bifi_is_moving()

Check if the birefringent filter is moving

bifi_wait_move(timeout=30.0)
Wait until birefringent filter is done moving

bifi_move_to(position, wait=True, wait_timeout=30.0)
Move the birefringent filter to the current position

bifi_stop()

Stop the birefringent filter motor

bifi_home(wait=True, wait_timeout=30.0)
Home the birefringent filter motor

2.7. pylablib 833

pylablib Documentation, Release 1.4.2

thinet_get_position()

Get the current position of the thin etalon motor

thinet_get_range()

Get the maximum position of the thin etalon motor

thinet_get_status_n()

Get the numerical status of the thin etalon motor

thinet_get_status()

Get the parsed status of the thin etalon motor.

Return tuple (code, bits) with, correspondingly, the general status/error code (e.g., "idle",
"moving_abs", or "position_out_of_range"), and a set of active status bits (e.g., "moving",
"error", or "limit_sw1").

thinet_clear_errors()

Clear the indicated errors of the thin etalon motor

thinet_is_moving()

Check if the thin etalon is moving

thinet_wait_move(timeout=30.0)
Wait until thin etalon is done moving

thinet_move_to(position, wait=True, wait_timeout=30.0)
Move the thin etalon to the current position

thinet_stop()

Stop the thin etalon motor

thinet_home(wait=True, wait_timeout=30.0)
Home the thin etalon motor

get_thinet_ctl_status()

Get thin etalon lock status ("run" or "stop")

set_thinet_ctl_status(status='run')
Set thin etalon lock status ("run" or "stop")

get_thinet_error_signal()

Get error signal of the thin etalon lock (emulated when not available on older firmware)

get_thinet_ctl_params()

Get thin etalon lock control parameters.

Return tuple (setpoint, P, I, avg).

set_thinet_ctl_params(setpoint=None, P=None, I=None, avg=None)
Set thin etalon lock control parameters.

Any parameters which are None remain unchanged.

get_piezoet_ctl_status()

Get piezo etalon lock status ("run" or "stop")

set_piezoet_ctl_status(status='run')
Set piezo etalon lock status ("run" or "stop")

834 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_piezoet_position()

Get piezo etalon DC position

set_piezoet_position(value)
Set piezo etalon lock DC position

get_piezoet_drive_params()

Get piezo etalon drive parameters.

Return tuple (amplitude, rate, oversamp).

set_piezoet_drive_params(amplitude=None, rate=None, oversamp=None)
Set piezo etalon drive parameters.

oversamp should be between 8 and 32. rate can take values "8k", "32k", "48k", or "96k". Any param-
eters which are None remain unchanged.

get_piezoet_feedback_params()

Get piezo etalon feedback parameters.

Return tuple (P, avg, phase) (phase is integer between 0 and oversampling).

set_piezoet_feedback_params(P=None, avg=None, phase=None)
Set piezo etalon feedback parameters.

Phase is integer between 0 and oversampling. Any parameters which are None remain unchanged.

get_piezoet_feedforward_params()

Get piezo etalon feedforward parameters.

Return tuple (amp, phase) (phase is integer between 0 and oversampling).

set_piezoet_feedforward_params(amp=None, phase=None)
Set piezo etalon feedforward parameters.

Phase is integer between 0 and oversampling. Any parameters which are None remain unchanged.

get_slowpiezo_ctl_status()

Get slow piezo lock status ("run" or "stop")

set_slowpiezo_ctl_status(status='run')
Set slow piezo lock status ("run" or "stop")

get_slowpiezo_position()

Get slow piezo DC position

set_slowpiezo_position(value)
Set slow piezo DC position

get_slowpiezo_ctl_params()

Get slow piezo lock control parameters.

Return tuple (setpoint, P, I, freeP).

set_slowpiezo_ctl_params(setpoint=None, P=None, I=None, freeP=None)
Set slow piezo lock control parameters.

Any parameters which are None remain unchanged.

get_fastpiezo_ctl_status()

Get fast piezo lock status ("run" or "stop")

2.7. pylablib 835

pylablib Documentation, Release 1.4.2

set_fastpiezo_ctl_status(status='run')
Set fast piezo lock status ("run" or "stop")

is_fastpiezo_locked()

Check if the fast piezo is locked (output is between 5% and 95%)

get_fastpiezo_position()

Get fast piezo DC position between 0 and 1

set_fastpiezo_position(value)
Set fast piezo DC position between 0 and 1

get_fastpiezo_ctl_params()

Get fast piezo lock control parameters.

Return tuple (setpoint, I, lockpoint).

set_fastpiezo_ctl_params(setpoint=None, I=None, lockpoint=None)
Set fast piezo lock control parameters.

Any parameters which are None remain unchanged.

get_refcell_position()

Get reference cell DC position between 0 and 1

set_refcell_position(value)
Set reference cell DC position between 0 and 1

get_refcell_waveform_params()

Get reference cell waveform parameters.

Return tuple (lower_limit, upper_limit, oversamp, mode). mode can be "none", "avg",
"min", or "max".

set_refcell_waveform_params(lower_limit=None, upper_limit=None, oversamp=None, mode=None)
Set reference cell waveform parameters.

Any parameters which are None remain unchanged. mode can be "none", "avg", "min", or "max".
oversamp should be between 4 and 512.

get_scan_status()

Get scan status ("run" or "stop")

set_scan_status(status='run')
Set scan status ("run" or "stop")

wait_scan(timeout=None)
Wait until scan is stopped

get_scan_position()

Get scan position

set_scan_position(value)
Set scan position

get_scan_params()

Get scan parameters.

Return tuple (device, mode, lower_limit, upper_limit, rise_speed, fall_speed).
device can be "none", "slow_piezo", or "ref_cell". mode is a tuple (falling, stop_lower,
stop_upper).

836 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_scan_params(device=None, mode=None, lower_limit=None, upper_limit=None, rise_speed=None,
fall_speed=None)

Set slow piezo lock control parameters.

device can be "none", "slow_piezo", or "ref_cell". mode is a tuple (falling, stop_lower,
stop_upper). Any parameters which are None remain unchanged.

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

2.7. pylablib 837

pylablib Documentation, Release 1.4.2

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

838 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

2.7. pylablib 839

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

pylablib.devices.Sirah.base module

exception pylablib.devices.Sirah.base.GenericSirahError

Bases: DeviceError

Generic Sirah error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Sirah.base.GenericSirahBackendError(exc)
Bases: GenericSirahError, DeviceBackendError

Sirah backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Sirah.tuner module

exception pylablib.devices.Sirah.tuner.FrequencyReadSirahError(timeout=None)
Bases: GenericSirahError

Sirah error indicating an error while trying to read frequency value

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Sirah.tuner.MatisseTuner(laser, wavemeter, calibration=None, ref_cell=True)
Bases: object

Matisse tuner.

Helps to coordinate with an external wavemeter to perform more complicated tasks: motors calibration, fine
frequency tuning, and stitching scans.

Parameters

• laser – opened Matisse laser object

• wavemeter – opened wavemeter object (currently only HighFinesse wavemeters are sup-
ported)

• calibration – either a calibration dictionary, or a path to the calibration dictionary file

840 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

set_tune_units(units='int')
Set default units for fine tuning and sweeping (fine sweep or stitched scan).

Can be either "int" (internal units between 0 and 1) or "freq" (frequency units; requires calibration).

apply_calibration(calibration)
Apply the given calibration.

calibration is either a calibration dictionary, or a path to the calibration dictionary file. Contains informa-
tion about the relation between bifi motor and wavelength, thin etalon motor span, slow piezo tuning rate
(frequency to internal units) and its maximal sweep rate, ref cell tuning rate (frequency to internal units)
and its maximal sweep rate.

get_frequency(timeout=1.0)
Get current frequency reading.

The only method relying on the wavemeter. Can be extended or overloaded to support different wavemeters.

get_last_read_frequency(max_delay=1.0)
Get the last valid read frequency, or None if none has been acquired yet

set_frequency_average_time(avg_time=0)
Set averaging time for frequency measurements (reduces measured frequency jitter)

scan_steps(motor, start, stop, step)
Scan the given motor ("bifi" or "thinet") in discrete steps within the given range with a given step.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection
power, and wavemeter frequency.

scan_centered(motor, span, step)
Scan the given motor ("bifi" or "thinet") in discrete steps in a given span around the current position.

After the scan, return the motor to the original position.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection
power, and wavemeter frequency.

scan_quick(motor, start, stop, autodir=True)
Do a quick continuous scan of the given motor ("bifi" or "thinet") within the given range.

Compared to scan_steps(), which does a series of discrete defined moves, this method does a single
continuous move and records values in its progress. This is quicker, but does not allow for the step size
control, and results in non-uniform recorded positions. If autodir==False, first initialize the motor to
start and then move to stop; otherwise, initialize to whichever border is closer.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection
power, and wavemeter frequency.

scan_quick_centered(motor, span)
Do a quick continuous scan of the given motor ("bifi" or "thinet") in a given span around the current
position.

After the scan, return the motor to the original position.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection
power, and wavemeter frequency.

2.7. pylablib 841

pylablib Documentation, Release 1.4.2

scan_both_motors(bifi_rng, te_rng, verbose=False)
Perform a 2D grid scan changing positions of both birefringent filter and thin etalon motors.

bifi_rng and te_rng are both 3-tuples (start, stop, step) specifying the scan ranges. If
verbose==True, print a message per every birefringent filter position indicating the scan progress.

Return a 5-column numpy array containing birefringent filter motor position, thin etalon motor position,
internal diode power, thin etalon reflection power, and wavemeter frequency.

scan_both_motors_quick(bifi_rng, te_rng, verbose=False)
Perform a quick 2D grid scan changing positions of both birefringent filter and thin etalon motors.

For each discrete position of a birefringent filter motor perform a quick scan of the thin etalon motor.
bifi_rng is a 3-tuple (start, stop, step), while te_rng is a 2-tuple (start, stop) specifying the
scan ranges. If verbose==True, print a message per every birefringent filter position indicating the scan
progress.

Return a 5-column numpy array containing birefringent filter motor position, thin etalon motor position,
internal diode power, thin etalon reflection power, and wavemeter frequency.

calibrate(motors=True, slow_piezo=True, slow_piezo_speeds=None, ref_cell=True, ref_cell_speeds=None,
verbose=True, bifi_range=None, thinet_range=None, return_scans=True)

Calibrate the laser and return the calibration results.

If motors==True, perform motors calibration (bifi range and wavelengths, thin etalon range). If
slow_piezo==True, perform slow piezo calibration (ratio between internal tuning units and frequency
shift). If slow_piezo_speeds is not None, it defines a list of slow piezo tuning speeds to use for the cali-
bration (in case it depends on the speed). If ref_cell==True, perform ref cell calibration (ratio between
internal tuning units and frequency shift). If ref_cell_speeds is not None, it defines a list of ref cell
tuning speeds to use for the calibration (in case it depends on the speed). If bifi_range is specified, it is
a tuple (start, stop, step) defining the tested bifi positions (default is between 100000 and 400000
with a step of 400). If thinet_range is specified, it is a tuple (start, stop) defining the tested thin etalon
position range. IF verbose==True, print the progress updates during scan. If return_scans==True,
return a tuple (calibration, scans), where scans is a tuple (motor_scan, slow_piezo_scan,
ref_cell) containing detail scan result tables; otherwise, return just the calibration dictionary.

unlock_all()

Unlock all relevant locks (slow piezo, fast piezo, piezo etalon, thin etalon)

set_fine_lock(device='slow_piezo')
Set fine lock (slow and fast piezo) parameters for the given device ("low_piezo" or "ref_cell")

fine_tune_to_gen(target, device='slow_piezo', method='auto', tolerance=None)
Same as fine_tune_to(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.

fine_tune_to(target, device='slow_piezo', method='auto', tolerance=None)
Fine tune the laser to the given target frequency using only fine tuning.

device specifies the device used for fine tuning: either "slow_piezo", or "ref_cell". method can be
"step" for step-based binary search method, or "cal" for slope-based method using the fine tuning cali-
bration (frequency detuning per element position shift). (generally faster, but requires a known calibration).
If method=="auto", use "cal" when the calibration is available and "step" otherwise. tolerance gives
the final frequency tolerance for the "cal" tuning method; if None, use the standard value (50MHz by
default).

842 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

tune_to_gen(target, level='full', fine_device='slow_piezo', tolerance=None, local_level='none')
Same as tune_to(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.

tune_to(target, level='full', fine_device='slow_piezo', tolerance=None, local_level='none')
Tune the laser to the given frequency (in Hz) using multiple elements (bifi, thin etalon, piezo etalon, slow
piezo / ref cell).

level can be "bifi" (only tune the bifi motor), "thinet" (tune bifi motor and thin etalon), or "full" (full
tuning using all elements). fine_device specifies the device used for fine tuning: either "slow_piezo",
or "ref_cell". tolerance gives the final fine tuning frequency tolerance; if None, use the standard value
(50MHz by default). local_level defines the level on which to start adjustment; can be "fine" (start with
the slow piezo or the ref cell, if the laser is within their tuning range), "thinet" (start with the thin etalon),
or "none" (start with the bifi; default). If using just the finer control does not work, progressively move
to the coarser ones.

fine_sweep_start(span, up_speed, down_speed=None, device='slow_piezo', kind='cont_up',
current_pos=0.5)

Start a fine sweep using the slow piezo or the ref cell.

span is a sweep span, up_speed and down_speed are the corresponding speeds (if down_speed is None,
use the same as up_speed), device is the scan device ("slow_piezo" or "ref_cell"), kind is the sweep
kind ("cont_up", "cont_down", "single_up", or "single_down"), and current_pos is the relative
position of the current position withing the sweep range (0 means that it’s the lowest position of the sweep,
1 means it’s the highest, 0.5 means that it’s in the center).

fine_sweep_stop(return_to_start=True, start_point=None)
Stop currently running fast sweep.

If return_to_start==True, return to the original start tuning position after the sweeps is stopped; oth-
erwise, stay at the current position.

scan_coarse_gen(bifi_rng, te_rng)
Perform a 2D grid scan changing positions of both birefringent filter and thin etalon motors.

bifi_rng and te_rng are both 3-tuples (start, stop, step) specifying the scan ranges.

Yields a tuple ((bifi_idx, bifi_npos), (te_idx, te_npos)), where bifi_idx and te_idx are
the indices of the current birefringent filter and thin etalon motor positions, and bifi_npos and te_npos
are the corresponding total numbers of positions.

stitched_scan_gen(full_rng, single_span, speed, device='slow_piezo', overlap=0.1, freq_step=None)
Same as stitched_scan(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.
Yields True whenever the main scanning region is passing, and False during the stitching intervals.

stitched_scan(full_rng, single_span, speed, device='slow_piezo', overlap=0.1, freq_step=None)
Perform a stitched laser scan.

Parameters

• full_rng – 2-tuple (start, stop) with the full frequency scan range.

• single_span – magnitude of a single continuous scan segment given in the slow
piezo scan units (between 0 and 1)

• speed – single segment scan speed

• device – the scan device ("slow_piezo" or "ref_cell")

2.7. pylablib 843

pylablib Documentation, Release 1.4.2

• overlap – overlap of consecutive segments, as a fraction of single_span

• freq_step – if None, the start of the next segment is calculated based on the end
of the previous segment and overlap; otherwise, it specifies a fixed frequency step
between segments.

Module contents

pylablib.devices.SmarAct package

Submodules

pylablib.devices.SmarAct.MCS2 module

class pylablib.devices.SmarAct.MCS2.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.SmarAct.MCS2.list_devices()

List all connected SmarAct MCS2 devices

pylablib.devices.SmarAct.MCS2.get_devices_number()

Get number of connected SmarAct MCS2 controller

pylablib.devices.SmarAct.MCS2.get_SDK_version()

Get version of MCS2 SDK

class pylablib.devices.SmarAct.MCS2.TDeviceInfo(serial, name)
Bases: tuple

name

844 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

serial

class pylablib.devices.SmarAct.MCS2.TCLMoveParams(velocity, acceleration, max_step_frequency,
hold_time)

Bases: tuple

acceleration

hold_time

max_step_frequency

velocity

class pylablib.devices.SmarAct.MCS2.TStepMoveParams(frequency, amplitude)
Bases: tuple

amplitude

frequency

class pylablib.devices.SmarAct.MCS2.TScanMoveParams(velocity)
Bases: tuple

velocity

class pylablib.devices.SmarAct.MCS2.MCS2(locator)
Bases: IMultiaxisStage

SmarAct MCS2 translation stage controller.

Parameters
locator (str) – controller locator (returned by get_devices_number() function)

Error

alias of SmarActError

open()

Open the connection to the stage

close()

Close the connection to the stage

is_opened()

Check if the device is connected

get_property(name, idx=0)
Get stage property with the given name and index

get_all_properties(scope='all', idx='all')
Get all controller properties within the given scope and for the given index.

scope can be "dev" (device properties), "mod" (module properties), "cha" (channel properties), or "api"
(api properties); it can also be a list of several scopes, or "all", which includes all properties. idx is the
index and usually applies to "cha" or "mod" scopes; for other scopes it should be set to 0 or "all".

set_property(name, value, idx=0)
Set stage property with the given name and index

2.7. pylablib 845

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_device_info()

Get the device info of the controller board.

Return tuple (serial, name).

get_default_axis()

Get the default axis (the one automatically applied to channel-related methods)

set_default_axis(axis)
Set the default axis (the one automatically applied to channel-related methods).

Can be a zero-based axis index or "all"

using_default_axis(axis)
Context manager for temporarily changing the default axis

get_status_n(axis=None)
Get axis status as an integer

get_status(axis=None)
Get axis status as a set of string descriptors

is_moving(axis=None)
Check if a given axis is moving (including referencing and calibrating)

wait_move(axis, timeout=30.0)
Wait for a given axis to stop moving

get_device_status_n()

Get device status as an integer

get_device_status()

Get axis status as a set of string descriptors

get_module_status_n(index=0)
Get module status as an integer

get_module_status(index)
Get module status as a set of string descriptors

get_cl_move_parameters(axis=None)
Get closed-loop move parameters.

Return tuple (velocity, acceleration, max_step_frequency, hold_time) with the maximal
move velocity (in m/s or deg/s), move acceleration (in m/s^2 or deg/s^2), maximal step frequency (in
Hz), and position hold time (in s, or "inf" if it is infinite)

setup_cl_move(velocity=None, acceleration=None, max_step_frequency=None, hold_time=None,
axis=None)

Set closed-loop move parameters.

For the meaning of the parameters, see get_cl_move_parameters(). Note that changing the hold time
will only apply after the next move command. To apply it without actual moving, you can call move_by()
method with distance=0 for the appropriate axis. If any parameter is None, use the current value.

get_step_move_parameters(axis=None)
Get step move parameters.

Return tuple (frequency, amplitude) with the step frequency (in Hz) and step amplitude (normalized
between 0 and 1).

846 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

setup_step_move(frequency=None, amplitude=None, axis=None)
Set step move parameters.

For the meaning of the parameters, see get_step_move_parameters(). If any parameter is None, use
the current value.

get_scan_move_parameters(axis=None)
Get scan move parameters.

Return tuple (velocity)with the move velocity (amplitude per second; amplitude is normalized between
0 and 1).

setup_scan_move(velocity=None, axis=None)
Set scan move parameters.

For the meaning of the parameters, see get_scan_move_parameters(). If any parameter is None, use
the current value.

get_range_limit(axis=None)
Get the movement range limit (in m or deg) for the given axis.

Return (min, max) if the limit is active or None otherwise.

set_range_limit(limit, axis=None)
Set the movement range limit (in m or deg) for the given axis.

limit is either a tuple (min, max) if the limit is active, or None otherwise.

get_position(axis=None)
Get current position (in m or deg) at the given axis

set_position_reference(position=0, axis=None)
Get the current position (in m or deg) at the given axis.

This method simply shifts the position sensor reference; the stage does not move.

get_scan_position(axis=None)
Get current scan position (piezo voltage; normalized between 0 and 1) at the given axis

get_target_position(axis=None)
Get current target position (in m or deg) at the given axis

move_to(position, axis=None)
Move to the given position (in m or deg) at the given axis

move_by(distance, axis=None)
Move by the given distance (in m or deg) at the given axis

move_by_steps(steps, axis=None)
Move by the given number of steps at the given axis

move_scan_to(position, axis=None)
Move to the given open-loop position (piezo voltage; normalized between 0 and 1) using just a piezo
deflection at the given axis

move_scan_by(distance, axis=None)
Move by the given open-loop distance (piezo voltage; normalized between -1 and 1) using just a piezo
deflection at the given axis

2.7. pylablib 847

pylablib Documentation, Release 1.4.2

stop(axis=None)
Stop motion at the given axis

home(axis=None, sync=True, start_direction='+', reverse_direction=False, abort_on_stop=False,
auto_zero=False, continue_on_found=False, stop_on_found=False)
Home (reference) the given axis.

If sync==True, wait until the homing is done. The other parameters are flags setting up the referencing
behavior. See MCS2 programming manual section on reference marks for the details.

calibrate(axis=None, sync=True, direction='+', detect_code_inversion=False,
advanced_sensor_correction=False, limited_stage_range=False)

Calibrate the given axis.

If sync==True, wait until the calibration is done. The other parameters are flags setting up the calibration
behavior. See MCS2 programming manual section on calibrating for the details.

lowlevel_move(value, axis=None)
Execute the low-level movement command with the given integer value.

The meaning of the value depends on the devices properties (see MCS2 programming manual for the
details). This is a low-level method, whose high-level functionality is covered by other move methods.

lowlevel_reference(axis=None)
Execute the low-level reference command with the given integer value.

Exact procedure depends on the devices properties (see MCS2 programming manual for the details). This
is a low-level method, whose high-level functionality is covered by the home() method.

lowlevel_calibrate(axis=None)
Execute the low-level calibration command with the given integer value.

Exact procedure depends on the devices properties (see MCS2 programming manual for the details). This
is a low-level method, whose high-level functionality is covered by the calibrate() method.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

848 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

pylablib.devices.SmarAct.base module

exception pylablib.devices.SmarAct.base.SmarActError

Bases: DeviceError

Generic SmarAct error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.SmarAct.scu3d module

class pylablib.devices.SmarAct.scu3d.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

2.7. pylablib 849

pylablib Documentation, Release 1.4.2

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

class pylablib.devices.SmarAct.scu3d.TDeviceInfo(device_id, firmware_version, dll_version)
Bases: tuple

device_id

dll_version

firmware_version

pylablib.devices.SmarAct.scu3d.get_device_info(idx)
Get info of the devices with the given index.

Return tuple (device_id, firmware_version, dll_version).

pylablib.devices.SmarAct.scu3d.list_devices()

List all connected devices

pylablib.devices.SmarAct.scu3d.get_devices_number()

Get number of connected SCU3D controller

class pylablib.devices.SmarAct.scu3d.SCU3D(idx=0, axis_dir='+++')
Bases: IMultiaxisStage

SmarAct SCU3D translation stage controller.

Parameters

• idx (int) – stage index

• axis_dir (str) – 3-symbol string specifying default directions of the axes (each symbol
be "+" or "-")

Error = <Mock name='mock.SmarActError' id='140147680491024'>

open()

Open the connection to the stage

close()

Close the connection to the stage

is_opened()

Check if the device is connected

get_device_info()

Get info of the devices with the given index.

Return tuple (device_id, firmware_version, dll_version).

get_axis_dir()

Get axis direction convention (a string of 3 symbols which are either "+" or "-" determining if the axis
direction is flipped)

set_axis_dir(axis_dir)
Set axis direction convention (a string of 3 symbols which are either "+" or "-" determining if the axis
direction is flipped)

850 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

move_macrostep(axis, steps, voltage, frequency)
Move along a given axis by a single “macrostep”, which consists of several regular steps.

voltage (in Volts) and frequency (in Hz) specify the motion parameters. This simulates the controller
operation, where one “step” at large step sizes consists of several small steps.

move_by(axis, steps=1, stepsize=10)
Move along a given axis with a given number of macrosteps using one of the predefined step size.

stepsize can range from 1 (smallest) to 20 (largest), and roughly corresponds to the handheld controller
parameters.

get_status(axis='all')
Get the axis status.

Can be "stopped" (default state), "setting_amplitude" (setting open-loop step amplitude), "moving"
(open-loop movement), "targeting" (closed-loop movement), "holding" (closed-loop position hold-
ing), "calibrating" (sensor calibration), or "moving_to_reference" (calibrating position sensor).

wait_for_status(axis, status='stopped', timeout=30.0)
Wait until the axis reaches a given status.

By default wait for "stopped" status (i.e., wait until the motion is finished).

wait_move(axis, timeout=30.0)
Wait for a given axis to stop moving

is_moving(axis='all')
Check if a given axis is moving

stop(axis='all')
Stop motion at a given axis

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 851

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

set_device_variable(key, value)
Set the value of a settings parameter

Module contents

pylablib.devices.Standa package

Submodules

pylablib.devices.Standa.base module

exception pylablib.devices.Standa.base.StandaError

Bases: DeviceError

Generic Standa device StandaError

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Standa.base.StandaBackendError(exc)
Bases: StandaError, DeviceBackendError

Generic Standa backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Standa.base.TEngineType(engine, driver)
Bases: tuple

driver

engine

852 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.Standa.base.TStepperMotorCalibration(steps_per_rev, usteps_per_step)
Bases: tuple

steps_per_rev

usteps_per_step

class pylablib.devices.Standa.base.TFullState(smov, scmd, spwr, senc, swnd, position, encoder, speed,
ivpwr, ivusb, temp, flags, gpio)

Bases: tuple

encoder

flags

gpio

ivpwr

ivusb

position

scmd

senc

smov

speed

spwr

swnd

temp

class pylablib.devices.Standa.base.TMoveParams(speed, accel, decel, antiplay)
Bases: tuple

accel

antiplay

decel

speed

class pylablib.devices.Standa.base.TPowerParams(hold_current, reduct_enabled, reduct_delay,
off_enabled, off_delay, ramp_enabled, ramp_time)

Bases: tuple

hold_current

off_delay

off_enabled

ramp_enabled

2.7. pylablib 853

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

ramp_time

reduct_delay

reduct_enabled

class pylablib.devices.Standa.base.Standa8SMC(conn)
Bases: ICommBackendWrapper, IStage

Generic Standa 8SMC4/8SMC5 controller device.

Parameters
conn – serial connection parameters (usually port, a tuple containing port and baudrate, or a
tuple with full specification such as ("COM1", 115200, 8, 'N', 2))

Error

alias of StandaError

query(cmd, data=b'', retlen=None)

pquery(cmd, *args)

get_engine_type()

Get engine and driver type

get_stepper_motor_calibration()

Get stepper motor calibration parameters.

Return tuple (steps_per_rev, usteps_per_step).

get_status()

Get device status.

Return tuple (smov, scmd, spwr, senc, swnd, position, encoder, speed, ivpwr, ivusb,
temp, flags, gpio) with the moving state (whether motor is moving, reached speed, etc.), command
state (last issued command and its status), power state, encoder state, winding state (currently not used),
step position, encoder position, current speed, current and voltage of the power supply, current and voltage
of the USB source, temperature (in C), and additional state and GPIO flags.

is_moving()

Check if the motor is moving

wait_move(timeout=None)
Wait until motion is done

get_position()

Return step position (in steps for a DC motor, in microsteps for a stepper motor)

get_encoder()

Return encoder position

set_position_reference(position=0)
Set position reference (in steps for a DC motor, in microsteps for a stepper motor).

Actual motor position stays the same.

set_encoder_reference(position=0)
Set encoder reference.

Actual motor position stays the same.

854 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

move_to(position)
Move to the given position (in steps for a DC motor, in microsteps for a stepper motor)

move_by(distance)
Move by the given distance (in steps for a DC motor, in microsteps for a stepper motor)

stop(immediate=False)

power_off(stop='soft')

jog(direction)
Start moving in a given direction ("+" or "-")

home(sync=True, timeout=30.0)
Home the motor.

If sync==True, wait until the homing is complete, or until timeout expires.

get_move_parameters()

Get moving parameters.

Return tuple (speed, accel, decel, antiplay).

setup_move(speed=None, accel=None, decel=None, antiplay=None)
Setup moving parameters.

If any parameter is None, use the current value.

get_power_parameters()

Get power parameters.

Return tuple (hold_current, reduct_enabled, reduct_delay, off_enabled, off_delay,
ramp_enabled, ramp_time).

setup_power(hold_current=None, reduct_enabled=None, reduct_delay=None, off_enabled=None,
off_delay=None, ramp_enabled=None, ramp_time=None)

Setup power parameters.

If any parameter is None, use the current value.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 855

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Tektronix package

Submodules

pylablib.devices.Tektronix.base module

exception pylablib.devices.Tektronix.base.TektronixError

Bases: DeviceError

Generic Tektronix devices error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

856 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

exception pylablib.devices.Tektronix.base.TektronixBackendError(exc)
Bases: TektronixError, DeviceBackendError

Generic Tektronix backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Tektronix.base.muxchannel(*args, **kwargs)
Multiplex the function over its channel argument

class pylablib.devices.Tektronix.base.TTriggerParameters(source, level, coupling, slope)
Bases: tuple

coupling

level

slope

source

class pylablib.devices.Tektronix.base.ITektronixScope(addr, nchannels='auto')
Bases: SCPIDevice

Generic Tektronix oscilloscope.

Parameters

• addr – device address; usually a VISA address string such as
"USB0::0x0699::0x0364::C000000::INSTR"

• nchannels – can specify number of channels on the oscilloscope; by default, autodetect
number of channels (might take several seconds on connection)

Error

alias of TektronixError

ReraiseError

alias of TektronixBackendError

get_channels_number()

Get the number of channels

get_channels(only_main=False)
Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

normalize_channel_name(channel)
Normalize channel name as represented by the oscilloscope

grab_single(wait=True, software_trigger=False, wait_timeout=None)
Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately. if
software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately
regardless of the input).

2.7. pylablib 857

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

wait_for_grabbing(timeout=None)
Wait until the acquisition is complete

grab_continuous(enable=True)
Start or stop continuous grabbing

stop_grabbing()

Stop grabbing or waiting (equivalent to self.grab_continuous(False))

is_continuous()

Check if grabbing is continuous or single

is_grabbing()

Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False
if the acquisition is stopped. To check if the trigger has been triggered, use get_trigger_state().

get_edge_trigger_source()

Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

set_edge_trigger_source(channel)
Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

get_edge_trigger_coupling()

Get edge trigger coupling ("ac" or "dc")

set_edge_trigger_coupling(coupling)
Set edge trigger coupling ("ac" or "dc")

get_edge_trigger_slope()

Get edge trigger slope ("fall" or "rise")

set_edge_trigger_slope(slope)
Set edge trigger slope ("fall" or "rise")

get_trigger_level()

Get edge trigger level (in Volts)

set_trigger_level(level)
Set edge trigger level (in Volts)

setup_edge_trigger(source, level, coupling='dc', slope='rise')
Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

get_trigger_mode()

Get trigger mode.

Can be either "auto" or "norm".

set_trigger_mode(trigger_mode='auto')
Set trigger mode.

Can be either "auto" or "norm".

858 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_trigger_state()

Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger"
(triggered, acquiring the rest of the waveform), "auto" ("auto" mode trigger is acquiring data in the
absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

force_trigger()

Force trigger event

get_horizontal_span()

Get horizontal span (in seconds)

set_horizontal_span(span)
Set horizontal span (in seconds)

get_horizontal_offset()

Get horizontal offset (position of the center of the sweep; in seconds)

set_horizontal_offset(offset=0.0)
Set horizontal offset (position of the center of the sweep; in seconds)

get_vertical_span(channel)
Get channel vertical span (in V)

set_vertical_span(channel, span)
Set channel vertical span (in V)

get_vertical_position(channel)
Get channel vertical position (offset of the zero volt line; in V)

set_vertical_position(channel, position)
Set channel vertical position (offset of the zero volt line; in V)

is_channel_enabled(channel)
Check if channel is enabled

enable_channel(channel, enabled=True)
Enable or disable given channel

get_selected_channel()

Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

select_channel(channel)
Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

get_coupling(channel)
Get channel coupling.

Can be "ac", "dc", or "gnd".

set_coupling(channel, coupling='dc')
Set channel coupling.

Can be "ac", "dc", or "gnd".

2.7. pylablib 859

pylablib Documentation, Release 1.4.2

get_probe_attenuation(channel)
Get channel probe attenuation

set_probe_attenuation(channel, attenuation)
Set channel probe attenuation

get_points_number(kind='send')
Get number of datapoints in various context.

kind defines the context. It can be "acq" (number of points acquired), "trace" (number of points in the
source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source
is not a channel data), or "send" (number of points in the sent waveform; can be lower than "trace" if
get_data_pts_range() is used to specify and incomplete range). Not all kinds are defined for all scope
model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

set_points_number(pts_num, reset_limits=True)
Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range. The
actual set value (returned by this method) can be different from the requested value.

get_data_pts_range()

Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

set_data_pts_range(rng=None)
Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()with kind="acq").
If rng is None, set the full range.

set_data_format(fmt='default')
Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

get_data_format()

Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

get_wfmpre(channel=None, enable=True)
Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

Can be acquired once and used in subsequent multiple reads to save time on re-requesting. If channel
is None, use the currently selected channel. If enable==True, make sure that the requested channel is
enabled; getting preamble for disabled channels raises an error.

read_raw_data(channel=None, fmt=None, timeout=None)
Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default", which uses the default oscilloscope
format (usually binary with smallest appropriate byte size). If fmt is None, use the current format. If
channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

860 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None,
return_wfmpres=None)

Read data from a multiple channels channel.

Parameters

• channels – list of channel indices or names

• wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

• return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can
be used for further sweep readouts.

read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)
Read data from a single channel.

Parameters

• channel – channel index or name

• wfmpre – optional preamble dictionary (obtained using get_wfmpre()); if it is None,
obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 861

pylablib Documentation, Release 1.4.2

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

862 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

2.7. pylablib 863

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Tektronix.base.TDS2000(addr, nchannels='auto')
Bases: ITektronixScope

Tektronix TDS2000 series oscilloscope.

Parameters

• addr – device address; usually a VISA address string such as
"USB0::0x0699::0x0364::C000000::INSTR"

• nchannels – can specify number of channels on the oscilloscope; by default, autodetect
number of channels (might take several seconds on connection)

BackendError

alias of DeviceBackendError

Error

alias of TektronixError

ReraiseError

alias of TektronixBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_channel(channel, enabled=True)
Enable or disable given channel

864 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

force_trigger()

Force trigger event

static get_arg_type(arg)
Autodetect argument type

get_channels(only_main=False)
Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

get_channels_number()

Get the number of channels

get_coupling(channel)
Get channel coupling.

Can be "ac", "dc", or "gnd".

get_data_format()

Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

get_data_pts_range()

Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_edge_trigger_coupling()

Get edge trigger coupling ("ac" or "dc")

get_edge_trigger_slope()

Get edge trigger slope ("fall" or "rise")

get_edge_trigger_source()

Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 865

pylablib Documentation, Release 1.4.2

get_horizontal_offset()

Get horizontal offset (position of the center of the sweep; in seconds)

get_horizontal_span()

Get horizontal span (in seconds)

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_points_number(kind='send')
Get number of datapoints in various context.

kind defines the context. It can be "acq" (number of points acquired), "trace" (number of points in the
source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source
is not a channel data), or "send" (number of points in the sent waveform; can be lower than "trace" if
get_data_pts_range() is used to specify and incomplete range). Not all kinds are defined for all scope
model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

get_probe_attenuation(channel)
Get channel probe attenuation

get_selected_channel()

Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_level()

Get edge trigger level (in Volts)

get_trigger_mode()

Get trigger mode.

Can be either "auto" or "norm".

get_trigger_state()

Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger"
(triggered, acquiring the rest of the waveform), "auto" ("auto" mode trigger is acquiring data in the
absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

get_vertical_position(channel)
Get channel vertical position (offset of the zero volt line; in V)

get_vertical_span(channel)
Get channel vertical span (in V)

get_wfmpre(channel=None, enable=True)
Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

866 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Can be acquired once and used in subsequent multiple reads to save time on re-requesting. If channel
is None, use the currently selected channel. If enable==True, make sure that the requested channel is
enabled; getting preamble for disabled channels raises an error.

grab_continuous(enable=True)
Start or stop continuous grabbing

grab_single(wait=True, software_trigger=False, wait_timeout=None)
Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately. if
software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately
regardless of the input).

is_channel_enabled(channel)
Check if channel is enabled

is_continuous()

Check if grabbing is continuous or single

is_grabbing()

Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False
if the acquisition is stopped. To check if the trigger has been triggered, use get_trigger_state().

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

normalize_channel_name(channel)
Normalize channel name as represented by the oscilloscope

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

2.7. pylablib 867

pylablib Documentation, Release 1.4.2

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None,
return_wfmpres=None)

Read data from a multiple channels channel.

Parameters

• channels – list of channel indices or names

• wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

• return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can
be used for further sweep readouts.

read_raw_data(channel=None, fmt=None, timeout=None)
Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default", which uses the default oscilloscope
format (usually binary with smallest appropriate byte size). If fmt is None, use the current format. If
channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)
Read data from a single channel.

Parameters

• channel – channel index or name

• wfmpre – optional preamble dictionary (obtained using get_wfmpre()); if it is None,
obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

868 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

select_channel(channel)
Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

set_coupling(channel, coupling='dc')
Set channel coupling.

Can be "ac", "dc", or "gnd".

set_data_format(fmt='default')
Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

set_data_pts_range(rng=None)
Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()with kind="acq").
If rng is None, set the full range.

set_device_variable(key, value)
Set the value of a settings parameter

set_edge_trigger_coupling(coupling)
Set edge trigger coupling ("ac" or "dc")

set_edge_trigger_slope(slope)
Set edge trigger slope ("fall" or "rise")

set_edge_trigger_source(channel)
Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

set_horizontal_offset(offset=0.0)
Set horizontal offset (position of the center of the sweep; in seconds)

set_horizontal_span(span)
Set horizontal span (in seconds)

set_points_number(pts_num, reset_limits=True)
Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range. The
actual set value (returned by this method) can be different from the requested value.

set_probe_attenuation(channel, attenuation)
Set channel probe attenuation

set_trigger_level(level)
Set edge trigger level (in Volts)

set_trigger_mode(trigger_mode='auto')
Set trigger mode.

Can be either "auto" or "norm".

set_vertical_position(channel, position)
Set channel vertical position (offset of the zero volt line; in V)

2.7. pylablib 869

pylablib Documentation, Release 1.4.2

set_vertical_span(channel, span)
Set channel vertical span (in V)

setup_edge_trigger(source, level, coupling='dc', slope='rise')
Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

sleep(delay)
Wait for delay seconds

stop_grabbing()

Stop grabbing or waiting (equivalent to self.grab_continuous(False))

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_for_grabbing(timeout=None)
Wait until the acquisition is complete

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

870 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Tektronix.base.DPO2000(addr, nchannels='auto')
Bases: ITektronixScope

Tektronix DPO2000 series oscilloscope.

Parameters

• addr – device address; usually a VISA address string such as
"USB0::0x0699::0x0364::C000000::INSTR"

• nchannels – can specify number of channels on the oscilloscope; by default, autodetect
number of channels (might take several seconds on connection)

BackendError

alias of DeviceBackendError

Error

alias of TektronixError

ReraiseError

alias of TektronixBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_channel(channel, enabled=True)
Enable or disable given channel

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

force_trigger()

Force trigger event

2.7. pylablib 871

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

static get_arg_type(arg)
Autodetect argument type

get_channels(only_main=False)
Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

get_channels_number()

Get the number of channels

get_coupling(channel)
Get channel coupling.

Can be "ac", "dc", or "gnd".

get_data_format()

Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

get_data_pts_range()

Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_edge_trigger_coupling()

Get edge trigger coupling ("ac" or "dc")

get_edge_trigger_slope()

Get edge trigger slope ("fall" or "rise")

get_edge_trigger_source()

Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_horizontal_offset()

Get horizontal offset (position of the center of the sweep; in seconds)

get_horizontal_span()

Get horizontal span (in seconds)

872 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_points_number(kind='send')
Get number of datapoints in various context.

kind defines the context. It can be "acq" (number of points acquired), "trace" (number of points in the
source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source
is not a channel data), or "send" (number of points in the sent waveform; can be lower than "trace" if
get_data_pts_range() is used to specify and incomplete range). Not all kinds are defined for all scope
model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

get_probe_attenuation(channel)
Get channel probe attenuation

get_selected_channel()

Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_trigger_level()

Get edge trigger level (in Volts)

get_trigger_mode()

Get trigger mode.

Can be either "auto" or "norm".

get_trigger_state()

Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger"
(triggered, acquiring the rest of the waveform), "auto" ("auto" mode trigger is acquiring data in the
absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

get_vertical_position(channel)
Get channel vertical position (offset of the zero volt line; in V)

get_vertical_span(channel)
Get channel vertical span (in V)

get_wfmpre(channel=None, enable=True)
Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

Can be acquired once and used in subsequent multiple reads to save time on re-requesting. If channel
is None, use the currently selected channel. If enable==True, make sure that the requested channel is
enabled; getting preamble for disabled channels raises an error.

grab_continuous(enable=True)
Start or stop continuous grabbing

2.7. pylablib 873

pylablib Documentation, Release 1.4.2

grab_single(wait=True, software_trigger=False, wait_timeout=None)
Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately. if
software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately
regardless of the input).

is_channel_enabled(channel)
Check if channel is enabled

is_continuous()

Check if grabbing is continuous or single

is_grabbing()

Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False
if the acquisition is stopped. To check if the trigger has been triggered, use get_trigger_state().

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

normalize_channel_name(channel)
Normalize channel name as represented by the oscilloscope

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

874 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None,
return_wfmpres=None)

Read data from a multiple channels channel.

Parameters

• channels – list of channel indices or names

• wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

• return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can
be used for further sweep readouts.

read_raw_data(channel=None, fmt=None, timeout=None)
Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default", which uses the default oscilloscope
format (usually binary with smallest appropriate byte size). If fmt is None, use the current format. If
channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)
Read data from a single channel.

Parameters

• channel – channel index or name

• wfmpre – optional preamble dictionary (obtained using get_wfmpre()); if it is None,
obtain during reading, which slows down the data acquisition a bit

• ensure_fmt – if True, make sure that oscilloscope data format agrees with the one
in wfmpre

• timeout – read timeout

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

select_channel(channel)
Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

set_coupling(channel, coupling='dc')
Set channel coupling.

Can be "ac", "dc", or "gnd".

2.7. pylablib 875

pylablib Documentation, Release 1.4.2

set_data_format(fmt='default')
Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

set_data_pts_range(rng=None)
Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()with kind="acq").
If rng is None, set the full range.

set_device_variable(key, value)
Set the value of a settings parameter

set_edge_trigger_coupling(coupling)
Set edge trigger coupling ("ac" or "dc")

set_edge_trigger_slope(slope)
Set edge trigger slope ("fall" or "rise")

set_edge_trigger_source(channel)
Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

set_horizontal_offset(offset=0.0)
Set horizontal offset (position of the center of the sweep; in seconds)

set_horizontal_span(span)
Set horizontal span (in seconds)

set_points_number(pts_num, reset_limits=True)
Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range. The
actual set value (returned by this method) can be different from the requested value.

set_probe_attenuation(channel, attenuation)
Set channel probe attenuation

set_trigger_level(level)
Set edge trigger level (in Volts)

set_trigger_mode(trigger_mode='auto')
Set trigger mode.

Can be either "auto" or "norm".

set_vertical_position(channel, position)
Set channel vertical position (offset of the zero volt line; in V)

set_vertical_span(channel, span)
Set channel vertical span (in V)

setup_edge_trigger(source, level, coupling='dc', slope='rise')
Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

876 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

sleep(delay)
Wait for delay seconds

stop_grabbing()

Stop grabbing or waiting (equivalent to self.grab_continuous(False))

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_for_grabbing(timeout=None)
Wait until the acquisition is complete

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore

2.7. pylablib 877

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

Module contents

pylablib.devices.Thorlabs package

Submodules

pylablib.devices.Thorlabs.TLCamera module

class pylablib.devices.Thorlabs.TLCamera.LibraryController(lib)
Bases: LibraryController

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

get_opened_num()

Get number of opened devices

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

preinit()

Pre-initialize the library, if it hasn’t been done already

shutdown()

Close all opened connections and shutdown the library

temp_open()

Context for temporarily opening a new device connection

pylablib.devices.Thorlabs.TLCamera.list_cameras()

List connected TLCamera cameras

pylablib.devices.Thorlabs.TLCamera.get_cameras_number()

Get number of connected TLCamera cameras

class pylablib.devices.Thorlabs.TLCamera.TDeviceInfo(model, name, serial_number,
firmware_version)

Bases: tuple

firmware_version

878 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

model

name

serial_number

class pylablib.devices.Thorlabs.TLCamera.TSensorInfo(sensor_type, bit_depth)
Bases: tuple

bit_depth

sensor_type

class pylablib.devices.Thorlabs.TLCamera.TColorInfo(filter_array_phase, correction_matrix,
default_white_balance_matrix)

Bases: tuple

correction_matrix

default_white_balance_matrix

filter_array_phase

class pylablib.devices.Thorlabs.TLCamera.TColorFormat(color_format, color_space)
Bases: tuple

color_format

color_space

class pylablib.devices.Thorlabs.TLCamera.TFrameInfo(frame_index, framestamp, pixelclock, pixeltype,
offset)

Bases: tuple

frame_index

framestamp

offset

pixelclock

pixeltype

class pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera(serial=None)
Bases: IBinROICamera, IExposureCamera

Thorlabs TSI camera.

Parameters
serial (str) – camera serial number; can be either a string obtained using list_cameras()
function, or None, which means connecting to the first available camera (not recommended
unless only one camera is connected)

Error = <Mock name='mock.ThorlabsTLCameraError' id='140147664750096'>

TimeoutError = <Mock spec='str' id='140147665796496'>

open()

Open connection to the camera

2.7. pylablib 879

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

close()

Close connection to the camera

is_opened()

Check if the device is connected

get_device_info()

Get camera model data.

Return tuple (model, name, serial_number, firmware_version).

get_sensor_info()

Get camera sensor info.

Return tuple (sensor_type, bit_depth), where sensor type is "mono", "bayer", or "mono_pol",
and bit depth is an integer.

get_color_info()

Get camera color info.

Return tuple (filter_array_phase, correction_matrix, default_white_balance_matrix),
or None if the sensor type is not "bayer".

get_white_balance_matrix()

Get the white balance matrix

set_white_balance_matrix(matrix=None)
Set the white balance matrix.

Can be None (the default matrix), a 3-number 1D array (multipliers for RGB), or a full 3x3 matrix.

set_color_format(color_output='auto', color_space='linear')
Set camera color format.

color_output determines the output frame format, and can be "raw" (raw pixel values without debayering),
"rgb" (color images with the color corresponding to the last array axis), "grayscale" (average of the
colored images), or "auto" ("rgb" for cameras supporting color and "raw" otherwise). Note that setting
"rgb" for monochrome cameras is not allowed. color_space defines the output color space, and can be
"linear" (linear in the pixel values), or "srgb" (sRGB color space, which is a non-linear transformation
of the linear values).

get_color_format()

Get camera color format as a tuple (color_output, color_space)

class RingBuffer

Bases: object

Frames ring buffer.

Reacts to each new frame and stores it in the internal buffer.

reset()

Reset buffer and internal counters

setup(buffsize, frame_dim)

Setup a new buffer with the given maximal number of frames and frame dimensions

cleanup()

Cleanup the buffer

880 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

new_frame(handle, buffer, idx, metadata, metadata_size, context)
Callback for receiving a new frame

wait_for_frame(idx=None, timeout=None)
Wait for a new frame acquisition

get_frame(idx)
Get the frame with the given index (or None if it is outside the buffer range)

get_status()

Get buffer status (acquired, missed, stored)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

set_exposure(exposure)
Set camera exposure

get_frame_period_range()

Get minimal and maximal frame period (s)

set_frame_period(frame_period)
Set camera frame period.

If it is 0 or None, set to the auto-rate mode, which automatically selects the highest frame rate.

get_trigger_mode()

Get trigger mode.

Can be "int" (internal/software), "ext" (external/hardware), or "bulb" (bulb trigger).

set_trigger_mode(mode)
Set trigger mode.

Can be "int" (internal/software), "ext" (external/hardware), or "bulb" (bulb trigger).

get_ext_trigger_parameters()

Return external trigger polarity

setup_ext_trigger(polarity)
Setup external trigger polarity ("rise" or "fall")

send_software_trigger()

Send software trigger signal

get_pixel_correction_parameters()

Return pixel correction parameters (enabled, threshold)

setup_pixel_correction(enable=True, threshold=None)
Enable or disable hotpixel correction and set its threshold (None means keep unchanged)

get_gain_range()

Return the available gain range (in dB)

get_gain()

Return the current gain (in dB)

2.7. pylablib 881

pylablib Documentation, Release 1.4.2

set_gain(gain, truncate=True)
Set the current gain (in dB).

If truncate==True, truncate the value to lie within the allowed range; otherwise, out-of-range values
cause an error.

get_black_level_range()

Return the available black level range

get_black_level()

Return the current black level

set_black_level(level, truncate=True)
Set the current black level.

If truncate==True, truncate the value to lie within the allowed range; otherwise, out-of-range values
cause an error.

is_nir_boost_enabled()

Check if NIR boost is enabled

enable_nir_boost(enable=True)
Enable or disable NIR boost

is_cooling_enabled()

Check if cooling is enabled

enable_cooling(enable=True)
Enable or disable cooling

is_led_enabled()

Check if led is enabled

enable_led(enable=True)
Enable or disable led

get_timestamp_clock_frequency()

Return frequency of the frame timestamp clock (in Hz)

setup_acquisition(nframes=100)
Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

clear_acquisition()

Clear acquisition settings

start_acquisition(frames_per_trigger='default', auto_start=True, nframes=None)
Start camera acquisition.

Parameters

• frames_per_trigger – number of frames to acquire per trigger (software of hard-
ware); None means unlimited number; by default, set to None for software trigger (i.e.,
run until stopped), and 1 for hardware trigger (i.e., one frame per trigger pulse)

• auto_start – if True and the trigger is set into software mode, automatically
start recording; otherwise, only start recording when send_software_trigger()
is called explicitly; this value is meaningless in the hardware or bulb trigger mode

• nframes – number of frames in the ring buffer

882 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of TFrameInfo instances describing frame index and frame metadata, which contains framestamp,
pixel clock, pixel format, and pixel offset; if some frames are missing and missing_frame!="skip", the
corresponding frame info is None. if return_rng==True, return the range covered resulting frames; if
missing_frame=="skip", the range can be smaller than the supplied rng if some frames are skipped.

FrameTransferError

alias of DefaultFrameTransferError

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

2.7. pylablib 883

pylablib Documentation, Release 1.4.2

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_exposure()

Get current exposure

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

884 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

2.7. pylablib 885

pylablib Documentation, Release 1.4.2

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

886 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.devices.Thorlabs.base module

exception pylablib.devices.Thorlabs.base.ThorlabsError

Bases: DeviceError

Generic Thorlabs error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Thorlabs.base.ThorlabsBackendError(exc)
Bases: ThorlabsError, DeviceBackendError

Thorlabs backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Thorlabs.base.ThorlabsTimeoutError

Bases: ThorlabsError

Thorlabs timeout error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Thorlabs.elliptec module

pylablib.devices.Thorlabs.elliptec.muxaddr(*args, argname='addr', **kwargs)
Multiplex the function over its addr argument

class pylablib.devices.Thorlabs.elliptec.TDeviceInfo(serial_no, model_no, year, fw_ver, hw_ver,
travel, pulse)

Bases: tuple

fw_ver

hw_ver

model_no

pulse

2.7. pylablib 887

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

serial_no

travel

year

class pylablib.devices.Thorlabs.elliptec.TMotorInfo(loop, motor, current, ramp_up, ramp_down,
fw_freq, bk_freq)

Bases: tuple

bk_freq

current

fw_freq

loop

motor

ramp_down

ramp_up

class pylablib.devices.Thorlabs.elliptec.ElliptecMotor(conn, addrs='all', default_addr=None,
scale='stage', timeout=3.0,
valid_status=('ok', 'mech_timeout'))

Bases: ICommBackendWrapper

Basic Elliptec stage device.

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• addrs – list of device addresses (between 0 and 15) connected to this serial port; if "all",
automatically detect all connected devices

• default_addr – address used by default when not supplied; by default, use the first
address among the connected

• scale – scale of the position units to the internals units; can be "stage" (use stage units
such as mm or deg based on its internal calibration), "step" (directly use step units), or
a number which multiplies user-supplied units to produce steps

• timeout – default communication timeout

• valid_status – status which are considered valid and do not raise an error on status
check

Error

alias of ThorlabsError

get_connected_addrs()

Get a list of all connected device addresses

get_default_addr()

Get the current default address

set_default_addr(addr)
Set the current default address

888 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

using_default_addr(addr)
Context manager which temporarily changes the default address

send_comm(comm, data='', addr=None)
Send a message with the given data to the devices at a given address.

For details, see ELLx communications protocol.

class CommData(comm, data, addr)
Bases: tuple

addr

comm

data

recv_comm(comm=None, addr=None, datalen='auto', timeout=None)
Receive a message.

comm, addr, and datalen can specify the expected return command, address, or the length of the data field
(if "auto", determine based on the return command). timeout specifies the waiting timeout (by default,
same as supplied upon the device connection).

For details, see ELLx communications protocol.

query(comm, data='', addr=None, reply_comm=None, reply_addr='auto', reply_datalen='auto',
timeout=None)

Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().

add_background_comm(comm)

Mark given comm as a ‘background’ message, which can be sent by the device at any point without prompt
(e.g., some operation confirmation).

If it is received instead during recv_comm or query operations, it is ignored, and the corresponding counter
is increased.

check_background_comm(comm, addr=None)
Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message received from the given address

change_addr(newaddr, addr=None)
Change the device address to a new value (between 0 and 15)

store_parameters(addr=None)
Store current device parameters (e.g., frequencies) to the energy-independent memory

get_device_info(addr=None)
Get device info.

Return tuple (serial_no, model_no, year, fw_ver, hw_ver, travel, pulse).

get_status(addr=None)
Get device status

get_motor_info(motor=1, addr=None)
Get info for a given motor (between 1 and 3).

Return tuple (loop_ena, motor_ena, current, ramp_up, ramp_down, fw_freq, bk_freq).

2.7. pylablib 889

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_scale(addr=None)
Get scale parameter for the specified address.

Can be "stage", "step", or a proportionality coefficient.

set_scale(scale, addr=None)
Set scale parameter for the specified address.

Can be "stage", "step", or a proportionality coefficient.

home(home_dir='cw', paddles='all', addr=None)
Home the device.

The operation is synchronous, i.e., it will not finish until the homing is done. If the device is a rotary
stage, then home_dir specifies homing direction ("cw" or "ccw"). If the device is a paddle polarization
controller, then paddles is a list of all paddle indices (1 to 3) to home ("all" is the same as [1,2,3]).

get_home_offset(addr=None)
Get homing offset

set_home_offset(offset, addr=None)
Set homing offset (note: the manufacturer advises against it)

get_velocity(addr=None)
Get velocity as a percentage from the maximal velocity (0 to 100)

set_velocity(velocity=100, addr=None)
Set velocity as a percentage from the maximal velocity (0 to 100)

get_frequency(motor=1, addr=None)
Get frequencies at a given motor as a tuple (fw_freq, bk_freq)

set_frequency(fw_freq=None, bk_freq=None, motor=1, addr=None)
Set frequencies at a given motor.

Values set as None stay the same.

search_frequency(motor=1, addr=None)
Run the automated frequency search on a given motor.

The position might change slightly throughout the process.

get_position(addr=None)
Get the current position

move_to(position, addr=None, timeout=30.0)
Move to the given position.

The operation is synchronous, i.e., it will not finish until the motion is stopped. Return True if the position
was reached successfully or False otherwise.

move_by(distance, addr=None, timeout=30.0)
Move by the given distance.

The operation is synchronous, i.e., it will not finish until the motion is stopped. Return True if the position
was reached successfully or False otherwise.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

890 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

pylablib.devices.Thorlabs.kinesis module

pylablib.devices.Thorlabs.kinesis.list_kinesis_devices(filter_ids=True)
List all Thorlabs APT/Kinesis devices connected to this PC.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers). Otherwise, show all
devices (some of them might not be Thorlabs-related).

class pylablib.devices.Thorlabs.kinesis.TDeviceInfo(serial_no, model_no, fw_ver, hw_type, hw_ver,
mod_state, nchannels, notes)

Bases: tuple

2.7. pylablib 891

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

fw_ver

hw_type

hw_ver

mod_state

model_no

nchannels

notes

serial_no

class pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice(conn, timeout=3.0,
is_rack_system=False)

Bases: ICommBackendWrapper

Generic Kinesis device.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

Parameters

• conn – serial connection parameters (usually an 8-digit device serial number).

• is_rack_system – specify whether the device is a rack system or a standalone USB
device (default mode).

Error

alias of ThorlabsError

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

class CommShort(messageID, param1, param2, source, dest)
Bases: tuple

dest

messageID

param1

param2

source

892 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class CommData(messageID, data, source, dest)
Bases: tuple

data

dest

messageID

source

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_number_of_channels()

Get number of channels on the device

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

2.7. pylablib 893

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.Thorlabs.kinesis.TVelocityParams(min_velocity, acceleration, max_velocity)
Bases: tuple

acceleration

max_velocity

min_velocity

class pylablib.devices.Thorlabs.kinesis.TJogParams(mode, step_size, min_velocity, acceleration,
max_velocity, stop_mode)

Bases: tuple

acceleration

894 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

max_velocity

min_velocity

mode

step_size

stop_mode

class pylablib.devices.Thorlabs.kinesis.TGenMoveParams(backlash_distance)
Bases: tuple

backlash_distance

class pylablib.devices.Thorlabs.kinesis.THomeParams(home_direction, limit_switch, velocity,
offset_distance)

Bases: tuple

home_direction

limit_switch

offset_distance

velocity

class pylablib.devices.Thorlabs.kinesis.TPolCtlParams(velocity, home_position, jog1, jog2, jog3)
Bases: tuple

home_position

jog1

jog2

jog3

velocity

class pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams(hw_kind_cw, hw_kind_ccw,
hw_swapped, sw_position_cw,
sw_position_ccw, sw_kind)

Bases: tuple

hw_kind_ccw

hw_kind_cw

hw_swapped

sw_kind

sw_position_ccw

sw_position_cw

class pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams(trig1_mode, trig1_pol, trig2_mode,
trig2_pol)

Bases: tuple

2.7. pylablib 895

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

trig1_mode

trig1_pol

trig2_mode

trig2_pol

class pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams(start_fw, step_fw, num_fw, start_bk,
step_bk, num_bk, width, ncycles)

Bases: tuple

ncycles

num_bk

num_fw

start_bk

start_fw

step_bk

step_fw

width

class pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams(max_voltage, velocity, acceleration)
Bases: tuple

acceleration

max_voltage

velocity

class pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams(mode, step_size_fw, step_size_bk,
velocity, acceleration)

Bases: tuple

acceleration

mode

step_size_bk

step_size_fw

velocity

pylablib.devices.Thorlabs.kinesis.muxchannel(*args, **kwargs)

class pylablib.devices.Thorlabs.kinesis.KinesisDevice(conn, timeout=3.0, default_channel=1,
is_rack_system=False)

Bases: IMultiaxisStage, BasicKinesisDevice

Overarching Kinesis class containing all of the necessary private methods.

Subclasses are expected to make some of them visible by renaming, and to define device variables and opening
behavior accordingly.

896 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

Parameters

• conn – serial connection parameters (usually an 8-digit device serial number).

• timeout – device communication timeout.

• default_channel – starting default channel used when no channel is supplied to a
channel-level command (such as move_to or get_position).

• is_rack_system – specify whether the device is a rack system or a standalone USB
device (default mode).

get_all_channels()

Get the list of all available channels; alias of get_all_axes method

set_default_channel(channel)
Set the default channel for all channel-related methods

using_channel(channel)
Context manager for temporarily using a different default channel

status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8,
'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128,
'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048,
'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'),
(32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144,
'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152,
'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'),
(33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728,
'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824,
'error'), (2147483648, 'enabled')]

Error

alias of ThorlabsError

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

close()

Close the backend

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

2.7. pylablib 897

pylablib Documentation, Release 1.4.2

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_number_of_channels()

Get number of channels on the device

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

898 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

class pylablib.devices.Thorlabs.kinesis.TFlipperParameters(transit_time, io1_oper_mode,
io1_sig_mode, io1_pulse_width,
io2_oper_mode, io2_sig_mode,
io2_pulse_width)

Bases: tuple

io1_oper_mode

io1_pulse_width

io1_sig_mode

io2_oper_mode

io2_pulse_width

io2_sig_mode

transit_time

class pylablib.devices.Thorlabs.kinesis.MFF(conn)
Bases: KinesisDevice

MFF (Motorized Filter Flip Mount) device.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

Parameters
conn – serial connection parameters (usually 8-digit device serial number).

2.7. pylablib 899

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_status_n(channel=None)
Get numerical status of the device.

For details, see APT communications protocol.

get_status(channel=None)
Get device status.

Return list of status strings, which can include "hw_fw_lim" (forward hardware limit switch reached),
"hw_bk_lim" (backward hardware limit switch reached), "sw_fw_lim" (forward software limit
switch reached), "sw_bk_lim" (backward software limit switch reached), "moving_fw" (moving for-
ward), "moving_bk" (moving backward), "jogging_fw" (jogging forward), "jogging_bk" (jog-
ging backward), "connected" (motor is connected), "homing" (homing), "homed" (homing done),
"initializing" (3-phase motor phase initialization), "tracking" (position is within trajectory),
"settled" (position has been stable), "motion_error" (excessive position error), "instr_error"
(legacy instrument command error), "interlock" (interlock is on), "overtemp" (temperature above
limit), "volt_supply_fault" (supply voltage is too low), "commutation_error" (3-phase motor com-
mutation error), "digio1" (state of digital input 1), "digio2" (state of digital input 2), "digio3" (state
of digital input 3), "digio4" (state of digital input 4), "current_limit" (motor current limit exceeded
for a long time), "encoder_fault" (encoder problems), "overcurrent" (motor current limit exceeded
temporarily), "curr_supply_fault" (current drawn from supply is too high), "power_ok" (power is
ok), "active" (moving), "error" (any error), "enabled" (motor is enabled).

wait_for_status(status, enabled, channel=None, timeout=None, period=0.05)
Wait until the given status (or list of status bits) is in the desired state.

status is a string or a list of strings describing the status bits to monitor; for possible values, see
get_status(). If enabled==True, wait until one of the given statuses is enabled; otherwise, wait until
all given statuses are disabled. period specifies status checking period (in s).

move_to_state(state, channel=None)
Move to the given flip mount state (either 0 or 1)

get_state(channel=None)
Get the flip mount state (either 0 or 1).

Return None if the mount is current moving (i.e., the state os undefined)

get_flipper_parameters(channel=None)
Get current flipper parameters (transit_time, io1_oper_mode, io1_sig_mode,
io1_pulse_width, io2_oper_mode, io2_sig_mode, io2_pulse_width)

transit_time specifies transit time (in seconds between 0.3 and 2.8); io*_oper_mode specifies oper-
ation mode (in vs. out and position vs. motion input/indication), io*_sig_mode specifies signal mode
(button input, voltage edge input, edge output or pulse output). io*_pulse_width specifies output pulse
width if the corresponding output mode is selected. For detailed mode description, see the flip mirror or
APT manual.

setup_flipper(transit_time=None, io1_oper_mode=None, io1_sig_mode=None, io1_pulse_width=None,
io2_oper_mode=None, io2_sig_mode=None, io2_pulse_width=None, channel=None)

Set flipper parameters.

transit_time specifies transit time (in seconds between 0.3 and 2.8); io*_oper_mode specifies oper-
ation mode (in vs. out and position vs. motion input/indication), io*_sig_mode specifies signal mode
(button input, voltage edge input, edge output or pulse output). io*_pulse_width specifies output pulse
width if the corresponding output mode is selected. If any parameter is None, use the current value. For
detailed mode description, see the flip mirror or APT manual.

900 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Error

alias of ThorlabsError

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

close()

Close the backend

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_all_channels()

Get the list of all available channels; alias of get_all_axes method

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 901

pylablib Documentation, Release 1.4.2

get_number_of_channels()

Get number of channels on the device

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

902 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_default_channel(channel)
Set the default channel for all channel-related methods

set_device_variable(key, value)
Set the value of a settings parameter

status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8,
'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128,
'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048,
'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'),
(32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144,
'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152,
'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'),
(33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728,
'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824,
'error'), (2147483648, 'enabled')]

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_channel(channel)
Context manager for temporarily using a different default channel

class pylablib.devices.Thorlabs.kinesis.KinesisMotor(conn, scale='step', default_channel=1,
is_rack_system=False)

Bases: KinesisDevice

Thorlabs motor controller.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

The physical units are encoder steps for position (ratio to m or degrees depends on the connected stage), steps/sec
for velocity, and steps/sec^2 for acceleration.

Parameters

• conn (str) – serial connection parameters (usually an 8-digit device serial number).

• scale – scale of the position, velocity, and acceleration units to the internals units; can
be "stage" (attempt to autodetect motor and stage parameters), a string with the name
of the stage, e.g., "MTS50-Z8" or "DDR100" (use the stage name to extract the scale; de-
termine velocity and acceleration from this scale and the motor model), "step" (use
encoder/motor steps as units; determine velocity and acceleration from this scale and
the motor model), a single number (use this as the ratio of internal steps to physical
units; determine velocity and acceleration from this scale and the motor model), or a
3-tuple of numbers (position_scale, velocity_scale, acceleration_scale)
which gives the ratio of internal units to physical units (useful for new or unrecognized
controllers or stages, as no autodetection is required); in the case of unrecognized devices,
use internal units (same as setting scale=(1,1,1)); if the scale can’t be autodetected, it
can be obtained from the APT manual knowing the device and the stage model

• default_channel – starting default channel used when no channel is supplied to a
channel-level command (such as move_to or get_position).

• is_rack_system – specify whether the device is a rack system or a standalone USB
device (default mode).

2.7. pylablib 903

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

get_scale()

Get the scaling coefficients.

Return a tuple (position_scale, velocity_scale, acceleration_scale) for scaling of the
physical units in terms of internal units. To get the coefficients source and physical units, use
get_scale_units().

get_scale_units()

Get units used for calculating scaled position, velocity and acceleration values.

Can be "deg" (autodetected rotational stage: deg, deg/s and deg/s^2), "m" (autodetected translational
stage: m, m/sec and m/sec^2), "step" (autodetected driver but not detected step scale: steps, steps/sec
and steps/sec^2) "user_step" (autodetected driver and user supplied step scale: user-supplied step scale
for position, same units per sec or sec^2 for velocity and acceleration), 'user" (all three scales are supplied
by user), or "internal" (no scales are supplied or detected, use device internal units)

get_stage()

Return the name of the stage which was supplied by the usr or autodetected.

If the stake is unknown, return None

set_supported_channels(channels=1)
Set the channels in the device.

Can be either a list of channels, a single number defining the number of channels numbered from 1 to
channels (inclusive).

get_status_n(channel=None)
Get numerical status of the device.

For details, see APT communications protocol.

get_status(channel=None)
Get device status.

Return list of status strings, which can include "hw_fw_lim" (forward hardware limit switch reached),
"hw_bk_lim" (backward hardware limit switch reached), "sw_fw_lim" (forward software limit
switch reached), "sw_bk_lim" (backward software limit switch reached), "moving_fw" (moving for-
ward), "moving_bk" (moving backward), "jogging_fw" (jogging forward), "jogging_bk" (jog-
ging backward), "connected" (motor is connected), "homing" (homing), "homed" (homing done),
"initializing" (3-phase motor phase initialization), "tracking" (position is within trajectory),
"settled" (position has been stable), "motion_error" (excessive position error), "instr_error"
(legacy instrument command error), "interlock" (interlock is on), "overtemp" (temperature above
limit), "volt_supply_fault" (supply voltage is too low), "commutation_error" (3-phase motor com-
mutation error), "digio1" (state of digital input 1), "digio2" (state of digital input 2), "digio3" (state
of digital input 3), "digio4" (state of digital input 4), "current_limit" (motor current limit exceeded
for a long time), "encoder_fault" (encoder problems), "overcurrent" (motor current limit exceeded
temporarily), "curr_supply_fault" (current drawn from supply is too high), "power_ok" (power is
ok), "active" (moving), "error" (any error), "enabled" (motor is enabled).

wait_for_status(status, enabled, channel=None, timeout=None, period=0.05)
Wait until the given status (or list of status bits) is in the desired state.

status is a string or a list of strings describing the status bits to monitor; for possible values, see
get_status(). If enabled==True, wait until one of the given statuses is enabled; otherwise, wait until
all given statuses are disabled. period specifies status checking period (in s).

904 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

home(sync=True, force=False, channel=None, timeout=None)
Home the device.

If sync==True, wait until homing is done (with the given timeout). If force==False, only home if the
device isn’t homed already.

is_homing(channel=None)
Check if homing is in progress

is_homed(channel=None)
Check if the device is homed

wait_for_home(channel=None, timeout=None)
Wait until the device is homed

get_position(channel=None, scale=True)
Get current position.

If scale==True, return value in the physical units (see class description); otherwise, return it in the device
internal units (steps).

set_position_reference(position=0, channel=None, scale=True)
Set position reference (actual motor position stays the same).

If scale==True, assume that the position is in the physical units (see class description); otherwise, assume
it is in the device internal units (steps).

move_by(distance=1, channel=None, scale=True)
Move by a given amount (positive or negative) from the current position.

If scale==True, assume that the distance is in the physical units (see class description); otherwise, assume
it is in the device internal units (steps).

move_to(position, channel=None, scale=True)
Move to position (positive or negative).

If scale==True, assume that the position is in the physical units (see class description); otherwise, assume
it is in the device internal units (steps).

jog(direction, channel=None, kind='continuous')
Jog in the given direction ("+" or "-").

If kind=="continuous", simply start motion in the given direction at the maximal speed until ei-
ther the motor is stopped explicitly, or the limit is reached (this uses MOT_MOVE_VELOCITY command).
If kind=="builtin", use the built-in MOT_MOVE_JOG command, whose parameters are specified by
get_jog_parameters().

is_moving(channel=None)
Check if motion is in progress

wait_move(channel=None, timeout=None)
Wait until motion command is done

stop(immediate=False, sync=True, channel=None, timeout=None)
Stop the motion.

If immediate==True make an abrupt stop; otherwise, slow down gradually. If sync==True, wait until
the motion is stopped.

2.7. pylablib 905

pylablib Documentation, Release 1.4.2

wait_for_stop(channel=None, timeout=None)
Wait until motion or homing is done

get_velocity_parameters(channel=None, scale=True)
Get current velocity parameters (min_velocity, acceleration, max_velocity)

If scale==True, return values in the physical units (see class description); otherwise, return it in the
device internal units.

setup_velocity(min_velocity=None, acceleration=None, max_velocity=None, channel=None, scale=True)
Set velocity parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified values are in
the physical units (see class description); otherwise, assume it is in the device internal units.

get_jog_parameters(channel=None, scale=True)
Get current jog parameters (mode, step_size, min_velocity, acceleration, max_velocity,
stop_mode)

If scale==True, return values in the physical units (see class description); otherwise, return it in the
device internal units.

setup_jog(mode=None, step_size=None, min_velocity=None, acceleration=None, max_velocity=None,
stop_mode=None, channel=None, scale=True)

Set jog parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified values are in
the physical units (see class description); otherwise, assume it is in the device internal units.

get_homing_parameters(channel=None, scale=True)
Get current homing parameters (home_direction, limit_switch, velocity,
offset_distance)

If scale==True, return values are in the physical units (see class description); otherwise, return it in the
device internal units.

setup_homing(home_direction=None, limit_switch=None, velocity=None, offset_distance=None,
channel=None, scale=True)

Set homing parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified values are in
the physical units (see class description); otherwise, assume it is in the device internal units.

get_gen_move_parameters(channel=None, scale=True)
Get general move parameters parameters (backlash_distance)

If scale==True, return values in the physical units (see class description); otherwise, return it in the
device internal units.

setup_gen_move(backlash_distance=None, channel=None, scale=True)
Set jog parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified value is in the
physical units (see class description); otherwise, assume it is in the device internal units.

get_limit_switch_parameters(channel=None, scale=True)
Get current limit switch parameters (hw_kind_cw, hw_kind_ccw, hw_flipped, sw_position_cw,
sw_position_ccw, sw_kind)

If scale==True, return values in the physical units (see class description); otherwise, return it in the
device internal units (steps).

906 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

setup_limit_switch(hw_kind_cw=None, hw_kind_ccw=None, hw_swapped=None,
sw_position_cw=None, sw_position_ccw=None, sw_kind=None, channel=None,
scale=True)

Set limit switch parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified values are in
the physical units (see class description); otherwise, assume it is in the device internal units (Steps).

get_kcube_trigio_parameters()

Get KCube trigger IO parameters (trig1_pol, trig1_pol, trig2_mode, trig2_pol)

setup_kcube_trigio(trig1_mode=None, trig1_pol=None, trig2_mode=None, trig2_pol=None)
Set KCube trigger IO parameters.

If any parameter is None, use the current value.

get_kcube_trigpos_parameters(scale=True)
Get KCube trigger position parameters (start_fw, step_fw, num_fw, start_bk, step_bk,
num_bk, width, ncycles).

If scale==True, return positions and steps in the physical units (see class description); otherwise, return
it in the device internal units (steps). Pulse width is always defined in seconds.

setup_kcube_trigpos(start_fw=None, step_fw=None, num_fw=None, start_bk=None, step_bk=None,
num_bk=None, width=None, ncycles=None, scale=True)

Set KCube trigger IO parameters.

If any parameter is None, use the current value.

If scale==True, return positions and steps in the physical units (see class description); otherwise, return
it in the device internal units (steps). Pulse width is always defined in seconds.

get_polctl_parameters(scale=True)
Get current polarizer controller parameters (velocity, home_position, jog1, jog2, jog3)

If scale==True, return values in the physical units (see class description); otherwise, return it in the
device internal units. velocity is always returned in percent units (0 to 100).

setup_polctl(velocity=None, home_position=None, jog1=None, jog2=None, jog3=None, scale=True)
Set polarizer controller parameters.

If any parameter is None, use the current value. If scale==True, assume that the specified values are in
the physical units (see class description); otherwise, assume it is in the device internal units. velocity is
always set in percent units (0 to 100).

Error

alias of ThorlabsError

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

2.7. pylablib 907

pylablib Documentation, Release 1.4.2

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

close()

Close the backend

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_all_channels()

Get the list of all available channels; alias of get_all_axes method

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_number_of_channels()

Get number of channels on the device

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

908 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

set_default_channel(channel)
Set the default channel for all channel-related methods

set_device_variable(key, value)
Set the value of a settings parameter

2.7. pylablib 909

pylablib Documentation, Release 1.4.2

status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8,
'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128,
'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048,
'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'),
(32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144,
'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152,
'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'),
(33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728,
'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824,
'error'), (2147483648, 'enabled')]

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_channel(channel)
Context manager for temporarily using a different default channel

class pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor(conn, default_channel=1)
Bases: KinesisDevice

Thorlabs piezo motor (TIM/KIM series) controller.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

Parameters
conn (str) – serial connection parameters (usually an 8-digit device serial number).

get_enabled_channels()

Check which specific piezo motor channels are enabled.

Can be None (none enabled), or a tuple with either one or two channels: (1,) to (4,), (1,2) or (3,4).

enable_channels(channel)
Enable specific piezo motor channel.

Can be None (none enabled), and integer 1 to 4, or a tuple (1,2) or (3,4) (enable 2 channel simultane-
ously).

get_status_n(channel=None)
Get numerical status of the piezo motor.

For details, see APT communications protocol.

get_status(channel=None)
Get piezo motor status.

Return list of status strings, which can include "sw_fw_lim" (forward limit switch reached),
"sw_bk_lim" (backward limit switch reached), "moving_fw" (moving forward), "moving_bk" (mov-
ing backward), "jogging_fw" (jogging forward), "jogging_bk" (jogging backward), "homing" (hom-
ing), "homed" (homing done), "tracking", "settled", "motion_error" (excessive position error),
"current_limit" (motor current limit exceeded), or "enabled" (motor is enabled).

wait_for_status(status, enabled, timeout=None, period=0.05, channel=None)

get_position(channel=None)
Get current piezo-motor position

set_position_reference(position=0, channel=None)
Set piezo-motor position reference (actual position stays the same)

910 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

move_by(distance=1, auto_enable=True, channel=None)
Move piezo-motor by a given distance (positive or negative)

move_to(position, auto_enable=True, channel=None)
Move piezo-motor to position (positive or negative)

jog(direction, kind='continuous', auto_enable=True, channel=None)
Jog piezo motor in the given direction ("+" or "-").

If kind=="continuous", simply start motion in the given direction at the standard jog speed until either
the motor is stopped explicitly, or the limit is reached. If kind=="builtin", use the built-in jog command,
whose parameters are specified by get_jog_parameters(). Note that kind=="continuous" is still
implemented through the builtin jog, so it changes its parameters; hence, afterwards the jog parameters
need to be manually restored.

is_moving(channel=None)
Check if motion is in progress

wait_move(channel=None, timeout=None)
Wait until motion command is done

stop(channel=None, sync=True)
Stop the piezo motor motion

get_drive_parameters(channel=None)
Get current piezo-motor drive parameters (max_voltage, velocity, acceleration)

Voltage is defined in volts, velocity in steps/s, and acceleration in steps/s^2.

setup_drive(max_voltage=None, velocity=None, acceleration=None, channel=None)
Set piezo-motor drive parameters.

If any parameter is None, use the current value. Voltage is defined in volts, velocity in steps/s, and accel-
eration in steps/s^2.

get_jog_parameters(channel=None)
Get current piezo-motor jog parameters (mode, step_size_fw, step_size_bk, velocity,
acceleration)

Step size is defined in piezo steps, velocity in steps/s, and acceleration in step/s^2.

setup_jog(mode=None, step_size_fw=None, step_size_bk=None, velocity=None, acceleration=None,
channel=None)

Set piezo-motor jog parameters.

If any parameter is None, use the current value. Step size is defined in piezo steps, velocity in steps/s,
and acceleration in step/s^2. TIM-series controllers do not support separate step size, so step_size_bk is
ignored for them.

Error

alias of ThorlabsError

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

2.7. pylablib 911

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

close()

Close the backend

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

get_all_axes()

Get the list of all available axes (taking mapping into account)

get_all_channels()

Get the list of all available channels; alias of get_all_axes method

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_number_of_channels()

Get number of channels on the device

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

912 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

set_default_channel(channel)
Set the default channel for all channel-related methods

set_device_variable(key, value)
Set the value of a settings parameter

2.7. pylablib 913

pylablib Documentation, Release 1.4.2

status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8,
'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128,
'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048,
'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'),
(32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144,
'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152,
'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'),
(33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728,
'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824,
'error'), (2147483648, 'enabled')]

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_channel(channel)
Context manager for temporarily using a different default channel

class pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams(p, i, d)
Bases: tuple

d

i

p

class pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint(xpos, ypos)
Bases: tuple

xpos

ypos

class pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings(xdiff , ydiff , sum, xpos, ypos)
Bases: tuple

sum

xdiff

xpos

ydiff

ypos

class pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams(xmin, xmax, ymin, ymax,
xgain, ygain, route,
open_loop_out)

Bases: tuple

open_loop_out

route

xgain

xmax

914 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

xmin

ygain

ymax

ymin

class pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector(conn, timeout=3.0)
Bases: BasicKinesisDevice

Kinesis quadrature detectors: KPA101, TPA101, TQD001.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

Parameters
conn (str) – serial connection parameters (usually an 8-digit device serial number).

get_pid_parameters()

Get current PID gain parameters (p, i, d)

set_pid_parameters(p=None, i=None, d=None)
Set current PID gain parameters (p, i, d).

If any parameter is None, use the current value.

get_manual_output()

Get current manual output values (xpos, ypos) (used in open loop mode)

set_manual_output(xpos=None, ypos=None)
Set current manual output values (used in open loop mode).

If any parameter is None, use the current value.

get_readings()

Get current readings (xdiff, ydiff, sum, xpos, ypos)

get_operation_mode()

Get current operation mode: "monitor", "open_loop", "closed_loop", or "auto_loop"

set_operation_mode(mode)
Set current operation mode: "monitor", "open_loop", "closed_loop", or "auto_loop"

get_output_parameters()

Get current output parameters (xmin, xmax, ymin, ymax, xgain, ygain, route,
open_loop_out)

set_output_parameters(xmin=None, xmax=None, ymin=None, ymax=None, xgain=None, ygain=None,
route=None, open_loop_out=None)

Set current PID gain parameters (xmin, xmax, ymin, ymax, xgain, ygain, route,
open_loop_out).

xmin, xmax, ymin, and ymax specify output limits, xgain and ygain specify additional separate gain
(between -1 and 1), route sets where output is routed in the closed loop mode (either "sma_only"
or "sma_hub"), open_loop_out specifies the output source in the open loop mode (either "zero" or
"fixed"). If any parameter is None, use the current value.

Error

alias of ThorlabsError

2.7. pylablib 915

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

add_background_comm(messageID)

Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g.,
some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is
increased.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

blink(channel=1, dest='host')
Identify the physical device (by, e.g., blinking status LED or screen)

check_background_comm(messageID)

Return message counter and the last message value (None if not message received yet) of a given ‘back-
ground’ message

close()

Close the backend

flush_comm(nmax=1000)
Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

get_device_info(dest='host')
Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels,
notes).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_number_of_channels()

Get number of channels on the device

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

916 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

is_opened()

Check if the device is connected

static list_devices(filter_ids=True)
List all connected devices.

Return list of tuples (conn, description). If filter_ids==True, only leave devices with Thorlabs-
like IDs (8-digit numbers). Otherwise, show all devices (some of them might not be Thorlabs-related).

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')
Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm(). If replyID is not None, specifies the expected reply
message ID; if -1 (default), set to te be messageID+1 (the standard convention). flush specifies whether
input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is
among the background messages, i.e., it could be already present in the queue.

recv_comm(expected_id=None, timeout=None)
Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on
the message type (fixed length with two parameters, or variable length with associated data). If expected_id
is not None and the received message ID is different from expected_id, raise an error. If timeout is not
None, it can specify the timeout to read the command header (the rest is done with the usual timeout). For
details, see APT communications protocol.

send_comm(messageID, param1=0, param2=0, source=1, dest='host')
Send a message with no associated data.

For details, see APT communications protocol.

send_comm_data(messageID, data, source=1, dest='host')
Send a message with associated data.

For details, see APT communications protocol.

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 917

pylablib Documentation, Release 1.4.2

pylablib.devices.Thorlabs.misc module

class pylablib.devices.Thorlabs.misc.TPMDeviceInfo(manufacturer, name, serial, firmware)
Bases: tuple

firmware

manufacturer

name

serial

class pylablib.devices.Thorlabs.misc.TPMSensorInfo(name, serial, calibration, type, subtype, flags)
Bases: tuple

calibration

flags

name

serial

subtype

type

class pylablib.devices.Thorlabs.misc.GenericPM(addr)
Bases: SCPIDevice

Generic Thorlabs optical Power Meter.

Parameters
addr – connection address (usually, a VISA connection string or a COM port for bluetooth
devices)

Error

alias of ThorlabsError

ReraiseError

alias of ThorlabsBackendError

open()

Open the backend

get_device_info()

Get device info.

Return tuple (manufacturer, name, serial, firmware).

get_sensor_info()

Get sensor info.

Return tuple (name, serial, calibration, type, subtype, flags). For devices with integrated
sensors (e.g., PM160) the sensor name is the same as the device name.

update_sensor_modes()

Update the list of supported sensor modes (only makes sense if the sensor has been changed since the
connection was opened)

918 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_supported_sensor_modes()

Get a list of supported sensor modes.

Can contain "power", "energy", "voltage", "current", or "frequency".

get_sensor_mode()

Get current sensor mode.

Can be "power", "energy", "voltage", "current", or "frequency".

set_sensor_mode(sensor_mode='power')
Set current sensor mode.

Can be one of the modes returned by get_supported_sensor_modes().

is_autorange_enabled(sensor_mode=None)
Check if autorange is enabled for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

enable_autorange(enable=True, sensor_mode=None)
Enable or disable autorange for the given sensor mode.

If sensor_mode is None, set value for the current sensor mode.

get_range(sensor_mode=None)
Get measurement range for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

set_range(rng=None, sensor_mode=None)
Set measurement range for the given sensor mode.

If rng is None or "full", set the maximal range. If sensor_mode is None, return value for the current
sensor mode.

get_wavelength()

Get current wavelength (in nm)

get_wavelength_range()

Get available wavelength range (in nm)

set_wavelength(wavelength)
Set current wavelength (in nm)

get_reading(sensor_mode=None, measure=True, overrng='keep')
Get the reading in a given mode.

If sensor_mode is None, return reading in the currently set up mode (get_sensor_mode()); otherwise,
set the sensor mode to the requested one. If measure==True, initiate a new measurement; otherwise,
return the last measured value. overrng describes behavior if the power readings are outside of the current
range; can be "keep" (keep the default device behavior, which returns a very large number, about 9.9E37),
"error" (raise an error), or "max" (trim to the maximal value for the current range).

get_power()

Measure and return the optical power

BackendError

alias of DeviceBackendError

2.7. pylablib 919

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

920 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

2.7. pylablib 921

pylablib Documentation, Release 1.4.2

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Thorlabs.misc.PM160(addr)
Bases: GenericPM

Thorlabs PM160 optical Power Meter.

Parameters
addr – connection address (usually, a VISA connection string or a COM port for bluetooth
devices)

BackendError

alias of DeviceBackendError

Error

alias of ThorlabsError

922 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

ReraiseError

alias of ThorlabsBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

enable_autorange(enable=True, sensor_mode=None)
Enable or disable autorange for the given sensor mode.

If sensor_mode is None, set value for the current sensor mode.

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_info()

Get device info.

Return tuple (manufacturer, name, serial, firmware).

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_power()

Measure and return the optical power

2.7. pylablib 923

pylablib Documentation, Release 1.4.2

get_range(sensor_mode=None)
Get measurement range for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

get_reading(sensor_mode=None, measure=True, overrng='keep')
Get the reading in a given mode.

If sensor_mode is None, return reading in the currently set up mode (get_sensor_mode()); otherwise,
set the sensor mode to the requested one. If measure==True, initiate a new measurement; otherwise,
return the last measured value. overrng describes behavior if the power readings are outside of the current
range; can be "keep" (keep the default device behavior, which returns a very large number, about 9.9E37),
"error" (raise an error), or "max" (trim to the maximal value for the current range).

get_sensor_info()

Get sensor info.

Return tuple (name, serial, calibration, type, subtype, flags). For devices with integrated
sensors (e.g., PM160) the sensor name is the same as the device name.

get_sensor_mode()

Get current sensor mode.

Can be "power", "energy", "voltage", "current", or "frequency".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_supported_sensor_modes()

Get a list of supported sensor modes.

Can contain "power", "energy", "voltage", "current", or "frequency".

get_wavelength()

Get current wavelength (in nm)

get_wavelength_range()

Get available wavelength range (in nm)

is_autorange_enabled(sensor_mode=None)
Check if autorange is enabled for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

924 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

set_range(rng=None, sensor_mode=None)
Set measurement range for the given sensor mode.

If rng is None or "full", set the maximal range. If sensor_mode is None, return value for the current
sensor mode.

set_sensor_mode(sensor_mode='power')
Set current sensor mode.

Can be one of the modes returned by get_supported_sensor_modes().

set_wavelength(wavelength)
Set current wavelength (in nm)

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

2.7. pylablib 925

pylablib Documentation, Release 1.4.2

update_sensor_modes()

Update the list of supported sensor modes (only makes sense if the sensor has been changed since the
connection was opened)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

926 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

pylablib.devices.Thorlabs.serial module

class pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface(conn)
Bases: SCPIDevice

Generic Thorlabs device interface using Serial communication.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of ThorlabsError

ReraiseError

alias of ThorlabsBackendError

open()

Open the backend

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 927

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

928 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore

2.7. pylablib 929

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Thorlabs.serial.FW(conn, respect_bound=True)
Bases: ThorlabsSerialInterface

Thorlabs FW102/212 motorized filter wheels.

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• respect_bound (bool) – if True, avoid crossing the boundary between the first and the
last position in the wheel

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

get_position()

Get the wheel position (starting from 1)

set_position(pos)
Set the wheel position (starting from 1)

get_pcount()

Get the number of wheel positions (6 or 12)

set_pcount(pcount)
Set the number of wheel positions (6 or 12)

get_speed_mode()

Get the motion speed mode ("low" or "high")

set_speed_mode(speed_mode)
Set the motion speed mode ("low" or "high")

get_trigger_mode()

Get the trigger mode ("in" to input external trigger, "out" to output trigger)

set_trigger_mode(trigger_mode)
Set the trigger mode ("in" to input external trigger, "out" to output trigger)

get_sensor_mode()

Get the sensor mode ("off" to turn off when idle to eliminate stray light, "on" to remain on)

set_sensor_mode(sensor_mode)
Set the sensor mode ("off" to turn off when idle to eliminate stray light, "on" to remain on)

store_settings()

Store current settings as default

BackendError

alias of DeviceBackendError

930 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

Error

alias of ThorlabsError

ReraiseError

alias of ThorlabsBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

2.7. pylablib 931

pylablib Documentation, Release 1.4.2

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

932 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Thorlabs.serial.FWv1(conn, pcount=6, respect_bound=True)
Bases: ThorlabsSerialInterface

Thorlabs FW102/212 v1.0 (older version) motorized filter wheels.

Parameters

• conn – serial connection parameters (usually port or a tuple containing port and baudrate)

• pcount – number of positions in the wheel

• respect_bound (bool) – if True, avoid crossing the boundary between the first and the
last position in the wheel

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

2.7. pylablib 933

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

pylablib Documentation, Release 1.4.2

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

get_position()

Get the wheel position (starting from 1)

set_position(pos)
Set the wheel position (starting from 1)

get_pcount()

Get the number of wheel positions (6 or 12)

get_trigger_mode()

Get the trigger mode ("in" to input external trigger, "out" to output trigger)

set_trigger_mode(trigger_mode)
Set the trigger mode ("in" to input external trigger, "out" to output trigger)

BackendError

alias of DeviceBackendError

Error

alias of ThorlabsError

ReraiseError

alias of ThorlabsBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

934 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

2.7. pylablib 935

pylablib Documentation, Release 1.4.2

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

936 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

class pylablib.devices.Thorlabs.serial.MDT69xA(conn)
Bases: ThorlabsSerialInterface

Thorlabs MDT693A/4A high-voltage source.

Uses MDT693A program interface, so should be compatible with both A and B versions (though it doesn’t
support all functions of MDT693B/4B)

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

get_voltage(channel='x')
Get the output voltage in Volts at a given channel

set_voltage(voltage, channel='x')
Set the output voltage in Volts at a given channel

get_voltage_range()

Get the selected voltage range in Volts (75, 100 or 150)

BackendError

alias of DeviceBackendError

Error

alias of ThorlabsError

ReraiseError

alias of ThorlabsBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

2.7. pylablib 937

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this

938 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

2.7. pylablib 939

https://docs.python.org/3/library/stdtypes.html#str

pylablib Documentation, Release 1.4.2

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

Module contents

pylablib.devices.Toptica package

Submodules

pylablib.devices.Toptica.base module

exception pylablib.devices.Toptica.base.TopticaError

Bases: DeviceError

Generic Toptica device error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Toptica.base.TopticaBackendError(exc)
Bases: TopticaError, DeviceBackendError

Toptica backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

940 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

pylablib.devices.Toptica.ibeam module

pylablib.devices.Toptica.ibeam.muxchan(*args, **kwargs)
Multiplex the function over its addr argument

class pylablib.devices.Toptica.ibeam.TDeviceInfo(serial, version)
Bases: tuple

serial

version

class pylablib.devices.Toptica.ibeam.TWorkHours(power_up, laser_on)
Bases: tuple

laser_on

power_up

class pylablib.devices.Toptica.ibeam.TTemperatures(diode, baseplate)
Bases: tuple

baseplate

diode

class pylablib.devices.Toptica.ibeam.TopticaIBeam(conn='COM1')
Bases: ICommBackendWrapper

Toptica iBeam smart laser controller.

Parameters

• conn – connection parameters - index of the Attocube ANC350 in the system (for a single
controller leave 0)

• timeout (float) – default operation timeout

Error

alias of TopticaError

open()

Open the backend

query(comm, multiline=False, keep_whitespace=False, check_error='FEW', reply=True)

reboot()

Reboot the laser system

get_device_info()

Get the device info of the laser system: (serial, version)

get_full_data(formatted=False)
Return the comprehensive device data

2.7. pylablib 941

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

pylablib Documentation, Release 1.4.2

get_work_hours()

Get the work hours (power on time and laser on time)

get_channels_number()

Get number of supported laser channels

is_enabled()

Check if the output is enabled

enable(enabled=True)
Turn the output on or off

is_channel_enabled(channel='all')
Check if the specific channel is enabled

enable_channel(channel, enabled=True)
Turn the specific channel on or off

get_channel_power(channel='all')
Get specified channel power (in W)

set_channel_power(channel, power)
Set channel power (in W)

get_output_power()

Get current output power (in W)

get_drive_current()

Get current diode drive current (in A)

get_current_limits()

Get settings of all current limits (in A) as a dictionary

get_temperatures()

Get settings of all current limits (in A) as a dictionary

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

942 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Trinamic package

Submodules

pylablib.devices.Trinamic.base module

exception pylablib.devices.Trinamic.base.TrinamicError

Bases: DeviceError

Generic Trinamic error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Trinamic.base.TrinamicBackendError(exc)
Bases: TrinamicError, DeviceBackendError

Generic Trinamic backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.7. pylablib 943

pylablib Documentation, Release 1.4.2

exception pylablib.devices.Trinamic.base.TrinamicTimeoutError

Bases: TrinamicError

Generic Trinamic timeout error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Trinamic.base.TLimitSwitchParams(left_enable, right_enable)
Bases: tuple

left_enable

right_enable

class pylablib.devices.Trinamic.base.TVelocityParams(speed, accel, pulse_divisor, ramp_divisor)
Bases: tuple

accel

pulse_divisor

ramp_divisor

speed

class pylablib.devices.Trinamic.base.THomeParams(mode, search_speed, switch_speed)
Bases: tuple

mode

search_speed

switch_speed

class pylablib.devices.Trinamic.base.TMCM1110(conn)
Bases: ICommBackendWrapper, IStage

Trinamic stepper motor controller TMCM-1110 controlled using TMCL Firmware.

Parameters
conn – serial connection parameters (usually port or a tuple containing port and baudrate)

Error

alias of TrinamicError

open()

Open the backend

class ReplyData(comm, status, value, addr, module)
Bases: tuple

addr

comm

944 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

module

status

value

query(comm, comm_type, value, result_format='i', bank=0, addr=0)
Send a query to the stage and return the reply.

For details, see TMCM-1110 firmware manual.

get_axis_parameter(parameter, result_format='i', addr=0)
Get a given axis parameter

set_axis_parameter(parameter, value, addr=0)
Set a given axis parameter (volatile; resets on power cycling)

store_axis_parameter(parameter, value=None, addr=0)
Store a given axis parameter in EEPROM (by default, value is the current value)

get_global_parameter(parameter, result_format='i', bank=0, addr=0)
Get a given global parameter

set_global_parameter(parameter, value, bank=0, addr=0)
Set a given global parameter

get_general_input(port=0, bank=0, addr=0)
Get value of an input at a given bank (0-2) and port.

Bank 0 is digital input (7 ports), bank 1 is analog input (1 port, value from 0 to 2**16-1), bank 2 is digital
output (8 ports). For port assignments, see TMCM-1110 firmware manual.

set_general_output(value, port=0, bank=2, addr=0)
Set value of a digital input at a given bank (only bank 2 is available) and port.

For port assignments, see TMCM-1110 firmware manual.

move_to(position, addr=0)
Move to a given position

move_by(steps=1, addr=0)
Move by a given number of steps

get_position(addr=0)
Get the current axis position

set_position_reference(pos=0, addr=0)
Set the current axis position as a reference (the actual motor position stays the same)

jog(direction, speed=None, addr=0)
Jog in a given direction with a given speed.

direction can be either "-" (negative, left) or "+" (positive, right). The motion continues until it is explic-
itly stopped, or until a limit is hit. If speed is None, use the standard speed value.

stop(addr=0)
Stop motion

get_microstep_resolution(addr=0)
Get the number of microsteps per full step (always a power of 2)

2.7. pylablib 945

pylablib Documentation, Release 1.4.2

set_microstep_resolution(resolution, addr=0)
Set the number of microsteps per full step (rounded to a nearest power of 2)

get_current_parameters(addr=0)
Return diving current parameter (drive_current, standby_current).

drive_current is the maximal drive current, which is given as a fraction of the maximal generated
current current (which is either 1A or 2.8A depending on the hardware jumper). standby_current is
given as a fraction of drive_current.

setup_current(drive_current=None, standby_current=None, addr=0)
Set drive and standby currents.

WARNING: too high of a setting might damage the motor. drive_current is the maximal drive current,
which is given as a fraction of the maximal generated current current (which is either 1A or 2.8A depend-
ing on the hardware jumper). standby_current is given as a fraction of drive_current. Any None
parameters are left unchanged.

get_limit_switches_parameters(addr=0)
Return limit switch parameters (left_enable, right_enable)

setup_limit_switches(left_enable=None, right_enable=None, addr=0)
Setup limit switch parameters

get_home_parameters(addr=0)
Return homing parameters (mode, search_speed, switch_speed).

mode is one of 16 different values, which can start with "lim_" indicating reliance on limit switches,
or with "home_" indicating usage of home switches. Home-based switches can also be inverted (with
"_inv" in the end), indicating that the homing switch function is inverted (0 instead of 1 means that
the switch is engaged). More details can be found in the manual. search_speed and switch_speed
describe, respectively, the initial speed while searching for the switch, and the final homing speed while
searching for the edge of the switch action. Both are given in internal units.

setup_home(home_mode=None, search_speed=None, switch_speed=None, addr=0)
Setup homing parameters (mode, search_speed, switch_speed).

mode is one of 16 different values, which can start with "lim_" indicating reliance on limit switches,
or with "home_" indicating usage of home switches. Home-based switches can also be inverted (with
"_inv" in the end), indicating that the homing switch function is inverted (0 instead of 1 means that
the switch is engaged). More details can be found in the manual. search_speed and switch_speed
describe, respectively, the initial speed while searching for the switch, and the final homing speed while
searching for the edge of the switch action. Both are given in internal units.

home(wait=True, timeout=30.0, addr=0)
Home the given axis.

If wait==True, wait until the homing is complete or until timeout is passed. Note that homing affects the
velocity parameters, which need to be re-established after the homing is complete. This is done automati-
cally when wait==True, but needs to be done manually otherwise.

is_homing(addr=0)
Check if homing is in progress at the given address

get_velocity_parameters(addr=0)
Return velocity parameters (speed, accel, pulse_divisor, ramp_divisor).

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration
in internal units. pulse_divisor is the driver pulse divisor, which defines how internal velocity units

946 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

translate into microsteps/s (see get_velocity_factor()); can only be a power of 2, higher values mean
slower motion. ramp_divisor is the driver ramp divisor, which, together with the pulse divisor, de-
fines how internal acceleration units translate into microsteps/s^2 (see get_acceleration_factor());
rounded to the nearest power of 2, higher values mean slower acceleration.

setup_velocity(speed=None, accel=None, pulse_divisor=None, ramp_divisor=None, addr=0)
Setup velocity parameters (speed, accel, pulse_divisor, ramp_divisor).

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration in
internal units. pulse_divisor is the driver pulse divisor, which defines how internal velocity units trans-
late into microsteps/s (see get_velocity_factor()); rounded to the nearest power of 2, higher values
mean slower motion. ramp_divisor is the driver ramp divisor, which, together with the pulse divisor, de-
fines how internal acceleration units translate into microsteps/s^2 (see get_acceleration_factor());
rounded to the nearest power of 2, higher values mean slower acceleration. None values are left unchanged.

get_velocity_factor(addr=0)
Get the ratio between the real speed (in microsteps/s) and the internal units

get_acceleration_factor(addr=0)
Get the ratio between the real acceleration (in microsteps/s^2) and the internal units

get_current_speed(addr=0)
Get the instantaneous speed in internal units

is_moving(addr=0)
Check if the motor is moving

wait_move(addr=0)
Wait until motion is done

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

2.7. pylablib 947

pylablib Documentation, Release 1.4.2

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Voltcraft package

Submodules

pylablib.devices.Voltcraft.base module

exception pylablib.devices.Voltcraft.base.GenericVoltcraftError

Bases: DeviceError

Generic Voltcraft error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError(exc)
Bases: GenericVoltcraftError, DeviceBackendError

Voltcraft backend communication error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

948 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

pylablib.devices.Voltcraft.multimeter module

class pylablib.devices.Voltcraft.multimeter.VC7055(addr)
Bases: SCPIDevice

Voltcraft VC-7055BT bench-top multimeter.

Parameters
addr – device connection (usually a COM-port name such as "COM1").

Error

alias of GenericVoltcraftError

ReraiseError

alias of GenericVoltcraftBackendError

get_function(channel='primary')
Get measurement function for the given measurement channel ("primary" or "secondary", or "all"
for both channels)

set_function(function, channel='primary', reset_secondary=True)
Set measurement function for the given measurement channel ("primary", "secondary", or "all" for
both channels).

If reset_secondary==True and the primary function is changed, set the secondary function to "none"
to avoid conflicts.

get_range()

Get the present measurement range

set_range(rng)
Set the present measurement range

is_autorange_enabled()

Check if autoscaling is enabled

enable_autorange(enable=True)
Enable or disable autoscaling

get_measurement_rate()

Get measurement update rate ("fast"", "med", or "slow")

set_measurement_rate(rate)
Set measurement update rate ("fast"", "med", or "slow")

get_reading(channel='primary')
Return the latest reading of the given measurement channel ("primary", "secondary", or "all" for
both channels)

BackendError

alias of DeviceBackendError

apply_settings(settings)
Apply the settings.

settings is a dict {name: value} of the available device settings. Non-applicable settings are ignored.

2.7. pylablib 949

pylablib Documentation, Release 1.4.2

ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)
Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in
read(). If read_echo==True, assume that the device first echoes the input and skip it.

close()

Close the backend

flush(one_line=False)
Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

static get_arg_type(arg)
Autodetect argument type

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_esr(timeout=None)
Get the device status register (by default, "*ESR?" command)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_id(timeout=None)
Get the device IDN. (query SCPI '*IDN?' command)

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

950 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

static parse_array_data(data, fmt, include_header=False)
Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format: b'#',
then a single digit s denoting length of the size block, then s digits denoting length of the data (in bytes)
followed by the actual data. Otherwise (include_header==False), assume that the header is already
removed.

read(data_type='string', timeout=None)
Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and
leading spaces stripped), 'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as
True), 'value' (returns tuple (value, unit), where value is float), a callable (return the result of this
callable applied to the string value), a dictionary (return the stored value corresponding to the string value,
or to the value converted into integer if the string value is not present), or a list of data types (the result is
treated as a list of values with the given types separated by commas). timeout overrides the default value.

read_binary_array_data(include_header=False, timeout=None, flush_term=True)
Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of "#" symbol, then a single digit with
the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content. If
flush_term==True, flush the following line to skip terminator characters after the binary data, which
are added by some devices. timeout overrides the default value.

reconnect(new_instrument=True, ignore_error=True)
Remake the connection.

If new_instrument==True, create a new backend instance. If ignore_error==True, ignore errors on
closing.

reset()

Reset the device (by default, "*RST" command)

set_device_variable(key, value)
Set the value of a settings parameter

sleep(delay)
Wait for delay seconds

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

using_write_buffer()

Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter. The actual
write is performed at the read()/ask() operation or at the end of the block.

wait(wait_type='sync', timeout=None, wait_callback=None)
Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do noth-
ing).

2.7. pylablib 951

pylablib Documentation, Release 1.4.2

wait_dev()

Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are
complete.

Note that the code execution is not paused.

wait_sync(timeout=None, wait_callback=None)
Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None,
read_echo=False, read_echo_delay=0.0)

Send a command.

Parameters

• msg (str) – Text message.

• arg – Optional argument to append in the end. If a list of arguments is supplied, the
result is joined with ",".

• arg_type (str) – Argument type. Can be 'raw' (in which case data is sent raw),
'string', 'int', 'float', 'bool', a format string (such as '{:.3f}') or a list of
argument types (for an iterable argument); if format string is used and the argument is
a list or a tuple, then it is expanded as a list of arguments (e.g., arg_type='{0};{1}'
with arg=[1,2] will produce a string '1;2'); if a list of types is used, each element
of arg is converted using the corresponding type, and the result is joined with ",".

• unit (str) – If not None, use it as a unit to append after the value.

• bool_selector (tuple) – A tuple (false_value, true_value) of two strings
to represent bool argument; by default, use ._bool_selector attribute.

• wait_sync – if True, append the sync command (specified as ._wait_sync_comm
attribute, "*OPC?" by default) after the message and pause the execution com-
mand is complete; useful in long set operations, where the device might ignore
later inputs until the current command is complete; if None, use the class default .
_default_write_sync attribute (False by default).

• read_echo (bool) – If True, read a single line after write.

• read_echo_delay (float) – The delay between write and read if
read_echo==True.

exception pylablib.devices.Voltcraft.multimeter.VC880ParseError

Bases: GenericVoltcraftError

Voltcraft VC880 message parse error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.Voltcraft.multimeter.TVC880Reading(func, kind, value, unit, disps, d2func)
Bases: tuple

952 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

d2func

disps

func

kind

unit

value

class pylablib.devices.Voltcraft.multimeter.VC880(conn=0)
Bases: ICommBackendWrapper

Voltcraft VC880/VC650BT series multimeter.

Parameters
conn – device connection (usually, either a HID path, or an integer 0-based index indicating
the devices among the ones connected)

Error

alias of GenericVoltcraftError

class TMessage(typ, payload)
Bases: tuple

payload

typ

read_message(tries=10)
Read the oldest message in the queue

exhaust_messages(nmax=100000, tries=10)
Read all messages in the queue and return them

nmax specifies the maximal number of messages to read (None means reading until available).

send_message(comm, data=b'', pre_exhaust=True, reps=1, post_read=0)
Send a message containing the given command and data.

If pre_exhaust==True, empty the read queue before sending the message (improves chances of delivery).
reps specifies the number of exhaust/send cycle repetitions (improves chances of delivery). If post_read
is more than 0, it specifies the number of messages to read after the command is sent.

get_reading(kind='latest')
Get the multimeter reading.

kind can be "latest" (return the most recent reading), "oldest" (return the oldest reading), or "all"
(return all readings in the read queue). Return tuple (func, kind, val, unit, disps, d2func)
with, correspondingly, specific selected function (e.g., "DCuA" or "res"), function kind (e.g., "curr_dc"
or "res"), displayed value (in SI units), value units (e.g., "V" or "Ohm"), values of the other 3 auxiliary
displays (upper right min/max/avg/rel display, upper left memory display, bottom linear scale display), and
the kind of function on the upper right display ("min", "max", "avg", or "rel").

enable_autorange(enable=True)
Enable or disable autorange

2.7. pylablib 953

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the backend

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

lock(timeout=None)
Lock the access to the device from other threads/processes (isn’t necessarily implemented)

locking(timeout=None)
Context manager for lock & unlock

open()

Open the backend

set_device_variable(key, value)
Set the value of a settings parameter

unlock()

Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

954 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.interface package

Submodules

pylablib.devices.interface.camera module

exception pylablib.devices.interface.camera.DefaultFrameTransferError

Bases: DeviceError

Generic frame transfer error

add_note()

Exception.add_note(note) – add a note to the exception

args

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pylablib.devices.interface.camera.TFramesStatus(acquired, unread, skipped, buffer_size)
Bases: tuple

acquired

buffer_size

skipped

unread

class pylablib.devices.interface.camera.TFrameSize(width, height)
Bases: tuple

height

width

class pylablib.devices.interface.camera.TFramePosition(left, top)
Bases: tuple

left

top

class pylablib.devices.interface.camera.TFrameInfo(frame_index)
Bases: tuple

frame_index

class pylablib.devices.interface.camera.ICamera(*args, **kwargs)
Bases: IDevice

Generic camera class.

Provides a consistent common interface for the most frequently encountered camera functions.

2.7. pylablib 955

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

Error

alias of DeviceError

TimeoutError

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

956 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building

2.7. pylablib 957

pylablib Documentation, Release 1.4.2

a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

958 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

snap(timeout=5.0, return_info=False)
Snap a single frame

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

2.7. pylablib 959

pylablib Documentation, Release 1.4.2

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

pylablib.devices.interface.camera.acqstopped(*args, **kwargs)
Decorator which temporarily stops acquisition for the function call

pylablib.devices.interface.camera.acqcleared(*args, **kwargs)
Decorator which temporarily clears acquisition for the function call

pylablib.devices.interface.camera.trim_frames(frames, l, info=None, chunks='auto')
Trim frames in different formats to the desired length

class pylablib.devices.interface.camera.FrameCounter

Bases: object

Frame counter.

Keeps track of the buffer occupation, acquired/missed frames, last read and wait buffers, etc.

reset(buffer_size=None)
Reset the counters.

If buffer_size is None, assume the the buffer is deallocated. Otherwise, it specifies the frame buffer
size (in frames).

update_acquired_frames(acquired_frames)
Update the counter of acquired frames (needs to be called by the camera whenever necessary)

wait_start(acquired_frames)
Set up waiting routine (called in the beginning of ICamera.wait_for_frame())

is_wait_done(acquired_frames=None, since='lastread', nframes=1)
Check if the waiting condition is satisfied based on the counter values:

If not None, acquired_frames specifies the most recent number of acquired frames (the internal counters is
automatically updated). since and nframes have the same meaning as in ICamera.wait_for_frame().

wait_done()

Clean up waiting routine (called in the end of ICamera.wait_for_frame())

get_frames_status(acquired_frames=None)
Get status of the internal counters.

Return tuple (acquired, unread, skipped, buffer_size). If the buffer is not allocated, all coun-
ters are 0.

get_new_frames_range(acquired_frames=None)
Get the range of the new frames (acquired but not read)

trim_frames_range(rng)
Trim the given frames range to only contains frames which are still in the buffer (i.e., remove the frames
which are too old and have been overwritten)

advance_read_frames(rng)
Mark the specified frames range as read and advance the last read counter

960 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

set_first_valid_frame(first_valid_frame)
Set the first valid frame; all frames older than it are considered invalid when calculating skipped frames
and trimming ranges

class pylablib.devices.interface.camera.FrameNotifier(strict=False)
Bases: object

Notifier for a new available frame.

Used when the camera runs a separate polling thread or a callback, which needs to notify the main thread that a
new frame has been acquired.

Parameters
strict – determines whether wait() waits for a specified frame index, or just for any new
frame (which is checked later)

reset()

Reset the internal frame counter

inc()

Increment the internal frame counter, notify the waiting threads, and return the counter value

wait(idx=None, timeout=None)
Wait for a new frame with a given index (if None, for the next acquired frame)

class pylablib.devices.interface.camera.ChunkBufferManager(chunk_size=67108864)
Bases: object

Buffer manager, which takes care of creating and removing the buffer chunks, and reading out some parts of
them.

Parameters
chunk_size – the minimal size of a single buffer chunk (continuous memory segment poten-
tially containing several frames).

get_ctypes_frames_list(ctype=<class 'ctypes.c_char_p'>)
Get stored buffers as a ctypes array with pointer of the given type

get_frames_data(idx, nframes=1)
Get frames data starting from idx and spanning nframes frames.

Return a list of tuples (nread, chunk_data), where nread is the number of frames in the chunk, and
chunk_data is the raw buffer pointer as a ctypes.c_char_p object.

allocate(nframes, frame_size)
Allocate buffers for the given number of frames and frame size (in bytes)

deallocate()

Deallocate the buffers

class pylablib.devices.interface.camera.IAttributeCamera(*args, **kwargs)
Bases: ICamera

Camera class which supports camera attributes.

The method _list_attributes must be defined in a subclass; it should produce a list of camera attributes,
which have name attribute for placing them into a dictionary. Attributes can also have readable and writable
attributes, which are used in get_all_attribute_values() and set_all_attribute_values() to deter-
mine if the attribute values should be collected or set. Method _update_attributes should be called on
opening to populate the dictionary of available attributes.

2.7. pylablib 961

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

One can also define _normalize_attribute_name, which normalizes the attribute name into a dictionary
name (e.g., replaces separators, removes spaces, or normalizes case).

get_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

get_all_attributes(copy=False)
Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_attribute_value(name, error_on_missing=True, default=None, **kwargs)
Get value of an attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default. If de-
fault is not None, automatically assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. Additional arguments are passed to get_value
methods of the individual attribute.

set_attribute_value(name, value, error_on_missing=True, **kwargs)
Set value of an attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing. If name
points at a dictionary branch, set all values in this branch (in this case value must be a dictionary). Addi-
tional arguments are passed to set_value methods of the individual attribute.

get_all_attribute_values(root='', **kwargs)
Get values of all attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

set_all_attribute_values(settings, root='', **kwargs)
Set values of all attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

Error

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

962 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

2.7. pylablib 963

pylablib Documentation, Release 1.4.2

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open the connection

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

964 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

2.7. pylablib 965

pylablib Documentation, Release 1.4.2

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.interface.camera.IGrabberAttributeCamera(*args, **kwargs)
Bases: ICamera

Camera class which supports frame grabber attributes.

Essentially the same as IAttributeCamera, but with relevant methods and attributes renamed to support both
frame grabber and camera attributes handling simultaneously.

The method _list_grabber_attributes must be defined in a subclass; it should produce a list of cam-
era attributes, which have name attribute for placing them into a dictionary. Attributes can also have
readable and writable attributes, which are used in get_all_grabber_attribute_values() and
set_all_grabber_attribute_values() to determine if the attribute values should be collected or set.
Method _update_grabber_attributes should be called on opening to populate the dictionary of available
attributes.

One can also define _normalize_grabber_attribute_name, which normalizes the attribute name into a dic-
tionary name (e.g., replaces separators, removes spaces, or normalizes case).

get_grabber_attribute(name, error_on_missing=True)
Get the camera attribute with the given name

966 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_all_grabber_attributes(copy=False)
Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be
modified).

get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)
Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default. If de-
fault is not None, automatically assume that error_on_missing==False. If name points at a dictionary
branch, return a dictionary with all values in this branch. Additional arguments are passed to get_value
methods of the individual attribute.

set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)
Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing. If name
points at a dictionary branch, set all values in this branch (in this case value must be a dictionary). Addi-
tional arguments are passed to set_value methods of the individual attribute.

get_all_grabber_attribute_values(root='', **kwargs)
Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

set_all_grabber_attribute_values(settings, root='', **kwargs)
Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

Error

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

2.7. pylablib 967

pylablib Documentation, Release 1.4.2

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

968 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open the connection

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

2.7. pylablib 969

pylablib Documentation, Release 1.4.2

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

970 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.interface.camera.TAcqTimings(exposure, frame_period)
Bases: tuple

exposure

frame_period

class pylablib.devices.interface.camera.IExposureCamera(*args, **kwargs)
Bases: ICamera

get_exposure()

Get current exposure

set_exposure(exposure)
Set camera exposure

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

2.7. pylablib 971

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

Error

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

972 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

2.7. pylablib 973

pylablib Documentation, Release 1.4.2

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open the connection

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

974 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

2.7. pylablib 975

pylablib Documentation, Release 1.4.2

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.interface.camera.TAxisROILimit(min, max, pstep, sstep, maxbin)
Bases: tuple

max

maxbin

min

pstep

sstep

pylablib.devices.interface.camera.truncate_roi_axis(roi, lim, symmetric=False)
Truncate ROI to conform to the given ROI limits.

roi is a tuple (start, stop, bin), and lim is a tuple (min, max, pstep, sstep, maxbin). Assume
that pstep and sstep divide min and max, and that either pstep divides sstep or the other way around. If
symmetric==True, then max should be even.

class pylablib.devices.interface.camera.IROICamera(*args, **kwargs)
Bases: ICamera

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend). hstart and hend specify horizontal image extent, vstart
and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from 0).

set_roi(hstart=0, hend=None, vstart=0, vend=None)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0). By default, all non-supplied parameters take extreme values
(0 for start, maximal for end).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning (fixed to 1 if not binning is allowed). In some cameras, the step and the minimal size depend on the
binning, which can be supplied.

Error

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

976 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

2.7. pylablib 977

pylablib Documentation, Release 1.4.2

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

978 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

open()

Open the connection

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image

2.7. pylablib 979

pylablib Documentation, Release 1.4.2

info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

980 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

class pylablib.devices.interface.camera.IBinROICamera(*args, **kwargs)
Bases: ICamera

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin). hstart and hend specify horizontal im-
age extent, vstart and vend specify vertical image extent (start is inclusive, stop is exclusive, starting from
0), hbin and vbin specify binning.

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start is
inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values (0 for start, maximal for end, 1 for binning).

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

Error

alias of DeviceError

FrameTransferError

alias of DefaultFrameTransferError

TimeoutError

alias of DeviceError

acquisition_in_progress()

Check if acquisition is in progress

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

clear_acquisition()

Clear acquisition settings

close()

Close the connection

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_device_variable(key)
Get the value of a settings, status, or full info parameter

2.7. pylablib 981

pylablib Documentation, Release 1.4.2

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

982 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

is_opened()

Check if the device is connected

open()

Open the connection

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of frame info tuples (camera-dependent, by default, only the frame index); if some frames are missing
and missing_frame!="skip", the corresponding frame info is None. if return_rng==True, return the
range covered resulting frames; if missing_frame=="skip", the range can be smaller than the supplied
rng if some frames are skipped.

2.7. pylablib 983

pylablib Documentation, Release 1.4.2

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

setup_acquisition(**kwargs)
Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not
explicitly set before). Return the new acquisition parameters.

984 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

snap(timeout=5.0, return_info=False)
Snap a single frame

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

class pylablib.devices.interface.camera.TStatusLineDescription(kind, roi, framestamp_checker)
Bases: tuple

framestamp_checker

kind

roi

class pylablib.devices.interface.camera.StatusLineChecker

Bases: object

Class responsible for checking status line consistency

get_framestamp(frames)
Get framestamps from status lines in the given frames

check_indices(indices, step=1)
Check if indices are consistent with the given step

pylablib.devices.interface.camera.remove_status_line(frame, status_line, policy='duplicate',
copy=True, value=0)

Remove status line, if present.

Parameters

• frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame
number)

• status_line – status line descriptor (from the frames message)

• policy – determines way to deal with the status line; can be "keep" (keep as is), "cut"
(cut off the status-line-containing row/column), "zero" (set it to zero), "value" (set it
to a given value), "median" (set it to the image median), or "duplicate" (set it equal
to the previous row; default) "cut" is only possible of the status line is on the edge of the
image.

2.7. pylablib 985

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

• copy – if True, make copy of the original frames; otherwise, attempt to remove the line
in-place

pylablib.devices.interface.camera.extract_status_line(frame, status_line, copy=True)
Extract status line, if present.

Parameters

• frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame
number)

• status_line – status line descriptor (from the frames message)

• copy – if True, make copy of the original status line data.

pylablib.devices.interface.camera.insert_status_line(frame, status_line, value, copy=True)
Insert status line, if present.

Parameters

• frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame
number)

• status_line – status line descriptor (from the frames message)

• value – status line value

• copy – if True, make copy of the original status line data.

pylablib.devices.interface.camera.get_status_line_roi(frame, status_line)
Return ROI taken by the status line in the given frame

pylablib.devices.interface.stage module

class pylablib.devices.interface.stage.IStage

Bases: IDevice

Generic stage class

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

986 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

pylablib.devices.interface.stage.muxaxis(*args, argname='axis', **kwargs)
Multiplex the function over its axis argument

class pylablib.devices.interface.stage.IMultiaxisStage(*args, default_axis='all', **kwargs)
Bases: IStage

Generic multiaxis stage class.

Has methods to assign and map axes and the axis device parameter.

Parameters
default_axis – default axis parameter value used when axis=None is provided

get_all_axes()

Get the list of all available axes (taking mapping into account)

remap_axes(mapping, accept_original=True)
Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in
order returned by get_all_axes()), or a dictionary {alias: original} of the new axes aliases.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

close()

Close the connection

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

2.7. pylablib 987

pylablib Documentation, Release 1.4.2

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

is_opened()

Check if the device is connected

open()

Open the connection

set_device_variable(key, value)
Set the value of a settings parameter

Module contents

pylablib.devices.uc480 package

Submodules

pylablib.devices.uc480.uc480 module

class pylablib.devices.uc480.uc480.TCameraInfo(cam_id, dev_id, sens_id, model, serial_number,
in_use, status)

Bases: tuple

cam_id

dev_id

in_use

model

sens_id

serial_number

status

pylablib.devices.uc480.uc480.list_cameras(backend='uc480')
List all uc480/uEye camera connections (interface kind and camera index).

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for
IDS uEye-associated cameras

988 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

pylablib.devices.uc480.uc480.get_cameras_number(backend='uc480')
Get the total number of connected uc480/uEye cameras.

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for
IDS uEye-associated cameras

pylablib.devices.uc480.uc480.find_by_serial(serial_number, backend='uc480')
Find device ID using its serial number.

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for
IDS uEye-associated cameras

class pylablib.devices.uc480.uc480.TDeviceInfo(cam_id, model, manufacturer, serial_number,
usb_version, date, dll_version, camera_type)

Bases: tuple

cam_id

camera_type

date

dll_version

manufacturer

model

serial_number

usb_version

class pylablib.devices.uc480.uc480.TAcquiredFramesStatus(acquired, transfer_missed,
frameskip_events)

Bases: tuple

acquired

frameskip_events

transfer_missed

class pylablib.devices.uc480.uc480.TTimestamp(year, month, day, hour, minute, second, millisecond)
Bases: tuple

day

hour

millisecond

minute

month

second

year

2.7. pylablib 989

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

pylablib Documentation, Release 1.4.2

class pylablib.devices.uc480.uc480.TFrameInfo(frame_index, framestamp, timestamp, timestamp_dev,
size, io_status, flags)

Bases: tuple

flags

frame_index

framestamp

io_status

size

timestamp

timestamp_dev

class pylablib.devices.uc480.uc480.UC480Camera(cam_id=0, roi_binning_mode='auto', dev_id=None,
backend='uc480')

Bases: IBinROICamera, IExposureCamera

Thorlabs uc480 / IDS uEye camera.

Parameters

• cam_id (int) – camera ID; use 0 to get the first available camera

• roi_binning_mode – determines whether binning in ROI refers to binning or subsam-
pling; can be "bin", "subsample", or "auto" (since most cameras only support one, it
will pick the one which has non-trivial value, or "bin" if both are available).

• dev_id (int) – if None use cam_id as a camera id (cam_id field of the camera info
returned by list_cameras()); otherwise, ignore value of cam_id and use dev_id as de-
vice id (dev_id field of the camera info). The first method requires assigning camera
IDs beforehand (otherwise IDs might overlap, in which case only one camera can be ac-
cessed), but the assigned IDs are permanent; the second method always has unique IDs,
but they might change if the cameras are disconnected and reconnected. For a more re-
liable assignment, one can use find_by_serial() function to find device ID based on
the camera serial number.

• backend – camera DLL backend; can be either "uc480" for Thorlabs-associated cameras,
or "ueye" for IDS uEye-associated cameras

Error = <Mock name='mock.uc480Error' id='140147622511312'>

TimeoutError = <Mock spec='str' id='140147622507984'>

FrameTransferError = <Mock spec='str' id='140147622525584'>

static find_by_serial(serial_number, backend='uc480')

open()

Open connection to the camera

close()

Close connection to the camera

is_opened()

Check if the device is connected

990 Chapter 2. Citation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pylablib Documentation, Release 1.4.2

get_device_info()

Get camera model data.

Return tuple (model, manufacturer, serial_number, usb_version, date, dll_version,
camera_type).

get_camera_id()

Get the current camera id

set_camera_id(cam_id)
Set the new camera id (stored in non-volatile memory, i.e., survives power cycling)

get_frame_timings()

Get acquisition timing.

Return tuple (exposure, frame_period).

set_exposure(exposure)
Set camera exposure

set_frame_period(frame_time)
Set frame period (time between two consecutive frames in the internal trigger mode)

get_pixel_rate()

Get camera pixel rate (in Hz)

get_available_pixel_rates()

Get all available pixel rates (in Hz)

get_pixel_rates_range()

Get range of allowed pixel rates (in Hz).

Return tuple (min, max, step) if minimal and maximal value, and a step.

set_pixel_rate(rate=None)
Set camera pixel rate (in Hz)

The rate is always rounded to the closest available. If rate is None, set the maximal possible rate.

get_all_color_modes()

Get a list of all available color modes

get_color_mode()

Get current color mode.

For possible modes, see get_all_color_modes().

set_color_mode(mode)
Set current color mode.

For possible modes, see get_all_color_modes().

get_gains()

Get current gains.

Return tuple (master, red, green, blue) of corresponding gain factors.

get_max_gains()

Get maximal gains.

Return tuple (master, red, green, blue) of corresponding maximal gain factors.

2.7. pylablib 991

pylablib Documentation, Release 1.4.2

set_gains(master=None, red=None, green=None, blue=None)
Set current gains.

If supplied value is None, keep it unchanged.

get_gain_boost()

Check if gain boost is enabled

set_gain_boost(enabled)
Enable or disable gain boost

setup_acquisition(nframes=100)
Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

clear_acquisition()

Clear acquisition settings

start_acquisition(*args, **kwargs)
Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition. If the acquisition is not set up yet,
set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the ac-
quisition.

stop_acquisition()

Stop acquisition

acquisition_in_progress()

Check if acquisition is in progress

get_frames_status()

Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired
frames, unread is the number of acquired but not read frames, skipped is the number of skipped (not
read and then written over) frames, and buffer_size is the total buffer size (in frames).

get_acquired_frame_status()

set_frameskip_behavior(behavior)
Choose the camera behavior if frame skip event is encountered when waiting for a new frame, reading
frames, getting buffer status, etc.

Can be "error" (raise uc480FrameTransferError), "ignore" (continue acquisition, ignore the gap),
or "skip" (mark some number of frames as skipped, but keep the frame counters consistent).

get_supported_subsampling_modes()

Get all supported subsampling modes.

Return tuple (horizontal, vertical) of lists with all possible supported subsampling factors.

get_subsampling()

Get current subsampling

set_subsampling(hsub=1, vsub=1)
Set subsampling.

If values are not supported, get the closest value below the requested. Automatically turns off binning.

992 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

get_supported_binning_modes()

Get all supported binning modes.

Return tuple (horizontal, vertical) of lists with all possible supported binning factors.

get_binning()

Get current binning

set_binning(hbin=1, vbin=1)
Set binning.

If values are not supported, get the closest value below the requested. Automatically turns off subsampling.

get_detector_size()

Get camera detector size (in pixels) as a tuple (width, height)

get_roi()

Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)
Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent (start are
inclusive, stop are exclusive, starting from 0), hbin and vbin specify binning. By default, all non-supplied
parameters take extreme values.

get_roi_limits(hbin=1, vbin=1)
Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple (min, max, pstep, sstep,
maxbin) with, correspondingly, minimal and maximal size, position and size step, and the maximal bin-
ning. In some cameras, the step and the minimal size depend on the binning, which can be supplied.

apply_settings(settings)
Apply the settings.

settings is the dict {name: value} of the device available settings. Non-applicable settings are ignored.

get_acquisition_parameters()

Get acquisition parameters.

Return dictionary {name: value}

get_data_dimensions()

Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

get_device_variable(key)
Get the value of a settings, status, or full info parameter

get_exposure()

Get current exposure

get_frame_format()

Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), or "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance).

2.7. pylablib 993

pylablib Documentation, Release 1.4.2

get_frame_info_fields()

Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

get_frame_info_format()

Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list"
(flat list of values, with field names are given by get_frame_info_fields(); convenient for building
a table), "array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame
format), or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future
format changes)

get_frame_info_period()

Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

get_frame_period()

Get frame period (time between two consecutive frames in the internal trigger mode)

get_full_info(include=0)
Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_full_status(include=0)
Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

get_image_indexing()

Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

get_new_images_range()

Get the range of the new images.

Return tuple (first, last) with images range (first inclusive). If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

get_settings(include=0)
Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned), a priority threshold (only val-
ues with the priority equal or higher are returned), or "all" (all available variables). Since the lowest pri-
ority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

994 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)
Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size). Timeout is specified for a single-frame ac-
quisition, not for the whole acquisition time. missing_frame determines what to do with frames which have
been lost: can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them, while still keeping total returned frames number to n). If return_info==True,
return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent); if some
frames are missing and missing_frame!="skip", the corresponding frame info is None.

is_acquisition_setup()

Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True,
combine_nested=True)

Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition. If
clear==True, clear acquisition in addition to stopping (by default, use the class default specified
as _clear_pausing_acquisition attribute). If stop==True, stop the acquisition (if clear==True,
stop regardless). If setup_after==True, setup the acquisition after pause if necessary (None means
setup only if clearing was required). If start_after==True, start the acquisition after pause if
necessary (None means start only if stopping was required). If combine_nested==True, then any nested
pausing_acquisition calls will stop/clear acquisition as necessary, but won’t setup/start it again until
this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in
progress, and what are the current acquisition parameters.

read_newest_image(peek=False, return_info=False)
Read the newest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

read_oldest_image(peek=False, return_info=False)
Read the oldest un-read image.

If no un-read frames are available, return None. If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent,
see read_multiple_images()).

set_device_variable(key, value)
Set the value of a settings parameter

set_frame_format(fmt)
Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array), "chunks" (list of 3D “chunk” arrays;
supported for some cameras and provides the best performance), or "try_chunks" (same as "chunks",
but if chunks are not supported, set to "list" instead). If format is "chunks" and chunks are not supported
by the camera, it results in one frame per chunk. Note that if the format is set to "array" or "chunks", the
frame info format is also automatically set to "array". If the format is set to "chunks", then the image
info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame
chunks).

2.7. pylablib 995

pylablib Documentation, Release 1.4.2

set_frame_info_format(fmt, include_fields=None)
Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values), "list" (flat
list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format), or
"dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats; note that order or
include_fields is ignored, and the resulting fields are always ordered same as in the original.

set_frame_info_period(period=1)
Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period. Useful
for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher
frame rates. Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an
issue for a given camera class.

set_image_indexing(indexing)
Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc",
rows counted from the bottom), "xyt" (first index column, second index row, rows counted from the top),
or "xyb" (same as "xyt", rows counted from the bottom)

snap(timeout=5.0, return_info=False)
Snap a single frame

wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)
Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames; can be “lastread”`` (from the last
read frame), "lastwait" (wait for the last successful wait_for_frame() call), "now" (from the start
of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been ac-
quired). timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds
frame_timeout. If the call times out, raise TimeoutError. If error_on_stopped==True and the
acquisition is not running, raise Error; otherwise, simply return False without waiting.

read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False,
return_rng=False)

Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive). If no new frames are
available, return an empty list; if no acquisition is running, return None. If peek==True, return images but
not mark them as read. missing_frame determines what to do with frames which are out of range (missing
or lost): can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or
"skip" (skipping them). If return_info==True, return tuple (frames, infos), where infos is a
list of TFrameInfo instances describing frame index, framestamp, global timestamp (real time), device
timestamp (time from camera restart, in 0.1us steps), frame size, digital input state, and additional flags;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None. if
return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range
can be smaller than the supplied rng if some frames are skipped. Note that obtaining frame info might
take about 2ms, so at high frame rates it will become a limiting factor.

996 Chapter 2. Citation

pylablib Documentation, Release 1.4.2

Module contents

pylablib.devices.utils package

Submodules

pylablib.devices.utils.color module

pylablib.devices.utils.color.bayer_interpolate(src, off=(0, 0))
Interpolate Bayer-filtered source image.

The algorithm is the straightforward linear nearest neighbor interpolation. The Bayer pattern is assume to be
[RG|GB], and off specifies the red pixel position with respect to the image origin.

pylablib.devices.utils.color.linear_to_sRGB(v, base=1, A=2.4, P=0.055)
Convert the linear sRGB color space to the sRGB.

base specifies the full color range (e.g., 65535 for 16-bit color values), and A and P are the two conversion
parameters.

pylablib.devices.utils.color.sRGB_to_linear(v, base=1, A=2.4, P=0.055)
Convert the sRGB color space to the linear sRGB.

base specifies the full color range (e.g., 65535 for 16-bit color values), and A and P are the two conversion
parameters.

pylablib.devices.utils.load_lib module

pylablib.devices.utils.load_lib.get_os_lib_folder()

Get default Windows DLL folder (System32 or SysWOW64, depending on Python and Windows bitness)

pylablib.devices.utils.load_lib.get_program_files_folder(subfolder='', arch=None)
Get default Windows Program Files folder or a subfolder within it.

If arch is None, use the current Python architecture to determine the folder; otherwise, it specifies the architecture
("32bit" for Program Files (x86), "64bit" for Program Files)

pylablib.devices.utils.load_lib.get_appdata_folder(subfolder='', kind='roaming')
Get user AppData folder (used to install software only for specific users).

kind can be "roaming" (return Roaming AppData folder) or "local" (return Local AppData folder).

pylablib.devices.utils.load_lib.get_environ_folder(var, subfolder='', error_missing=False)
Get subfolder of a folder based on the environment variable.

If the environment variable is missing and error_missing==True, raise an error; otherwise, return None.

pylablib.devices.utils.load_lib.load_lib(name, locations=('global',), call_conv='cdecl', locally=False,
depends=None, depends_required=True,
error_message=None, check_order='location',
return_location=False)

Load DLL.

Parameters

• name – name or path of the library (can also be a list or a tuple with several names, which
are tried in that order).

2.7. pylablib 997

pylablib Documentation, Release 1.4.2

• locations – list or tuple of locations to search for a library; the function tries locations
in order and returns the first successfully loaded library a location is a string which can be
a path to the containing folder, "parameter/*" (the remaining part is a subpath inside
"devices/dlls" library parameters; if this parameter is defined, it names folder or file
for the dll), or "global" (load path as is; also searches in the standard OS specified
locations determined by PATH variable, e.g., System32 folder).

• depends – if specified, it is a list of dependency libraries which need to be loaded first
before the main DLL; they are assumed to be in the same location as the main file

• depends_required – if False, ignore errors during dependency loads

• locally (bool) – if True, prepend path to the DLL containing folder to the environment
PATH folders; this is usually required, if the loaded DLL imports other DLLs in the same
folder

• call_conv (str) – DLL call convention; can be either "cdecl" (corresponds to
ctypes.cdll) or "stdcall" (corresponds to ctypes.windll)

• error_message (str) – error message to add in addition to the default error message
shown when the DLL is not found

• check_order (str) – determines the order in which possible combinations of names and
locations are looped over; can be "location" (loop over locations, and for each location
loop over names), "name" (loop over names, and for each name loop over locations), or
a list of tuples [(loc,name)] specifying order of checking (in the latter case, name and
location arguments are ignored, except for generating error message).

• return_location (bool) – if True, return a tuple (dll, location, folder) in-
stead of a single dll.

class pylablib.devices.utils.load_lib.TLibraryOpenResult(init_result, open_result, opid)
Bases: tuple

init_result

open_result

opid

class pylablib.devices.utils.load_lib.TLibraryCloseResult(close_result, uninit_result)
Bases: tuple

close_result

uninit_result

class pylablib.devices.utils.load_lib.LibraryController(lib)
Bases: object

Simple wrapper to control libraries which require initialization when a new device is opened or shutdown when
all devices are closed.

Parameters
lib – controlled library

preinit()

Pre-initialize the library, if it hasn’t been done already

998 Chapter 2. Citation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

pylablib Documentation, Release 1.4.2

open()

Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the open-
ing, and the opening ID which should afterwards be used for closing. If library is already initialized, set
init_result=None

close(opid)
Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown. If
library does not need to be shut down yet, set uninit_result=None

temp_open()

Context for temporarily opening a new device connection

shutdown()

Close all opened connections and shutdown the library

get_opened_num()

Get number of opened devices

Module contents

Module contents

Submodules

pylablib.widgets module

Module contents

pylablib.setbp()

pylablib.reload_all(from_load_path=True, keep_parameters=True)
Reload all loaded modules.

If keep_parameters==True, keep the current library parameters (pylablib.par); otherwise, reset them to
default.

pylablib.unload_all()

Reload all loaded modules.

pylablib.load_par(path)
Load library parameters from a file

2.7. pylablib 999

pylablib Documentation, Release 1.4.2

1000 Chapter 2. Citation

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

1001

pylablib Documentation, Release 1.4.2

1002 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
pylablib, 999
pylablib.core, 440
pylablib.core.dataproc, 161
pylablib.core.dataproc.callable, 125
pylablib.core.dataproc.ctransform_fallback,

130
pylablib.core.dataproc.feature, 131
pylablib.core.dataproc.filters, 133
pylablib.core.dataproc.fitting, 137
pylablib.core.dataproc.fourier, 140
pylablib.core.dataproc.iir_transform, 143
pylablib.core.dataproc.image, 143
pylablib.core.dataproc.interpolate, 144
pylablib.core.dataproc.specfunc, 147
pylablib.core.dataproc.table_wrap, 148
pylablib.core.dataproc.transform, 157
pylablib.core.dataproc.utils, 158
pylablib.core.devio, 198
pylablib.core.devio.backend_logger, 165
pylablib.core.devio.base, 166
pylablib.core.devio.comm_backend, 166
pylablib.core.devio.data_format, 189
pylablib.core.devio.hid, 190
pylablib.core.devio.hid_base, 192
pylablib.core.devio.interface, 192
pylablib.core.devio.SCPI, 161
pylablib.core.fileio, 228
pylablib.core.fileio.datafile, 198
pylablib.core.fileio.dict_entry, 199
pylablib.core.fileio.loadfile, 206
pylablib.core.fileio.loadfile_utils, 212
pylablib.core.fileio.location, 213
pylablib.core.fileio.parse_csv, 218
pylablib.core.fileio.savefile, 220
pylablib.core.fileio.table_stream, 227
pylablib.core.gui, 315
pylablib.core.gui.formatter, 294
pylablib.core.gui.limiter, 295
pylablib.core.gui.utils, 296
pylablib.core.gui.value_handling, 298
pylablib.core.gui.widgets, 294

pylablib.core.gui.widgets.button, 228
pylablib.core.gui.widgets.combo_box, 228
pylablib.core.gui.widgets.container, 230
pylablib.core.gui.widgets.edit, 266
pylablib.core.gui.widgets.label, 268
pylablib.core.gui.widgets.layout_manager, 271
pylablib.core.gui.widgets.param_table, 274
pylablib.core.thread, 357
pylablib.core.thread.callsync, 315
pylablib.core.thread.controller, 326
pylablib.core.thread.multicast_pool, 350
pylablib.core.thread.notifier, 351
pylablib.core.thread.profile, 352
pylablib.core.thread.synchronizing, 352
pylablib.core.thread.threadprop, 354
pylablib.core.thread.utils, 356
pylablib.core.utils, 440
pylablib.core.utils.array_utils, 357
pylablib.core.utils.cext_tools, 357
pylablib.core.utils.crc, 357
pylablib.core.utils.ctypes_wrap, 357
pylablib.core.utils.dictionary, 361
pylablib.core.utils.files, 398
pylablib.core.utils.funcargparse, 405
pylablib.core.utils.functions, 406
pylablib.core.utils.general, 410
pylablib.core.utils.indexing, 418
pylablib.core.utils.ipc, 420
pylablib.core.utils.library_parameters, 422
pylablib.core.utils.module, 423
pylablib.core.utils.nbtools, 424
pylablib.core.utils.net, 425
pylablib.core.utils.numerical, 429
pylablib.core.utils.observer_pool, 430
pylablib.core.utils.py3, 431
pylablib.core.utils.rpyc_utils, 431
pylablib.core.utils.strdump, 433
pylablib.core.utils.string, 434
pylablib.core.utils.strpack, 438
pylablib.core.utils.units, 439
pylablib.devices, 999
pylablib.devices.AlliedVision, 505

1003

pylablib Documentation, Release 1.4.2

pylablib.devices.AlliedVision.Bonito, 490
pylablib.devices.Andor, 532
pylablib.devices.Andor.AndorSDK2, 505
pylablib.devices.Andor.AndorSDK3, 516
pylablib.devices.Andor.atcore_features, 531
pylablib.devices.Andor.base, 531
pylablib.devices.Andor.Shamrock, 526
pylablib.devices.Arcus, 545
pylablib.devices.Arcus.base, 532
pylablib.devices.Arcus.performax, 533
pylablib.devices.Arduino, 548
pylablib.devices.Arduino.base, 545
pylablib.devices.Attocube, 556
pylablib.devices.Attocube.anc300, 548
pylablib.devices.Attocube.anc350, 552
pylablib.devices.Attocube.base, 556
pylablib.devices.AWG, 490
pylablib.devices.AWG.generic, 440
pylablib.devices.AWG.specific, 447
pylablib.devices.Basler, 566
pylablib.devices.Basler.pylon, 556
pylablib.devices.BitFlow, 579
pylablib.devices.BitFlow.BitFlow, 566
pylablib.devices.Conrad, 581
pylablib.devices.Conrad.base, 579
pylablib.devices.Cryocon, 586
pylablib.devices.Cryocon.base, 581
pylablib.devices.Cryomagnetics, 595
pylablib.devices.Cryomagnetics.base, 586
pylablib.devices.DCAM, 603
pylablib.devices.DCAM.DCAM, 595
pylablib.devices.ElektroAutomatik, 607
pylablib.devices.ElektroAutomatik.base, 603
pylablib.devices.HighFinesse, 611
pylablib.devices.HighFinesse.wlm, 607
pylablib.devices.IMAQ, 627
pylablib.devices.IMAQ.IMAQ, 611
pylablib.devices.IMAQ.niimaq_attrtypes, 627
pylablib.devices.IMAQdx, 641
pylablib.devices.IMAQdx.IMAQdx, 627
pylablib.devices.interface, 988
pylablib.devices.interface.camera, 955
pylablib.devices.interface.stage, 986
pylablib.devices.Keithley, 649
pylablib.devices.Keithley.base, 643
pylablib.devices.Keithley.multimeter, 644
pylablib.devices.KJL, 643
pylablib.devices.KJL.base, 641
pylablib.devices.Lakeshore, 660
pylablib.devices.Lakeshore.base, 649
pylablib.devices.LaserQuantum, 663
pylablib.devices.LaserQuantum.base, 660
pylablib.devices.Leybold, 667
pylablib.devices.Leybold.base, 663

pylablib.devices.LighthousePhotonics, 670
pylablib.devices.LighthousePhotonics.base,

667
pylablib.devices.Lumel, 673
pylablib.devices.Lumel.base, 670
pylablib.devices.M2, 686
pylablib.devices.M2.base, 673
pylablib.devices.M2.emm, 676
pylablib.devices.M2.solstis, 679
pylablib.devices.Mightex, 693
pylablib.devices.Mightex.base, 692
pylablib.devices.Mightex.MightexSSeries, 686
pylablib.devices.Modbus, 695
pylablib.devices.Modbus.modbus, 693
pylablib.devices.Newport, 717
pylablib.devices.Newport.base, 713
pylablib.devices.Newport.picomotor, 714
pylablib.devices.NI, 703
pylablib.devices.NI.daq, 695
pylablib.devices.NKT, 713
pylablib.devices.NKT.interbus, 703
pylablib.devices.Ophir, 730
pylablib.devices.Ophir.base, 724
pylablib.devices.OZOptics, 724
pylablib.devices.OZOptics.base, 717
pylablib.devices.PCO, 739
pylablib.devices.PCO.SC2, 730
pylablib.devices.Pfeiffer, 744
pylablib.devices.Pfeiffer.base, 739
pylablib.devices.Photometrics, 755
pylablib.devices.Photometrics.pvcam, 744
pylablib.devices.PhotonFocus, 789
pylablib.devices.PhotonFocus.PhotonFocus, 755
pylablib.devices.PhysikInstrumente, 800
pylablib.devices.PhysikInstrumente.base, 789
pylablib.devices.PrincetonInstruments, 809
pylablib.devices.PrincetonInstruments.picam,

800
pylablib.devices.Rigol, 814
pylablib.devices.Rigol.base, 809
pylablib.devices.Rigol.power_supply, 810
pylablib.devices.SiliconSoftware, 831
pylablib.devices.SiliconSoftware.fgrab, 814
pylablib.devices.Sirah, 844
pylablib.devices.Sirah.base, 840
pylablib.devices.Sirah.Matisse, 831
pylablib.devices.Sirah.tuner, 840
pylablib.devices.SmarAct, 852
pylablib.devices.SmarAct.base, 849
pylablib.devices.SmarAct.MCS2, 844
pylablib.devices.SmarAct.scu3d, 849
pylablib.devices.Standa, 856
pylablib.devices.Standa.base, 852
pylablib.devices.Tektronix, 878

1004 Python Module Index

pylablib Documentation, Release 1.4.2

pylablib.devices.Tektronix.base, 856
pylablib.devices.Thorlabs, 940
pylablib.devices.Thorlabs.base, 887
pylablib.devices.Thorlabs.elliptec, 887
pylablib.devices.Thorlabs.kinesis, 891
pylablib.devices.Thorlabs.misc, 918
pylablib.devices.Thorlabs.serial, 927
pylablib.devices.Thorlabs.TLCamera, 878
pylablib.devices.Toptica, 943
pylablib.devices.Toptica.base, 940
pylablib.devices.Toptica.ibeam, 941
pylablib.devices.Trinamic, 948
pylablib.devices.Trinamic.base, 943
pylablib.devices.uc480, 997
pylablib.devices.uc480.uc480, 988
pylablib.devices.utils, 999
pylablib.devices.utils.color, 997
pylablib.devices.utils.load_lib, 997
pylablib.devices.Voltcraft, 955
pylablib.devices.Voltcraft.base, 948
pylablib.devices.Voltcraft.multimeter, 949
pylablib.widgets, 999

Python Module Index 1005

pylablib Documentation, Release 1.4.2

1006 Python Module Index

INDEX

A
accel (pylablib.devices.Standa.base.TMoveParams at-

tribute), 853
accel (pylablib.devices.Trinamic.base.TVelocityParams

attribute), 944
acceleration (pylablib.devices.SmarAct.MCS2.TCLMoveParams

attribute), 845
acceleration (pylablib.devices.Thorlabs.kinesis.TJogParams

attribute), 894
acceleration (pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams

attribute), 896
acceleration (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams

attribute), 896
acceleration (pylablib.devices.Thorlabs.kinesis.TVelocityParams

attribute), 894
access (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
AccessIterator (class in pylablib.core.utils.general),

417
accum_cycle_time (py-

lablib.devices.Andor.AndorSDK2.TCycleTimings
attribute), 505

acknowledge() (pylablib.core.utils.general.Timer
method), 416

acqcleared() (in module py-
lablib.devices.interface.camera), 960

acqstopped() (in module py-
lablib.devices.interface.camera), 960

acquire() (pylablib.core.thread.synchronizing.QLockNotifier
method), 354

acquired (pylablib.devices.interface.camera.TFramesStatus
attribute), 955

acquired (pylablib.devices.uc480.uc480.TAcquiredFramesStatus
attribute), 989

acquisition_in_progress() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 496

acquisition_in_progress() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

acquisition_in_progress() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 507
acquisition_in_progress() (py-

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

acquisition_in_progress() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

acquisition_in_progress() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 573

acquisition_in_progress() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

acquisition_in_progress() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

acquisition_in_progress() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 619

acquisition_in_progress() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

acquisition_in_progress() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

acquisition_in_progress() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

acquisition_in_progress() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

acquisition_in_progress() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

acquisition_in_progress() (py-
lablib.devices.interface.camera.ICamera
method), 956

acquisition_in_progress() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

acquisition_in_progress() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera

1007

pylablib Documentation, Release 1.4.2

method), 967
acquisition_in_progress() (py-

lablib.devices.interface.camera.IROICamera
method), 977

acquisition_in_progress() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

acquisition_in_progress() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

acquisition_in_progress() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

acquisition_in_progress() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

acquisition_in_progress() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

acquisition_in_progress() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

acquisition_in_progress() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 773

acquisition_in_progress() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

acquisition_in_progress() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

acquisition_in_progress() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

acquisition_in_progress() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

acquisition_in_progress() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

activation_control (py-
lablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings
attribute), 739

add() (pylablib.core.dataproc.filters.RunningDebounceFilter
method), 136

add() (pylablib.core.dataproc.filters.RunningDecimationFilter
method), 136

add_all_children() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

add_attribute() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

add_background_comm() (py-

lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

add_background_comm() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

add_batch_job() (py-
lablib.core.thread.controller.QTaskThread
method), 337

add_button() (pylablib.core.gui.widgets.param_table.ParamTable
method), 277

add_button() (pylablib.core.gui.widgets.param_table.StatusTable
method), 285

add_callback() (pylablib.core.thread.callsync.QScheduledCall
method), 318

add_check_box() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 278

add_check_box() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 285

add_child() (pylablib.core.gui.widgets.container.IQContainer
method), 231

add_child() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_child() (pylablib.core.gui.widgets.container.QContainer
method), 233

add_child() (pylablib.core.gui.widgets.container.QDialogContainer
method), 248

add_child() (pylablib.core.gui.widgets.container.QFrameContainer
method), 244

add_child() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 252

add_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 256

add_child() (pylablib.core.gui.widgets.container.QTabContainer
method), 263

add_child() (pylablib.core.gui.widgets.container.QWidgetContainer

1008 Index

pylablib Documentation, Release 1.4.2

method), 240
add_child() (pylablib.core.gui.widgets.param_table.ParamTable

method), 281
add_child() (pylablib.core.gui.widgets.param_table.StatusTable

method), 285
add_child_values() (py-

lablib.core.gui.widgets.container.IQContainer
method), 231

add_child_values() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_child_values() (py-
lablib.core.gui.widgets.container.QContainer
method), 233

add_child_values() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 248

add_child_values() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 244

add_child_values() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 252

add_child_values() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_child_values() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_child_values() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 263

add_child_values() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_child_values() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 282

add_child_values() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 285

add_chunk() (pylablib.core.fileio.parse_csv.ChunksAccumulator
method), 219

add_class() (pylablib.core.utils.strdump.StrDumper
method), 433

add_clock_period_input() (py-
lablib.devices.NI.daq.NIDAQ method), 698

add_columns() (pylablib.core.fileio.parse_csv.ChunksAccumulator
method), 219

add_combo_box() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 280

add_combo_box() (py-
lablib.core.gui.widgets.param_table.StatusTable

method), 286
add_command() (pylablib.core.thread.controller.QTaskThread

method), 339
add_conversion_class() (in module py-

lablib.core.utils.string), 436
add_counter_input() (py-

lablib.devices.NI.daq.NIDAQ method), 697
add_custom_widget() (py-

lablib.core.gui.widgets.param_table.ParamTable
method), 276

add_custom_widget() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 286

add_decoration_label() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_decoration_label() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 248

add_decoration_label() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 244

add_decoration_label() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_decoration_label() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_decoration_label() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_decoration_label() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

add_decoration_label() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 272

add_decoration_label() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 282

add_decoration_label() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 286

add_dict_entry_builder() (in module py-
lablib.core.fileio.dict_entry), 199

add_dict_entry_class() (in module py-
lablib.core.fileio.dict_entry), 200

add_dict_entry_parser() (in module py-
lablib.core.fileio.dict_entry), 199

add_digital_input() (py-
lablib.devices.NI.daq.NIDAQ method), 698

add_digital_output() (py-
lablib.devices.NI.daq.NIDAQ method), 699

add_direct_call_command() (py-

Index 1009

pylablib Documentation, Release 1.4.2

lablib.core.thread.controller.QTaskThread
method), 340

add_dropdown_button() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 277

add_dropdown_button() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 287

add_entry() (pylablib.core.utils.dictionary.Dictionary
method), 363

add_entry() (pylablib.core.utils.dictionary.DictionaryPointer
method), 372

add_entry() (pylablib.core.utils.dictionary.FilterTree
method), 389

add_entry() (pylablib.core.utils.dictionary.PrefixTree
method), 381

add_enum_label() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 278

add_enum_label() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 287

add_exception_hook() (in module py-
lablib.core.thread.controller), 326

add_file_format() (py-
lablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
static method), 205

add_file_format() (py-
lablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
static method), 204

add_frame() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_frame() (pylablib.core.gui.widgets.container.QDialogContainer
method), 248

add_frame() (pylablib.core.gui.widgets.container.QFrameContainer
method), 244

add_frame() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_frame() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_frame() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_frame() (pylablib.core.gui.widgets.param_table.ParamTable
method), 275

add_frame() (pylablib.core.gui.widgets.param_table.StatusTable
method), 287

add_group_box() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_group_box() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 248

add_group_box() (py-
lablib.core.gui.widgets.container.QFrameContainer

method), 244
add_group_box() (py-

lablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_group_box() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_group_box() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_group_box() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 275

add_group_box() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 287

add_handler() (pylablib.core.gui.value_handling.GUIValues
method), 312

add_indicator_handler() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

add_job() (pylablib.core.thread.controller.QTaskThread
method), 337

add_label_indicator() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

add_namedtuple_class() (in module py-
lablib.core.utils.string), 436

add_nested() (pylablib.core.gui.value_handling.GUIValues
method), 313

add_note() (pylablib.core.devio.base.DeviceError
method), 166

add_note() (pylablib.core.devio.comm_backend.DeviceBackendError
method), 166

add_note() (pylablib.core.devio.comm_backend.DeviceFT232Error
method), 174

add_note() (pylablib.core.devio.comm_backend.DeviceHIDError
method), 182

add_note() (pylablib.core.devio.comm_backend.DeviceNetworkError
method), 177

add_note() (pylablib.core.devio.comm_backend.DeviceRecordedError
method), 185

add_note() (pylablib.core.devio.comm_backend.DeviceSerialError
method), 171

add_note() (pylablib.core.devio.comm_backend.DeviceUSBError
method), 179

add_note() (pylablib.core.devio.comm_backend.DeviceVisaError
method), 168

add_note() (pylablib.core.devio.hid_base.HIDError
method), 192

add_note() (pylablib.core.devio.hid_base.HIDLibError
method), 192

add_note() (pylablib.core.devio.hid_base.HIDTimeoutError
method), 192

1010 Index

pylablib Documentation, Release 1.4.2

add_note() (pylablib.core.gui.limiter.LimitError
method), 295

add_note() (pylablib.core.gui.value_handling.MissingGUIHandlerError
method), 312

add_note() (pylablib.core.gui.value_handling.NoParameterError
method), 298

add_note() (pylablib.core.thread.threadprop.DuplicateControllerThreadError
method), 354

add_note() (pylablib.core.thread.threadprop.InterruptException
method), 355

add_note() (pylablib.core.thread.threadprop.InterruptExceptionStop
method), 356

add_note() (pylablib.core.thread.threadprop.NoControllerThreadError
method), 354

add_note() (pylablib.core.thread.threadprop.NoMessageThreadError
method), 355

add_note() (pylablib.core.thread.threadprop.SkippedCallError
method), 355

add_note() (pylablib.core.thread.threadprop.ThreadError
method), 354

add_note() (pylablib.core.thread.threadprop.TimeoutThreadError
method), 355

add_note() (pylablib.core.utils.net.SocketError
method), 425

add_note() (pylablib.core.utils.net.SocketTimeout
method), 425

add_note() (pylablib.devices.AlliedVision.Bonito.BonitoError
method), 490

add_note() (pylablib.devices.Andor.base.AndorError
method), 531

add_note() (pylablib.devices.Andor.base.AndorFrameTransferError
method), 532

add_note() (pylablib.devices.Andor.base.AndorNotSupportedError
method), 532

add_note() (pylablib.devices.Andor.base.AndorTimeoutError
method), 531

add_note() (pylablib.devices.Arcus.base.ArcusBackendError
method), 532

add_note() (pylablib.devices.Arcus.base.ArcusError
method), 532

add_note() (pylablib.devices.Arduino.base.ArduinoBackendError
method), 546

add_note() (pylablib.devices.Arduino.base.ArduinoError
method), 545

add_note() (pylablib.devices.Attocube.base.AttocubeBackendError
method), 556

add_note() (pylablib.devices.Attocube.base.AttocubeError
method), 556

add_note() (pylablib.devices.AWG.generic.GenericAWGBackendError
method), 440

add_note() (pylablib.devices.AWG.generic.GenericAWGError
method), 440

add_note() (pylablib.devices.BitFlow.BitFlow.BitFlowError
method), 566

add_note() (pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError
method), 567

add_note() (pylablib.devices.Conrad.base.ConradBackendError
method), 579

add_note() (pylablib.devices.Conrad.base.ConradError
method), 579

add_note() (pylablib.devices.Cryocon.base.CryoconBackendError
method), 581

add_note() (pylablib.devices.Cryocon.base.CryoconError
method), 581

add_note() (pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError
method), 586

add_note() (pylablib.devices.Cryomagnetics.base.CryomagneticsError
method), 586

add_note() (pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError
method), 604

add_note() (pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError
method), 604

add_note() (pylablib.devices.interface.camera.DefaultFrameTransferError
method), 955

add_note() (pylablib.devices.Keithley.base.GenericKeithleyBackendError
method), 644

add_note() (pylablib.devices.Keithley.base.GenericKeithleyError
method), 644

add_note() (pylablib.devices.KJL.base.KJLBackendError
method), 641

add_note() (pylablib.devices.KJL.base.KJLError
method), 641

add_note() (pylablib.devices.Lakeshore.base.LakeshoreBackendError
method), 650

add_note() (pylablib.devices.Lakeshore.base.LakeshoreError
method), 649

add_note() (pylablib.devices.LaserQuantum.base.LaserQuantumBackendError
method), 660

add_note() (pylablib.devices.LaserQuantum.base.LaserQuantumError
method), 660

add_note() (pylablib.devices.Leybold.base.LeyboldBackendError
method), 663

add_note() (pylablib.devices.Leybold.base.LeyboldError
method), 663

add_note() (pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError
method), 668

add_note() (pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError
method), 667

add_note() (pylablib.devices.M2.base.M2CommunicationError
method), 673

add_note() (pylablib.devices.M2.base.M2Error
method), 673

add_note() (pylablib.devices.M2.base.M2ParseError
method), 673

add_note() (pylablib.devices.Mightex.base.MightexError
method), 692

add_note() (pylablib.devices.Mightex.base.MightexTimeoutError
method), 692

Index 1011

pylablib Documentation, Release 1.4.2

add_note() (pylablib.devices.Modbus.modbus.ModbusBackendError
method), 693

add_note() (pylablib.devices.Modbus.modbus.ModbusError
method), 693

add_note() (pylablib.devices.Newport.base.NewportBackendError
method), 713

add_note() (pylablib.devices.Newport.base.NewportError
method), 713

add_note() (pylablib.devices.NI.daq.NIDAQmxError
method), 696

add_note() (pylablib.devices.NI.daq.NIError method),
695

add_note() (pylablib.devices.NKT.interbus.InterbusBackendError
method), 703

add_note() (pylablib.devices.NKT.interbus.InterbusError
method), 703

add_note() (pylablib.devices.Ophir.base.OphirBackendError
method), 725

add_note() (pylablib.devices.Ophir.base.OphirError
method), 724

add_note() (pylablib.devices.OZOptics.base.OZOpticsBackendError
method), 718

add_note() (pylablib.devices.OZOptics.base.OZOpticsError
method), 718

add_note() (pylablib.devices.Pfeiffer.base.PfeifferBackendError
method), 739

add_note() (pylablib.devices.Pfeiffer.base.PfeifferError
method), 739

add_note() (pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError
method), 789

add_note() (pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError
method), 789

add_note() (pylablib.devices.Rigol.base.GenericRigolBackendError
method), 810

add_note() (pylablib.devices.Rigol.base.GenericRigolError
method), 809

add_note() (pylablib.devices.Sirah.base.GenericSirahBackendError
method), 840

add_note() (pylablib.devices.Sirah.base.GenericSirahError
method), 840

add_note() (pylablib.devices.Sirah.tuner.FrequencyReadSirahError
method), 840

add_note() (pylablib.devices.SmarAct.base.SmarActError
method), 849

add_note() (pylablib.devices.Standa.base.StandaBackendError
method), 852

add_note() (pylablib.devices.Standa.base.StandaError
method), 852

add_note() (pylablib.devices.Tektronix.base.TektronixBackendError
method), 857

add_note() (pylablib.devices.Tektronix.base.TektronixError
method), 856

add_note() (pylablib.devices.Thorlabs.base.ThorlabsBackendError
method), 887

add_note() (pylablib.devices.Thorlabs.base.ThorlabsError
method), 887

add_note() (pylablib.devices.Thorlabs.base.ThorlabsTimeoutError
method), 887

add_note() (pylablib.devices.Toptica.base.TopticaBackendError
method), 940

add_note() (pylablib.devices.Toptica.base.TopticaError
method), 940

add_note() (pylablib.devices.Trinamic.base.TrinamicBackendError
method), 943

add_note() (pylablib.devices.Trinamic.base.TrinamicError
method), 943

add_note() (pylablib.devices.Trinamic.base.TrinamicTimeoutError
method), 944

add_note() (pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError
method), 948

add_note() (pylablib.devices.Voltcraft.base.GenericVoltcraftError
method), 948

add_note() (pylablib.devices.Voltcraft.multimeter.VC880ParseError
method), 952

add_num_edit() (pylablib.core.gui.widgets.param_table.ParamTable
method), 279

add_num_edit() (pylablib.core.gui.widgets.param_table.StatusTable
method), 287

add_num_label() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 279

add_num_label() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 288

add_observer() (pylablib.core.utils.observer_pool.ObserverPool
method), 430

add_padding() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_padding() (pylablib.core.gui.widgets.container.QDialogContainer
method), 248

add_padding() (pylablib.core.gui.widgets.container.QFrameContainer
method), 244

add_padding() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_padding() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_padding() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_padding() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

add_padding() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 272

add_padding() (pylablib.core.gui.widgets.param_table.ParamTable
method), 282

add_padding() (pylablib.core.gui.widgets.param_table.StatusTable
method), 288

add_path() (pylablib.core.utils.general.StreamFileLogger
method), 417

1012 Index

pylablib Documentation, Release 1.4.2

add_progress_bar() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 280

add_progress_bar() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 288

add_property_element() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

add_property_element() (py-
lablib.core.gui.widgets.container.IQContainer
method), 231

add_property_element() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 236

add_property_element() (py-
lablib.core.gui.widgets.container.QContainer
method), 233

add_property_element() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 249

add_property_element() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 244

add_property_element() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_property_element() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_property_element() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_property_element() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

add_property_element() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_property_element() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 277

add_property_element() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 289

add_pulse_output() (pylablib.devices.NI.daq.NIDAQ
method), 702

add_shortcut() (pylablib.core.utils.dictionary.PrefixShortcutTree
method), 396

add_shortcuts() (py-
lablib.core.utils.dictionary.PrefixShortcutTree
method), 396

add_simple_widget() (py-
lablib.core.gui.widgets.param_table.ParamTable

method), 276
add_simple_widget() (py-

lablib.core.gui.widgets.param_table.StatusTable
method), 289

add_spacer() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_spacer() (pylablib.core.gui.widgets.container.QDialogContainer
method), 249

add_spacer() (pylablib.core.gui.widgets.container.QFrameContainer
method), 245

add_spacer() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_spacer() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_spacer() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 240

add_spacer() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

add_spacer() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

add_spacer() (pylablib.core.gui.widgets.param_table.ParamTable
method), 282

add_spacer() (pylablib.core.gui.widgets.param_table.StatusTable
method), 289

add_status_line() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 284

add_stop_notifier() (py-
lablib.core.thread.controller.QTaskThread
method), 342

add_stop_notifier() (py-
lablib.core.thread.controller.QThreadController
method), 334

add_stream() (pylablib.core.utils.general.StreamFileLogger
method), 417

add_sublayout() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_sublayout() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 249

add_sublayout() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 245

add_sublayout() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_sublayout() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_sublayout() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 241

add_sublayout() (py-

Index 1013

pylablib Documentation, Release 1.4.2

lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

add_sublayout() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

add_sublayout() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 275

add_sublayout() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 289

add_tab() (pylablib.core.gui.widgets.container.QTabContainer
method), 263

add_text_edit() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 279

add_text_edit() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 289

add_text_label() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 278

add_text_label() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 290

add_thread_method() (py-
lablib.core.thread.controller.QTaskThread
method), 342

add_thread_method() (py-
lablib.core.thread.controller.QThreadController
method), 332

add_time() (pylablib.core.utils.general.Countdown
method), 415

add_timer() (pylablib.core.gui.widgets.container.IQContainer
method), 230

add_timer() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_timer() (pylablib.core.gui.widgets.container.QContainer
method), 233

add_timer() (pylablib.core.gui.widgets.container.QDialogContainer
method), 249

add_timer() (pylablib.core.gui.widgets.container.QFrameContainer
method), 245

add_timer() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 257

add_timer() (pylablib.core.gui.widgets.container.QTabContainer
method), 264

add_timer() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 241

add_timer() (pylablib.core.gui.widgets.param_table.ParamTable

method), 282
add_timer() (pylablib.core.gui.widgets.param_table.StatusTable

method), 290
add_timer_event() (py-

lablib.core.gui.widgets.container.IQContainer
method), 231

add_timer_event() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_timer_event() (py-
lablib.core.gui.widgets.container.QContainer
method), 233

add_timer_event() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 249

add_timer_event() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 245

add_timer_event() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 253

add_timer_event() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_timer_event() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

add_timer_event() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

add_timer_event() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 241

add_timer_event() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 282

add_timer_event() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 290

add_to_layout() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_to_layout() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 249

add_to_layout() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 245

add_to_layout() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

add_to_layout() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

1014 Index

pylablib Documentation, Release 1.4.2

add_to_layout() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 241

add_to_layout() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

add_to_layout() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

add_to_layout() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 282

add_to_layout() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 290

add_toggle_button() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 277

add_toggle_button() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 290

add_variable() (pylablib.core.utils.ipc.SharedMemIPCTable
method), 422

add_virtual_element() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

add_virtual_element() (py-
lablib.core.gui.widgets.container.IQContainer
method), 231

add_virtual_element() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

add_virtual_element() (py-
lablib.core.gui.widgets.container.QContainer
method), 233

add_virtual_element() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 249

add_virtual_element() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 245

add_virtual_element() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

add_virtual_element() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

add_virtual_element() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

add_virtual_element() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

add_virtual_element() (py-

lablib.core.gui.widgets.container.QWidgetContainer
method), 241

add_virtual_element() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 277

add_virtual_element() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

add_voltage_input() (py-
lablib.devices.NI.daq.NIDAQ method), 697

add_voltage_output() (py-
lablib.devices.NI.daq.NIDAQ method), 700

add_widget() (pylablib.core.gui.value_handling.GUIValues
method), 312

add_widget_indicator() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

added (pylablib.core.utils.dictionary.DictionaryDiff at-
tribute), 371

addr (pylablib.devices.Conrad.base.RelayBoard.TMessage
attribute), 580

addr (pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData
attribute), 889

addr (pylablib.devices.Trinamic.base.TMCM1110.ReplyData
attribute), 944

address (pylablib.devices.Attocube.anc350.ANC350.Reply
attribute), 552

address (pylablib.devices.Attocube.anc350.ANC350.Telegram
attribute), 552

address (pylablib.devices.Modbus.modbus.TModbusFrame
attribute), 693

advance_read_frames() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

Agilent33220A (class in py-
lablib.devices.AWG.specific), 453

Agilent33500 (class in pylablib.devices.AWG.specific),
447

ai1() (in module pylablib.core.utils.nbtools), 424
ai2() (in module pylablib.core.utils.nbtools), 424
ai4() (in module pylablib.core.utils.nbtools), 424
ai8() (in module pylablib.core.utils.nbtools), 424
allocate() (pylablib.devices.interface.camera.ChunkBufferManager

method), 961
allocate() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper

method), 688
allocate() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager

method), 773
allocate() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager

method), 824
allocate() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager

method), 819
allocate_buffers() (py-

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager

Index 1015

pylablib Documentation, Release 1.4.2

method), 521
allowing_toploop() (py-

lablib.core.thread.controller.QTaskThread
method), 342

allowing_toploop() (py-
lablib.core.thread.controller.QThreadController
method), 328

ampl (pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters
attribute), 831

amplitude (pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters
attribute), 831

amplitude (pylablib.devices.SmarAct.MCS2.TStepMoveParams
attribute), 845

ANC300 (class in pylablib.devices.Attocube.anc300), 548
ANC350 (class in pylablib.devices.Attocube.anc350), 552
ANC350.Reply (class in py-

lablib.devices.Attocube.anc350), 552
ANC350.Telegram (class in py-

lablib.devices.Attocube.anc350), 552
AndorError, 531
AndorFrameTransferError, 532
AndorNotSupportedError, 532
AndorSDK2Camera (class in py-

lablib.devices.Andor.AndorSDK2), 506
AndorSDK3Attribute (class in py-

lablib.devices.Andor.AndorSDK3), 517
AndorSDK3Camera (class in py-

lablib.devices.Andor.AndorSDK3), 519
AndorSDK3Camera.BufferManager (class in py-

lablib.devices.Andor.AndorSDK3), 521
AndorTimeoutError, 531
angular_deviation (py-

lablib.devices.Andor.Shamrock.TOpticalParameters
attribute), 527

antiplay (pylablib.devices.Standa.base.TMoveParams
attribute), 853

any_item() (in module pylablib.core.utils.general), 411
aperture (pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters

attribute), 644
append() (pylablib.core.dataproc.table_wrap.Array1DWrapper

method), 150
append() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor

method), 154
append() (pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor

method), 153
append() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor

method), 156
append() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor

method), 155
applet_info (pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo

attribute), 817
apply_calibration() (py-

lablib.devices.Sirah.tuner.MatisseTuner
method), 841

apply_settings() (py-
lablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

apply_settings() (py-
lablib.core.devio.interface.IDevice method),
193

apply_settings() (py-
lablib.core.devio.SCPI.SCPIDevice method),
165

apply_settings() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 496

apply_settings() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

apply_settings() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

apply_settings() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

apply_settings() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

apply_settings() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

apply_settings() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

apply_settings() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

apply_settings() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

apply_settings() (py-
lablib.devices.Arduino.base.IArduinoDevice
method), 547

apply_settings() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

apply_settings() (py-
lablib.devices.Attocube.anc350.ANC350
method), 554

apply_settings() (py-
lablib.devices.AWG.generic.GenericAWG
method), 444

apply_settings() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 453

apply_settings() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

1016 Index

pylablib Documentation, Release 1.4.2

apply_settings() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 465

apply_settings() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 459

apply_settings() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

apply_settings() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 471

apply_settings() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

apply_settings() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

apply_settings() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 573

apply_settings() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

apply_settings() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

apply_settings() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 583

apply_settings() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

apply_settings() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

apply_settings() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

apply_settings() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

apply_settings() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

apply_settings() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 619

apply_settings() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

apply_settings() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

apply_settings() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

apply_settings() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

apply_settings() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

apply_settings() (py-
lablib.devices.interface.camera.ICamera
method), 959

apply_settings() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

apply_settings() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

apply_settings() (py-
lablib.devices.interface.camera.IROICamera
method), 977

apply_settings() (py-
lablib.devices.interface.stage.IMultiaxisStage
method), 987

apply_settings() (py-
lablib.devices.interface.stage.IStage method),
986

apply_settings() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

apply_settings() (pylablib.devices.KJL.base.KJL300
method), 642

apply_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

apply_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

apply_settings() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

apply_settings() (py-
lablib.devices.Leybold.base.GenericITR
method), 664

apply_settings() (py-
lablib.devices.Leybold.base.ITR90 method),
666

apply_settings() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

apply_settings() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

apply_settings() (py-

Index 1017

pylablib Documentation, Release 1.4.2

lablib.devices.M2.base.ICEBlocDevice
method), 675

apply_settings() (pylablib.devices.M2.emm.EMM
method), 678

apply_settings() (pylablib.devices.M2.solstis.Solstis
method), 684

apply_settings() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

apply_settings() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

apply_settings() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

apply_settings() (pylablib.devices.NI.daq.NIDAQ
method), 702

apply_settings() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

apply_settings() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 706

apply_settings() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

apply_settings() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

apply_settings() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 707

apply_settings() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 708

apply_settings() (py-
lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 709

apply_settings() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 710

apply_settings() (py-
lablib.devices.Ophir.base.OphirDevice
method), 725

apply_settings() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 729

apply_settings() (py-
lablib.devices.OZOptics.base.DD100 method),
721

apply_settings() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

apply_settings() (py-

lablib.devices.OZOptics.base.OZOpticsDevice
method), 718

apply_settings() (py-
lablib.devices.OZOptics.base.TF100 method),
720

apply_settings() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

apply_settings() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
743

apply_settings() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

apply_settings() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

apply_settings() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

apply_settings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

apply_settings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

apply_settings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 773

apply_settings() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

apply_settings() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

apply_settings() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

apply_settings() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

apply_settings() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

apply_settings() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

apply_settings() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

apply_settings() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 837

apply_settings() (py-

1018 Index

pylablib Documentation, Release 1.4.2

lablib.devices.SmarAct.MCS2.MCS2 method),
848

apply_settings() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
851

apply_settings() (py-
lablib.devices.Standa.base.Standa8SMC
method), 855

apply_settings() (py-
lablib.devices.Tektronix.base.DPO2000
method), 871

apply_settings() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 861

apply_settings() (py-
lablib.devices.Tektronix.base.TDS2000
method), 864

apply_settings() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

apply_settings() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

apply_settings() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

apply_settings() (py-
lablib.devices.Thorlabs.misc.PM160 method),
923

apply_settings() (py-
lablib.devices.Thorlabs.serial.FW method),
931

apply_settings() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
934

apply_settings() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 937

apply_settings() (py-

lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 927

apply_settings() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

apply_settings() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

apply_settings() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

apply_settings() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

apply_settings() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 949

apply_settings() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 953

apply_window() (in module py-
lablib.core.dataproc.fourier), 140

ArcusBackendError, 532
ArcusError, 532
ArduinoBackendError, 546
ArduinoError, 545
area() (pylablib.core.dataproc.image.ROI method), 144
arg_value() (pylablib.core.utils.functions.FunctionSignature

method), 407
args (pylablib.core.devio.base.DeviceError attribute),

166
args (pylablib.core.devio.comm_backend.DeviceBackendError

attribute), 166
args (pylablib.core.devio.comm_backend.DeviceFT232Error

attribute), 174
args (pylablib.core.devio.comm_backend.DeviceHIDError

attribute), 182
args (pylablib.core.devio.comm_backend.DeviceNetworkError

attribute), 177
args (pylablib.core.devio.comm_backend.DeviceRecordedError

attribute), 185
args (pylablib.core.devio.comm_backend.DeviceSerialError

attribute), 171
args (pylablib.core.devio.comm_backend.DeviceUSBError

attribute), 179
args (pylablib.core.devio.comm_backend.DeviceVisaError

attribute), 168
args (pylablib.core.devio.hid_base.HIDError attribute),

192
args (pylablib.core.devio.hid_base.HIDLibError at-

tribute), 192
args (pylablib.core.devio.hid_base.HIDTimeoutError at-

tribute), 192
args (pylablib.core.gui.limiter.LimitError attribute), 295

Index 1019

pylablib Documentation, Release 1.4.2

args (pylablib.core.gui.value_handling.MissingGUIHandlerError
attribute), 312

args (pylablib.core.gui.value_handling.NoParameterError
attribute), 298

args (pylablib.core.thread.threadprop.DuplicateControllerThreadError
attribute), 354

args (pylablib.core.thread.threadprop.InterruptException
attribute), 355

args (pylablib.core.thread.threadprop.InterruptExceptionStop
attribute), 356

args (pylablib.core.thread.threadprop.NoControllerThreadError
attribute), 354

args (pylablib.core.thread.threadprop.NoMessageThreadError
attribute), 355

args (pylablib.core.thread.threadprop.SkippedCallError
attribute), 355

args (pylablib.core.thread.threadprop.ThreadError at-
tribute), 354

args (pylablib.core.thread.threadprop.TimeoutThreadError
attribute), 355

args (pylablib.core.utils.net.SocketError attribute), 425
args (pylablib.core.utils.net.SocketTimeout attribute),

425
args (pylablib.devices.AlliedVision.Bonito.BonitoError

attribute), 490
args (pylablib.devices.Andor.base.AndorError at-

tribute), 531
args (pylablib.devices.Andor.base.AndorFrameTransferError

attribute), 532
args (pylablib.devices.Andor.base.AndorNotSupportedError

attribute), 532
args (pylablib.devices.Andor.base.AndorTimeoutError

attribute), 531
args (pylablib.devices.Arcus.base.ArcusBackendError

attribute), 533
args (pylablib.devices.Arcus.base.ArcusError attribute),

532
args (pylablib.devices.Arduino.base.ArduinoBackendError

attribute), 546
args (pylablib.devices.Arduino.base.ArduinoError

attribute), 545
args (pylablib.devices.Attocube.base.AttocubeBackendError

attribute), 556
args (pylablib.devices.Attocube.base.AttocubeError at-

tribute), 556
args (pylablib.devices.AWG.generic.GenericAWGBackendError

attribute), 440
args (pylablib.devices.AWG.generic.GenericAWGError

attribute), 440
args (pylablib.devices.BitFlow.BitFlow.BitFlowError at-

tribute), 566
args (pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError

attribute), 567
args (pylablib.devices.Conrad.base.ConradBackendError

attribute), 579
args (pylablib.devices.Conrad.base.ConradError at-

tribute), 579
args (pylablib.devices.Cryocon.base.CryoconBackendError

attribute), 582
args (pylablib.devices.Cryocon.base.CryoconError at-

tribute), 581
args (pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError

attribute), 586
args (pylablib.devices.Cryomagnetics.base.CryomagneticsError

attribute), 586
args (pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError

attribute), 604
args (pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError

attribute), 604
args (pylablib.devices.interface.camera.DefaultFrameTransferError

attribute), 955
args (pylablib.devices.Keithley.base.GenericKeithleyBackendError

attribute), 644
args (pylablib.devices.Keithley.base.GenericKeithleyError

attribute), 644
args (pylablib.devices.KJL.base.KJLBackendError at-

tribute), 641
args (pylablib.devices.KJL.base.KJLError attribute),

641
args (pylablib.devices.Lakeshore.base.LakeshoreBackendError

attribute), 650
args (pylablib.devices.Lakeshore.base.LakeshoreError

attribute), 649
args (pylablib.devices.LaserQuantum.base.LaserQuantumBackendError

attribute), 660
args (pylablib.devices.LaserQuantum.base.LaserQuantumError

attribute), 660
args (pylablib.devices.Leybold.base.LeyboldBackendError

attribute), 663
args (pylablib.devices.Leybold.base.LeyboldError

attribute), 663
args (pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError

attribute), 668
args (pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError

attribute), 667
args (pylablib.devices.M2.base.M2CommunicationError

attribute), 673
args (pylablib.devices.M2.base.M2Error attribute), 673
args (pylablib.devices.M2.base.M2ParseError attribute),

673
args (pylablib.devices.Mightex.base.MightexError

attribute), 692
args (pylablib.devices.Mightex.base.MightexTimeoutError

attribute), 692
args (pylablib.devices.Modbus.modbus.ModbusBackendError

attribute), 693
args (pylablib.devices.Modbus.modbus.ModbusError at-

tribute), 693

1020 Index

pylablib Documentation, Release 1.4.2

args (pylablib.devices.Newport.base.NewportBackendError
attribute), 714

args (pylablib.devices.Newport.base.NewportError at-
tribute), 713

args (pylablib.devices.NI.daq.NIDAQmxError attribute),
696

args (pylablib.devices.NI.daq.NIError attribute), 695
args (pylablib.devices.NKT.interbus.InterbusBackendError

attribute), 703
args (pylablib.devices.NKT.interbus.InterbusError at-

tribute), 703
args (pylablib.devices.Ophir.base.OphirBackendError

attribute), 725
args (pylablib.devices.Ophir.base.OphirError attribute),

724
args (pylablib.devices.OZOptics.base.OZOpticsBackendError

attribute), 718
args (pylablib.devices.OZOptics.base.OZOpticsError at-

tribute), 718
args (pylablib.devices.Pfeiffer.base.PfeifferBackendError

attribute), 739
args (pylablib.devices.Pfeiffer.base.PfeifferError at-

tribute), 739
args (pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError

attribute), 789
args (pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError

attribute), 789
args (pylablib.devices.Rigol.base.GenericRigolBackendError

attribute), 810
args (pylablib.devices.Rigol.base.GenericRigolError at-

tribute), 810
args (pylablib.devices.Sirah.base.GenericSirahBackendError

attribute), 840
args (pylablib.devices.Sirah.base.GenericSirahError at-

tribute), 840
args (pylablib.devices.Sirah.tuner.FrequencyReadSirahError

attribute), 840
args (pylablib.devices.SmarAct.base.SmarActError at-

tribute), 849
args (pylablib.devices.Standa.base.StandaBackendError

attribute), 852
args (pylablib.devices.Standa.base.StandaError at-

tribute), 852
args (pylablib.devices.Tektronix.base.TektronixBackendError

attribute), 857
args (pylablib.devices.Tektronix.base.TektronixError at-

tribute), 856
args (pylablib.devices.Thorlabs.base.ThorlabsBackendError

attribute), 887
args (pylablib.devices.Thorlabs.base.ThorlabsError at-

tribute), 887
args (pylablib.devices.Thorlabs.base.ThorlabsTimeoutError

attribute), 887
args (pylablib.devices.Toptica.base.TopticaBackendError

attribute), 940
args (pylablib.devices.Toptica.base.TopticaError at-

tribute), 940
args (pylablib.devices.Trinamic.base.TrinamicBackendError

attribute), 943
args (pylablib.devices.Trinamic.base.TrinamicError at-

tribute), 943
args (pylablib.devices.Trinamic.base.TrinamicTimeoutError

attribute), 944
args (pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError

attribute), 948
args (pylablib.devices.Voltcraft.base.GenericVoltcraftError

attribute), 948
args (pylablib.devices.Voltcraft.multimeter.VC880ParseError

attribute), 952
Array1DWrapper (class in py-

lablib.core.dataproc.table_wrap), 149
Array1DWrapper.Accessor (class in py-

lablib.core.dataproc.table_wrap), 150
Array2DWrapper (class in py-

lablib.core.dataproc.table_wrap), 153
Array2DWrapper.ColumnAccessor (class in py-

lablib.core.dataproc.table_wrap), 153
Array2DWrapper.RowAccessor (class in py-

lablib.core.dataproc.table_wrap), 153
Array2DWrapper.TableAccessor (class in py-

lablib.core.dataproc.table_wrap), 154
array_replaced() (py-

lablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

array_replaced() (py-
lablib.core.dataproc.table_wrap.Array2DWrapper
method), 154

array_replaced() (py-
lablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 157

array_replaced() (py-
lablib.core.dataproc.table_wrap.I1DWrapper
method), 149

array_replaced() (py-
lablib.core.dataproc.table_wrap.I2DWrapper
method), 152

array_replaced() (py-
lablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

article_no (pylablib.devices.ElektroAutomatik.base.TDeviceInfo
attribute), 604

as_addr_port() (in module pylablib.core.utils.net), 426
as_array() (in module pylablib.core.utils.array_utils),

357
as_builtin_bytes() (in module py-

lablib.core.utils.py3), 431
as_bytes() (in module pylablib.core.utils.py3), 431
as_container() (in module pylablib.core.utils.general),

Index 1021

pylablib Documentation, Release 1.4.2

411
as_datatype() (in module pylablib.core.utils.py3), 431
as_dict() (in module pylablib.core.utils.dictionary),

362
as_dict() (pylablib.core.utils.dictionary.Dictionary

method), 368
as_dict() (pylablib.core.utils.dictionary.DictionaryPointer

method), 372
as_dict() (pylablib.core.utils.dictionary.FilterTree

method), 389
as_dict() (pylablib.core.utils.dictionary.PrefixTree

method), 381
as_dictionary() (in module py-

lablib.core.utils.dictionary), 362
as_dictionary() (py-

lablib.core.utils.dictionary.Dictionary static
method), 363

as_dictionary() (py-
lablib.core.utils.dictionary.DictionaryPointer
static method), 372

as_dictionary() (py-
lablib.core.utils.dictionary.FilterTree static
method), 389

as_dictionary() (py-
lablib.core.utils.dictionary.PrefixTree static
method), 381

as_formatter() (in module py-
lablib.core.gui.formatter), 295

as_json() (pylablib.core.utils.dictionary.Dictionary
method), 368

as_json() (pylablib.core.utils.dictionary.DictionaryPointer
method), 373

as_json() (pylablib.core.utils.dictionary.FilterTree
method), 389

as_json() (pylablib.core.utils.dictionary.PrefixTree
method), 381

as_kwargs() (pylablib.core.utils.functions.FunctionSignature
method), 406

as_limiter() (in module pylablib.core.gui.limiter), 296
as_obj_prop() (in module py-

lablib.core.utils.functions), 410
as_pandas() (pylablib.core.utils.dictionary.Dictionary

method), 368
as_pandas() (pylablib.core.utils.dictionary.DictionaryPointer

method), 373
as_pandas() (pylablib.core.utils.dictionary.FilterTree

method), 389
as_pandas() (pylablib.core.utils.dictionary.PrefixTree

method), 381
as_sequence() (in module py-

lablib.core.utils.funcargparse), 405
as_simple_func() (py-

lablib.core.utils.functions.FunctionSignature
method), 407

as_str() (in module pylablib.core.utils.py3), 431
as_text() (pylablib.devices.DCAM.DCAM.DCAMAttribute

method), 596
asdict() (pylablib.core.utils.dictionary.Dictionary

method), 368
asdict() (pylablib.core.utils.dictionary.DictionaryPointer

method), 373
asdict() (pylablib.core.utils.dictionary.FilterTree

method), 390
asdict() (pylablib.core.utils.dictionary.PrefixTree

method), 382
ask() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 176
ask() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 184
ask() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 168
ask() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 178
ask() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 181
ask() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
ask() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 173
ask() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 170
ask() (pylablib.core.devio.SCPI.SCPIDevice method),

164
ask() (pylablib.devices.AWG.generic.GenericAWG

method), 444
ask() (pylablib.devices.AWG.specific.Agilent33220A

method), 453
ask() (pylablib.devices.AWG.specific.Agilent33500

method), 447
ask() (pylablib.devices.AWG.specific.InstekAFG2000

method), 465
ask() (pylablib.devices.AWG.specific.InstekAFG2225

method), 459
ask() (pylablib.devices.AWG.specific.RigolDG1000

method), 484
ask() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 472
ask() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 478
ask() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
ask() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
ask() (pylablib.devices.Cryomagnetics.base.LM510

method), 591
ask() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 646
ask() (pylablib.devices.Lakeshore.base.Lakeshore218

1022 Index

pylablib Documentation, Release 1.4.2

method), 652
ask() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 657
ask() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 796
ask() (pylablib.devices.Rigol.power_supply.DP1116A

method), 811
ask() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 832
ask() (pylablib.devices.Tektronix.base.DPO2000

method), 871
ask() (pylablib.devices.Tektronix.base.ITektronixScope

method), 861
ask() (pylablib.devices.Tektronix.base.TDS2000

method), 864
ask() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
ask() (pylablib.devices.Thorlabs.misc.PM160 method),

923
ask() (pylablib.devices.Thorlabs.serial.FW method),

930
ask() (pylablib.devices.Thorlabs.serial.FWv1 method),

933
ask() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 937
ask() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 927
ask() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 949
atm_adj (pylablib.devices.Leybold.base.TITR90Status

attribute), 665
AttocubeBackendError, 556
AttocubeError, 556
attr (pylablib.core.utils.observer_pool.ObserverPool.Observer

attribute), 430
attr_url (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo

attribute), 627
AttrObjectCall (class in pylablib.core.utils.functions),

409
AttrObjectProperty (class in py-

lablib.core.utils.functions), 409
au1() (in module pylablib.core.utils.nbtools), 424
au2() (in module pylablib.core.utils.nbtools), 424
au4() (in module pylablib.core.utils.nbtools), 424
au8() (in module pylablib.core.utils.nbtools), 424
autodetect_backend() (in module py-

lablib.core.devio.comm_backend), 187
autodetect_motors() (py-

lablib.devices.Newport.picomotor.Picomotor8742
method), 715

autoloop (pylablib.devices.NI.daq.TVoltageOutputClockParameters
attribute), 696

autorange (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings
attribute), 655

autorng (pylablib.devices.Keithley.multimeter.TGenericFunctionParameters
attribute), 644

available (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

available (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 745

available_samples() (py-
lablib.devices.NI.daq.NIDAQ method), 699

average_interpolate_1D() (in module py-
lablib.core.dataproc.interpolate), 146

avg (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters
attribute), 831

avg (pylablib.devices.Sirah.Matisse.TThinetCtlParameters
attribute), 831

B
backend_error() (in module py-

lablib.core.devio.comm_backend), 188
BackendError (pylablib.core.devio.comm_backend.FT232DeviceBackend

attribute), 174
BackendError (pylablib.core.devio.comm_backend.HIDeviceBackend

attribute), 183
BackendError (pylablib.core.devio.comm_backend.IDeviceCommBackend

attribute), 167
BackendError (pylablib.core.devio.comm_backend.NetworkDeviceBackend

attribute), 177
BackendError (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

attribute), 180
BackendError (pylablib.core.devio.comm_backend.RecordedDeviceBackend

attribute), 185
BackendError (pylablib.core.devio.comm_backend.SerialDeviceBackend

attribute), 172
BackendError (pylablib.core.devio.comm_backend.VisaDeviceBackend

attribute), 169
BackendError (pylablib.core.devio.SCPI.SCPIDevice

attribute), 162
BackendError (pylablib.devices.AWG.generic.GenericAWG

attribute), 444
BackendError (pylablib.devices.AWG.specific.Agilent33220A

attribute), 453
BackendError (pylablib.devices.AWG.specific.Agilent33500

attribute), 447
BackendError (pylablib.devices.AWG.specific.InstekAFG2000

attribute), 465
BackendError (pylablib.devices.AWG.specific.InstekAFG2225

attribute), 459
BackendError (pylablib.devices.AWG.specific.RigolDG1000

attribute), 484
BackendError (pylablib.devices.AWG.specific.RSInstekAFG21000

attribute), 471
BackendError (pylablib.devices.AWG.specific.TektronixAFG1000

attribute), 478
BackendError (pylablib.devices.Cryocon.base.Cryocon1x

attribute), 583

Index 1023

pylablib Documentation, Release 1.4.2

BackendError (pylablib.devices.Cryomagnetics.base.LM500
attribute), 587

BackendError (pylablib.devices.Cryomagnetics.base.LM510
attribute), 590

BackendError (pylablib.devices.Keithley.multimeter.Keithley2110
attribute), 646

BackendError (pylablib.devices.Lakeshore.base.Lakeshore218
attribute), 652

BackendError (pylablib.devices.Lakeshore.base.Lakeshore370
attribute), 657

BackendError (pylablib.devices.M2.base.ICEBlocDevice
attribute), 674

BackendError (pylablib.devices.M2.emm.EMM at-
tribute), 677

BackendError (pylablib.devices.M2.solstis.Solstis
attribute), 684

BackendError (pylablib.devices.PhysikInstrumente.base.PIE515
attribute), 796

BackendError (pylablib.devices.Rigol.power_supply.DP1116A
attribute), 811

BackendError (pylablib.devices.Sirah.Matisse.SirahMatisse
attribute), 837

BackendError (pylablib.devices.Tektronix.base.DPO2000
attribute), 871

BackendError (pylablib.devices.Tektronix.base.ITektronixScope
attribute), 861

BackendError (pylablib.devices.Tektronix.base.TDS2000
attribute), 864

BackendError (pylablib.devices.Thorlabs.misc.GenericPM
attribute), 919

BackendError (pylablib.devices.Thorlabs.misc.PM160
attribute), 922

BackendError (pylablib.devices.Thorlabs.serial.FW at-
tribute), 930

BackendError (pylablib.devices.Thorlabs.serial.FWv1
attribute), 934

BackendError (pylablib.devices.Thorlabs.serial.MDT69xA
attribute), 937

BackendError (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
attribute), 927

BackendError (pylablib.devices.Voltcraft.multimeter.VC7055
attribute), 949

BackendLogger (class in py-
lablib.core.devio.backend_logger), 165

backlash_distance (py-
lablib.devices.Thorlabs.kinesis.TGenMoveParams
attribute), 895

Baseline (class in pylablib.core.dataproc.feature), 131
baseplate (pylablib.devices.Toptica.ibeam.TTemperatures

attribute), 941
BasicKinesisDevice (class in py-

lablib.devices.Thorlabs.kinesis), 892
BasicKinesisDevice.CommData (class in py-

lablib.devices.Thorlabs.kinesis), 892

BasicKinesisDevice.CommShort (class in py-
lablib.devices.Thorlabs.kinesis), 892

BaslerPylonAttribute (class in py-
lablib.devices.Basler.pylon), 557

BaslerPylonCamera (class in py-
lablib.devices.Basler.pylon), 560

BaslerPylonCamera.BufferManager (class in py-
lablib.devices.Basler.pylon), 561

BaslerPylonCamera.ScheduleLooper (class in py-
lablib.devices.Basler.pylon), 562

bayer_interpolate() (in module py-
lablib.devices.utils.color), 997

bifi_clear_errors() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_get_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_get_range() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_get_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_get_status_n() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_home() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_is_moving() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_move_to() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_stop() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 833

bifi_wait_move() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

BinaryTableInputFileFormatter (class in py-
lablib.core.fileio.loadfile), 208

bind() (pylablib.core.dataproc.callable.FunctionCallable
method), 128

bind() (pylablib.core.dataproc.callable.ICallable
method), 126

bind() (pylablib.core.dataproc.callable.JoinedCallable
method), 127

bind() (pylablib.core.dataproc.callable.MethodCallable
method), 129

bind() (pylablib.core.dataproc.callable.MultiplexedCallable
method), 127

bind_namelist() (py-
lablib.core.dataproc.callable.FunctionCallable
method), 128

1024 Index

pylablib Documentation, Release 1.4.2

bind_namelist() (py-
lablib.core.dataproc.callable.ICallable
method), 126

bind_namelist() (py-
lablib.core.dataproc.callable.JoinedCallable
method), 127

bind_namelist() (py-
lablib.core.dataproc.callable.MethodCallable
method), 129

bind_namelist() (py-
lablib.core.dataproc.callable.MultiplexedCallable
method), 127

binning_average() (in module py-
lablib.core.dataproc.filters), 135

binv() (in module pylablib.core.utils.crc), 357
bipolar (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings

attribute), 650
bipolar (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings

attribute), 655
bit_depth (pylablib.devices.Thorlabs.TLCamera.TSensorInfo

attribute), 879
BitFlowCamera (class in py-

lablib.devices.BitFlow.BitFlow), 573
BitFlowCamera.BufferManager (class in py-

lablib.devices.BitFlow.BitFlow), 573
BitFlowError, 566
BitFlowFrameGrabber (class in py-

lablib.devices.BitFlow.BitFlow), 567
BitFlowFrameGrabber.BufferManager (class in py-

lablib.devices.BitFlow.BitFlow), 568
BitFlowTimeoutError, 566
bits2int() (in module pylablib.core.utils.strpack), 438
bk_freq (pylablib.devices.Thorlabs.elliptec.TMotorInfo

attribute), 888
blaze_wavelength (py-

lablib.devices.Andor.Shamrock.TGratingInfo
attribute), 527

blink() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

blink() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

blink() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

blink() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

blink() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

blink() (pylablib.devices.Thorlabs.kinesis.MFF
method), 901

blocking_control_signals() (py-
lablib.core.thread.controller.QTaskThread
method), 342

blocking_control_signals() (py-
lablib.core.thread.controller.QThreadController

method), 328
BonitoError, 490
BonitoIMAQCamera (class in py-

lablib.devices.AlliedVision.Bonito), 496
BonitoStatusLineChecker (class in py-

lablib.devices.AlliedVision.Bonito), 504
branch_copy() (pylablib.core.utils.dictionary.Dictionary

method), 368
branch_copy() (pylablib.core.utils.dictionary.DictionaryPointer

method), 373
branch_copy() (pylablib.core.utils.dictionary.FilterTree

method), 390
branch_copy() (pylablib.core.utils.dictionary.PrefixTree

method), 382
branch_pointer() (py-

lablib.core.utils.dictionary.Dictionary
method), 369

branch_pointer() (py-
lablib.core.utils.dictionary.DictionaryPointer
method), 372

branch_pointer() (py-
lablib.core.utils.dictionary.FilterTree method),
390

branch_pointer() (py-
lablib.core.utils.dictionary.PrefixTree method),
382

buffconv() (in module pylablib.core.utils.ctypes_wrap),
360

buffer_size (pylablib.devices.interface.camera.TFramesStatus
attribute), 955

buffprep() (in module pylablib.core.utils.ctypes_wrap),
360

build_call() (pylablib.core.thread.callsync.QDirectCallScheduler
method), 319

build_call() (pylablib.core.thread.callsync.QMulticastThreadCallScheduler
method), 326

build_call() (pylablib.core.thread.callsync.QMultiQueueScheduler
method), 324

build_call() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

build_call() (pylablib.core.thread.callsync.QQueueScheduler
method), 321

build_call() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

build_call() (pylablib.core.thread.callsync.QScheduler
method), 318

build_call() (pylablib.core.thread.callsync.QThreadCallScheduler
method), 325

build_call_info() (py-
lablib.core.thread.callsync.QDirectCallScheduler
method), 319

build_call_info() (py-
lablib.core.thread.callsync.QMulticastThreadCallScheduler
method), 326

Index 1025

pylablib Documentation, Release 1.4.2

build_call_info() (py-
lablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

build_call_info() (py-
lablib.core.thread.callsync.QQueueScheduler
method), 321

build_call_info() (py-
lablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

build_call_info() (py-
lablib.core.thread.callsync.QScheduler
method), 318

build_call_info() (py-
lablib.core.thread.callsync.QThreadCallScheduler
method), 325

build_children_tree() (in module py-
lablib.core.gui.value_handling), 298

build_file_format() (in module py-
lablib.core.fileio.loadfile), 208

bus (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo at-
tribute), 627

bus_type (pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo
attribute), 629

byref() (pylablib.core.utils.ctypes_wrap.CFunctionWrapper
method), 358

bytes2int() (in module pylablib.core.utils.strpack),
438

C
c2xy() (in module pylablib.core.dataproc.utils), 161
c_array() (in module pylablib.core.utils.nbtools), 424
ca (pylablib.core.thread.controller.QTaskThread at-

tribute), 335
cacheable (pylablib.core.utils.observer_pool.ObserverPool.Observer

attribute), 430
cad (pylablib.core.thread.controller.QTaskThread at-

tribute), 336
cai (pylablib.core.thread.controller.QTaskThread at-

tribute), 336
cal_date (pylablib.devices.LaserQuantum.base.TDeviceInfo

attribute), 661
calc_table() (in module pylablib.core.utils.crc), 357
calibrate() (pylablib.devices.HighFinesse.wlm.WLM

method), 610
calibrate() (pylablib.devices.Sirah.tuner.MatisseTuner

method), 842
calibrate() (pylablib.devices.SmarAct.MCS2.MCS2

method), 848
calibration (pylablib.devices.Thorlabs.misc.TPMSensorInfo

attribute), 918
call_added() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler

method), 322
call_added() (pylablib.core.thread.callsync.QQueueScheduler

method), 320

call_added() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

call_command() (pylablib.core.thread.controller.QTaskThread
method), 341

call_command() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

call_command() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

call_command() (pylablib.devices.Basler.pylon.BaslerPylonAttribute
method), 559

call_command() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

call_command() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

call_command() (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
method), 757

call_command() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

call_command() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

call_command() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 773

call_command_direct() (py-
lablib.core.thread.controller.QTaskThread
method), 341

call_cut_args() (in module py-
lablib.core.utils.functions), 408

call_in_gui_thread() (in module py-
lablib.core.thread.controller), 327

call_in_thread() (in module py-
lablib.core.thread.controller), 327

call_in_thread_callback() (py-
lablib.core.thread.controller.QTaskThread
method), 342

call_in_thread_callback() (py-
lablib.core.thread.controller.QThreadController
method), 335

call_in_thread_commsync() (py-
lablib.core.thread.controller.QTaskThread
method), 341

call_in_thread_sync() (py-
lablib.core.thread.controller.QTaskThread
method), 342

call_in_thread_sync() (py-
lablib.core.thread.controller.QThreadController
method), 335

call_limit() (in module pylablib.core.utils.general),
414

call_on_exception (py-
lablib.core.thread.callsync.QScheduledCall.Callback
attribute), 318

call_on_unschedule (py-
lablib.core.thread.callsync.QScheduledCall.Callback
attribute), 318

1026 Index

pylablib Documentation, Release 1.4.2

call_popped() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

call_popped() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

call_popped() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

call_thread_method() (py-
lablib.core.thread.controller.QTaskThread
method), 343

call_thread_method() (py-
lablib.core.thread.controller.QThreadController
method), 333

call_time (pylablib.core.thread.callsync.TDefaultCallInfo
attribute), 318

callback (pylablib.core.utils.observer_pool.ObserverPool.Observer
attribute), 430

cam_id (pylablib.devices.uc480.uc480.TCameraInfo at-
tribute), 988

cam_id (pylablib.devices.uc480.uc480.TDeviceInfo at-
tribute), 989

camera_file (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo
attribute), 627

camera_model (pylablib.devices.Andor.AndorSDK3.TDeviceInfo
attribute), 519

camera_name (pylablib.devices.Andor.AndorSDK3.TDeviceInfo
attribute), 519

camera_type (pylablib.devices.uc480.uc480.TDeviceInfo
attribute), 989

camera_version (pylablib.devices.DCAM.DCAM.TDeviceInfo
attribute), 597

CameraFileEditor (class in py-
lablib.devices.BitFlow.BitFlow), 578

camerastamp (pylablib.devices.DCAM.DCAM.TFrameInfo
attribute), 597

can_change() (pylablib.core.thread.utils.ReadChangeLock
method), 356

can_read() (pylablib.core.thread.utils.ReadChangeLock
method), 356

can_schedule() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

can_schedule() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

can_schedule() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

can_set_online (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 802

can_set_value() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

can_set_value() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

can_set_value() (py-
lablib.core.gui.value_handling.IBoolValueHandler

method), 305
can_set_value() (py-

lablib.core.gui.value_handling.ISingleValueHandler
method), 303

can_set_value() (py-
lablib.core.gui.value_handling.IValueHandler
method), 299

can_set_value() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 304

can_set_value() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 303

can_set_value() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 309

can_set_value() (py-
lablib.core.gui.value_handling.PropertyValueHandler
method), 301

can_set_value() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

can_set_value() (py-
lablib.core.gui.value_handling.StandardValueHandler
method), 302

can_set_value() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

can_set_value() (py-
lablib.core.gui.value_handling.VirtualValueHandler
method), 300

capabilities (pylablib.devices.Ophir.base.THeadInfo
attribute), 726

case_sensitive_path() (in module py-
lablib.core.utils.files), 398

cast() (pylablib.core.gui.limiter.NumberLimit method),
295

category (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

center() (pylablib.core.dataproc.image.ROI method),
144

CFunctionWrapper (class in py-
lablib.core.utils.ctypes_wrap), 357

change_addr() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

change_batch_job_parameters() (py-
lablib.core.thread.controller.QTaskThread
method), 338

change_job_period() (py-
lablib.core.thread.controller.QTaskThread
method), 337

change_max_len() (py-
lablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 321

Index 1027

pylablib Documentation, Release 1.4.2

change_max_size() (py-
lablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

change_period() (py-
lablib.core.thread.controller.QTaskThread.Job
method), 337

change_period() (pylablib.core.utils.general.Timer
method), 415

changed_from (pylablib.core.utils.dictionary.DictionaryDiff
attribute), 370, 371

changed_to (pylablib.core.utils.dictionary.DictionaryDiff
attribute), 370, 371

changing() (pylablib.core.thread.utils.ReadChangeLock
method), 356

channel (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings
attribute), 650

channel (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings
attribute), 655

channel (pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings
attribute), 739

characters_written (py-
lablib.core.thread.threadprop.TimeoutThreadError
attribute), 355

characters_written (py-
lablib.core.utils.net.SocketError attribute),
425

characters_written (py-
lablib.core.utils.net.SocketTimeout attribute),
425

check_alias() (pylablib.core.devio.interface.EnumParameterClass
method), 196

check_alias() (pylablib.core.devio.interface.FunctionParameterClass
method), 197

check_alias() (pylablib.core.devio.interface.ICheckingParameterClass
method), 194

check_alias() (pylablib.core.devio.interface.IEnumParameterClass
method), 195

check_alias() (pylablib.core.devio.interface.RangeParameterClass
method), 194

check_background_comm() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

check_background_comm() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

check_fast_scan_start_report() (py-
lablib.devices.M2.solstis.Solstis method),
683

check_fine_tuning_report() (py-
lablib.devices.M2.emm.EMM method), 676

check_fine_tuning_report() (py-
lablib.devices.M2.solstis.Solstis method),
680

check_grabber_association() (in module py-
lablib.devices.AlliedVision.Bonito), 504

check_grabber_association() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
788

check_indices() (py-
lablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker
method), 504

check_indices() (py-
lablib.devices.interface.camera.StatusLineChecker
method), 985

check_indices() (py-
lablib.devices.PCO.SC2.StatusLineChecker
method), 739

check_indices() (py-
lablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker
method), 789

check_limit() (pylablib.devices.Attocube.anc350.ANC350
method), 553

check_limit_error() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

check_limit_error() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 536

check_limit_error() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

check_messages() (py-
lablib.core.thread.controller.QTaskThread
method), 343

check_messages() (py-
lablib.core.thread.controller.QThreadController
method), 329

check_parameter_range() (in module py-
lablib.core.utils.funcargparse), 405

check_report() (pylablib.devices.M2.base.ICEBlocDevice
method), 675

check_report() (pylablib.devices.M2.emm.EMM
method), 678

1028 Index

pylablib Documentation, Release 1.4.2

check_report() (pylablib.devices.M2.solstis.Solstis
method), 684

check_tell() (pylablib.devices.Attocube.anc350.ANC350
method), 552

check_terascan_start_report() (py-
lablib.devices.M2.emm.EMM method), 677

check_terascan_start_report() (py-
lablib.devices.M2.solstis.Solstis method),
682

check_terascan_update() (py-
lablib.devices.M2.emm.EMM method), 677

check_terascan_update() (py-
lablib.devices.M2.solstis.Solstis method),
682

check_value() (pylablib.core.devio.interface.EnumParameterClass
method), 196

check_value() (pylablib.core.devio.interface.FunctionParameterClass
method), 197

check_value() (pylablib.core.devio.interface.ICheckingParameterClass
method), 194

check_value() (pylablib.core.devio.interface.IEnumParameterClass
method), 195

check_value() (pylablib.core.devio.interface.RangeParameterClass
method), 194

CheckboxValueHandler (class in py-
lablib.core.gui.value_handling), 306

chip (pylablib.devices.Photometrics.pvcam.TDeviceInfo
attribute), 746

ChunkBufferManager (class in py-
lablib.devices.interface.camera), 961

ChunksAccumulator (class in py-
lablib.core.fileio.parse_csv), 218

class_tuple_to_dict() (in module py-
lablib.core.utils.ctypes_wrap), 361

clean_dir() (in module pylablib.core.utils.files), 400
clean_layout() (in module pylablib.core.gui.utils), 296
clean_modes() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor

method), 578
cleanup (pylablib.core.thread.controller.QTaskThread.TBatchJob

attribute), 336
cleanup() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer

method), 880
clear() (pylablib.core.gui.widgets.container.IQContainer

method), 232
clear() (pylablib.core.gui.widgets.container.IQWidgetContainer

method), 236
clear() (pylablib.core.gui.widgets.container.QContainer

method), 234
clear() (pylablib.core.gui.widgets.container.QDialogContainer

method), 249
clear() (pylablib.core.gui.widgets.container.QFrameContainer

method), 245
clear() (pylablib.core.gui.widgets.container.QGroupBoxContainer

method), 254

clear() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

clear() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

clear() (pylablib.core.gui.widgets.container.QTabContainer
method), 263

clear() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 241

clear() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

clear() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

clear() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

clear() (pylablib.core.gui.widgets.param_table.StatusTable
method), 291

clear() (pylablib.core.thread.callsync.QDirectCallScheduler
method), 319

clear() (pylablib.core.thread.callsync.QMulticastThreadCallScheduler
method), 326

clear() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

clear() (pylablib.core.thread.callsync.QQueueScheduler
method), 321

clear() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

clear() (pylablib.core.thread.callsync.QScheduler
method), 319

clear() (pylablib.core.thread.callsync.QThreadCallScheduler
method), 325

clear() (pylablib.core.thread.controller.QTaskThread.Job
method), 337

clear_acquisition() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 496

clear_acquisition() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

clear_acquisition() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

clear_acquisition() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

clear_acquisition() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

clear_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 573

clear_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

clear_acquisition() (py-

Index 1029

pylablib Documentation, Release 1.4.2

lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

clear_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 619

clear_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

clear_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

clear_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

clear_acquisition() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

clear_acquisition() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

clear_acquisition() (py-
lablib.devices.interface.camera.ICamera
method), 956

clear_acquisition() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

clear_acquisition() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

clear_acquisition() (py-
lablib.devices.interface.camera.IROICamera
method), 977

clear_acquisition() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

clear_acquisition() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

clear_acquisition() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

clear_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

clear_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

clear_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

clear_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

clear_acquisition() (py-

lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

clear_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

clear_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

clear_acquisition() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

clear_acquisition() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

clear_all_triggers() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 496

clear_all_triggers() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

clear_all_triggers() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 614

clear_all_triggers() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

clear_limit_error() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

clear_limit_error() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 536

clear_limit_error() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

clicked (pylablib.core.gui.widgets.label.EnumLabel at-
tribute), 269

clicked (pylablib.core.gui.widgets.label.NumLabel at-
tribute), 269

clicked (pylablib.core.gui.widgets.label.TextLabel at-
tribute), 268

ClientSocket (class in pylablib.core.utils.net), 426
CLinear2DTransform (class in py-

lablib.core.dataproc.ctransform_fallback),
130

close() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

close() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 183

close() (pylablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

close() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

close() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

1030 Index

pylablib Documentation, Release 1.4.2

method), 177
close() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 180
close() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 185
close() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 172
close() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 169
close() (pylablib.core.devio.hid.HIDevice method), 190
close() (pylablib.core.devio.interface.IDevice method),

192
close() (pylablib.core.devio.SCPI.SCPIDevice

method), 164
close() (pylablib.core.fileio.location.FolderFileSystemDataLocation

method), 217
close() (pylablib.core.fileio.location.IDataLocation

method), 215
close() (pylablib.core.fileio.location.IFileSystemDataLocation

method), 215
close() (pylablib.core.fileio.location.LocationFile

method), 214
close() (pylablib.core.fileio.location.OpenedFileLocation

method), 215
close() (pylablib.core.fileio.location.PrefixedFileSystemDataLocation

method), 217
close() (pylablib.core.fileio.location.SingleFileSystemDataLocation

method), 216
close() (pylablib.core.utils.net.ClientSocket method),

427
close() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 496
close() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 492
close() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 506
close() (pylablib.devices.Andor.AndorSDK2.LibraryController

method), 505
close() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 519
close() (pylablib.devices.Andor.AndorSDK3.LibraryController

method), 516
close() (pylablib.devices.Andor.Shamrock.LibraryController

method), 526
close() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph

method), 528
close() (pylablib.devices.Arcus.performax.GenericPerformaxStage

method), 533
close() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 539
close() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 537
close() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 544

close() (pylablib.devices.Arduino.base.IArduinoDevice
method), 547

close() (pylablib.devices.Attocube.anc300.ANC300
method), 551

close() (pylablib.devices.Attocube.anc350.ANC350
method), 554

close() (pylablib.devices.AWG.generic.GenericAWG
method), 444

close() (pylablib.devices.AWG.specific.Agilent33220A
method), 453

close() (pylablib.devices.AWG.specific.Agilent33500
method), 447

close() (pylablib.devices.AWG.specific.InstekAFG2000
method), 465

close() (pylablib.devices.AWG.specific.InstekAFG2225
method), 459

close() (pylablib.devices.AWG.specific.RigolDG1000
method), 484

close() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 472

close() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 478

close() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

close() (pylablib.devices.Basler.pylon.LibraryController
method), 556

close() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 573

close() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 567

close() (pylablib.devices.Conrad.base.RelayBoard
method), 580

close() (pylablib.devices.Cryocon.base.Cryocon1x
method), 583

close() (pylablib.devices.Cryomagnetics.base.LM500
method), 586

close() (pylablib.devices.Cryomagnetics.base.LM510
method), 591

close() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 597

close() (pylablib.devices.DCAM.DCAM.LibraryController
method), 595

close() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 605

close() (pylablib.devices.HighFinesse.wlm.WLM
method), 608

close() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

close() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 612

close() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

close() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 629

Index 1031

pylablib Documentation, Release 1.4.2

close() (pylablib.devices.interface.camera.IAttributeCamera
method), 962

close() (pylablib.devices.interface.camera.IBinROICamera
method), 981

close() (pylablib.devices.interface.camera.ICamera
method), 959

close() (pylablib.devices.interface.camera.IExposureCamera
method), 972

close() (pylablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

close() (pylablib.devices.interface.camera.IROICamera
method), 977

close() (pylablib.devices.interface.stage.IMultiaxisStage
method), 987

close() (pylablib.devices.interface.stage.IStage
method), 986

close() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 646

close() (pylablib.devices.KJL.base.KJL300 method),
642

close() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 652

close() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 657

close() (pylablib.devices.LaserQuantum.base.Finesse
method), 662

close() (pylablib.devices.Leybold.base.GenericITR
method), 664

close() (pylablib.devices.Leybold.base.ITR90 method),
666

close() (pylablib.devices.LighthousePhotonics.base.SproutG
method), 669

close() (pylablib.devices.Lumel.base.LumelRE72Controller
method), 671

close() (pylablib.devices.M2.base.ICEBlocDevice
method), 674

close() (pylablib.devices.M2.emm.EMM method), 678
close() (pylablib.devices.M2.solstis.Solstis method),

684
close() (pylablib.devices.Mightex.MightexSSeries.LibraryController

method), 686
close() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 687
close() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 694
close() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 716
close() (pylablib.devices.NI.daq.NIDAQ method), 697
close() (pylablib.devices.NKT.interbus.GenericInterbusDevice

method), 705
close() (pylablib.devices.NKT.interbus.GenericInterbusModule

method), 707
close() (pylablib.devices.NKT.interbus.IInterbusModule

method), 706

close() (pylablib.devices.NKT.interbus.InterbusSystem
method), 712

close() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 707

close() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 708

close() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 709

close() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 710

close() (pylablib.devices.Ophir.base.OphirDevice
method), 725

close() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 729

close() (pylablib.devices.OZOptics.base.DD100
method), 721

close() (pylablib.devices.OZOptics.base.EPC04
method), 723

close() (pylablib.devices.OZOptics.base.OZOpticsDevice
method), 718

close() (pylablib.devices.OZOptics.base.TF100
method), 720

close() (pylablib.devices.PCO.SC2.PCOSC2Camera
method), 731

close() (pylablib.devices.Pfeiffer.base.DPG202
method), 743

close() (pylablib.devices.Pfeiffer.base.TPG260
method), 742

close() (pylablib.devices.Photometrics.pvcam.LibraryController
method), 744

close() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 747

close() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

close() (pylablib.devices.PhotonFocus.PhotonFocus.LibraryController
method), 755

close() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

close() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

close() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

close() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

close() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 795

close() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 793

close() (pylablib.devices.PrincetonInstruments.picam.LibraryController
method), 800

close() (pylablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

close() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

1032 Index

pylablib Documentation, Release 1.4.2

close() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

close() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 817

close() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 837

close() (pylablib.devices.SmarAct.MCS2.LibraryController
method), 844

close() (pylablib.devices.SmarAct.MCS2.MCS2
method), 845

close() (pylablib.devices.SmarAct.scu3d.LibraryController
method), 849

close() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 850

close() (pylablib.devices.Standa.base.Standa8SMC
method), 855

close() (pylablib.devices.Tektronix.base.DPO2000
method), 871

close() (pylablib.devices.Tektronix.base.ITektronixScope
method), 861

close() (pylablib.devices.Tektronix.base.TDS2000
method), 864

close() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

close() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

close() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

close() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

close() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

close() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

close() (pylablib.devices.Thorlabs.kinesis.MFF
method), 901

close() (pylablib.devices.Thorlabs.misc.GenericPM
method), 920

close() (pylablib.devices.Thorlabs.misc.PM160
method), 923

close() (pylablib.devices.Thorlabs.serial.FW method),
931

close() (pylablib.devices.Thorlabs.serial.FWv1
method), 934

close() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 937

close() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 927

close() (pylablib.devices.Thorlabs.TLCamera.LibraryController
method), 878

close() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 879

close() (pylablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

close() (pylablib.devices.Trinamic.base.TMCM1110
method), 947

close() (pylablib.devices.uc480.uc480.UC480Camera
method), 990

close() (pylablib.devices.utils.load_lib.LibraryController
method), 999

close() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 950

close() (pylablib.devices.Voltcraft.multimeter.VC880
method), 954

close_connection() (py-
lablib.core.utils.ipc.SharedMemIPCTable
method), 422

close_result (pylablib.devices.utils.load_lib.TLibraryCloseResult
attribute), 998

cls (pylablib.core.utils.string.TConversionClass at-
tribute), 436

cmp_dirs() (in module pylablib.core.utils.files), 402
cmp_package_version() (in module py-

lablib.core.utils.module), 423
cmp_versions() (in module pylablib.core.utils.module),

423
coarse_tune_wavelength() (py-

lablib.devices.M2.solstis.Solstis method),
680

coeff (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader
attribute), 650

collect() (pylablib.core.utils.dictionary.Dictionary
method), 367

collect() (pylablib.core.utils.dictionary.DictionaryPointer
method), 373

collect() (pylablib.core.utils.dictionary.FilterTree
method), 390

collect() (pylablib.core.utils.dictionary.PrefixTree
method), 382

collect_into_bins() (in module py-
lablib.core.dataproc.filters), 135

color_format (pylablib.devices.Thorlabs.TLCamera.TColorFormat
attribute), 879

color_space (pylablib.devices.Thorlabs.TLCamera.TColorFormat
attribute), 879

column() (pylablib.core.dataproc.table_wrap.Array2DWrapper
method), 154

column() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 156

column() (pylablib.core.dataproc.table_wrap.I2DWrapper
method), 152

columns_replaced() (py-
lablib.core.dataproc.table_wrap.Array2DWrapper
method), 154

columns_replaced() (py-
lablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 157

columns_replaced() (py-

Index 1033

pylablib Documentation, Release 1.4.2

lablib.core.dataproc.table_wrap.I2DWrapper
method), 152

columns_to_table() (in module py-
lablib.core.fileio.parse_csv), 219

combine_conn() (pylablib.core.devio.comm_backend.FT232DeviceBackend
class method), 176

combine_conn() (pylablib.core.devio.comm_backend.HIDeviceBackend
class method), 184

combine_conn() (pylablib.core.devio.comm_backend.IDeviceCommBackend
class method), 167

combine_conn() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
class method), 178

combine_conn() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
class method), 181

combine_conn() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
class method), 186

combine_conn() (pylablib.core.devio.comm_backend.SerialDeviceBackend
class method), 173

combine_conn() (pylablib.core.devio.comm_backend.VisaDeviceBackend
class method), 170

combine_dictionaries() (in module py-
lablib.core.utils.dictionary), 379

combine_diff() (in module pylablib.core.utils.files),
402

CombinedParameterClass (class in py-
lablib.core.devio.interface), 197

ComboBox (class in py-
lablib.core.gui.widgets.combo_box), 228

ComboBoxValueHandler (class in py-
lablib.core.gui.value_handling), 308

comm (pylablib.devices.Conrad.base.RelayBoard.TMessage
attribute), 580

comm (pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData
attribute), 889

comm (pylablib.devices.Trinamic.base.TMCM1110.ReplyData
attribute), 944

comm() (pylablib.devices.Arduino.base.IArduinoDevice
method), 546

comm() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 605

comm() (pylablib.devices.KJL.base.KJL300 method), 642
comm() (pylablib.devices.Pfeiffer.base.DPG202 method),

743
comm() (pylablib.devices.Pfeiffer.base.TPG260 method),

740
comm_paused() (pylablib.core.thread.controller.QTaskThread

method), 341
command (pylablib.core.thread.controller.QTaskThread.TCommand

attribute), 336
common (pylablib.core.utils.dictionary.DictionaryIntersection

attribute), 371
compare_lists() (in module py-

lablib.core.utils.general), 412
compilation_number (py-

lablib.devices.HighFinesse.wlm.TDeviceInfo
attribute), 607

complex_lorentzian_k() (in module py-
lablib.core.dataproc.specfunc), 147

compress_grid_layout() (in module py-
lablib.core.gui.utils), 298

configuration (pylablib.devices.LighthousePhotonics.base.TDeviceInfo
attribute), 668

configure_trigger_in() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 496

configure_trigger_in() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

configure_trigger_in() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

configure_trigger_in() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 764

configure_trigger_out() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

configure_trigger_out() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

configure_trigger_out() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 614

configure_trigger_out() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

connect() (pylablib.core.utils.net.ClientSocket method),
427

connect_device_service() (in module py-
lablib.core.utils.rpyc_utils), 433

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.IBoolValueHandler
method), 305

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.ISingleValueHandler
method), 303

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.IValueHandler
method), 299

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 304

1034 Index

pylablib Documentation, Release 1.4.2

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 303

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 309

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.PropertyValueHandler
method), 301

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.StandardValueHandler
method), 302

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

connect_value_changed_handler() (py-
lablib.core.gui.value_handling.VirtualValueHandler
method), 300

connect_wavemeter() (py-
lablib.devices.M2.solstis.Solstis method),
679

ConradBackendError, 579
ConradError, 579
cons_error (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
cons_excluded (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
cons_included (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
cons_novalid (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
cons_permanent (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
cons_type (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
constant() (in module pylablib.core.utils.numerical),

430
contained_value_changed (py-

lablib.core.gui.widgets.container.IQContainer
attribute), 230

contained_value_changed (py-
lablib.core.gui.widgets.container.IQWidgetContainer
attribute), 237

contained_value_changed (py-
lablib.core.gui.widgets.container.QContainer
attribute), 234

contained_value_changed (py-
lablib.core.gui.widgets.container.QDialogContainer
attribute), 250

contained_value_changed (py-
lablib.core.gui.widgets.container.QFrameContainer

attribute), 245
contained_value_changed (py-

lablib.core.gui.widgets.container.QGroupBoxContainer
attribute), 254

contained_value_changed (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
attribute), 261

contained_value_changed (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
attribute), 258

contained_value_changed (py-
lablib.core.gui.widgets.container.QTabContainer
attribute), 264

contained_value_changed (py-
lablib.core.gui.widgets.container.QWidgetContainer
attribute), 241

contained_value_changed (py-
lablib.core.gui.widgets.param_table.ParamTable
attribute), 283

contained_value_changed (py-
lablib.core.gui.widgets.param_table.StatusTable
attribute), 291

contains() (pylablib.core.dataproc.utils.Range
method), 160

continuous (pylablib.devices.NI.daq.TVoltageOutputClockParameters
attribute), 696

controller (pylablib.devices.LighthousePhotonics.base.TWorkHours
attribute), 668

controller_model (py-
lablib.devices.Andor.AndorSDK2.TDeviceInfo
attribute), 505

conv (pylablib.core.utils.string.TConversionClass at-
tribute), 436

conv() (pylablib.core.utils.ctypes_wrap.CStructWrapper
method), 361

convert_columns() (py-
lablib.core.fileio.parse_csv.ChunksAccumulator
method), 219

convert_frequency_units() (in module py-
lablib.core.utils.units), 439

convert_from_str() (py-
lablib.core.devio.data_format.DataFormat
method), 189

convert_image_indexing() (in module py-
lablib.core.dataproc.image), 143

convert_length_units() (in module py-
lablib.core.utils.units), 439

convert_power_units() (in module py-
lablib.core.utils.units), 439

convert_shape_indexing() (in module py-
lablib.core.dataproc.image), 143

convert_time_units() (in module py-
lablib.core.utils.units), 439

convert_to_str() (py-

Index 1035

pylablib Documentation, Release 1.4.2

lablib.core.devio.data_format.DataFormat
method), 190

convolution_filter() (in module py-
lablib.core.dataproc.filters), 133

convolve1d() (in module py-
lablib.core.dataproc.filters), 133

cooldown() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 176

cooldown() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 184

cooldown() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

cooldown() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 178

cooldown() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 181

cooldown() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 186

cooldown() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 173

cooldown() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

copy() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform
method), 130

copy() (pylablib.core.dataproc.image.ROI method), 144
copy() (pylablib.core.dataproc.table_wrap.Array1DWrapper

method), 150
copy() (pylablib.core.dataproc.table_wrap.Array2DWrapper

method), 154
copy() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper

method), 156
copy() (pylablib.core.dataproc.table_wrap.I1DWrapper

method), 149
copy() (pylablib.core.dataproc.table_wrap.I2DWrapper

method), 152
copy() (pylablib.core.dataproc.table_wrap.IGenWrapper

method), 148
copy() (pylablib.core.dataproc.table_wrap.Series1DWrapper

method), 151
copy() (pylablib.core.fileio.location.LocationName

method), 214
copy() (pylablib.core.utils.dictionary.Dictionary

method), 368
copy() (pylablib.core.utils.dictionary.DictionaryPointer

method), 373
copy() (pylablib.core.utils.dictionary.FilterTree

method), 389
copy() (pylablib.core.utils.dictionary.PrefixShortcutTree

method), 396
copy() (pylablib.core.utils.dictionary.PrefixTree

method), 380
copy() (pylablib.core.utils.functions.FunctionSignature

method), 407
copy_array_chunks() (in module py-

lablib.core.utils.nbtools), 424
copy_array_strided() (in module py-

lablib.core.utils.nbtools), 424
copy_dir() (in module pylablib.core.utils.files), 402
copy_file() (in module pylablib.core.utils.files), 399
corr_number (pylablib.devices.Attocube.anc350.ANC350.Telegram

attribute), 552
correction_matrix (py-

lablib.devices.Thorlabs.TLCamera.TColorInfo
attribute), 879

corrupted_number() (py-
lablib.core.fileio.parse_csv.ChunksAccumulator
method), 219

count (pylablib.devices.Keithley.multimeter.TAveragingParameters
attribute), 644

Countdown (class in pylablib.core.utils.general), 415
coupling (pylablib.devices.Tektronix.base.TTriggerParameters

attribute), 857
covers_all() (in module pylablib.core.utils.indexing),

418
crc() (in module pylablib.core.utils.crc), 357
create_indicator_handler() (in module py-

lablib.core.gui.value_handling), 312
create_value_handler() (in module py-

lablib.core.gui.value_handling), 310
Cryocon1x (class in pylablib.devices.Cryocon.base), 582
CryoconBackendError, 581
CryoconError, 581
CryomagneticsBackendError, 586
CryomagneticsError, 586
cs (pylablib.core.thread.controller.QTaskThread at-

tribute), 336
csi (pylablib.core.thread.controller.QTaskThread at-

tribute), 336
css (pylablib.core.thread.controller.QTaskThread at-

tribute), 336
CStructWrapper (class in py-

lablib.core.utils.ctypes_wrap), 360
CSVTableInputFileFormat (class in py-

lablib.core.fileio.loadfile), 207
CSVTableOutputFileFormat (class in py-

lablib.core.fileio.savefile), 221
curr_idx (pylablib.devices.Ophir.base.TRangeInfo at-

tribute), 727
curr_idx (pylablib.devices.Ophir.base.TWavelengthInfo

attribute), 726
curr_range (pylablib.devices.Ophir.base.TRangeInfo

attribute), 727
curr_wavelength (py-

lablib.devices.Ophir.base.TWavelengthInfo
attribute), 726

current (pylablib.devices.ElektroAutomatik.base.TOutputLimits
attribute), 604

current (pylablib.devices.Thorlabs.elliptec.TMotorInfo

1036 Index

pylablib Documentation, Release 1.4.2

attribute), 888
current_controller() (in module py-

lablib.core.thread.threadprop), 356
cut_out_regions() (in module py-

lablib.core.dataproc.utils), 160
cut_to_range() (in module py-

lablib.core.dataproc.utils), 160
cycles_done (pylablib.devices.Andor.AndorSDK2.TAcqProgress

attribute), 506

D
d (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams

attribute), 914
d2func (pylablib.devices.Voltcraft.multimeter.TVC880Reading

attribute), 952
data (pylablib.core.utils.ipc.TPipeMsg attribute), 420
data (pylablib.devices.Attocube.anc350.ANC350.Reply

attribute), 552
data (pylablib.devices.Attocube.anc350.ANC350.Telegram

attribute), 552
data (pylablib.devices.Conrad.base.RelayBoard.TMessage

attribute), 580
data (pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram

attribute), 605
data (pylablib.devices.Modbus.modbus.TModbusFrame

attribute), 693
data (pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData

attribute), 889
data (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData

attribute), 893
DataFile (class in pylablib.core.fileio.datafile), 198
DataFormat (class in pylablib.core.devio.data_format),

189
DataFrame2DWrapper (class in py-

lablib.core.dataproc.table_wrap), 155
DataFrame2DWrapper.ColumnAccessor (class in py-

lablib.core.dataproc.table_wrap), 155
DataFrame2DWrapper.RowAccessor (class in py-

lablib.core.dataproc.table_wrap), 155
DataFrame2DWrapper.TableAccessor (class in py-

lablib.core.dataproc.table_wrap), 156
date (pylablib.devices.uc480.uc480.TDeviceInfo at-

tribute), 989
day (pylablib.devices.uc480.uc480.TTimestamp at-

tribute), 989
DCAMAttribute (class in py-

lablib.devices.DCAM.DCAM), 595
DCAMCamera (class in pylablib.devices.DCAM.DCAM),

597
DD100 (class in pylablib.devices.OZOptics.base), 721
deactivation_control (py-

lablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings
attribute), 740

deallocate() (pylablib.devices.interface.camera.ChunkBufferManager
method), 961

deallocate() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper
method), 688

deallocate() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager
method), 773

deallocate() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager
method), 824

deallocate() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager
method), 819

deallocate_buffers() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 521

decel (pylablib.devices.Standa.base.TMoveParams at-
tribute), 853

decimate() (in module pylablib.core.dataproc.filters),
134

decimate_datasets() (in module py-
lablib.core.dataproc.filters), 135

decimate_full() (in module py-
lablib.core.dataproc.filters), 135

decllen_bo (pylablib.core.utils.net.ClientSocket at-
tribute), 427

decllen_ll (pylablib.core.utils.net.ClientSocket at-
tribute), 427

default (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 746

default (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 802

default_white_balance_matrix (py-
lablib.devices.Thorlabs.TLCamera.TColorInfo
attribute), 879

DefaultFrameTransferError, 955
del_entry() (pylablib.core.utils.dictionary.Dictionary

method), 364
del_entry() (pylablib.core.utils.dictionary.DictionaryPointer

method), 373
del_entry() (pylablib.core.utils.dictionary.FilterTree

method), 390
del_entry() (pylablib.core.utils.dictionary.PrefixTree

method), 382
del_fit_parameters() (py-

lablib.core.dataproc.fitting.Fitter method),
138

del_fixed_parameters() (py-
lablib.core.dataproc.fitting.Fitter method),
138

delattr_call() (in module py-
lablib.core.utils.functions), 408

delaydef() (in module pylablib.core.utils.functions),
410

delete_layout_item() (in module py-
lablib.core.gui.utils), 296

delete_thread_method() (py-

Index 1037

pylablib Documentation, Release 1.4.2

lablib.core.thread.controller.QTaskThread
method), 343

delete_thread_method() (py-
lablib.core.thread.controller.QThreadController
method), 333

delete_variable() (py-
lablib.core.thread.controller.QTaskThread
method), 343

delete_variable() (py-
lablib.core.thread.controller.QThreadController
method), 332

delete_widget() (in module pylablib.core.gui.utils),
296

deregister() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 561

desc (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

description (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

description (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

dest (pylablib.devices.NKT.interbus.TInterbusTelegram
attribute), 704

dest (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData
attribute), 893

dest (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort
attribute), 892

detach() (pylablib.core.utils.dictionary.Dictionary
method), 367

detach() (pylablib.core.utils.dictionary.DictionaryPointer
method), 373

detach() (pylablib.core.utils.dictionary.FilterTree
method), 390

detach() (pylablib.core.utils.dictionary.PrefixTree
method), 382

detect_binary_file() (in module py-
lablib.core.fileio.loadfile_utils), 212

detect_file_format() (py-
lablib.core.fileio.loadfile.BinaryTableInputFileFormatter
static method), 208

detect_file_format() (py-
lablib.core.fileio.loadfile.CSVTableInputFileFormat
static method), 207

detect_file_format() (py-
lablib.core.fileio.loadfile.DictionaryInputFileFormat
static method), 208

detect_file_format() (py-
lablib.core.fileio.loadfile.IInputFileFormat
static method), 206

detect_file_format() (py-
lablib.core.fileio.loadfile.ITextInputFileFormat
static method), 207

detect_textfile_type() (in module py-
lablib.core.fileio.loadfile_utils), 212

dev_id (pylablib.devices.uc480.uc480.TCameraInfo at-
tribute), 988

devclass (pylablib.devices.Basler.pylon.TCameraInfo
attribute), 557

devclass (pylablib.devices.Basler.pylon.TDeviceInfo at-
tribute), 559

device (pylablib.devices.Sirah.Matisse.TScanParameters
attribute), 832

device_id (pylablib.devices.SmarAct.scu3d.TDeviceInfo
attribute), 850

device_info (pylablib.devices.Leybold.base.TUpdateValue
attribute), 664

DeviceBackendError, 166
DeviceError, 166
DeviceFT232Error, 174
DeviceHIDError, 182
DeviceNetworkError, 177
DeviceRecordedError, 185
DeviceSerialError, 171
DeviceService (class in pylablib.core.utils.rpyc_utils),

432
DeviceUSBError, 179
DeviceVisaError, 168
devversion (pylablib.devices.Basler.pylon.TCameraInfo

attribute), 557
devversion (pylablib.devices.Basler.pylon.TDeviceInfo

attribute), 559
dict_to_object_local() (in module py-

lablib.core.utils.dictionary), 397
DictEntryBuilder (class in py-

lablib.core.fileio.dict_entry), 199
DictEntryParser (class in py-

lablib.core.fileio.dict_entry), 199
Dictionary (class in pylablib.core.utils.dictionary), 362
DictionaryDiff (class in py-

lablib.core.utils.dictionary), 370
DictionaryInputFileFormat (class in py-

lablib.core.fileio.loadfile), 207
DictionaryIntersection (class in py-

lablib.core.utils.dictionary), 371
DictionaryNode (class in py-

lablib.core.utils.dictionary), 397
DictionaryOutputFileFormat (class in py-

lablib.core.fileio.savefile), 222
DictionaryPointer (class in py-

lablib.core.utils.dictionary), 371
diff() (pylablib.core.utils.dictionary.Dictionary

method), 369
diff() (pylablib.core.utils.dictionary.DictionaryPointer

method), 374
diff() (pylablib.core.utils.dictionary.FilterTree

method), 390
diff() (pylablib.core.utils.dictionary.PrefixTree

method), 382

1038 Index

pylablib Documentation, Release 1.4.2

diff_flatdict() (py-
lablib.core.utils.dictionary.Dictionary static
method), 369

diff_flatdict() (py-
lablib.core.utils.dictionary.DictionaryPointer
static method), 374

diff_flatdict() (py-
lablib.core.utils.dictionary.FilterTree static
method), 390

diff_flatdict() (py-
lablib.core.utils.dictionary.PrefixTree static
method), 382

differentiate() (in module py-
lablib.core.dataproc.filters), 134

diode (pylablib.devices.Toptica.ibeam.TTemperatures at-
tribute), 941

dir_empty() (in module pylablib.core.utils.files), 401
disable_axis() (pylablib.devices.Attocube.anc300.ANC300

method), 549
disable_axis() (pylablib.devices.Attocube.anc350.ANC350

method), 553
disable_callback() (py-

lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper
method), 688

disconnect_wavemeter() (py-
lablib.devices.M2.solstis.Solstis method),
679

display_name (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

display_name (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

display_units (pylablib.devices.Leybold.base.TUpdateValue
attribute), 664

disps (pylablib.devices.Voltcraft.multimeter.TVC880Reading
attribute), 953

dll_version (pylablib.devices.SmarAct.scu3d.TDeviceInfo
attribute), 850

dll_version (pylablib.devices.uc480.uc480.TDeviceInfo
attribute), 989

dnode (pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram
attribute), 605

doc_inherit() (in module pylablib.core.utils.general),
414

docstring() (pylablib.core.devio.interface.CombinedParameterClass
method), 198

docstring() (pylablib.core.devio.interface.EnumParameterClass
method), 197

docstring() (pylablib.core.devio.interface.FunctionParameterClass
method), 197

docstring() (pylablib.core.devio.interface.ICheckingParameterClass
method), 194

docstring() (pylablib.core.devio.interface.IEnumParameterClass
method), 196

docstring() (pylablib.core.devio.interface.IParameterClass

method), 193
docstring() (pylablib.core.devio.interface.RangeParameterClass

method), 194
done_notify() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 316
done_notify() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
done_notify() (pylablib.core.thread.notifier.ISkippableNotifier

method), 352
done_notify() (pylablib.core.thread.synchronizing.QThreadNotifier

method), 353
done_wait() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 316
done_wait() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
done_wait() (pylablib.core.thread.notifier.ISkippableNotifier

method), 352
done_wait() (pylablib.core.thread.synchronizing.QThreadNotifier

method), 353
DP1116A (class in pylablib.devices.Rigol.power_supply),

810
DPG202 (class in pylablib.devices.Pfeiffer.base), 742
DPO2000 (class in pylablib.devices.Tektronix.base), 871
driver (pylablib.devices.Standa.base.TEngineType at-

tribute), 852
DummyResource (class in pylablib.core.utils.general),

412
dump() (in module pylablib.core.utils.strdump), 434
dump() (pylablib.core.utils.strdump.StrDumper method),

433
dumper (in module pylablib.core.utils.strdump), 434
dumps() (in module pylablib.core.utils.strdump), 434
dumps() (pylablib.core.utils.strdump.StrDumper

method), 434
DuplicateControllerThreadError, 354

E
ElektroAutomatikBackendError, 604
ElektroAutomatikError, 603
ElliptecMotor (class in py-

lablib.devices.Thorlabs.elliptec), 888
ElliptecMotor.CommData (class in py-

lablib.devices.Thorlabs.elliptec), 889
emission (pylablib.devices.Leybold.base.TITR90Status

attribute), 665
EMM (class in pylablib.devices.M2.emm), 676
empty_object_property() (in module py-

lablib.core.utils.functions), 410
enable (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings

attribute), 655
enable() (pylablib.devices.LaserQuantum.base.Finesse

method), 662
enable() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 669

Index 1039

pylablib Documentation, Release 1.4.2

enable() (pylablib.devices.Pfeiffer.base.TPG260
method), 740

enable() (pylablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

enable_absolute_mode() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

enable_absolute_mode() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 535

enable_absolute_mode() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 542

enable_autorange() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

enable_autorange() (py-
lablib.devices.Thorlabs.misc.PM160 method),
923

enable_autorange() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 949

enable_autorange() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 953

enable_axis() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 539

enable_axis() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

enable_axis() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 542

enable_axis() (pylablib.devices.Attocube.anc300.ANC300
method), 549

enable_axis() (pylablib.devices.Attocube.anc350.ANC350
method), 553

enable_burst() (pylablib.devices.AWG.generic.GenericAWG
method), 443

enable_burst() (pylablib.devices.AWG.specific.Agilent33220A
method), 453

enable_burst() (pylablib.devices.AWG.specific.Agilent33500
method), 447

enable_burst() (pylablib.devices.AWG.specific.InstekAFG2000
method), 465

enable_burst() (pylablib.devices.AWG.specific.InstekAFG2225
method), 459

enable_burst() (pylablib.devices.AWG.specific.RigolDG1000
method), 484

enable_burst() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 472

enable_burst() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 478

enable_callback() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper
method), 688

enable_CFR() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

enable_CFR() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

enable_CFR() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

enable_CFR() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

enable_channel() (py-
lablib.devices.Tektronix.base.DPO2000
method), 871

enable_channel() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

enable_channel() (py-
lablib.devices.Tektronix.base.TDS2000
method), 864

enable_channel() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

enable_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

enable_cooling() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

enable_drift_compensation() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

enable_frame_transfer_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

enable_led() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

enable_limit_errors() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

enable_limit_errors() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 535

enable_metadata() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

enable_metadata() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

enable_metadata() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

enable_nir_boost() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

enable_ocp() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

1040 Index

pylablib Documentation, Release 1.4.2

enable_online() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

enable_online() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 795

enable_online() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

enable_output() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

enable_output() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 453

enable_output() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

enable_output() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 465

enable_output() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

enable_output() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

enable_output() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

enable_output() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

enable_output() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

enable_output() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 810

enable_ovp() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

enable_pixel_correction() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

enable_raw_readout() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

enable_raw_readout() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

enable_raw_readout() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

enable_remote() (py-

lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

enable_servo() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 795

enable_servo() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

enable_status_line() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

enable_status_line() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

enable_status_line() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

enable_status_line() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

enable_status_line() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

enable_status_line() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

enable_switcher_channel() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

enable_sync_output() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

enable_sync_output() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 453

enable_sync_output() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

enable_sync_output() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 465

enable_sync_output() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

enable_sync_output() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

enable_sync_output() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

enable_sync_output() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

enable_terascan_updates() (py-
lablib.devices.M2.emm.EMM method), 677

enable_terascan_updates() (py-

Index 1041

pylablib Documentation, Release 1.4.2

lablib.devices.M2.solstis.Solstis method),
682

enable_trigger_output() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

enable_trigger_output() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 453

enable_trigger_output() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

enable_trigger_output() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

enable_trigger_output() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

enable_trigger_output() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

enable_trigger_output() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

enable_trigger_output() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

enable_updates() (py-
lablib.devices.Attocube.anc350.ANC350
method), 552

enable_velocity_control() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

enabled (pylablib.devices.ElektroAutomatik.base.TStatus
attribute), 604

enabled (pylablib.devices.Keithley.multimeter.TAveragingParameters
attribute), 644

enabled (pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings
attribute), 650

enabled (pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings
attribute), 656

encoder (pylablib.devices.Standa.base.TFullState
attribute), 853

engine (pylablib.devices.Standa.base.TEngineType at-
tribute), 852

ensure_dir() (in module pylablib.core.utils.files), 400
ensure_dir_singlelevel() (in module py-

lablib.core.utils.files), 400
EnumLabel (class in pylablib.core.gui.widgets.label), 268
EnumParameterClass (class in py-

lablib.core.devio.interface), 196
eof() (in module pylablib.core.utils.files), 398
EPC04 (class in pylablib.devices.OZOptics.base), 722
errno (pylablib.core.thread.threadprop.TimeoutThreadError

attribute), 355

errno (pylablib.core.utils.net.SocketError attribute), 425
errno (pylablib.core.utils.net.SocketTimeout attribute),

425
Error (pylablib.core.devio.comm_backend.FT232DeviceBackend

attribute), 174
Error (pylablib.core.devio.comm_backend.HIDeviceBackend

attribute), 183
Error (pylablib.core.devio.comm_backend.IDeviceCommBackend

attribute), 167
Error (pylablib.core.devio.comm_backend.NetworkDeviceBackend

attribute), 177
Error (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

attribute), 180
Error (pylablib.core.devio.comm_backend.RecordedDeviceBackend

attribute), 185
Error (pylablib.core.devio.comm_backend.SerialDeviceBackend

attribute), 172
Error (pylablib.core.devio.comm_backend.VisaDeviceBackend

attribute), 169
Error (pylablib.core.devio.SCPI.SCPIDevice attribute),

162
Error (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

attribute), 496
Error (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

attribute), 490
Error (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

attribute), 506
Error (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

attribute), 519
Error (pylablib.devices.Arcus.performax.GenericPerformaxStage

attribute), 533
Error (pylablib.devices.Arcus.performax.Performax2EXStage

attribute), 538
Error (pylablib.devices.Arcus.performax.Performax4EXStage

attribute), 537
Error (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

attribute), 544
Error (pylablib.devices.Arduino.base.IArduinoDevice

attribute), 546
Error (pylablib.devices.Attocube.anc300.ANC300

attribute), 548
Error (pylablib.devices.Attocube.anc350.ANC350

attribute), 552
Error (pylablib.devices.AWG.generic.GenericAWG at-

tribute), 440
Error (pylablib.devices.AWG.specific.Agilent33220A at-

tribute), 453
Error (pylablib.devices.AWG.specific.Agilent33500 at-

tribute), 447
Error (pylablib.devices.AWG.specific.InstekAFG2000 at-

tribute), 465
Error (pylablib.devices.AWG.specific.InstekAFG2225 at-

tribute), 459
Error (pylablib.devices.AWG.specific.RigolDG1000 at-

1042 Index

pylablib Documentation, Release 1.4.2

tribute), 484
Error (pylablib.devices.AWG.specific.RSInstekAFG21000

attribute), 471
Error (pylablib.devices.AWG.specific.TektronixAFG1000

attribute), 478
Error (pylablib.devices.Basler.pylon.BaslerPylonCamera

attribute), 560
Error (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

attribute), 573
Error (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

attribute), 567
Error (pylablib.devices.Conrad.base.RelayBoard at-

tribute), 579
Error (pylablib.devices.Cryocon.base.Cryocon1x

attribute), 582
Error (pylablib.devices.Cryomagnetics.base.LM500 at-

tribute), 586
Error (pylablib.devices.Cryomagnetics.base.LM510 at-

tribute), 590
Error (pylablib.devices.DCAM.DCAM.DCAMCamera

attribute), 597
Error (pylablib.devices.ElektroAutomatik.base.PS2000B

attribute), 605
Error (pylablib.devices.HighFinesse.wlm.WLM at-

tribute), 608
Error (pylablib.devices.IMAQ.IMAQ.IMAQCamera at-

tribute), 619
Error (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

attribute), 612
Error (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

attribute), 636
Error (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

attribute), 629
Error (pylablib.devices.interface.camera.IAttributeCamera

attribute), 962
Error (pylablib.devices.interface.camera.IBinROICamera

attribute), 981
Error (pylablib.devices.interface.camera.ICamera

attribute), 955
Error (pylablib.devices.interface.camera.IExposureCamera

attribute), 972
Error (pylablib.devices.interface.camera.IGrabberAttributeCamera

attribute), 967
Error (pylablib.devices.interface.camera.IROICamera

attribute), 976
Error (pylablib.devices.Keithley.multimeter.Keithley2110

attribute), 645
Error (pylablib.devices.KJL.base.KJL300 attribute), 642
Error (pylablib.devices.Lakeshore.base.Lakeshore218

attribute), 651
Error (pylablib.devices.Lakeshore.base.Lakeshore370

attribute), 656
Error (pylablib.devices.LaserQuantum.base.Finesse at-

tribute), 661

Error (pylablib.devices.Leybold.base.GenericITR
attribute), 664

Error (pylablib.devices.Leybold.base.ITR90 attribute),
666

error (pylablib.devices.Leybold.base.TUpdateValue at-
tribute), 664

Error (pylablib.devices.LighthousePhotonics.base.SproutG
attribute), 668

Error (pylablib.devices.Lumel.base.LumelRE72Controller
attribute), 671

Error (pylablib.devices.M2.base.ICEBlocDevice at-
tribute), 674

Error (pylablib.devices.M2.emm.EMM attribute), 677
Error (pylablib.devices.M2.solstis.Solstis attribute), 684
Error (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

attribute), 687
Error (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

attribute), 693
Error (pylablib.devices.Newport.picomotor.Picomotor8742

attribute), 714
Error (pylablib.devices.NI.daq.NIDAQ attribute), 697
Error (pylablib.devices.NKT.interbus.GenericInterbusDevice

attribute), 704
Error (pylablib.devices.NKT.interbus.InterbusSystem at-

tribute), 711
Error (pylablib.devices.Ophir.base.OphirDevice at-

tribute), 725
Error (pylablib.devices.Ophir.base.VegaPowerMeter at-

tribute), 728
Error (pylablib.devices.OZOptics.base.DD100 at-

tribute), 721
Error (pylablib.devices.OZOptics.base.EPC04 at-

tribute), 722
Error (pylablib.devices.OZOptics.base.OZOpticsDevice

attribute), 718
Error (pylablib.devices.OZOptics.base.TF100 attribute),

720
Error (pylablib.devices.PCO.SC2.PCOSC2Camera at-

tribute), 731
Error (pylablib.devices.Pfeiffer.base.DPG202 attribute),

742
Error (pylablib.devices.Pfeiffer.base.TPG260 attribute),

740
Error (pylablib.devices.Photometrics.pvcam.PvcamCamera

attribute), 747
Error (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

attribute), 757
Error (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

attribute), 781
Error (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

attribute), 764
Error (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

attribute), 773
Error (pylablib.devices.PhysikInstrumente.base.GenericPIController

Index 1043

pylablib Documentation, Release 1.4.2

attribute), 790
Error (pylablib.devices.PhysikInstrumente.base.PIE515

attribute), 795
Error (pylablib.devices.PhysikInstrumente.base.PIE516

attribute), 793
Error (pylablib.devices.PrincetonInstruments.picam.PicamCamera

attribute), 804
Error (pylablib.devices.Rigol.power_supply.DP1116A

attribute), 810
Error (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

attribute), 824
Error (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

attribute), 817
Error (pylablib.devices.Sirah.Matisse.SirahMatisse at-

tribute), 832
Error (pylablib.devices.SmarAct.MCS2.MCS2 attribute),

845
Error (pylablib.devices.SmarAct.scu3d.SCU3D at-

tribute), 850
Error (pylablib.devices.Standa.base.Standa8SMC

attribute), 854
Error (pylablib.devices.Tektronix.base.DPO2000 at-

tribute), 871
Error (pylablib.devices.Tektronix.base.ITektronixScope

attribute), 857
Error (pylablib.devices.Tektronix.base.TDS2000 at-

tribute), 864
Error (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

attribute), 888
Error (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

attribute), 892
Error (pylablib.devices.Thorlabs.kinesis.KinesisDevice

attribute), 897
Error (pylablib.devices.Thorlabs.kinesis.KinesisMotor

attribute), 907
Error (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

attribute), 911
Error (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

attribute), 915
Error (pylablib.devices.Thorlabs.kinesis.MFF attribute),

900
Error (pylablib.devices.Thorlabs.misc.GenericPM

attribute), 918
Error (pylablib.devices.Thorlabs.misc.PM160 attribute),

922
Error (pylablib.devices.Thorlabs.serial.FW attribute),

930
Error (pylablib.devices.Thorlabs.serial.FWv1 attribute),

934
Error (pylablib.devices.Thorlabs.serial.MDT69xA

attribute), 937
Error (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

attribute), 927
Error (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

attribute), 879
Error (pylablib.devices.Toptica.ibeam.TopticaIBeam at-

tribute), 941
Error (pylablib.devices.Trinamic.base.TMCM1110 at-

tribute), 944
Error (pylablib.devices.uc480.uc480.UC480Camera at-

tribute), 990
Error (pylablib.devices.Voltcraft.multimeter.VC7055 at-

tribute), 949
Error (pylablib.devices.Voltcraft.multimeter.VC880 at-

tribute), 953
errors (pylablib.devices.PCO.SC2.TCameraStatus at-

tribute), 730
escape_string() (in module pylablib.core.utils.string),

435
EthernetIMAQdxCamera (class in py-

lablib.devices.IMAQdx.IMAQdx), 635
EthernetIMAQdxCamera.CallbackManager (class in

pylablib.devices.IMAQdx.IMAQdx), 635
exc_mode (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings

attribute), 655
exc_range (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings

attribute), 655
execute() (pylablib.core.thread.callsync.QScheduledCall

method), 318
exhaust_messages() (py-

lablib.devices.Voltcraft.multimeter.VC880
method), 953

exint() (in module pylablib.core.thread.controller), 326
exists (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 801
exp_decay_k() (in module py-

lablib.core.dataproc.specfunc), 147
expand_relative_path() (in module py-

lablib.core.utils.module), 423
ExpandedContainerDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 206
export_clock() (pylablib.devices.NI.daq.NIDAQ

method), 697
exposure (pylablib.devices.Andor.AndorSDK2.TCycleTimings

attribute), 506
exposure (pylablib.devices.interface.camera.TAcqTimings

attribute), 971
exposure_ns (pylablib.devices.Photometrics.pvcam.TFrameInfo

attribute), 747
exsafe() (in module pylablib.core.thread.controller),

327
exsafeSlot() (in module py-

lablib.core.thread.controller), 327
ExternalBinTableDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 203
ExternalNumpyDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 205
ExternalTextTableDictionaryEntry (class in py-

1044 Index

pylablib Documentation, Release 1.4.2

lablib.core.fileio.dict_entry), 202
extract_escaped_string() (in module py-

lablib.core.utils.string), 437
extract_status_line() (in module py-

lablib.devices.interface.camera), 986

F
f (pylablib.core.utils.files.TempFile attribute), 399
fail() (pylablib.core.thread.callsync.QScheduledCall

method), 318
fail() (pylablib.core.thread.synchronizing.QMultiThreadNotifier

method), 354
fail_exec_point() (py-

lablib.core.thread.controller.QTaskThread
method), 343

fail_exec_point() (py-
lablib.core.thread.controller.QThreadController
method), 334

failed() (pylablib.core.thread.callsync.QCallResultSynchronizer
method), 315

failed() (pylablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

fall_speed (pylablib.devices.Sirah.Matisse.TScanParameters
attribute), 832

falling (pylablib.devices.Sirah.Matisse.TScanMode at-
tribute), 832

fast_shift_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

fast_shift_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

fast_shift_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

fast_shift_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

FGrabAttribute (class in py-
lablib.devices.SiliconSoftware.fgrab), 815

file (pylablib.devices.SiliconSoftware.fgrab.TAppletInfo
attribute), 815

file (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

file_format (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
attribute), 205

file_format (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
attribute), 204

filename (pylablib.core.thread.threadprop.TimeoutThreadError
attribute), 355

filename (pylablib.core.utils.net.SocketError attribute),
425

filename (pylablib.core.utils.net.SocketTimeout at-
tribute), 425

filename2 (pylablib.core.thread.threadprop.TimeoutThreadError
attribute), 355

filename2 (pylablib.core.utils.net.SocketError at-
tribute), 425

filename2 (pylablib.core.utils.net.SocketTimeout at-
tribute), 425

files (pylablib.core.utils.files.FolderList attribute), 400
fill_voltage_output_buffer() (py-

lablib.devices.NI.daq.NIDAQ method), 701
filt (pylablib.core.utils.observer_pool.ObserverPool.Observer

attribute), 430
filter_args_dict() (py-

lablib.core.dataproc.callable.FunctionCallable
method), 129

filter_args_dict() (py-
lablib.core.dataproc.callable.ICallable
method), 126

filter_args_dict() (py-
lablib.core.dataproc.callable.JoinedCallable
method), 128

filter_args_dict() (py-
lablib.core.dataproc.callable.MethodCallable
method), 129

filter_args_dict() (py-
lablib.core.dataproc.callable.MultiplexedCallable
method), 127

filter_array_phase (py-
lablib.devices.Thorlabs.TLCamera.TColorInfo
attribute), 879

filter_by() (in module pylablib.core.dataproc.utils),
159

filter_dict() (in module pylablib.core.utils.general),
411

filter_limiter() (in module py-
lablib.core.gui.limiter), 296

filter_self() (pylablib.core.utils.dictionary.Dictionary
method), 369

filter_self() (pylablib.core.utils.dictionary.DictionaryPointer
method), 374

filter_self() (pylablib.core.utils.dictionary.FilterTree
method), 391

filter_self() (pylablib.core.utils.dictionary.PrefixTree
method), 382

filter_string_list() (in module py-
lablib.core.utils.string), 435

FilterTree (class in pylablib.core.utils.dictionary), 388
finalize_task() (py-

lablib.core.thread.controller.QTaskThread
method), 339

finalized (pylablib.core.thread.controller.QThreadControllerThread
attribute), 327

find_all_first_locations() (in module py-
lablib.core.utils.string), 434

find_all_prefixes() (py-

Index 1045

pylablib Documentation, Release 1.4.2

lablib.core.utils.dictionary.PrefixTree method),
380

find_by_serial() (in module py-
lablib.devices.uc480.uc480), 989

find_by_serial() (py-
lablib.devices.uc480.uc480.UC480Camera
static method), 990

find_closest_arg() (in module py-
lablib.core.dataproc.utils), 160

find_closest_value() (in module py-
lablib.core.dataproc.utils), 160

find_columns_lines() (in module py-
lablib.core.fileio.loadfile_utils), 212

find_dict_string() (in module py-
lablib.core.utils.string), 434

find_discrete_step() (in module py-
lablib.core.dataproc.utils), 160

find_first_entry() (in module py-
lablib.core.utils.string), 434

find_intersection() (py-
lablib.core.utils.dictionary.Dictionary static
method), 369

find_intersection() (py-
lablib.core.utils.dictionary.DictionaryPointer
static method), 374

find_intersection() (py-
lablib.core.utils.dictionary.FilterTree static
method), 391

find_intersection() (py-
lablib.core.utils.dictionary.PrefixTree static
method), 383

find_largest_prefix() (py-
lablib.core.utils.dictionary.PrefixTree method),
380

find_layout_element() (in module py-
lablib.core.gui.utils), 296

find_list_string() (in module py-
lablib.core.utils.string), 434

find_local_extrema() (in module py-
lablib.core.dataproc.feature), 132

find_observers() (py-
lablib.core.utils.observer_pool.ObserverPool
method), 431

find_peaks_cutoff() (in module py-
lablib.core.dataproc.feature), 131

find_savetime_comment() (in module py-
lablib.core.fileio.loadfile_utils), 212

find_skipped_frames() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
789

fine_sweep_start() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 843

fine_sweep_stop() (py-

lablib.devices.Sirah.tuner.MatisseTuner
method), 843

fine_tune_to() (pylablib.devices.Sirah.tuner.MatisseTuner
method), 842

fine_tune_to_gen() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 842

fine_tune_wavelength() (py-
lablib.devices.M2.emm.EMM method), 676

fine_tune_wavelength() (py-
lablib.devices.M2.solstis.Solstis method),
680

Finesse (class in pylablib.devices.LaserQuantum.base),
661

finished (pylablib.core.thread.controller.QTaskThread
attribute), 343

finished (pylablib.core.thread.controller.QThreadController
attribute), 328

finishing() (pylablib.core.thread.controller.QTaskThread
method), 343

finishing() (pylablib.core.thread.controller.QThreadController
method), 334

firmware (pylablib.devices.Thorlabs.misc.TPMDeviceInfo
attribute), 918

firmware_version (py-
lablib.devices.Andor.AndorSDK3.TDeviceInfo
attribute), 519

firmware_version (py-
lablib.devices.SmarAct.scu3d.TDeviceInfo
attribute), 850

firmware_version (py-
lablib.devices.Thorlabs.TLCamera.TDeviceInfo
attribute), 878

fit() (pylablib.core.dataproc.fitting.Fitter method), 138
Fitter (class in pylablib.core.dataproc.fitting), 137
fixed_size (pylablib.core.utils.ipc.TShmemVarDesc at-

tribute), 421
flags (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo

attribute), 627
flags (pylablib.devices.Photometrics.pvcam.TFrameInfo

attribute), 747
flags (pylablib.devices.PrincetonInstruments.picam.TROIConstraints

attribute), 800
flags (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo

attribute), 815
flags (pylablib.devices.Standa.base.TFullState at-

tribute), 853
flags (pylablib.devices.Thorlabs.misc.TPMSensorInfo

attribute), 918
flags (pylablib.devices.uc480.uc480.TFrameInfo at-

tribute), 990
flatten_list() (in module pylablib.core.utils.general),

412
flip_byteorder() (py-

1046 Index

pylablib Documentation, Release 1.4.2

lablib.core.devio.data_format.DataFormat
method), 189

flip_fourier_transform() (in module py-
lablib.core.dataproc.fourier), 141

float_to_str_SI() (in module py-
lablib.core.gui.formatter), 294

FloatFormatter (class in pylablib.core.gui.formatter),
294

flush() (pylablib.core.devio.SCPI.SCPIDevice
method), 164

flush() (pylablib.core.utils.general.StreamFileLogger
method), 417

flush() (pylablib.devices.AWG.generic.GenericAWG
method), 444

flush() (pylablib.devices.AWG.specific.Agilent33220A
method), 453

flush() (pylablib.devices.AWG.specific.Agilent33500
method), 447

flush() (pylablib.devices.AWG.specific.InstekAFG2000
method), 466

flush() (pylablib.devices.AWG.specific.InstekAFG2225
method), 460

flush() (pylablib.devices.AWG.specific.RigolDG1000
method), 484

flush() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 472

flush() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 478

flush() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 562

flush() (pylablib.devices.Cryocon.base.Cryocon1x
method), 583

flush() (pylablib.devices.Cryomagnetics.base.LM500
method), 588

flush() (pylablib.devices.Cryomagnetics.base.LM510
method), 591

flush() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 647

flush() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 653

flush() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 657

flush() (pylablib.devices.M2.base.ICEBlocDevice
method), 674

flush() (pylablib.devices.M2.emm.EMM method), 678
flush() (pylablib.devices.M2.solstis.Solstis method),

684
flush() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
flush() (pylablib.devices.Rigol.power_supply.DP1116A

method), 811
flush() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 837
flush() (pylablib.devices.Tektronix.base.DPO2000

method), 871
flush() (pylablib.devices.Tektronix.base.ITektronixScope

method), 861
flush() (pylablib.devices.Tektronix.base.TDS2000

method), 864
flush() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
flush() (pylablib.devices.Thorlabs.misc.PM160

method), 923
flush() (pylablib.devices.Thorlabs.serial.FW method),

931
flush() (pylablib.devices.Thorlabs.serial.FWv1

method), 934
flush() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 937
flush() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 927
flush() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
flush_comm() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 893
flush_comm() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 897
flush_comm() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 908
flush_comm() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 912
flush_comm() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 916
flush_comm() (pylablib.devices.Thorlabs.kinesis.MFF

method), 901
flush_read() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 176
flush_read() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 184
flush_read() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 168
flush_read() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 178
flush_read() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 181
flush_read() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
flush_read() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 173
flush_read() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 170
fmt (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader

attribute), 650
FmtStringFormatter (class in py-

lablib.core.gui.formatter), 295
focal_length (pylablib.devices.Andor.Shamrock.TOpticalParameters

attribute), 527
focal_tilt (pylablib.devices.Andor.Shamrock.TOpticalParameters

Index 1047

pylablib Documentation, Release 1.4.2

attribute), 527
focusInEvent() (pylablib.core.gui.widgets.edit.TextEdit

method), 266
focusOutEvent() (py-

lablib.core.gui.widgets.edit.TextEdit method),
266

FolderFileSystemDataLocation (class in py-
lablib.core.fileio.location), 217

FolderList (class in pylablib.core.utils.files), 400
folders (pylablib.core.utils.files.FolderList attribute),

400
follow() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

method), 130
followed() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
followed() (pylablib.core.dataproc.transform.LinearTransform

method), 157
force_trigger() (py-

lablib.devices.Tektronix.base.DPO2000
method), 871

force_trigger() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

force_trigger() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

fourier_filter() (in module py-
lablib.core.dataproc.filters), 135

fourier_filter_bandpass() (in module py-
lablib.core.dataproc.filters), 136

fourier_filter_bandstop() (in module py-
lablib.core.dataproc.filters), 136

fourier_make_response_real() (in module py-
lablib.core.dataproc.filters), 135

fourier_transform() (in module py-
lablib.core.dataproc.fourier), 141

frame_index (pylablib.devices.Andor.AndorSDK3.TFrameInfo
attribute), 519

frame_index (pylablib.devices.DCAM.DCAM.TFrameInfo
attribute), 597

frame_index (pylablib.devices.interface.camera.TFrameInfo
attribute), 955

frame_index (pylablib.devices.PCO.SC2.TFrameInfo
attribute), 730

frame_index (pylablib.devices.Photometrics.pvcam.TFrameInfo
attribute), 747

frame_index (pylablib.devices.PrincetonInstruments.picam.TFrameInfo
attribute), 803

frame_index (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo
attribute), 817

frame_index (pylablib.devices.Thorlabs.TLCamera.TFrameInfo
attribute), 879

frame_index (pylablib.devices.uc480.uc480.TFrameInfo
attribute), 990

frame_period (pylablib.devices.interface.camera.TAcqTimings
attribute), 971

FrameCounter (class in py-
lablib.devices.interface.camera), 960

FrameNotifier (class in py-
lablib.devices.interface.camera), 961

frames_done (pylablib.devices.Andor.AndorSDK2.TAcqProgress
attribute), 506

frameskip_events (py-
lablib.devices.uc480.uc480.TAcquiredFramesStatus
attribute), 989

framestamp (pylablib.devices.AlliedVision.Bonito.TStatusLine
attribute), 504

framestamp (pylablib.devices.DCAM.DCAM.TFrameInfo
attribute), 597

framestamp (pylablib.devices.PCO.SC2.TStatusLine at-
tribute), 738

framestamp (pylablib.devices.Photometrics.pvcam.TFrameInfo
attribute), 747

framestamp (pylablib.devices.PrincetonInstruments.picam.TFrameInfo
attribute), 803

framestamp (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo
attribute), 817

framestamp (pylablib.devices.Thorlabs.TLCamera.TFrameInfo
attribute), 879

framestamp (pylablib.devices.uc480.uc480.TFrameInfo
attribute), 990

framestamp_checker (py-
lablib.devices.interface.camera.TStatusLineDescription
attribute), 985

FrameTransferError (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
attribute), 496

FrameTransferError (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
attribute), 492

FrameTransferError (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
attribute), 513

FrameTransferError (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
attribute), 519

FrameTransferError (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
attribute), 562

FrameTransferError (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
attribute), 573

FrameTransferError (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
attribute), 569

FrameTransferError (py-
lablib.devices.DCAM.DCAM.DCAMCamera
attribute), 600

1048 Index

pylablib Documentation, Release 1.4.2

FrameTransferError (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
attribute), 619

FrameTransferError (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
attribute), 616

FrameTransferError (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
attribute), 636

FrameTransferError (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
attribute), 631

FrameTransferError (py-
lablib.devices.interface.camera.IAttributeCamera
attribute), 962

FrameTransferError (py-
lablib.devices.interface.camera.IBinROICamera
attribute), 981

FrameTransferError (py-
lablib.devices.interface.camera.ICamera
attribute), 956

FrameTransferError (py-
lablib.devices.interface.camera.IExposureCamera
attribute), 972

FrameTransferError (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
attribute), 967

FrameTransferError (py-
lablib.devices.interface.camera.IROICamera
attribute), 976

FrameTransferError (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
attribute), 689

FrameTransferError (py-
lablib.devices.PCO.SC2.PCOSC2Camera
attribute), 735

FrameTransferError (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
attribute), 751

FrameTransferError (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
attribute), 759

FrameTransferError (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
attribute), 782

FrameTransferError (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
attribute), 764

FrameTransferError (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
attribute), 773

FrameTransferError (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
attribute), 806

FrameTransferError (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
attribute), 824

FrameTransferError (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
attribute), 820

FrameTransferError (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
attribute), 883

FrameTransferError (py-
lablib.devices.uc480.uc480.UC480Camera
attribute), 990

freeP (pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters
attribute), 831

frequency (pylablib.devices.SmarAct.MCS2.TStepMoveParams
attribute), 845

FrequencyReadSirahError, 840
friendly_name (pylablib.devices.Basler.pylon.TCameraInfo

attribute), 557
friendly_name (pylablib.devices.Basler.pylon.TDeviceInfo

attribute), 559
from_args() (pylablib.core.utils.ipc.IIPCChannel class

method), 420
from_args() (pylablib.core.utils.ipc.PipeIPCChannel

class method), 421
from_args() (pylablib.core.utils.ipc.SharedMemIPCChannel

class method), 421
from_args() (pylablib.core.utils.ipc.SharedMemIPCTable

class method), 422
from_array() (pylablib.core.dataproc.table_wrap.Array1DWrapper

static method), 150
from_array() (pylablib.core.dataproc.table_wrap.Array2DWrapper

static method), 154
from_array() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper

static method), 156
from_array() (pylablib.core.dataproc.table_wrap.I1DWrapper

static method), 149
from_array() (pylablib.core.dataproc.table_wrap.I2DWrapper

static method), 152
from_array() (pylablib.core.dataproc.table_wrap.Series1DWrapper

static method), 151
from_centersize() (py-

lablib.core.dataproc.image.ROI class method),
144

from_columns() (pylablib.core.dataproc.table_wrap.Array1DWrapper
class method), 150

from_columns() (pylablib.core.dataproc.table_wrap.Array2DWrapper
class method), 154

from_columns() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
class method), 156

from_columns() (pylablib.core.dataproc.table_wrap.I1DWrapper
class method), 149

from_columns() (pylablib.core.dataproc.table_wrap.I2DWrapper
class method), 152

Index 1049

pylablib Documentation, Release 1.4.2

from_columns() (pylablib.core.dataproc.table_wrap.Series1DWrapper
class method), 151

from_data() (in module pylablib.core.fileio.dict_entry),
200

from_data() (pylablib.core.fileio.dict_entry.DictEntryBuilder
method), 199

from_desc() (pylablib.core.devio.data_format.DataFormat
static method), 189

from_desc_SCPI() (py-
lablib.core.devio.data_format.DataFormat
static method), 189

from_dict() (in module pylablib.core.fileio.dict_entry),
200

from_dict() (pylablib.core.fileio.dict_entry.DictEntryParser
method), 199

from_dict() (pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry
class method), 206

from_dict() (pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry
class method), 204

from_dict() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
class method), 205

from_dict() (pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry
class method), 203

from_dict() (pylablib.core.fileio.dict_entry.IDictionaryEntry
class method), 200

from_dict() (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
class method), 204

from_dict() (pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry
class method), 202

from_dict() (pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry
class method), 202

from_dict() (pylablib.core.fileio.dict_entry.ITableDictionaryEntry
class method), 201

from_function() (py-
lablib.core.utils.functions.FunctionSignature
static method), 407

from_json() (pylablib.core.utils.dictionary.Dictionary
class method), 368

from_json() (pylablib.core.utils.dictionary.DictionaryPointer
class method), 374

from_json() (pylablib.core.utils.dictionary.FilterTree
class method), 391

from_json() (pylablib.core.utils.dictionary.PrefixTree
class method), 383

from_matr_shift() (py-
lablib.core.dataproc.ctransform_fallback.CLinear2DTransform
class method), 130

from_object() (pylablib.core.fileio.location.LocationName
static method), 213

from_Pa() (pylablib.devices.Pfeiffer.base.TPG260
method), 740

from_row_string() (in module py-
lablib.core.utils.string), 438

from_string() (in module pylablib.core.utils.string),

437
from_string() (pylablib.core.fileio.location.LocationName

static method), 213
from_string_partial() (in module py-

lablib.core.utils.string), 438
FT232DeviceBackend (class in py-

lablib.core.devio.comm_backend), 174
full_exit() (in module pylablib.core.utils.general),

414
full_name (pylablib.core.utils.files.TempFile attribute),

399
full_name (pylablib.devices.SiliconSoftware.fgrab.TBoardInfo

attribute), 814
fullsplit() (in module pylablib.core.utils.files), 398
func (pylablib.core.thread.callsync.QScheduledCall.Callback

attribute), 318
func (pylablib.devices.Voltcraft.multimeter.TVC880Reading

attribute), 953
funcsig() (in module pylablib.core.utils.functions), 408
function (pylablib.devices.Keithley.multimeter.TConfigurationParameters

attribute), 644
function (pylablib.devices.Modbus.modbus.TModbusFrame

attribute), 693
FunctionCallable (class in py-

lablib.core.dataproc.callable), 128
FunctionCallable.NamesBoundCall (class in py-

lablib.core.dataproc.callable), 128
FunctionParameterClass (class in py-

lablib.core.devio.interface), 197
FunctionSignature (class in py-

lablib.core.utils.functions), 406
FW (class in pylablib.devices.Thorlabs.serial), 930
fw_freq (pylablib.devices.Thorlabs.elliptec.TMotorInfo

attribute), 888
fw_ver (pylablib.devices.Thorlabs.elliptec.TDeviceInfo

attribute), 887
fw_ver (pylablib.devices.Thorlabs.kinesis.TDeviceInfo

attribute), 891
FWv1 (class in pylablib.devices.Thorlabs.serial), 933

G
gain_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo

attribute), 747
gain_name (pylablib.devices.Photometrics.pvcam.TReadoutInfo

attribute), 747
gaussian_filter() (in module py-

lablib.core.dataproc.filters), 133
gaussian_filter_nd() (in module py-

lablib.core.dataproc.filters), 133
gaussian_k() (in module py-

lablib.core.dataproc.specfunc), 147
gcd() (in module pylablib.core.utils.numerical), 429
gcd_approx() (in module py-

lablib.core.utils.numerical), 429

1050 Index

pylablib Documentation, Release 1.4.2

gen_hamming_w() (in module py-
lablib.core.dataproc.specfunc), 147

gen_hamming_w_ft() (in module py-
lablib.core.dataproc.specfunc), 148

generate_indexed_filename() (in module py-
lablib.core.utils.files), 398

generate_new_name() (py-
lablib.core.fileio.location.FolderFileSystemDataLocation
method), 218

generate_new_name() (py-
lablib.core.fileio.location.IDataLocation
method), 214

generate_new_name() (py-
lablib.core.fileio.location.IFileSystemDataLocation
method), 215

generate_new_name() (py-
lablib.core.fileio.location.OpenedFileLocation
method), 215

generate_new_name() (py-
lablib.core.fileio.location.PrefixedFileSystemDataLocation
method), 217

generate_new_name() (py-
lablib.core.fileio.location.SingleFileSystemDataLocation
method), 216

generate_prefixed_filename() (in module py-
lablib.core.utils.files), 398

generate_temp_filename() (in module py-
lablib.core.utils.files), 398

GenericAWG (class in pylablib.devices.AWG.generic),
440

GenericAWGBackendError, 440
GenericAWGError, 440
GenericInterbusDevice (class in py-

lablib.devices.NKT.interbus), 704
GenericInterbusModule (class in py-

lablib.devices.NKT.interbus), 706
GenericITR (class in pylablib.devices.Leybold.base),

664
GenericKeithleyBackendError, 644
GenericKeithleyError, 643
GenericModbusRTUDevice (class in py-

lablib.devices.Modbus.modbus), 693
GenericPerformaxStage (class in py-

lablib.devices.Arcus.performax), 533
GenericPIController (class in py-

lablib.devices.PhysikInstrumente.base), 790
GenericPM (class in pylablib.devices.Thorlabs.misc),

918
GenericRigolBackendError, 810
GenericRigolError, 809
GenericSirahBackendError, 840
GenericSirahError, 840
GenericVoltcraftBackendError, 948
GenericVoltcraftError, 948

get() (pylablib.core.dataproc.filters.RunningDebounceFilter
method), 136

get() (pylablib.core.dataproc.filters.RunningDecimationFilter
method), 136

get() (pylablib.core.fileio.datafile.DataFile method),
199

get() (pylablib.core.utils.dictionary.Dictionary
method), 364

get() (pylablib.core.utils.dictionary.DictionaryPointer
method), 374

get() (pylablib.core.utils.dictionary.FilterTree method),
391

get() (pylablib.core.utils.dictionary.ItemAccessor
method), 397

get() (pylablib.core.utils.dictionary.PrefixTree method),
383

get() (pylablib.core.utils.functions.AttrObjectProperty
method), 410

get() (pylablib.core.utils.functions.IObjectProperty
method), 409

get() (pylablib.core.utils.functions.MethodObjectProperty
method), 409

get_acceleration_factor() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

get_accessory_state() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_accum_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_acquired_frame_status() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_acquisition_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_acquisition_parameters() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_acquisition_parameters() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_acquisition_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_acquisition_parameters() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_acquisition_parameters() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_acquisition_parameters() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera

Index 1051

pylablib Documentation, Release 1.4.2

method), 573
get_acquisition_parameters() (py-

lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

get_acquisition_parameters() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_acquisition_parameters() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

get_acquisition_parameters() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_acquisition_parameters() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_acquisition_parameters() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

get_acquisition_parameters() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

get_acquisition_parameters() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_acquisition_parameters() (py-
lablib.devices.interface.camera.ICamera
method), 956

get_acquisition_parameters() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_acquisition_parameters() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

get_acquisition_parameters() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_acquisition_parameters() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_acquisition_parameters() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_acquisition_parameters() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_acquisition_parameters() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_acquisition_parameters() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

get_acquisition_parameters() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 765
get_acquisition_parameters() (py-

lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_acquisition_parameters() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_acquisition_parameters() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_acquisition_parameters() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_acquisition_parameters() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

get_acquisition_parameters() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_acquisition_progress() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

get_active_channel() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_addr() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 715

get_addr_map() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 715

get_all_amp_modes() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_all_attribute_values() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

get_all_attribute_values() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

get_all_attribute_values() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_all_attribute_values() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_all_attribute_values() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

get_all_attribute_values() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

get_all_attribute_values() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_all_attribute_values() (py-

1052 Index

pylablib Documentation, Release 1.4.2

lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

get_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

get_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

get_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_all_attribute_values() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

get_all_attributes() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_all_attributes() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_all_attributes() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_all_attributes() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_all_attributes() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

get_all_attributes() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

get_all_attributes() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_all_attributes() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_all_attributes() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 782

get_all_attributes() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

get_all_attributes() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_all_attributes() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_all_axes() (pylablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

get_all_axes() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_all_axes() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_all_axes() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_all_axes() (pylablib.devices.Attocube.anc300.ANC300
method), 551

get_all_axes() (pylablib.devices.Attocube.anc350.ANC350
method), 555

get_all_axes() (pylablib.devices.interface.stage.IMultiaxisStage
method), 987

get_all_axes() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 716

get_all_axes() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

get_all_axes() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 797

get_all_axes() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_all_axes() (pylablib.devices.SmarAct.MCS2.MCS2
method), 848

get_all_axes() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 851

get_all_axes() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_all_axes() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_all_axes() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_all_axes() (pylablib.devices.Thorlabs.kinesis.MFF
method), 901

get_all_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

get_all_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_all_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_all_channels() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_all_color_modes() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_all_grabber_attribute_values() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_all_grabber_attribute_values() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

get_all_grabber_attribute_values() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 612

Index 1053

pylablib Documentation, Release 1.4.2

get_all_grabber_attribute_values() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

get_all_grabber_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

get_all_grabber_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_all_grabber_attribute_values() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_all_grabber_attribute_values() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_all_grabber_attributes() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 966

get_all_grabber_attributes() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_all_grabber_attributes() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_all_grabber_attributes() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_all_handles() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 561

get_all_indicators() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

get_all_indicators() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

get_all_indicators() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

get_all_indicators() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

get_all_indicators() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_all_indicators() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 245

get_all_indicators() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_all_indicators() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 261

get_all_indicators() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_all_indicators() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

get_all_indicators() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 241

get_all_indicators() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

get_all_indicators() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_all_layout_containers() (in module py-
lablib.core.gui.utils), 296

get_all_local_addr() (in module py-
lablib.core.utils.net), 426

get_all_module_registers() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

get_all_properties() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
845

get_all_readout_modes() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_all_readout_speeds() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_all_registers() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_all_registers() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

get_all_registers() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_all_registers() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 708

get_all_registers() (py-
lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 709

get_all_registers() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 710

get_all_relays() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

get_all_remote_addr() (in module py-
lablib.core.utils.net), 426

1054 Index

pylablib Documentation, Release 1.4.2

get_all_sensor_kinds() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_all_sensor_readings() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_all_sensor_readings() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_all_temperatures() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_all_temperatures() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_all_trigger_modes() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_all_values() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

get_all_values() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

get_all_values() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

get_all_values() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

get_all_values() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_all_values() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_all_values() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_all_values() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_all_values() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_all_values() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

get_all_values() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 241

get_all_values() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

get_all_values() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_all_vsspeeds() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_amp_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_amplitude() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

get_amplitude() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 453

get_amplitude() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

get_amplitude() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_amplitude() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 459

get_amplitude() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

get_amplitude() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 471

get_amplitude() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

get_analog_input() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_analog_input() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_analog_output() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_analog_output() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

get_analog_output_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_analog_output_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_app() (in module pylablib.core.thread.threadprop),
356

get_appdata_folder() (in module py-
lablib.devices.utils.load_lib), 997

Index 1055

pylablib Documentation, Release 1.4.2

get_appended() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

get_appended() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 153

get_appended() (pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor
method), 153

get_appended() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 156

get_appended() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor
method), 155

get_appended() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

get_applet_info() (in module py-
lablib.devices.SiliconSoftware.fgrab), 815

get_arg_default() (py-
lablib.core.dataproc.callable.FunctionCallable
method), 128

get_arg_default() (py-
lablib.core.dataproc.callable.ICallable
method), 126

get_arg_default() (py-
lablib.core.dataproc.callable.JoinedCallable
method), 127

get_arg_default() (py-
lablib.core.dataproc.callable.MethodCallable
method), 129

get_arg_default() (py-
lablib.core.dataproc.callable.MultiplexedCallable
method), 127

get_arg_type() (pylablib.core.devio.SCPI.SCPIDevice
static method), 163

get_arg_type() (pylablib.devices.AWG.generic.GenericAWG
static method), 444

get_arg_type() (pylablib.devices.AWG.specific.Agilent33220A
static method), 454

get_arg_type() (pylablib.devices.AWG.specific.Agilent33500
static method), 447

get_arg_type() (pylablib.devices.AWG.specific.InstekAFG2000
static method), 466

get_arg_type() (pylablib.devices.AWG.specific.InstekAFG2225
static method), 460

get_arg_type() (pylablib.devices.AWG.specific.RigolDG1000
static method), 484

get_arg_type() (pylablib.devices.AWG.specific.RSInstekAFG21000
static method), 472

get_arg_type() (pylablib.devices.AWG.specific.TektronixAFG1000
static method), 478

get_arg_type() (pylablib.devices.Cryocon.base.Cryocon1x
static method), 583

get_arg_type() (pylablib.devices.Cryomagnetics.base.LM500
static method), 588

get_arg_type() (pylablib.devices.Cryomagnetics.base.LM510
static method), 591

get_arg_type() (pylablib.devices.Keithley.multimeter.Keithley2110

static method), 647
get_arg_type() (pylablib.devices.Lakeshore.base.Lakeshore218

static method), 653
get_arg_type() (pylablib.devices.Lakeshore.base.Lakeshore370

static method), 657
get_arg_type() (pylablib.devices.PhysikInstrumente.base.PIE515

static method), 797
get_arg_type() (pylablib.devices.Rigol.power_supply.DP1116A

static method), 811
get_arg_type() (pylablib.devices.Sirah.Matisse.SirahMatisse

static method), 837
get_arg_type() (pylablib.devices.Tektronix.base.DPO2000

static method), 871
get_arg_type() (pylablib.devices.Tektronix.base.ITektronixScope

static method), 861
get_arg_type() (pylablib.devices.Tektronix.base.TDS2000

static method), 865
get_arg_type() (pylablib.devices.Thorlabs.misc.GenericPM

static method), 920
get_arg_type() (pylablib.devices.Thorlabs.misc.PM160

static method), 923
get_arg_type() (pylablib.devices.Thorlabs.serial.FW

static method), 931
get_arg_type() (pylablib.devices.Thorlabs.serial.FWv1

static method), 934
get_arg_type() (pylablib.devices.Thorlabs.serial.MDT69xA

static method), 937
get_arg_type() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

static method), 927
get_arg_type() (pylablib.devices.Voltcraft.multimeter.VC7055

static method), 950
get_attenuation() (py-

lablib.devices.OZOptics.base.DD100 method),
721

get_attribute() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

get_attribute() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_attribute() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_attribute() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_attribute() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_attribute() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

get_attribute() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera

1056 Index

pylablib Documentation, Release 1.4.2

method), 751
get_attribute() (py-

lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_attribute() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_attribute() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

get_attribute() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_attribute() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_attribute_range() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_attribute_value() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

get_attribute_value() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

get_attribute_value() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 597

get_attribute_value() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_attribute_value() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

get_attribute_value() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

get_attribute_value() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

get_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 765

get_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_attribute_value() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera

method), 804
get_autocalibration_parameters() (py-

lablib.devices.HighFinesse.wlm.WLM method),
610

get_available_camlink_pixel_formats() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 774

get_available_camlink_pixel_formats() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_available_camlink_pixel_formats() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 819

get_available_pixel_rates() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

get_available_pixel_rates() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_averaging_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

get_axis_correction() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

get_axis_dir() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 850

get_axis_parameter() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

get_axis_parameter() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_axis_parameter() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

get_axis_serial() (py-
lablib.devices.Attocube.anc300.ANC300
method), 548

get_axis_speed() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_axis_speed() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 536

get_axis_speed() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

get_backend_name() (py-
lablib.core.devio.comm_backend.FT232DeviceBackend
class method), 176

get_backend_name() (py-
lablib.core.devio.comm_backend.HIDeviceBackend
class method), 184

Index 1057

pylablib Documentation, Release 1.4.2

get_backend_name() (py-
lablib.core.devio.comm_backend.IDeviceCommBackend
class method), 167

get_backend_name() (py-
lablib.core.devio.comm_backend.NetworkDeviceBackend
class method), 179

get_backend_name() (py-
lablib.core.devio.comm_backend.PyUSBDeviceBackend
class method), 181

get_backend_name() (py-
lablib.core.devio.comm_backend.RecordedDeviceBackend
class method), 186

get_backend_name() (py-
lablib.core.devio.comm_backend.SerialDeviceBackend
class method), 173

get_backend_name() (py-
lablib.core.devio.comm_backend.VisaDeviceBackend
class method), 170

get_baseline_simple() (in module py-
lablib.core.dataproc.feature), 131

get_battery_condition() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 728

get_baudrate() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_baudrate() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

get_baudrate() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

get_baudrate() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 757

get_baudrate() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_baudrate() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_baudrate() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_best_fit() (in module py-
lablib.core.dataproc.fitting), 140

get_binning() (pylablib.devices.uc480.uc480.UC480Camera
method), 993

get_bit_alignment() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

get_black_level() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

get_black_level_offset() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_black_level_offset() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_black_level_offset() (py-

lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_black_level_range() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

get_board_info() (in module py-
lablib.devices.SiliconSoftware.fgrab), 814

get_boards_number() (in module py-
lablib.devices.SiliconSoftware.fgrab), 814

get_buffer() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 561

get_buffer_ptr() (py-
lablib.devices.PCO.SC2.PCOSC2Camera.BufferManager
method), 732

get_buffer_size() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_buffer_size() (pylablib.devices.NI.daq.NIDAQ
method), 699

get_burst_mode() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

get_burst_mode() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_burst_mode() (py-
lablib.devices.AWG.specific.Agilent33500
method), 447

get_burst_mode() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_burst_mode() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_burst_mode() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

get_burst_mode() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_burst_mode() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

get_burst_ncycles() (py-
lablib.devices.AWG.generic.GenericAWG

1058 Index

pylablib Documentation, Release 1.4.2

method), 443
get_burst_ncycles() (py-

lablib.devices.AWG.specific.Agilent33220A
method), 454

get_burst_ncycles() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_burst_ncycles() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_burst_ncycles() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_burst_ncycles() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

get_burst_ncycles() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_burst_ncycles() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

get_calibration() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_calibration_factor() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_callback_ptr() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager
method), 635

get_callback_ptr() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager
method), 630

get_camera_id() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_camera_status() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

get_cameras_number() (in module py-
lablib.devices.Andor.AndorSDK2), 505

get_cameras_number() (in module py-
lablib.devices.Andor.AndorSDK3), 517

get_cameras_number() (in module py-
lablib.devices.Basler.pylon), 557

get_cameras_number() (in module py-
lablib.devices.BitFlow.BitFlow), 567

get_cameras_number() (in module py-
lablib.devices.DCAM.DCAM), 595

get_cameras_number() (in module py-
lablib.devices.IMAQ.IMAQ), 612

get_cameras_number() (in module py-
lablib.devices.IMAQdx.IMAQdx), 627

get_cameras_number() (in module py-
lablib.devices.Mightex.MightexSSeries),
686

get_cameras_number() (in module py-
lablib.devices.PCO.SC2), 730

get_cameras_number() (in module py-
lablib.devices.Photometrics.pvcam), 745

get_cameras_number() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
755

get_cameras_number() (in module py-
lablib.devices.PrincetonInstruments.picam),
800

get_cameras_number() (in module py-
lablib.devices.Thorlabs.TLCamera), 878

get_cameras_number() (in module py-
lablib.devices.uc480.uc480), 988

get_camlink_pixel_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_camlink_pixel_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_camlink_pixel_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 819

get_cap_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 645

get_capabilities() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_capabilities() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

get_capacitance() (py-
lablib.devices.Attocube.anc300.ANC300
method), 549

get_capacitance() (py-
lablib.devices.Attocube.anc350.ANC350
method), 554

get_channel() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_channel() (pylablib.devices.Cryomagnetics.base.LM500
method), 586

get_channel() (pylablib.devices.Cryomagnetics.base.LM510
method), 591

get_channel() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_channel_bitdepth() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_channel_power() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam

Index 1059

pylablib Documentation, Release 1.4.2

method), 942
get_channel_range_settings() (py-

lablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_channel_status() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
740

get_channels() (pylablib.devices.Tektronix.base.DPO2000
method), 872

get_channels() (pylablib.devices.Tektronix.base.ITektronixScope
method), 857

get_channels() (pylablib.devices.Tektronix.base.TDS2000
method), 865

get_channels_number() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

get_channels_number() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_channels_number() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_channels_number() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_channels_number() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_channels_number() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 484

get_channels_number() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_channels_number() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 478

get_channels_number() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_channels_number() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_channels_number() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 857

get_channels_number() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_channels_number() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_child() (pylablib.core.gui.widgets.container.IQContainer
method), 231

get_child() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 237

get_child() (pylablib.core.gui.widgets.container.QContainer
method), 234

get_child() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

get_child() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

get_child() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_child() (pylablib.core.gui.widgets.container.QTabContainer
method), 264

get_child() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 241

get_child() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

get_child() (pylablib.core.gui.widgets.param_table.StatusTable
method), 291

get_cl_move_parameters() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_clear_cycles() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_clear_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_clearing_time() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_clock_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 697

get_clock_period_input_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 698

get_coarse_tuning_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_coarse_wavelength() (py-
lablib.devices.M2.solstis.Solstis method),
681

get_color_format() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

get_color_info() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

get_color_mode() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_column_index() (py-

1060 Index

pylablib Documentation, Release 1.4.2

lablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 154

get_column_index() (py-
lablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 156

get_columns_line() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

get_config() (pylablib.devices.OZOptics.base.DD100
method), 721

get_config() (pylablib.devices.OZOptics.base.OZOpticsDevice
method), 718

get_config() (pylablib.devices.OZOptics.base.TF100
method), 720

get_configuration() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

get_connected_addrs() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 888

get_cont_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_controller() (in module py-
lablib.core.thread.controller), 349

get_conversion_factor() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

get_correlations_ft() (in module py-
lablib.core.dataproc.fourier), 143

get_counter_input_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 698

get_coupling() (pylablib.devices.Tektronix.base.DPO2000
method), 872

get_coupling() (pylablib.devices.Tektronix.base.ITektronixScope
method), 859

get_coupling() (pylablib.devices.Tektronix.base.TDS2000
method), 865

get_ctypes_frames_list() (py-
lablib.devices.interface.camera.ChunkBufferManager
method), 961

get_current() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_current() (pylablib.devices.LaserQuantum.base.Finesse
method), 662

get_current() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

get_current_axis() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 795

get_current_axis_speed() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_current_axis_speed() (py-

lablib.devices.Arcus.performax.Performax4EXStage
method), 536

get_current_channel() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

get_current_channel() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_current_channel() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_current_channel() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_current_channel() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_current_channel() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_current_channel() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_current_channel() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_current_errors() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_current_len() (py-
lablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

get_current_limits() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_current_name() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 263

get_current_parameters() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 946

get_current_setpoint() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_current_setpoint() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

get_current_size() (py-
lablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 323

get_current_speed() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

get_cursor_order() (py-

Index 1061

pylablib Documentation, Release 1.4.2

lablib.core.gui.widgets.edit.NumEdit method),
267

get_curve() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 651

get_curve_header() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

get_cycle_timings() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_data_dimensions() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_data_dimensions() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_data_dimensions() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_data_dimensions() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_data_dimensions() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_data_dimensions() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_data_dimensions() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

get_data_dimensions() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_data_dimensions() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 620

get_data_dimensions() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_data_dimensions() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 636

get_data_dimensions() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_data_dimensions() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_data_dimensions() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_data_dimensions() (py-
lablib.devices.interface.camera.ICamera

method), 957
get_data_dimensions() (py-

lablib.devices.interface.camera.IExposureCamera
method), 972

get_data_dimensions() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

get_data_dimensions() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_data_dimensions() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_data_dimensions() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_data_dimensions() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_data_dimensions() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_data_dimensions() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_data_dimensions() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_data_dimensions() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_data_dimensions() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_data_dimensions() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_data_dimensions() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_data_dimensions() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

get_data_dimensions() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_data_format() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_data_format() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

get_data_format() (py-
lablib.devices.Tektronix.base.TDS2000

1062 Index

pylablib Documentation, Release 1.4.2

method), 865
get_data_pts_range() (py-

lablib.devices.Tektronix.base.DPO2000
method), 872

get_data_pts_range() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

get_data_pts_range() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_default_addr() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 888

get_default_axis() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_default_channel() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_defaults_list() (py-
lablib.core.utils.functions.FunctionSignature
method), 406

get_defect_correct_mode() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

get_deleted() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 149

get_deleted() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 153

get_deleted() (pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor
method), 153

get_deleted() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 155

get_deleted() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor
method), 155

get_deleted() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

get_description() (pylablib.core.devio.hid.HIDevice
method), 191

get_detector_offset() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_detector_size() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_detector_size() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 490

get_detector_size() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

get_detector_size() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

get_detector_size() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

get_detector_size() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_detector_size() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_detector_size() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

get_detector_size() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_detector_size() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_detector_size() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_detector_size() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

get_detector_size() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_detector_size() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_detector_size() (py-
lablib.devices.interface.camera.ICamera
method), 956

get_detector_size() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_detector_size() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_detector_size() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_detector_size() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

get_detector_size() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

get_detector_size() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

get_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

Index 1063

pylablib Documentation, Release 1.4.2

get_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_detector_size() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

get_detector_size() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_detector_size() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_detector_size() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

get_detector_size() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_device() (pylablib.core.utils.rpyc_utils.DeviceService
method), 432

get_device_class() (py-
lablib.core.utils.rpyc_utils.DeviceService
method), 432

get_device_info() (in module py-
lablib.devices.Basler.pylon), 557

get_device_info() (in module py-
lablib.devices.NI.daq), 696

get_device_info() (in module py-
lablib.devices.SmarAct.scu3d), 850

get_device_info() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_device_info() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 490

get_device_info() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 506

get_device_info() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

get_device_info() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_device_info() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 533

get_device_info() (py-

lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_device_info() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_device_info() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_device_info() (py-
lablib.devices.Attocube.anc300.ANC300
method), 548

get_device_info() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

get_device_info() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_device_info() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_device_info() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 597

get_device_info() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 605

get_device_info() (py-
lablib.devices.HighFinesse.wlm.WLM method),
608

get_device_info() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_device_info() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_device_info() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_device_info() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

get_device_info() (py-
lablib.devices.KJL.base.KJL300 method),
642

get_device_info() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_device_info() (py-
lablib.devices.Leybold.base.GenericITR
method), 664

get_device_info() (py-
lablib.devices.Leybold.base.ITR90 method),
666

get_device_info() (py-

1064 Index

pylablib Documentation, Release 1.4.2

lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_device_info() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 670

get_device_info() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

get_device_info() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 714

get_device_info() (pylablib.devices.NI.daq.NIDAQ
method), 697

get_device_info() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_device_info() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

get_device_info() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_device_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

get_device_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_device_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_device_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_device_info() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

get_device_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_device_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_device_info() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
845

get_device_info() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
850

get_device_info() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

get_device_info() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 893
get_device_info() (py-

lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_device_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_device_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_device_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

get_device_info() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_device_info() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 918

get_device_info() (py-
lablib.devices.Thorlabs.misc.PM160 method),
923

get_device_info() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

get_device_info() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 941

get_device_info() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 990

get_device_name() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
743

get_device_number() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 533

get_device_number() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_device_number() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_device_number() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_device_status() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_device_status_n() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_device_variable() (py-
lablib.core.devio.comm_backend.ICommBackendWrapper

Index 1065

pylablib Documentation, Release 1.4.2

method), 188
get_device_variable() (py-

lablib.core.devio.interface.IDevice method),
193

get_device_variable() (py-
lablib.core.devio.SCPI.SCPIDevice method),
164

get_device_variable() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_device_variable() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_device_variable() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_device_variable() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_device_variable() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 531

get_device_variable() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

get_device_variable() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 539

get_device_variable() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_device_variable() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_device_variable() (py-
lablib.devices.Arduino.base.IArduinoDevice
method), 547

get_device_variable() (py-
lablib.devices.Attocube.anc300.ANC300
method), 551

get_device_variable() (py-
lablib.devices.Attocube.anc350.ANC350
method), 555

get_device_variable() (py-
lablib.devices.AWG.generic.GenericAWG
method), 444

get_device_variable() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_device_variable() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_device_variable() (py-
lablib.devices.AWG.specific.InstekAFG2000

method), 466
get_device_variable() (py-

lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_device_variable() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_device_variable() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_device_variable() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_device_variable() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_device_variable() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_device_variable() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_device_variable() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

get_device_variable() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 583

get_device_variable() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 588

get_device_variable() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

get_device_variable() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_device_variable() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_device_variable() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

get_device_variable() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_device_variable() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_device_variable() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_device_variable() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

1066 Index

pylablib Documentation, Release 1.4.2

method), 632
get_device_variable() (py-

lablib.devices.interface.camera.IAttributeCamera
method), 963

get_device_variable() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_device_variable() (py-
lablib.devices.interface.camera.ICamera
method), 959

get_device_variable() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_device_variable() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_device_variable() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_device_variable() (py-
lablib.devices.interface.stage.IMultiaxisStage
method), 987

get_device_variable() (py-
lablib.devices.interface.stage.IStage method),
986

get_device_variable() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 647

get_device_variable() (py-
lablib.devices.KJL.base.KJL300 method),
643

get_device_variable() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 653

get_device_variable() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

get_device_variable() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

get_device_variable() (py-
lablib.devices.Leybold.base.GenericITR
method), 665

get_device_variable() (py-
lablib.devices.Leybold.base.ITR90 method),
666

get_device_variable() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

get_device_variable() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_device_variable() (py-
lablib.devices.M2.base.ICEBlocDevice

method), 675
get_device_variable() (py-

lablib.devices.M2.emm.EMM method), 678
get_device_variable() (py-

lablib.devices.M2.solstis.Solstis method),
684

get_device_variable() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_device_variable() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

get_device_variable() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

get_device_variable() (py-
lablib.devices.NI.daq.NIDAQ method), 702

get_device_variable() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

get_device_variable() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_device_variable() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

get_device_variable() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

get_device_variable() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_device_variable() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

get_device_variable() (py-
lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 709

get_device_variable() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 710

get_device_variable() (py-
lablib.devices.Ophir.base.OphirDevice
method), 725

get_device_variable() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 729

get_device_variable() (py-
lablib.devices.OZOptics.base.DD100 method),
721

get_device_variable() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

get_device_variable() (py-

Index 1067

pylablib Documentation, Release 1.4.2

lablib.devices.OZOptics.base.OZOpticsDevice
method), 718

get_device_variable() (py-
lablib.devices.OZOptics.base.TF100 method),
720

get_device_variable() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_device_variable() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
743

get_device_variable() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
742

get_device_variable() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_device_variable() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

get_device_variable() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 797

get_device_variable() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_device_variable() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_device_variable() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 812

get_device_variable() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_device_variable() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_device_variable() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 837

get_device_variable() (py-

lablib.devices.SmarAct.MCS2.MCS2 method),
848

get_device_variable() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
851

get_device_variable() (py-
lablib.devices.Standa.base.Standa8SMC
method), 855

get_device_variable() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_device_variable() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 861

get_device_variable() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_device_variable() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

get_device_variable() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_device_variable() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 920

get_device_variable() (py-
lablib.devices.Thorlabs.misc.PM160 method),
923

get_device_variable() (py-
lablib.devices.Thorlabs.serial.FW method),
931

get_device_variable() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
934

get_device_variable() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 938

get_device_variable() (py-

1068 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 927

get_device_variable() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

get_device_variable() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_device_variable() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

get_device_variable() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_device_variable() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 950

get_device_variable() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 954

get_devices_number() (in module py-
lablib.devices.SmarAct.MCS2), 844

get_devices_number() (in module py-
lablib.devices.SmarAct.scu3d), 850

get_dictionary_line() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

get_digital_gain() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 497

get_digital_gain() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_digital_input() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_digital_input() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_digital_input() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_digital_input_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 698

get_digital_input_register() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_digital_input_register() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_digital_input_register() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_digital_output() (py-

lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_digital_output() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_digital_output() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_digital_output_channels() (py-
lablib.devices.NI.daq.NIDAQ method), 699

get_digital_output_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 700

get_digital_output_register() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_digital_output_register() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_digital_output_register() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_digital_outputs() (py-
lablib.devices.NI.daq.NIDAQ method), 700

get_diode_power() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

get_diode_power_lowlevel() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

get_diode_power_waveform() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

get_display_channel() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
740

get_display_resolution() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
740

get_display_units() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_double_image_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_drive_current() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_drive_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

get_dtype() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat
method), 223

get_duty_cycle() (py-
lablib.devices.AWG.generic.GenericAWG

Index 1069

pylablib Documentation, Release 1.4.2

method), 442
get_duty_cycle() (py-

lablib.devices.AWG.specific.Agilent33220A
method), 454

get_duty_cycle() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_duty_cycle() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_duty_cycle() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_duty_cycle() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_duty_cycle() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_duty_cycle() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_edge_trigger_source() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_edge_trigger_source() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_edge_trigger_source() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_element_position() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 237

get_element_position() (py-
lablib.core.gui.widgets.container.QDialogContainer

method), 250
get_element_position() (py-

lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_element_position() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_element_position() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_element_position() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_element_position() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

get_element_position() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

get_element_position() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

get_element_position() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_EMCCD_gain() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_enabled_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

get_encoder() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_encoder() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

get_encoder() (pylablib.devices.Standa.base.Standa8SMC
method), 854

get_energy() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_engine_type() (py-
lablib.devices.Standa.base.Standa8SMC
method), 854

get_entry() (pylablib.core.utils.dictionary.Dictionary
method), 363

get_entry() (pylablib.core.utils.dictionary.DictionaryPointer
method), 374

get_entry() (pylablib.core.utils.dictionary.FilterTree
method), 391

get_entry() (pylablib.core.utils.dictionary.PrefixTree
method), 383

get_environ_folder() (in module py-
lablib.devices.utils.load_lib), 997

get_error_code() (py-
lablib.devices.Pfeiffer.base.DPG202 method),

1070 Index

pylablib Documentation, Release 1.4.2

743
get_esr() (pylablib.core.devio.SCPI.SCPIDevice

method), 162
get_esr() (pylablib.devices.AWG.generic.GenericAWG

method), 444
get_esr() (pylablib.devices.AWG.specific.Agilent33220A

method), 454
get_esr() (pylablib.devices.AWG.specific.Agilent33500

method), 448
get_esr() (pylablib.devices.AWG.specific.InstekAFG2000

method), 466
get_esr() (pylablib.devices.AWG.specific.InstekAFG2225

method), 460
get_esr() (pylablib.devices.AWG.specific.RigolDG1000

method), 485
get_esr() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 472
get_esr() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 479
get_esr() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
get_esr() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
get_esr() (pylablib.devices.Cryomagnetics.base.LM510

method), 591
get_esr() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
get_esr() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
get_esr() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 657
get_esr() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
get_esr() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
get_esr() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 837
get_esr() (pylablib.devices.Tektronix.base.DPO2000

method), 872
get_esr() (pylablib.devices.Tektronix.base.ITektronixScope

method), 861
get_esr() (pylablib.devices.Tektronix.base.TDS2000

method), 865
get_esr() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
get_esr() (pylablib.devices.Thorlabs.misc.PM160

method), 923
get_esr() (pylablib.devices.Thorlabs.serial.FW

method), 931
get_esr() (pylablib.devices.Thorlabs.serial.FWv1

method), 934
get_esr() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
get_esr() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 927
get_esr() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
get_etalon_lock_status() (py-

lablib.devices.M2.solstis.Solstis method),
681

get_ethernet_parameters() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 715

get_exec_counter() (py-
lablib.core.thread.controller.QTaskThread
method), 343

get_exec_counter() (py-
lablib.core.thread.controller.QThreadController
method), 334

get_executable() (in module py-
lablib.core.utils.module), 423

get_export_clock_terminal() (py-
lablib.devices.NI.daq.NIDAQ method), 697

get_exposure() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_exposure() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

get_exposure() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_exposure() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

get_exposure() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

get_exposure() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_exposure() (pylablib.devices.HighFinesse.wlm.WLM
method), 609

get_exposure() (pylablib.devices.interface.camera.IExposureCamera
method), 971

get_exposure() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

get_exposure() (pylablib.devices.PCO.SC2.PCOSC2Camera
method), 732

get_exposure() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_exposure() (pylablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

get_exposure() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_exposure() (pylablib.devices.uc480.uc480.UC480Camera

Index 1071

pylablib Documentation, Release 1.4.2

method), 993
get_exposure_control_mode() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_exposure_control_mode() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

get_exposure_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_ext() (pylablib.core.fileio.location.LocationName
method), 213

get_ext_trigger_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_ext_trigger_parameters() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_ext_trigger_parameters() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_external_input_modes() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

get_fan_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_fan_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_fast_kinetic_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_fast_scan_status() (py-
lablib.devices.M2.solstis.Solstis method),
683

get_fastpiezo_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_fastpiezo_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_fastpiezo_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_file_creation_time() (in module py-
lablib.core.utils.files), 398

get_file_modification_time() (in module py-
lablib.core.utils.files), 398

get_filesystem_path() (py-
lablib.core.fileio.location.FolderFileSystemDataLocation
method), 217

get_filesystem_path() (py-
lablib.core.fileio.location.IFileSystemDataLocation
method), 215

get_filesystem_path() (py-

lablib.core.fileio.location.PrefixedFileSystemDataLocation
method), 217

get_filesystem_path() (py-
lablib.core.fileio.location.SingleFileSystemDataLocation
method), 216

get_fill_status() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

get_fill_status() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

get_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

get_filter_info() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_filter_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_filter_settings() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

get_fine_tuning_status() (py-
lablib.devices.M2.emm.EMM method), 676

get_fine_tuning_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_fine_wavelength() (py-
lablib.devices.M2.emm.EMM method), 676

get_fine_wavelength() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_first_empty_column() (in module py-
lablib.core.gui.utils), 297

get_first_empty_row() (in module py-
lablib.core.gui.utils), 297

get_flipper_parameters() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
900

get_flipper_port() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_frame() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer
method), 881

get_frame_delay() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

get_frame_format() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_format() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_frame_format() (py-

1072 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frame_format() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_frame_format() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_frame_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_frame_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_frame_format() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_frame_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_frame_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_frame_format() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_frame_format() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_frame_format() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_frame_format() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_frame_format() (py-
lablib.devices.interface.camera.ICamera
method), 957

get_frame_format() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_frame_format() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_frame_format() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_frame_format() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frame_format() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_frame_format() (py-

lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_format() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_frame_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_frame_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_frame_format() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frame_format() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_frame_info_fields() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_info_fields() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_frame_info_fields() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frame_info_fields() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_frame_info_fields() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_frame_info_fields() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_frame_info_fields() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_frame_info_fields() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_frame_info_fields() (py-

Index 1073

pylablib Documentation, Release 1.4.2

lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_frame_info_fields() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_frame_info_fields() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_frame_info_fields() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_frame_info_fields() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_frame_info_fields() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_frame_info_fields() (py-
lablib.devices.interface.camera.ICamera
method), 958

get_frame_info_fields() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_frame_info_fields() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_frame_info_fields() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_frame_info_fields() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frame_info_fields() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_frame_info_fields() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_frame_info_fields() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_frame_info_fields() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_frame_info_fields() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_frame_info_fields() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_info_fields() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_frame_info_fields() (py-

lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 825

get_frame_info_fields() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_frame_info_fields() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frame_info_fields() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_frame_info_format() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_info_format() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

get_frame_info_format() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frame_info_format() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_frame_info_format() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_frame_info_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_frame_info_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_frame_info_format() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_frame_info_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_frame_info_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_frame_info_format() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_frame_info_format() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_frame_info_format() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_frame_info_format() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_frame_info_format() (py-

1074 Index

pylablib Documentation, Release 1.4.2

lablib.devices.interface.camera.ICamera
method), 957

get_frame_info_format() (py-
lablib.devices.interface.camera.IExposureCamera
method), 972

get_frame_info_format() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_frame_info_format() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_frame_info_format() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frame_info_format() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_frame_info_format() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 751

get_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_info_format() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_frame_info_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_frame_info_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

get_frame_info_format() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frame_info_format() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_frame_info_period() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_info_period() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_frame_info_period() (py-

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frame_info_period() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_frame_info_period() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_frame_info_period() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_frame_info_period() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_frame_info_period() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_frame_info_period() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_frame_info_period() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_frame_info_period() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_frame_info_period() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_frame_info_period() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_frame_info_period() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_frame_info_period() (py-
lablib.devices.interface.camera.ICamera
method), 958

get_frame_info_period() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_frame_info_period() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_frame_info_period() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_frame_info_period() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frame_info_period() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_frame_info_period() (py-

Index 1075

pylablib Documentation, Release 1.4.2

lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 783

get_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_info_period() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

get_frame_info_period() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_frame_info_period() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_frame_info_period() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frame_info_period() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_frame_period() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_period() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

get_frame_period() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frame_period() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

get_frame_period() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

get_frame_period() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_frame_period() (py-
lablib.devices.interface.camera.IExposureCamera
method), 971

get_frame_period() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frame_period() (py-

lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

get_frame_period() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 766

get_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_period() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

get_frame_period() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frame_period() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_frame_period_range() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_frame_readout_time() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_frame_timings() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frame_timings() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

get_frame_timings() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_frame_timings() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

get_frame_timings() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

get_frame_timings() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

get_frame_timings() (py-
lablib.devices.interface.camera.IExposureCamera
method), 971

get_frame_timings() (py-

1076 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

get_frame_timings() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

get_frame_timings() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_frame_timings() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_frame_timings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_frame_timings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_frame_timings() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 775

get_frame_timings() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

get_frame_timings() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_frame_timings() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_frames_data() (py-
lablib.devices.interface.camera.ChunkBufferManager
method), 961

get_frames_data() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager
method), 773

get_frames_data() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager
method), 824

get_frames_data() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager
method), 819

get_frames_status() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_frames_status() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_frames_status() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 513

get_frames_status() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_frames_status() (py-

lablib.devices.Basler.pylon.BaslerPylonCamera
method), 563

get_frames_status() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_frames_status() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_frames_status() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_frames_status() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_frames_status() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

get_frames_status() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_frames_status() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_frames_status() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

get_frames_status() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_frames_status() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_frames_status() (py-
lablib.devices.interface.camera.ICamera
method), 957

get_frames_status() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_frames_status() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_frames_status() (py-
lablib.devices.interface.camera.IROICamera
method), 977

get_frames_status() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 689

get_frames_status() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

get_frames_status() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_frames_status() (py-

Index 1077

pylablib Documentation, Release 1.4.2

lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 760

get_frames_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_frames_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_frames_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_frames_status() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

get_frames_status() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_frames_status() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_frames_status() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_frames_status() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_framestamp() (py-
lablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker
method), 504

get_framestamp() (py-
lablib.devices.interface.camera.StatusLineChecker
method), 985

get_framestamp() (py-
lablib.devices.PCO.SC2.StatusLineChecker
method), 739

get_framestamp() (py-
lablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker
method), 789

get_freq_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 645

get_frequencies() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

get_frequency() (py-
lablib.devices.Attocube.anc300.ANC300
method), 549

get_frequency() (py-
lablib.devices.Attocube.anc350.ANC350
method), 554

get_frequency() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

get_frequency() (py-

lablib.devices.AWG.specific.Agilent33220A
method), 454

get_frequency() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_frequency() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_frequency() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_frequency() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_frequency() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 472

get_frequency() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_frequency() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_frequency() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_frequency() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 841

get_frequency() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

get_full_camera_data() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

get_full_coarse_tuning_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_full_data() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 941

get_full_fine_tuning_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_full_info() (py-
lablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

get_full_info() (py-
lablib.core.devio.interface.IDevice method),
193

get_full_info() (py-
lablib.core.devio.SCPI.SCPIDevice method),
164

get_full_info() (py-

1078 Index

pylablib Documentation, Release 1.4.2

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 498

get_full_info() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_full_info() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

get_full_info() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_full_info() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 531

get_full_info() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

get_full_info() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_full_info() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_full_info() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_full_info() (py-
lablib.devices.Arduino.base.IArduinoDevice
method), 547

get_full_info() (py-
lablib.devices.Attocube.anc300.ANC300
method), 551

get_full_info() (py-
lablib.devices.Attocube.anc350.ANC350
method), 555

get_full_info() (py-
lablib.devices.AWG.generic.GenericAWG
method), 444

get_full_info() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_full_info() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_full_info() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_full_info() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_full_info() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_full_info() (py-

lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_full_info() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_full_info() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

get_full_info() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 574

get_full_info() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_full_info() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

get_full_info() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 583

get_full_info() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 588

get_full_info() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

get_full_info() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_full_info() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_full_info() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

get_full_info() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_full_info() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

get_full_info() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_full_info() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_full_info() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_full_info() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_full_info() (py-

Index 1079

pylablib Documentation, Release 1.4.2

lablib.devices.interface.camera.ICamera
method), 959

get_full_info() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_full_info() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_full_info() (py-
lablib.devices.interface.camera.IROICamera
method), 978

get_full_info() (py-
lablib.devices.interface.stage.IMultiaxisStage
method), 987

get_full_info() (py-
lablib.devices.interface.stage.IStage method),
986

get_full_info() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 647

get_full_info() (pylablib.devices.KJL.base.KJL300
method), 643

get_full_info() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 653

get_full_info() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 658

get_full_info() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

get_full_info() (py-
lablib.devices.Leybold.base.GenericITR
method), 665

get_full_info() (py-
lablib.devices.Leybold.base.ITR90 method),
666

get_full_info() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

get_full_info() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_full_info() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 675

get_full_info() (pylablib.devices.M2.emm.EMM
method), 678

get_full_info() (pylablib.devices.M2.solstis.Solstis
method), 684

get_full_info() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

get_full_info() (py-

lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

get_full_info() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

get_full_info() (pylablib.devices.NI.daq.NIDAQ
method), 702

get_full_info() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

get_full_info() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_full_info() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

get_full_info() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

get_full_info() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_full_info() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

get_full_info() (py-
lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

get_full_info() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

get_full_info() (py-
lablib.devices.Ophir.base.OphirDevice
method), 725

get_full_info() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 729

get_full_info() (py-
lablib.devices.OZOptics.base.DD100 method),
721

get_full_info() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

get_full_info() (py-
lablib.devices.OZOptics.base.OZOpticsDevice
method), 719

get_full_info() (py-
lablib.devices.OZOptics.base.TF100 method),
720

get_full_info() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

get_full_info() (py-
lablib.devices.Pfeiffer.base.DPG202 method),

1080 Index

pylablib Documentation, Release 1.4.2

743
get_full_info() (py-

lablib.devices.Pfeiffer.base.TPG260 method),
742

get_full_info() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_full_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

get_full_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_full_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_full_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_full_info() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

get_full_info() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 797

get_full_info() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_full_info() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

get_full_info() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 812

get_full_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_full_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_full_info() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 837

get_full_info() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
848

get_full_info() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
851

get_full_info() (py-
lablib.devices.Standa.base.Standa8SMC
method), 855

get_full_info() (py-
lablib.devices.Tektronix.base.DPO2000

method), 872
get_full_info() (py-

lablib.devices.Tektronix.base.ITektronixScope
method), 862

get_full_info() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_full_info() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

get_full_info() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_full_info() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 920

get_full_info() (py-
lablib.devices.Thorlabs.misc.PM160 method),
923

get_full_info() (pylablib.devices.Thorlabs.serial.FW
method), 931

get_full_info() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
934

get_full_info() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 938

get_full_info() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 927

get_full_info() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_full_info() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_full_info() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

Index 1081

pylablib Documentation, Release 1.4.2

get_full_info() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_full_info() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 950

get_full_info() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 954

get_full_status() (py-
lablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

get_full_status() (py-
lablib.core.devio.interface.IDevice method),
193

get_full_status() (py-
lablib.core.devio.SCPI.SCPIDevice method),
164

get_full_status() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_full_status() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_full_status() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

get_full_status() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_full_status() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 531

get_full_status() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

get_full_status() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_full_status() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

get_full_status() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_full_status() (py-
lablib.devices.Arduino.base.IArduinoDevice
method), 547

get_full_status() (py-
lablib.devices.Attocube.anc300.ANC300
method), 551

get_full_status() (py-
lablib.devices.Attocube.anc350.ANC350
method), 555

get_full_status() (py-
lablib.devices.AWG.generic.GenericAWG
method), 444

get_full_status() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_full_status() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_full_status() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 466

get_full_status() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 460

get_full_status() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_full_status() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_full_status() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_full_status() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

get_full_status() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_full_status() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_full_status() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

get_full_status() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 583

get_full_status() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 588

get_full_status() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

get_full_status() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_full_status() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 607

get_full_status() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

1082 Index

pylablib Documentation, Release 1.4.2

get_full_status() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 621

get_full_status() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

get_full_status() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 637

get_full_status() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 632

get_full_status() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 963

get_full_status() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_full_status() (py-
lablib.devices.interface.camera.ICamera
method), 959

get_full_status() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_full_status() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_full_status() (py-
lablib.devices.interface.camera.IROICamera
method), 978

get_full_status() (py-
lablib.devices.interface.stage.IMultiaxisStage
method), 988

get_full_status() (py-
lablib.devices.interface.stage.IStage method),
986

get_full_status() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 647

get_full_status() (py-
lablib.devices.KJL.base.KJL300 method),
643

get_full_status() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 653

get_full_status() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 658

get_full_status() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

get_full_status() (py-
lablib.devices.Leybold.base.GenericITR
method), 665

get_full_status() (py-
lablib.devices.Leybold.base.ITR90 method),
666

get_full_status() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

get_full_status() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_full_status() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 675

get_full_status() (pylablib.devices.M2.emm.EMM
method), 678

get_full_status() (py-
lablib.devices.M2.solstis.Solstis method),
684

get_full_status() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

get_full_status() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 695

get_full_status() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 717

get_full_status() (pylablib.devices.NI.daq.NIDAQ
method), 703

get_full_status() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

get_full_status() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_full_status() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

get_full_status() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

get_full_status() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_full_status() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

get_full_status() (py-
lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

get_full_status() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

get_full_status() (py-
lablib.devices.Ophir.base.OphirDevice

Index 1083

pylablib Documentation, Release 1.4.2

method), 725
get_full_status() (py-

lablib.devices.Ophir.base.VegaPowerMeter
method), 729

get_full_status() (py-
lablib.devices.OZOptics.base.DD100 method),
722

get_full_status() (py-
lablib.devices.OZOptics.base.EPC04 method),
724

get_full_status() (py-
lablib.devices.OZOptics.base.OZOpticsDevice
method), 719

get_full_status() (py-
lablib.devices.OZOptics.base.TF100 method),
720

get_full_status() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

get_full_status() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
744

get_full_status() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
742

get_full_status() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_full_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

get_full_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_full_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_full_status() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_full_status() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

get_full_status() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 797

get_full_status() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_full_status() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

get_full_status() (py-
lablib.devices.Rigol.power_supply.DP1116A

method), 812
get_full_status() (py-

lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_full_status() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_full_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 837

get_full_status() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
848

get_full_status() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
851

get_full_status() (py-
lablib.devices.Standa.base.Standa8SMC
method), 855

get_full_status() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_full_status() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 862

get_full_status() (py-
lablib.devices.Tektronix.base.TDS2000
method), 865

get_full_status() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

get_full_status() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_full_status() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 920

get_full_status() (py-
lablib.devices.Thorlabs.misc.PM160 method),

1084 Index

pylablib Documentation, Release 1.4.2

923
get_full_status() (py-

lablib.devices.Thorlabs.serial.FW method),
931

get_full_status() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
934

get_full_status() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 938

get_full_status() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 927

get_full_status() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_full_status() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_full_status() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

get_full_status() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_full_status() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 950

get_full_status() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 954

get_full_web_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_function() (pylablib.devices.AWG.generic.GenericAWG
method), 441

get_function() (pylablib.devices.AWG.specific.Agilent33220A
method), 454

get_function() (pylablib.devices.AWG.specific.Agilent33500
method), 448

get_function() (pylablib.devices.AWG.specific.InstekAFG2000
method), 466

get_function() (pylablib.devices.AWG.specific.InstekAFG2225
method), 461

get_function() (pylablib.devices.AWG.specific.RigolDG1000
method), 485

get_function() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_function() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_function() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 645

get_function() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 949

get_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 645

get_gain() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_gain_boost() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_gain_range() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_gains() (pylablib.devices.uc480.uc480.UC480Camera
method), 991

get_gate_polarity() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

get_gate_polarity() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 454

get_gate_polarity() (py-
lablib.devices.AWG.specific.Agilent33500
method), 448

get_gate_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_gate_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_gate_polarity() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_gate_polarity() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_gate_polarity() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_gauge_control_settings() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_gauge_kind() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_gen_move_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

get_general_input() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

get_genicam_info_xml() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_genicam_info_xml() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

Index 1085

pylablib Documentation, Release 1.4.2

method), 826
get_genicam_info_xml() (py-

lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_global_parameter() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

get_global_speed() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_global_speed() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 536

get_grabber_attribute() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 966

get_grabber_attribute() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_grabber_attribute() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_grabber_attribute() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_grabber_attribute_value() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_grabber_attribute_value() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_grabber_attribute_value() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 612

get_grabber_attribute_value() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

get_grabber_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_grabber_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_grabber_attribute_value() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_grabber_attribute_value() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_grabber_detector_size() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_grabber_detector_size() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera

method), 575
get_grabber_detector_size() (py-

lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_grabber_detector_size() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_grabber_detector_size() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_grabber_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_grabber_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_grabber_detector_size() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_grabber_detector_size() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_grabber_detector_size() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_grabber_roi() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_grabber_roi() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_grabber_roi() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_grabber_roi() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_grabber_roi() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_grabber_roi() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 826

get_grabber_roi() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

1086 Index

pylablib Documentation, Release 1.4.2

method), 818
get_grabber_roi_limits() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_grabber_roi_limits() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_grabber_roi_limits() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_grabber_roi_limits() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_grabber_roi_limits() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_grabber_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_grabber_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_grabber_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_grabber_roi_limits() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

get_grabber_roi_limits() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 819

get_grating() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_grating_info() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_grating_offset() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_gratings_number() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_gui_controller() (in module py-
lablib.core.thread.controller), 349

get_gui_thread() (in module py-
lablib.core.thread.threadprop), 356

get_gui_values() (in module py-
lablib.core.gui.value_handling), 315

get_handle() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 561

get_handler() (pylablib.core.gui.value_handling.CheckboxValueHandler
method), 306

get_handler() (pylablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

get_handler() (pylablib.core.gui.value_handling.GUIValues
method), 312

get_handler() (pylablib.core.gui.value_handling.IBoolValueHandler
method), 305

get_handler() (pylablib.core.gui.value_handling.ISingleValueHandler
method), 303

get_handler() (pylablib.core.gui.value_handling.IValueHandler
method), 299

get_handler() (pylablib.core.gui.value_handling.LabelValueHandler
method), 304

get_handler() (pylablib.core.gui.value_handling.LineEditValueHandler
method), 304

get_handler() (pylablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

get_handler() (pylablib.core.gui.value_handling.PropertyValueHandler
method), 301

get_handler() (pylablib.core.gui.value_handling.PushButtonValueHandler
method), 307

get_handler() (pylablib.core.gui.value_handling.StandardValueHandler
method), 302

get_handler() (pylablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

get_handler() (pylablib.core.gui.value_handling.VirtualValueHandler
method), 300

get_handler() (pylablib.core.gui.widgets.container.IQContainer
method), 232

get_handler() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_handler() (pylablib.core.gui.widgets.container.QContainer
method), 234

get_handler() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

get_handler() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

get_handler() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_handler() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_handler() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_handler() (pylablib.core.gui.widgets.container.QTabContainer
method), 264

get_handler() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_handler() (pylablib.core.gui.widgets.param_table.ParamTable
method), 283

get_handler() (pylablib.core.gui.widgets.param_table.StatusTable
method), 291

get_hardware_id() (py-
lablib.devices.Attocube.anc350.ANC350
method), 552

get_hblanking() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

Index 1087

pylablib Documentation, Release 1.4.2

get_head_info() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_help() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

get_help() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 794

get_high_level() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

get_high_level() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 591

get_home_offset() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

get_home_parameters() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 946

get_homing_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

get_horizontal_offset() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_horizontal_offset() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_horizontal_offset() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_horizontal_span() (py-
lablib.devices.Tektronix.base.DPO2000
method), 872

get_horizontal_span() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_horizontal_span() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_hsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_hsspeed_frequency() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_id() (pylablib.core.devio.SCPI.SCPIDevice
method), 162

get_id() (pylablib.devices.AWG.generic.GenericAWG
method), 444

get_id() (pylablib.devices.AWG.specific.Agilent33220A
method), 454

get_id() (pylablib.devices.AWG.specific.Agilent33500
method), 448

get_id() (pylablib.devices.AWG.specific.InstekAFG2000

method), 467
get_id() (pylablib.devices.AWG.specific.InstekAFG2225

method), 461
get_id() (pylablib.devices.AWG.specific.RigolDG1000

method), 485
get_id() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 473
get_id() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 479
get_id() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
get_id() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
get_id() (pylablib.devices.Cryomagnetics.base.LM510

method), 591
get_id() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
get_id() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
get_id() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 658
get_id() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 714
get_id() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 790
get_id() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
get_id() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
get_id() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
get_id() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 837
get_id() (pylablib.devices.Tektronix.base.DPO2000

method), 872
get_id() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
get_id() (pylablib.devices.Tektronix.base.TDS2000

method), 866
get_id() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
get_id() (pylablib.devices.Thorlabs.misc.PM160

method), 923
get_id() (pylablib.devices.Thorlabs.serial.FW method),

931
get_id() (pylablib.devices.Thorlabs.serial.FWv1

method), 935
get_id() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
get_id() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
get_id() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
get_imag_part_ft() (in module py-

1088 Index

pylablib Documentation, Release 1.4.2

lablib.core.dataproc.fourier), 143
get_image_indexing() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_image_indexing() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_image_indexing() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

get_image_indexing() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_image_indexing() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

get_image_indexing() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_image_indexing() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 570

get_image_indexing() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_image_indexing() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_image_indexing() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

get_image_indexing() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

get_image_indexing() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

get_image_indexing() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 964

get_image_indexing() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_image_indexing() (py-
lablib.devices.interface.camera.ICamera
method), 957

get_image_indexing() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_image_indexing() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 968

get_image_indexing() (py-
lablib.devices.interface.camera.IROICamera

method), 978
get_image_indexing() (py-

lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

get_image_indexing() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

get_image_indexing() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

get_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 776

get_image_indexing() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

get_image_indexing() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

get_image_indexing() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_image_indexing() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 884

get_image_indexing() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_image_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

get_imported_modules() (in module py-
lablib.core.utils.module), 423

get_index() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

get_index() (pylablib.core.dataproc.table_wrap.Array2DWrapper
method), 155

get_index() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 156

get_index() (pylablib.core.dataproc.table_wrap.I1DWrapper
method), 149

get_index() (pylablib.core.dataproc.table_wrap.I2DWrapper
method), 152

get_index() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

Index 1089

pylablib Documentation, Release 1.4.2

get_index_values() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

get_indicator() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

get_indicator() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

get_indicator() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_indicator() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

get_indicator() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_indicator() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_indicator() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_indicator() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_indicator() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_indicator() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 264

get_indicator() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_indicator() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

get_indicator() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_indicator_widget() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

get_indicator_widget() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_input_channels() (py-
lablib.devices.NI.daq.NIDAQ method), 698

get_inserted() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 149

get_inserted() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 153

get_inserted() (pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor
method), 153

get_inserted() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 155

get_inserted() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor
method), 155

get_inserted() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

get_interlock_status() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_interlock_status() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_internal_buffer_status() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

get_interval() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

get_interval() (pylablib.devices.Cryomagnetics.base.LM510
method), 592

get_jog_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

get_jog_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

get_kcube_trigio_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

get_kcube_trigpos_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

get_keepclean_time() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_kernel() (in module py-
lablib.core.dataproc.feature), 132

get_kernel_func() (in module py-
lablib.core.dataproc.specfunc), 147

get_kinetic_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

get_label_widget() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

get_label_widget() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_laser_status() (pylablib.devices.M2.emm.EMM
method), 676

get_last_filled_column() (in module py-
lablib.core.gui.utils), 297

get_last_filled_row() (in module py-

1090 Index

pylablib Documentation, Release 1.4.2

lablib.core.gui.utils), 297
get_last_read_frequency() (py-

lablib.devices.Sirah.tuner.MatisseTuner
method), 841

get_last_report() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 675

get_last_report() (pylablib.devices.M2.emm.EMM
method), 678

get_last_report() (py-
lablib.devices.M2.solstis.Solstis method),
684

get_layout_container() (in module py-
lablib.core.gui.utils), 296

get_layout_shape() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_layout_shape() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_layout_shape() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_layout_shape() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_layout_shape() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 258

get_layout_shape() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_layout_shape() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

get_layout_shape() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

get_layout_shape() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

get_layout_shape() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_level() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

get_level() (pylablib.devices.Cryomagnetics.base.LM510
method), 592

get_library_name() (in module py-
lablib.core.utils.module), 423

get_library_path() (in module py-
lablib.core.utils.module), 423

get_limit_switch_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor

method), 906
get_limit_switches_parameters() (py-

lablib.devices.Trinamic.base.TMCM1110
method), 946

get_load() (pylablib.devices.AWG.generic.GenericAWG
method), 441

get_load() (pylablib.devices.AWG.specific.Agilent33220A
method), 455

get_load() (pylablib.devices.AWG.specific.Agilent33500
method), 448

get_load() (pylablib.devices.AWG.specific.InstekAFG2000
method), 467

get_load() (pylablib.devices.AWG.specific.InstekAFG2225
method), 461

get_load() (pylablib.devices.AWG.specific.RigolDG1000
method), 485

get_load() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_load() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_loaded_package_modules() (in module py-
lablib.core.utils.module), 423

get_local_addr() (in module pylablib.core.utils.net),
426

get_local_hostname() (in module py-
lablib.core.utils.net), 426

get_local_name() (pylablib.core.utils.net.ClientSocket
method), 427

get_location() (in module py-
lablib.core.fileio.location), 218

get_low_level() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

get_low_level() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 592

get_mandatory_args() (py-
lablib.core.dataproc.callable.FunctionCallable
method), 128

get_mandatory_args() (py-
lablib.core.dataproc.callable.ICallable
method), 126

get_mandatory_args() (py-
lablib.core.dataproc.callable.JoinedCallable
method), 127

get_mandatory_args() (py-
lablib.core.dataproc.callable.MethodCallable
method), 129

get_mandatory_args() (py-
lablib.core.dataproc.callable.MultiplexedCallable
method), 127

get_manual_output() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

Index 1091

pylablib Documentation, Release 1.4.2

get_matching_paths() (py-
lablib.core.utils.dictionary.Dictionary
method), 370

get_matching_paths() (py-
lablib.core.utils.dictionary.DictionaryPointer
method), 374

get_matching_paths() (py-
lablib.core.utils.dictionary.FilterTree method),
391

get_matching_paths() (py-
lablib.core.utils.dictionary.PrefixTree method),
383

get_matching_subtree() (py-
lablib.core.utils.dictionary.Dictionary
method), 370

get_matching_subtree() (py-
lablib.core.utils.dictionary.DictionaryPointer
method), 375

get_matching_subtree() (py-
lablib.core.utils.dictionary.FilterTree method),
391

get_matching_subtree() (py-
lablib.core.utils.dictionary.PrefixTree method),
383

get_max_attenuation() (py-
lablib.devices.OZOptics.base.DD100 method),
721

get_max_gains() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_max_prefix() (py-
lablib.core.utils.dictionary.Dictionary
method), 364

get_max_prefix() (py-
lablib.core.utils.dictionary.DictionaryPointer
method), 375

get_max_prefix() (py-
lablib.core.utils.dictionary.FilterTree method),
392

get_max_prefix() (py-
lablib.core.utils.dictionary.PrefixTree method),
384

get_max_vsspeed() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_measurement_filter() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_measurement_interval() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

get_measurement_rate() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 949

get_measurementf() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 670

get_measurementi() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_metadata_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

get_method_kind() (in module py-
lablib.core.gui.value_handling), 298

get_microstep_resolution() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

get_min_attenuation() (py-
lablib.devices.OZOptics.base.DD100 method),
721

get_min_shutter_times() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_missed_frames_status() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

get_mode() (pylablib.devices.Attocube.anc300.ANC300
method), 549

get_mode() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

get_mode() (pylablib.devices.Cryomagnetics.base.LM510
method), 592

get_mode() (pylablib.devices.OZOptics.base.EPC04
method), 723

get_mode_parameters() (py-
lablib.devices.BitFlow.BitFlow.CameraFileEditor
method), 578

get_module_status() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_module_status_n() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_motor_info() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

get_motor_type() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 715

get_move_parameters() (py-
lablib.devices.Standa.base.Standa8SMC
method), 855

get_multi_track_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_names() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 154

1092 Index

pylablib Documentation, Release 1.4.2

get_names() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 156

get_nbuff() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager
method), 635

get_nbuff() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager
method), 631

get_new_frames_range() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

get_new_images_range() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

get_new_images_range() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_new_images_range() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

get_new_images_range() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_new_images_range() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

get_new_images_range() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_new_images_range() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

get_new_images_range() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 601

get_new_images_range() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_new_images_range() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

get_new_images_range() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

get_new_images_range() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

get_new_images_range() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 964

get_new_images_range() (py-
lablib.devices.interface.camera.IBinROICamera
method), 982

get_new_images_range() (py-
lablib.devices.interface.camera.ICamera
method), 958

get_new_images_range() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

get_new_images_range() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 969

get_new_images_range() (py-
lablib.devices.interface.camera.IROICamera
method), 978

get_new_images_range() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

get_new_images_range() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

get_new_images_range() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

get_new_images_range() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

get_new_images_range() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 784

get_new_images_range() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 767

get_new_images_range() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

get_new_images_range() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

get_new_images_range() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

get_new_images_range() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 821

get_new_images_range() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

get_new_images_range() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 994

get_noise_filter_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

get_number_of_channels() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 893

Index 1093

pylablib Documentation, Release 1.4.2

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 908

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 912

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 916

get_number_of_channels() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
901

get_number_pixels() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_oamp() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_oamp_desc() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_ocp_threshold() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_ocp_threshold() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

get_offset() (pylablib.devices.Attocube.anc300.ANC300
method), 549

get_offset() (pylablib.devices.Attocube.anc350.ANC350
method), 554

get_offset() (pylablib.devices.AWG.generic.GenericAWG
method), 441

get_offset() (pylablib.devices.AWG.specific.Agilent33220A
method), 455

get_offset() (pylablib.devices.AWG.specific.Agilent33500
method), 448

get_offset() (pylablib.devices.AWG.specific.InstekAFG2000
method), 467

get_offset() (pylablib.devices.AWG.specific.InstekAFG2225
method), 459

get_offset() (pylablib.devices.AWG.specific.RigolDG1000
method), 485

get_offset() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 471

get_offset() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_opened_num() (py-
lablib.devices.Andor.AndorSDK2.LibraryController
method), 505

get_opened_num() (py-
lablib.devices.Andor.AndorSDK3.LibraryController

method), 516
get_opened_num() (py-

lablib.devices.Andor.Shamrock.LibraryController
method), 526

get_opened_num() (py-
lablib.devices.Basler.pylon.LibraryController
method), 556

get_opened_num() (py-
lablib.devices.DCAM.DCAM.LibraryController
method), 595

get_opened_num() (py-
lablib.devices.Mightex.MightexSSeries.LibraryController
method), 686

get_opened_num() (py-
lablib.devices.Photometrics.pvcam.LibraryController
method), 744

get_opened_num() (py-
lablib.devices.PhotonFocus.PhotonFocus.LibraryController
method), 755

get_opened_num() (py-
lablib.devices.PrincetonInstruments.picam.LibraryController
method), 800

get_opened_num() (py-
lablib.devices.SmarAct.MCS2.LibraryController
method), 844

get_opened_num() (py-
lablib.devices.SmarAct.scu3d.LibraryController
method), 849

get_opened_num() (py-
lablib.devices.Thorlabs.TLCamera.LibraryController
method), 878

get_opened_num() (py-
lablib.devices.utils.load_lib.LibraryController
method), 999

get_operation_mode() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

get_optical_parameters() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_options() (pylablib.core.gui.widgets.combo_box.ComboBox
method), 229

get_options_dict() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

get_os_lib_folder() (in module py-
lablib.devices.utils.load_lib), 997

get_output() (pylablib.devices.Attocube.anc300.ANC300
method), 549

get_output_format() (in module py-
lablib.core.fileio.savefile), 224

get_output_limits() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 605

1094 Index

pylablib Documentation, Release 1.4.2

get_output_mode() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_output_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

get_output_polarity() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

get_output_polarity() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_output_polarity() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_output_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_output_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_output_polarity() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_output_polarity() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_output_polarity() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_output_power() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

get_output_power() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

get_output_power() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_output_range() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

get_output_range() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_output_range() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_output_range() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_output_range() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_output_range() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 485

get_output_range() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_output_range() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 479

get_output_range() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 810

get_output_setpoint() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

get_output_setpoint() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

get_output_status() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_output_trigger_slope() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_output_trigger_slope() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

get_outputf() (pylablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_ovp_threshold() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_ovp_threshold() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

get_package_version() (in module py-

Index 1095

pylablib Documentation, Release 1.4.2

lablib.core.utils.module), 423
get_path() (pylablib.core.fileio.location.LocationName

method), 213
get_path() (pylablib.core.utils.dictionary.Dictionary

method), 369
get_path() (pylablib.core.utils.dictionary.DictionaryPointer

method), 372
get_path() (pylablib.core.utils.dictionary.FilterTree

method), 392
get_path() (pylablib.core.utils.dictionary.PrefixTree

method), 384
get_pcount() (pylablib.devices.Thorlabs.serial.FW

method), 930
get_pcount() (pylablib.devices.Thorlabs.serial.FWv1

method), 934
get_peakdet_kernel() (in module py-

lablib.core.dataproc.feature), 132
get_peer_args() (pylablib.core.utils.ipc.IIPCChannel

method), 420
get_peer_args() (py-

lablib.core.utils.ipc.PipeIPCChannel method),
421

get_peer_args() (py-
lablib.core.utils.ipc.SharedMemIPCChannel
method), 421

get_peer_args() (py-
lablib.core.utils.ipc.SharedMemIPCTable
method), 422

get_peer_name() (pylablib.core.utils.net.ClientSocket
method), 427

get_pending() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 184

get_pending() (pylablib.core.devio.hid.HIDevice
method), 191

get_pending() (pylablib.core.devio.hid.HIDevice.Reader
method), 191

get_phase() (pylablib.devices.AWG.generic.GenericAWG
method), 442

get_phase() (pylablib.devices.AWG.specific.Agilent33220A
method), 455

get_phase() (pylablib.devices.AWG.specific.Agilent33500
method), 449

get_phase() (pylablib.devices.AWG.specific.InstekAFG2000
method), 467

get_phase() (pylablib.devices.AWG.specific.InstekAFG2225
method), 461

get_phase() (pylablib.devices.AWG.specific.RigolDG1000
method), 486

get_phase() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_phase() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 480

get_pid_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 915
get_piezoet_ctl_status() (py-

lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

get_piezoet_drive_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_piezoet_feedback_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_piezoet_feedforward_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_piezoet_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

get_pixel_clock() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

get_pixel_correction_parameters() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_pixel_distance() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_pixel_rate() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

get_pixel_rate() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_pixel_rates_range() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

get_pixel_size() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_pixel_size() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_pixel_size() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

get_pixel_width() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

get_points_number() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_points_number() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

get_points_number() (py-
lablib.devices.Tektronix.base.TDS2000

1096 Index

pylablib Documentation, Release 1.4.2

method), 866
get_polctl_parameters() (py-

lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

get_port_index() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
756

get_position() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_position() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

get_position() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

get_position() (pylablib.devices.Attocube.anc350.ANC350
method), 554

get_position() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 716

get_position() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_position() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_position() (pylablib.devices.SmarAct.MCS2.MCS2
method), 847

get_position() (pylablib.devices.Standa.base.Standa8SMC
method), 854

get_position() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

get_position() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

get_position() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

get_position() (pylablib.devices.Thorlabs.serial.FW
method), 930

get_position() (pylablib.devices.Thorlabs.serial.FWv1
method), 934

get_position() (pylablib.devices.Trinamic.base.TMCM1110
method), 945

get_position_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_position_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_position_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_position_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_power() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_power() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

get_power() (pylablib.devices.Thorlabs.misc.GenericPM

method), 919
get_power() (pylablib.devices.Thorlabs.misc.PM160

method), 923
get_power_parameters() (py-

lablib.devices.Standa.base.Standa8SMC
method), 855

get_preamble() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
method), 205

get_preamble() (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
method), 205

get_preamble() (pylablib.core.fileio.savefile.IBinaryOutputFileFormat
method), 223

get_preamble() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat
method), 224

get_preamp() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_preamp_gain() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_precision() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

get_precision_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

get_pressure() (pylablib.devices.KJL.base.KJL300
method), 642

get_pressure() (pylablib.devices.Leybold.base.GenericITR
method), 664

get_pressure() (pylablib.devices.Leybold.base.ITR90
method), 666

get_pressure() (pylablib.devices.Pfeiffer.base.DPG202
method), 743

get_pressure() (pylablib.devices.Pfeiffer.base.TPG260
method), 741

get_prev_len() (in module py-
lablib.core.dataproc.fourier), 140

get_probe_attenuation() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_probe_attenuation() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_probe_attenuation() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_program_files_folder() (in module py-
lablib.devices.utils.load_lib), 997

get_progress() (pylablib.core.thread.callsync.QCallResultSynchronizer
method), 315

get_progress() (pylablib.core.thread.callsync.QDirectResultSynchronizer
method), 316

get_property() (pylablib.devices.SmarAct.MCS2.MCS2
method), 845

Index 1097

pylablib Documentation, Release 1.4.2

get_props() (in module pylablib.core.utils.general),
410

get_pulse_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

get_pulse_output_channels() (py-
lablib.devices.NI.daq.NIDAQ method), 702

get_pulse_output_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 702

get_pulse_width() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

get_pulse_width() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_pulse_width() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_pulse_width() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_pulse_width() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_pulse_width() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

get_pulse_width() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_pulse_width() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 477

get_python_folder() (in module py-
lablib.core.utils.module), 424

get_ramp_symmetry() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

get_ramp_symmetry() (py-

lablib.devices.AWG.specific.RSInstekAFG21000
method), 473

get_ramp_symmetry() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

get_random_track_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

get_range() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

get_range() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

get_range() (pylablib.devices.Thorlabs.misc.GenericPM
method), 919

get_range() (pylablib.devices.Thorlabs.misc.PM160
method), 923

get_range() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 949

get_range_idx() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 728

get_range_indices() (in module py-
lablib.core.dataproc.utils), 160

get_range_info() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 728

get_range_limit() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

get_read_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_read_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
608

get_reading() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 646

get_reading() (pylablib.devices.Thorlabs.misc.GenericPM
method), 919

get_reading() (pylablib.devices.Thorlabs.misc.PM160
method), 924

get_reading() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 949

get_reading() (pylablib.devices.Voltcraft.multimeter.VC880
method), 953

get_readings() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

get_readout_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

get_readout_speed() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_readout_time() (py-

1098 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_readout_time() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_real_part_ft() (in module py-
lablib.core.dataproc.fourier), 143

get_refcell_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_refcell_waveform() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

get_refcell_waveform_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_reference_cavity_lock_status() (py-
lablib.devices.M2.solstis.Solstis method),
681

get_reg() (pylablib.devices.Lumel.base.LumelRE72Controller
method), 670

get_region() (in module py-
lablib.core.dataproc.image), 144

get_region_sum() (in module py-
lablib.core.dataproc.image), 144

get_register() (pylablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_register() (pylablib.devices.NKT.interbus.IInterbusModule
method), 706

get_register() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_register() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

get_register() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

get_register() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

get_relative_position() (in module py-
lablib.core.gui.utils), 298

get_relative_rectangle() (in module py-
lablib.core.gui.utils), 298

get_relay() (pylablib.devices.Conrad.base.RelayBoard
method), 580

get_relay_setpoints() (py-
lablib.devices.KJL.base.KJL300 method),
642

get_reload_order() (in module py-
lablib.core.utils.module), 423

get_remote_hostname() (in module py-
lablib.core.utils.net), 426

get_resistance() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 499
get_roi() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 490
get_roi() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 512
get_roi() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 523
get_roi() (pylablib.devices.Basler.pylon.BaslerPylonCamera

method), 561
get_roi() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

method), 575
get_roi() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

method), 568
get_roi() (pylablib.devices.DCAM.DCAM.DCAMCamera

method), 599
get_roi() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 622
get_roi() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 613
get_roi() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 638
get_roi() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 630
get_roi() (pylablib.devices.interface.camera.IBinROICamera

method), 981
get_roi() (pylablib.devices.interface.camera.IROICamera

method), 976
get_roi() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 687
get_roi() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 733
get_roi() (pylablib.devices.Photometrics.pvcam.PvcamCamera

method), 750
get_roi() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 758
get_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

method), 785
get_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 768
get_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

method), 777
get_roi() (pylablib.devices.PrincetonInstruments.picam.PicamCamera

method), 805
get_roi() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

method), 827
get_roi() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

method), 818
get_roi() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

method), 883
get_roi() (pylablib.devices.uc480.uc480.UC480Camera

method), 993
get_roi_limits() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 499

Index 1099

pylablib Documentation, Release 1.4.2

get_roi_limits() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

get_roi_limits() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

get_roi_limits() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

get_roi_limits() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

get_roi_limits() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

get_roi_limits() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

get_roi_limits() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

get_roi_limits() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_roi_limits() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

get_roi_limits() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

get_roi_limits() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

get_roi_limits() (py-
lablib.devices.interface.camera.IBinROICamera
method), 981

get_roi_limits() (py-
lablib.devices.interface.camera.IROICamera
method), 976

get_roi_limits() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

get_roi_limits() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

get_roi_limits() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

get_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

get_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

get_roi_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

get_roi_limits() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

get_roi_limits() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

get_roi_limits() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_roi_limits() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

get_roi_limits() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 993

get_roi_parameters() (in module py-
lablib.devices.Photometrics.pvcam), 754

get_scale() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

get_scale() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 903

get_scale_units() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

get_scan_move_parameters() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

get_scan_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_scan_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_scan_position() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

get_scan_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

get_screenshot() (in module pylablib.core.gui.utils),
298

get_SDK_version() (in module py-
lablib.devices.Andor.AndorSDK2), 505

get_SDK_version() (in module py-
lablib.devices.SmarAct.MCS2), 844

get_selected_channel() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

1100 Index

pylablib Documentation, Release 1.4.2

get_selected_channel() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_selected_channel() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_sensor_curve_index() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

get_sensor_info() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 918

get_sensor_info() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

get_sensor_info() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

get_sensor_kind() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_sensor_mode() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

get_sensor_mode() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

get_sensor_mode() (py-
lablib.devices.Thorlabs.serial.FW method),
930

get_sensor_power() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_sensor_reading() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_sensor_reading() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

get_sensor_type() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

get_sensor_voltage() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

get_serial_parameter() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

get_serial_parameter() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 490

get_serial_params() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

get_serial_params() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 622

get_serial_params() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

get_serial_params() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

get_setpointf() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 670

get_setpointi() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

get_settings() (pylablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

get_settings() (pylablib.core.devio.interface.IDevice
method), 192

get_settings() (pylablib.core.devio.SCPI.SCPIDevice
method), 164

get_settings() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

get_settings() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

get_settings() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

get_settings() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

get_settings() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 531

get_settings() (pylablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

get_settings() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_settings() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 538

get_settings() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 544

get_settings() (pylablib.devices.Arduino.base.IArduinoDevice
method), 547

get_settings() (pylablib.devices.Attocube.anc300.ANC300
method), 551

get_settings() (pylablib.devices.Attocube.anc350.ANC350
method), 555

get_settings() (pylablib.devices.AWG.generic.GenericAWG
method), 444

get_settings() (pylablib.devices.AWG.specific.Agilent33220A
method), 455

get_settings() (pylablib.devices.AWG.specific.Agilent33500
method), 449

get_settings() (pylablib.devices.AWG.specific.InstekAFG2000
method), 467

get_settings() (pylablib.devices.AWG.specific.InstekAFG2225

Index 1101

pylablib Documentation, Release 1.4.2

method), 461
get_settings() (pylablib.devices.AWG.specific.RigolDG1000

method), 486
get_settings() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 474
get_settings() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 480
get_settings() (pylablib.devices.Basler.pylon.BaslerPylonCamera

method), 564
get_settings() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

method), 575
get_settings() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

method), 571
get_settings() (pylablib.devices.Conrad.base.RelayBoard

method), 581
get_settings() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
get_settings() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
get_settings() (pylablib.devices.Cryomagnetics.base.LM510

method), 592
get_settings() (pylablib.devices.DCAM.DCAM.DCAMCamera

method), 601
get_settings() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 607
get_settings() (pylablib.devices.HighFinesse.wlm.WLM

method), 611
get_settings() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 622
get_settings() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 617
get_settings() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 638
get_settings() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 633
get_settings() (pylablib.devices.interface.camera.IAttributeCamera

method), 964
get_settings() (pylablib.devices.interface.camera.IBinROICamera

method), 983
get_settings() (pylablib.devices.interface.camera.ICamera

method), 959
get_settings() (pylablib.devices.interface.camera.IExposureCamera

method), 973
get_settings() (pylablib.devices.interface.camera.IGrabberAttributeCamera

method), 969
get_settings() (pylablib.devices.interface.camera.IROICamera

method), 978
get_settings() (pylablib.devices.interface.stage.IMultiaxisStage

method), 988
get_settings() (pylablib.devices.interface.stage.IStage

method), 987
get_settings() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
get_settings() (pylablib.devices.KJL.base.KJL300

method), 643
get_settings() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
get_settings() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 658
get_settings() (pylablib.devices.LaserQuantum.base.Finesse

method), 662
get_settings() (pylablib.devices.Leybold.base.GenericITR

method), 665
get_settings() (pylablib.devices.Leybold.base.ITR90

method), 666
get_settings() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 669
get_settings() (pylablib.devices.Lumel.base.LumelRE72Controller

method), 671
get_settings() (pylablib.devices.M2.base.ICEBlocDevice

method), 675
get_settings() (pylablib.devices.M2.emm.EMM

method), 678
get_settings() (pylablib.devices.M2.solstis.Solstis

method), 684
get_settings() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 690
get_settings() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 695
get_settings() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 717
get_settings() (pylablib.devices.NI.daq.NIDAQ

method), 703
get_settings() (pylablib.devices.NKT.interbus.GenericInterbusDevice

method), 705
get_settings() (pylablib.devices.NKT.interbus.GenericInterbusModule

method), 707
get_settings() (pylablib.devices.NKT.interbus.IInterbusModule

method), 706
get_settings() (pylablib.devices.NKT.interbus.InterbusSystem

method), 712
get_settings() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule

method), 708
get_settings() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule

method), 709
get_settings() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule

method), 710
get_settings() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule

method), 711
get_settings() (pylablib.devices.Ophir.base.OphirDevice

method), 725
get_settings() (pylablib.devices.Ophir.base.VegaPowerMeter

method), 729
get_settings() (pylablib.devices.OZOptics.base.DD100

method), 722
get_settings() (pylablib.devices.OZOptics.base.EPC04

method), 724
get_settings() (pylablib.devices.OZOptics.base.OZOpticsDevice

1102 Index

pylablib Documentation, Release 1.4.2

method), 719
get_settings() (pylablib.devices.OZOptics.base.TF100

method), 720
get_settings() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 736
get_settings() (pylablib.devices.Pfeiffer.base.DPG202

method), 744
get_settings() (pylablib.devices.Pfeiffer.base.TPG260

method), 742
get_settings() (pylablib.devices.Photometrics.pvcam.PvcamCamera

method), 752
get_settings() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 761
get_settings() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

method), 785
get_settings() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 768
get_settings() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

method), 777
get_settings() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 791
get_settings() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
get_settings() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
get_settings() (pylablib.devices.PrincetonInstruments.picam.PicamCamera

method), 807
get_settings() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
get_settings() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

method), 827
get_settings() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

method), 822
get_settings() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 837
get_settings() (pylablib.devices.SmarAct.MCS2.MCS2

method), 848
get_settings() (pylablib.devices.SmarAct.scu3d.SCU3D

method), 851
get_settings() (pylablib.devices.Standa.base.Standa8SMC

method), 856
get_settings() (pylablib.devices.Tektronix.base.DPO2000

method), 873
get_settings() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
get_settings() (pylablib.devices.Tektronix.base.TDS2000

method), 866
get_settings() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 891
get_settings() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 894
get_settings() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 898
get_settings() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 908
get_settings() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 912
get_settings() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 916
get_settings() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
get_settings() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
get_settings() (pylablib.devices.Thorlabs.misc.PM160

method), 924
get_settings() (pylablib.devices.Thorlabs.serial.FW

method), 931
get_settings() (pylablib.devices.Thorlabs.serial.FWv1

method), 935
get_settings() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
get_settings() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
get_settings() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

method), 885
get_settings() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 942
get_settings() (pylablib.devices.Trinamic.base.TMCM1110

method), 947
get_settings() (pylablib.devices.uc480.uc480.UC480Camera

method), 994
get_settings() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
get_settings() (pylablib.devices.Voltcraft.multimeter.VC880

method), 954
get_shape() (in module pylablib.core.utils.array_utils),

357
get_shutter() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 509
get_shutter() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 520
get_shutter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph

method), 529
get_shutter_parameters() (py-

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_shutter_status() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_shutter_status() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_single_track_mode_parameters() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

get_single_value() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

Index 1103

pylablib Documentation, Release 1.4.2

get_single_value() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 308

get_single_value() (py-
lablib.core.gui.value_handling.IBoolValueHandler
method), 305

get_single_value() (py-
lablib.core.gui.value_handling.ISingleValueHandler
method), 302

get_single_value() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 304

get_single_value() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 303

get_single_value() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 309

get_single_value() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

get_single_value() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler
method), 307

get_slit_width() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

get_slowpiezo_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_slowpiezo_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_slowpiezo_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

get_software_version() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
743

get_spectrographs_number() (in module py-
lablib.devices.Andor.Shamrock), 527

get_speed_mode() (py-
lablib.devices.Thorlabs.serial.FW method),
930

get_stage() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

get_state() (pylablib.devices.Thorlabs.kinesis.MFF
method), 900

get_stats() (in module pylablib.core.thread.profile),
352

get_status() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_status() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 522

get_status() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_status() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 536

get_status() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

get_status() (pylablib.devices.Attocube.anc350.ANC350
method), 553

get_status() (pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper
method), 562

get_status() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager
method), 573

get_status() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager
method), 569

get_status() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 599

get_status() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_status() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper
method), 688

get_status() (pylablib.devices.NKT.interbus.GenericInterbusModule
method), 707

get_status() (pylablib.devices.NKT.interbus.IInterbusModule
method), 706

get_status() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

get_status() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

get_status() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

get_status() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

get_status() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager
method), 781

get_status() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager
method), 773

get_status() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager
method), 824

get_status() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager
method), 819

get_status() (pylablib.devices.SmarAct.MCS2.MCS2
method), 846

get_status() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 851

get_status() (pylablib.devices.Standa.base.Standa8SMC
method), 854

get_status() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 889

get_status() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

get_status() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

get_status() (pylablib.devices.Thorlabs.kinesis.MFF
method), 900

1104 Index

pylablib Documentation, Release 1.4.2

get_status() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer
method), 881

get_status_line() (in module py-
lablib.devices.PCO.SC2), 738

get_status_line_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

get_status_line_position() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
788

get_status_line_roi() (in module py-
lablib.devices.interface.camera), 986

get_status_lines() (in module py-
lablib.devices.AlliedVision.Bonito), 504

get_status_lines() (in module py-
lablib.devices.PCO.SC2), 738

get_status_lines() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
788

get_status_n() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

get_status_n() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 536

get_status_n() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

get_status_n() (pylablib.devices.Attocube.anc350.ANC350
method), 553

get_status_n() (pylablib.devices.SmarAct.MCS2.MCS2
method), 846

get_status_n() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

get_status_n() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

get_status_n() (pylablib.devices.Thorlabs.kinesis.MFF
method), 899

get_step_move_parameters() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

get_stepper_motor_calibration() (py-
lablib.devices.Standa.base.Standa8SMC
method), 854

get_string_filter() (in module py-
lablib.core.utils.string), 435

get_sublayout() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_sublayout() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_sublayout() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_sublayout() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer

method), 254
get_sublayout() (py-

lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

get_sublayout() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_sublayout() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

get_sublayout() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

get_sublayout() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

get_sublayout() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

get_sublayout_kind() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_sublayout_kind() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

get_sublayout_kind() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

get_sublayout_kind() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

get_sublayout_kind() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 291

get_subsampling() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_supported_baudrates() (py-
lablib.devices.Ophir.base.VegaPowerMeter

Index 1105

pylablib Documentation, Release 1.4.2

method), 728
get_supported_binning_modes() (py-

lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

get_supported_binning_modes() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_supported_sensor_modes() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 918

get_supported_sensor_modes() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

get_supported_subsampling_modes() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

get_switch_settings() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_switch_status() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

get_switcher_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

get_system_info() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

get_system_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

get_system_info() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

get_system_status() (py-
lablib.devices.M2.solstis.Solstis method),
680

get_table_line() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 221

get_target_position() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

get_target_position() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_target_position() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

get_target_position() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

get_temperature() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 507
get_temperature() (py-

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

get_temperature() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

get_temperature() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

get_temperature() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

get_temperature() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

get_temperature() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_temperature_range() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_temperature_setpoint() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_temperature_setpoint() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

get_temperature_setpoint() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_temperature_status() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

get_temperatures() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_temperatures() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

get_terascan_status() (py-
lablib.devices.M2.emm.EMM method), 677

get_terascan_status() (py-
lablib.devices.M2.solstis.Solstis method),
683

get_thinet_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

get_thinet_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

get_thinet_error_signal() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

1106 Index

pylablib Documentation, Release 1.4.2

get_thinet_power() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

get_timeout() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

get_timeout() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 183

get_timeout() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

get_timeout() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 178

get_timeout() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 180

get_timeout() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 186

get_timeout() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 172

get_timeout() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

get_timeout() (pylablib.core.devio.hid.HIDevice
method), 191

get_timeout() (pylablib.core.utils.net.ClientSocket
method), 427

get_timestamp_clock_frequency() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

get_top_parent() (in module pylablib.core.gui.utils),
296

get_transfer_info() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 600

get_trigger_input() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

get_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

get_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

get_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

get_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

get_trigger_level() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_trigger_level() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_trigger_level() (py-
lablib.devices.Tektronix.base.TDS2000

method), 866
get_trigger_level_limits() (py-

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_trigger_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

get_trigger_mode() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

get_trigger_mode() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

get_trigger_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

get_trigger_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

get_trigger_mode() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_trigger_mode() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_trigger_mode() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_trigger_mode() (py-
lablib.devices.Thorlabs.serial.FW method),
930

get_trigger_mode() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
934

get_trigger_mode() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

get_trigger_slope() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

get_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 461

get_trigger_slope() (py-
lablib.devices.AWG.specific.RigolDG1000

Index 1107

pylablib Documentation, Release 1.4.2

method), 486
get_trigger_slope() (py-

lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

get_trigger_slope() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

get_trigger_source() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

get_trigger_source() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

get_trigger_source() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

get_trigger_source() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 467

get_trigger_source() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

get_trigger_source() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

get_trigger_source() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

get_trigger_source() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

get_trigger_state() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_trigger_state() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

get_trigger_state() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_turret() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

get_type() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

get_type() (pylablib.core.dataproc.table_wrap.Array2DWrapper
method), 154

get_type() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 156

get_type() (pylablib.core.dataproc.table_wrap.I1DWrapper
method), 149

get_type() (pylablib.core.dataproc.table_wrap.I2DWrapper
method), 152

get_type() (pylablib.core.dataproc.table_wrap.IGenWrapper
method), 148

get_type() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 151

get_type() (pylablib.devices.Cryomagnetics.base.LM500
method), 586

get_type() (pylablib.devices.Cryomagnetics.base.LM510
method), 592

get_units() (pylablib.devices.Leybold.base.GenericITR
method), 664

get_units() (pylablib.devices.Leybold.base.ITR90
method), 666

get_units() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_units() (pylablib.devices.Pfeiffer.base.TPG260
method), 740

get_update() (pylablib.devices.Leybold.base.GenericITR
method), 664

get_update() (pylablib.devices.Leybold.base.ITR90
method), 666

get_usb_device_info() (in module py-
lablib.devices.Arcus.performax), 533

get_usb_devices_number() (in module py-
lablib.devices.Attocube.anc350), 552

get_usb_devices_number() (in module py-
lablib.devices.Newport.picomotor), 714

get_value() (in module py-
lablib.core.utils.ctypes_wrap), 357

get_value() (pylablib.core.gui.value_handling.CheckboxValueHandler
method), 306

get_value() (pylablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

get_value() (pylablib.core.gui.value_handling.GUIValues
method), 314

get_value() (pylablib.core.gui.value_handling.IBoolValueHandler
method), 305

get_value() (pylablib.core.gui.value_handling.IIndicatorHandler
method), 310

get_value() (pylablib.core.gui.value_handling.ISingleValueHandler
method), 302

get_value() (pylablib.core.gui.value_handling.IValueHandler
method), 299

get_value() (pylablib.core.gui.value_handling.LabelIndicatorHandler
method), 311

get_value() (pylablib.core.gui.value_handling.LabelValueHandler
method), 304

get_value() (pylablib.core.gui.value_handling.LineEditValueHandler
method), 304

get_value() (pylablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

get_value() (pylablib.core.gui.value_handling.PropertyValueHandler
method), 300

get_value() (pylablib.core.gui.value_handling.PushButtonValueHandler
method), 307

get_value() (pylablib.core.gui.value_handling.StandardIndicatorHandler
method), 311

1108 Index

pylablib Documentation, Release 1.4.2

get_value() (pylablib.core.gui.value_handling.StandardValueHandler
method), 301

get_value() (pylablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

get_value() (pylablib.core.gui.value_handling.VirtualValueHandler
method), 299

get_value() (pylablib.core.gui.widgets.button.ToggleButton
method), 228

get_value() (pylablib.core.gui.widgets.combo_box.ComboBox
method), 229

get_value() (pylablib.core.gui.widgets.container.IQContainer
method), 232

get_value() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_value() (pylablib.core.gui.widgets.container.QContainer
method), 234

get_value() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

get_value() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

get_value() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

get_value() (pylablib.core.gui.widgets.container.QTabContainer
method), 264

get_value() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_value() (pylablib.core.gui.widgets.edit.NumEdit
method), 268

get_value() (pylablib.core.gui.widgets.edit.TextEdit
method), 266

get_value() (pylablib.core.gui.widgets.label.EnumLabel
method), 269

get_value() (pylablib.core.gui.widgets.label.NumLabel
method), 270

get_value() (pylablib.core.gui.widgets.label.TextLabel
method), 268

get_value() (pylablib.core.gui.widgets.param_table.ParamTable
method), 280

get_value() (pylablib.core.gui.widgets.param_table.StatusTable
method), 291

get_value() (pylablib.core.thread.callsync.QCallResultSynchronizer
method), 316

get_value() (pylablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

get_value() (pylablib.core.thread.synchronizing.QThreadNotifier
method), 353

get_value() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

get_value() (pylablib.devices.Attocube.anc350.ANC350
method), 552

get_value() (pylablib.devices.Basler.pylon.BaslerPylonAttribute
method), 559

get_value() (pylablib.devices.DCAM.DCAM.DCAMAttribute
method), 596

get_value() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
method), 629

get_value() (pylablib.devices.Pfeiffer.base.DPG202
method), 743

get_value() (pylablib.devices.Photometrics.pvcam.PvcamAttribute
method), 746

get_value() (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
method), 757

get_value() (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
method), 803

get_value() (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
method), 816

get_value_changed_signal() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

get_value_changed_signal() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 308

get_value_changed_signal() (py-
lablib.core.gui.value_handling.GUIValues
method), 315

get_value_changed_signal() (py-
lablib.core.gui.value_handling.IBoolValueHandler
method), 305

get_value_changed_signal() (py-
lablib.core.gui.value_handling.ISingleValueHandler
method), 303

get_value_changed_signal() (py-
lablib.core.gui.value_handling.IValueHandler
method), 299

get_value_changed_signal() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 304

get_value_changed_signal() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 303

get_value_changed_signal() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

get_value_changed_signal() (py-
lablib.core.gui.value_handling.PropertyValueHandler
method), 301

get_value_changed_signal() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

get_value_changed_signal() (py-
lablib.core.gui.value_handling.StandardValueHandler
method), 302

get_value_changed_signal() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler

Index 1109

pylablib Documentation, Release 1.4.2

method), 308
get_value_changed_signal() (py-

lablib.core.gui.value_handling.VirtualValueHandler
method), 300

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 254

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

get_value_changed_signal() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_value_changed_signal() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

get_value_changed_signal() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

get_value_sync() (py-
lablib.core.thread.callsync.QCallResultSynchronizer
method), 316

get_value_sync() (py-
lablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

get_value_sync() (py-
lablib.core.thread.synchronizing.QThreadNotifier
method), 353

get_variable() (pylablib.core.thread.controller.QTaskThread
method), 343

get_variable() (pylablib.core.thread.controller.QThreadController
method), 333

get_variable() (pylablib.core.utils.ipc.SharedMemIPCTable

method), 422
get_vcr_function_parameters() (py-

lablib.devices.Keithley.multimeter.Keithley2110
method), 645

get_velocity() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_velocity() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

get_velocity_factor() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

get_velocity_parameters() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

get_velocity_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

get_velocity_parameters() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 946

get_vertical_position() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_vertical_position() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_vertical_position() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_vertical_span() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

get_vertical_span() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

get_vertical_span() (py-
lablib.devices.Tektronix.base.TDS2000
method), 866

get_voltage() (pylablib.devices.Attocube.anc300.ANC300
method), 549

get_voltage() (pylablib.devices.Attocube.anc350.ANC350
method), 554

get_voltage() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_voltage() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_voltage() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_voltage() (pylablib.devices.Rigol.power_supply.DP1116A
method), 810

get_voltage() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 937

get_voltage_input_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 698

1110 Index

pylablib Documentation, Release 1.4.2

get_voltage_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_voltage_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_voltage_output_buffer_fill() (py-
lablib.devices.NI.daq.NIDAQ method), 701

get_voltage_output_channels() (py-
lablib.devices.NI.daq.NIDAQ method), 700

get_voltage_output_clock_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 701

get_voltage_output_parameters() (py-
lablib.devices.NI.daq.NIDAQ method), 700

get_voltage_outputs() (py-
lablib.devices.NI.daq.NIDAQ method), 701

get_voltage_pattern() (py-
lablib.devices.Attocube.anc300.ANC300
method), 549

get_voltage_range() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 937

get_voltage_setpoint() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

get_voltage_setpoint() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_voltage_setpoint() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_voltage_setpoint() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 810

get_voltage_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

get_voltage_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

get_voltages() (pylablib.devices.OZOptics.base.EPC04
method), 723

get_vsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_vsspeed_period() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

get_warning_status() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_waveform() (pylablib.devices.OZOptics.base.EPC04
method), 723

get_wavelength() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph

method), 528
get_wavelength() (py-

lablib.devices.HighFinesse.wlm.WLM method),
609

get_wavelength() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_wavelength() (py-
lablib.devices.OZOptics.base.TF100 method),
720

get_wavelength() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

get_wavelength() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

get_wavelength_correction() (py-
lablib.devices.OZOptics.base.TF100 method),
719

get_wavelength_info() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

get_wavelength_limits() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

get_wavelength_range() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

get_wavelength_range() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

get_wfmpre() (pylablib.devices.Tektronix.base.DPO2000
method), 873

get_wfmpre() (pylablib.devices.Tektronix.base.ITektronixScope
method), 860

get_wfmpre() (pylablib.devices.Tektronix.base.TDS2000
method), 866

get_white_balance_matrix() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

get_widget() (pylablib.core.gui.value_handling.GUIValues
method), 313

get_widget() (pylablib.core.gui.widgets.container.IQContainer
method), 232

get_widget() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

get_widget() (pylablib.core.gui.widgets.container.QContainer
method), 234

get_widget() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

get_widget() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

get_widget() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

Index 1111

pylablib Documentation, Release 1.4.2

get_widget() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

get_widget() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

get_widget() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

get_widget() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

get_widget() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

get_widget() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

get_widget_location() (in module py-
lablib.core.gui.utils), 297

get_window_ft_func() (in module py-
lablib.core.dataproc.specfunc), 148

get_window_func() (in module py-
lablib.core.dataproc.specfunc), 147

get_work_hours() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

get_work_hours() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 668

get_work_hours() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 941

get_x_column() (in module py-
lablib.core.dataproc.utils), 159

get_y_column() (in module py-
lablib.core.dataproc.utils), 159

getargsfrom() (in module py-
lablib.core.utils.functions), 408

getattr_call() (in module py-
lablib.core.utils.functions), 408

getattr_multivar() (in module py-
lablib.core.utils.general), 410

getdefault() (in module py-
lablib.core.utils.funcargparse), 405

goto_zero_order() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

gpio (pylablib.devices.Standa.base.TFullState attribute),
853

grab() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

grab() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 493

grab() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

grab() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 524

grab() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

grab() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 575

grab() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

grab() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 601

grab() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 623

grab() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

grab() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

grab() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

grab() (pylablib.devices.interface.camera.IAttributeCamera
method), 964

grab() (pylablib.devices.interface.camera.IBinROICamera
method), 983

grab() (pylablib.devices.interface.camera.ICamera
method), 959

grab() (pylablib.devices.interface.camera.IExposureCamera
method), 973

grab() (pylablib.devices.interface.camera.IGrabberAttributeCamera
method), 969

grab() (pylablib.devices.interface.camera.IROICamera
method), 978

grab() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

grab() (pylablib.devices.PCO.SC2.PCOSC2Camera
method), 736

grab() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 752

grab() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

grab() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

grab() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

grab() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

grab() (pylablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

grab() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

grab() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 822

grab() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

grab() (pylablib.devices.uc480.uc480.UC480Camera
method), 994

grab_continuous() (py-
lablib.devices.Tektronix.base.DPO2000
method), 873

grab_continuous() (py-

1112 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Tektronix.base.ITektronixScope
method), 858

grab_continuous() (py-
lablib.devices.Tektronix.base.TDS2000
method), 867

grab_single() (pylablib.devices.Tektronix.base.DPO2000
method), 873

grab_single() (pylablib.devices.Tektronix.base.ITektronixScope
method), 857

grab_single() (pylablib.devices.Tektronix.base.TDS2000
method), 867

grabber_info (pylablib.devices.AlliedVision.Bonito.TDeviceInfo
attribute), 490

grabber_info (pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo
attribute), 757

GrabberClass (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
attribute), 496

GrabberClass (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
attribute), 490

GrabberClass (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
attribute), 757

GrabberClass (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
attribute), 781

GrabberClass (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
attribute), 764

GrabberClass (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
attribute), 773

gui_thread_method() (in module py-
lablib.core.thread.controller), 327

gui_values_path (py-
lablib.core.gui.widgets.container.TChild
attribute), 230

GUIValues (class in pylablib.core.gui.value_handling),
312

GUIValues.IndicatorsSet (class in py-
lablib.core.gui.value_handling), 313

H
hamming_w() (in module py-

lablib.core.dataproc.specfunc), 147
hamming_w_ft() (in module py-

lablib.core.dataproc.specfunc), 148
hann_w() (in module pylablib.core.dataproc.specfunc),

147
hann_w_ft() (in module py-

lablib.core.dataproc.specfunc), 148
has_arg() (pylablib.core.dataproc.callable.FunctionCallable

method), 128
has_arg() (pylablib.core.dataproc.callable.ICallable

method), 126
has_arg() (pylablib.core.dataproc.callable.JoinedCallable

method), 127
has_arg() (pylablib.core.dataproc.callable.MethodCallable

method), 129

has_arg() (pylablib.core.dataproc.callable.MultiplexedCallable
method), 126

has_calls() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

has_calls() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

has_calls() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

has_entry() (pylablib.core.utils.dictionary.Dictionary
method), 363

has_entry() (pylablib.core.utils.dictionary.DictionaryPointer
method), 375

has_entry() (pylablib.core.utils.dictionary.FilterTree
method), 392

has_entry() (pylablib.core.utils.dictionary.PrefixTree
method), 384

has_methods() (in module py-
lablib.core.gui.value_handling), 298

head (pylablib.devices.LaserQuantum.base.TTemperatures
attribute), 661

head_model (pylablib.devices.Andor.AndorSDK2.TDeviceInfo
attribute), 505

height (pylablib.core.dataproc.feature.Peak attribute),
131

height (pylablib.devices.interface.camera.TFrameSize
attribute), 955

HIDError, 192
HIDevice (class in pylablib.core.devio.hid), 190
HIDevice.Reader (class in pylablib.core.devio.hid),

191
HIDeviceBackend (class in py-

lablib.core.devio.comm_backend), 182
HIDLibError, 192
HIDTimeoutError, 192
high_pass_filter() (in module py-

lablib.core.dataproc.filters), 133
high_thresh (pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings

attribute), 739
high_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings

attribute), 650
high_value (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings

attribute), 655
hold_current (pylablib.devices.Standa.base.TPowerParams

attribute), 853
hold_time (pylablib.devices.SmarAct.MCS2.TCLMoveParams

attribute), 845
home (pylablib.devices.Andor.Shamrock.TGratingInfo at-

tribute), 527
home() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 540
home() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 536
home() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 543

Index 1113

pylablib Documentation, Release 1.4.2

home() (pylablib.devices.OZOptics.base.DD100
method), 721

home() (pylablib.devices.OZOptics.base.TF100 method),
720

home() (pylablib.devices.SmarAct.MCS2.MCS2
method), 848

home() (pylablib.devices.Standa.base.Standa8SMC
method), 855

home() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

home() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

home() (pylablib.devices.Trinamic.base.TMCM1110
method), 946

home_direction (pylablib.devices.Thorlabs.kinesis.THomeParams
attribute), 895

home_position (pylablib.devices.Thorlabs.kinesis.TPolCtlParams
attribute), 895

hour (pylablib.devices.uc480.uc480.TTimestamp at-
tribute), 989

hrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints
attribute), 801

huge_error() (in module py-
lablib.core.dataproc.fitting), 140

hw_kind_ccw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

hw_kind_cw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

hw_swapped (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

hw_type (pylablib.devices.Thorlabs.kinesis.TDeviceInfo
attribute), 892

hw_ver (pylablib.devices.Thorlabs.elliptec.TDeviceInfo
attribute), 887

hw_ver (pylablib.devices.Thorlabs.kinesis.TDeviceInfo
attribute), 892

I
i (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule

attribute), 710
I (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters

attribute), 831
I (pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters

attribute), 831
I (pylablib.devices.Sirah.Matisse.TThinetCtlParameters

attribute), 831
i (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams

attribute), 914
i() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

method), 130
i() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
i() (pylablib.core.dataproc.transform.LinearTransform

method), 157

i() (pylablib.core.devio.interface.CombinedParameterClass
method), 198

i() (pylablib.core.devio.interface.EnumParameterClass
method), 197

i() (pylablib.core.devio.interface.FunctionParameterClass
method), 197

i() (pylablib.core.devio.interface.ICheckingParameterClass
method), 194

i() (pylablib.core.devio.interface.IEnumParameterClass
method), 196

i() (pylablib.core.devio.interface.IParameterClass
method), 193

i() (pylablib.core.devio.interface.RangeParameterClass
method), 194

I1DWrapper (class in py-
lablib.core.dataproc.table_wrap), 148

I1DWrapper.Accessor (class in py-
lablib.core.dataproc.table_wrap), 148

I2DWrapper (class in py-
lablib.core.dataproc.table_wrap), 152

IArduinoDevice (class in py-
lablib.devices.Arduino.base), 546

IAttributeCamera (class in py-
lablib.devices.interface.camera), 961

ib_get_default_address() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_get_default_address() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

ib_get_reg() (pylablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_get_reg() (pylablib.devices.NKT.interbus.InterbusSystem
method), 712

ib_scan_devices() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_scan_devices() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

ib_set_default_address() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_set_default_address() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 712

ib_set_reg() (pylablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_set_reg() (pylablib.devices.NKT.interbus.InterbusSystem
method), 712

ib_using_address() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 704

ib_using_address() (py-

1114 Index

pylablib Documentation, Release 1.4.2

lablib.devices.NKT.interbus.InterbusSystem
method), 713

IBinaryOutputFileFormat (class in py-
lablib.core.fileio.savefile), 223

IBinROICamera (class in py-
lablib.devices.interface.camera), 980

IBonitoCamera (class in py-
lablib.devices.AlliedVision.Bonito), 490

IBoolValueHandler (class in py-
lablib.core.gui.value_handling), 305

ICallable (class in pylablib.core.dataproc.callable),
125

ICallable.NamesBoundCall (class in py-
lablib.core.dataproc.callable), 126

ICamera (class in pylablib.devices.interface.camera),
955

ICEBlocDevice (class in pylablib.devices.M2.base), 674
ICheckingParameterClass (class in py-

lablib.core.devio.interface), 193
ICommBackendWrapper (class in py-

lablib.core.devio.comm_backend), 188
id (pylablib.core.utils.ipc.TPipeMsg attribute), 420
id (pylablib.devices.Newport.picomotor.TDeviceInfo at-

tribute), 714
id (pylablib.devices.Ophir.base.TDeviceInfo attribute),

726
IDataLocation (class in pylablib.core.fileio.location),

214
IDevice (class in pylablib.core.devio.interface), 192
IDeviceCommBackend (class in py-

lablib.core.devio.comm_backend), 166
IDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 200
idreg (pylablib.devices.BitFlow.BitFlow.TDeviceInfo at-

tribute), 567
idx (pylablib.devices.BitFlow.BitFlow.TDeviceInfo at-

tribute), 567
idx (pylablib.devices.Mightex.MightexSSeries.TCameraInfo

attribute), 686
IEnumParameterClass (class in py-

lablib.core.devio.interface), 195
IExposureCamera (class in py-

lablib.devices.interface.camera), 971
IExternalFileDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 204
IExternalTableDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 202
IFileSystemDataLocation (class in py-

lablib.core.fileio.location), 215
IGenWrapper (class in py-

lablib.core.dataproc.table_wrap), 148
IGrabberAttributeCamera (class in py-

lablib.devices.interface.camera), 966
IIndex (class in pylablib.core.utils.indexing), 419

IIndicatorHandler (class in py-
lablib.core.gui.value_handling), 310

IInputFileFormat (class in py-
lablib.core.fileio.loadfile), 206

IInterbusModule (class in py-
lablib.devices.NKT.interbus), 705

IIPCChannel (class in pylablib.core.utils.ipc), 420
iir_apply_complex() (in module py-

lablib.core.dataproc.iir_transform), 143
ilabels (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 518
ilabels (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 559
ilabels (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 596
ilabels (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
ilabels (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 746
ilabels (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute

attribute), 757
ilabels (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 803
ilabels (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute

attribute), 816
IMAQCamera (class in pylablib.devices.IMAQ.IMAQ), 619
IMAQdxAttribute (class in py-

lablib.devices.IMAQdx.IMAQdx), 627
IMAQdxCamera (class in py-

lablib.devices.IMAQdx.IMAQdx), 629
IMAQdxCamera.CallbackManager (class in py-

lablib.devices.IMAQdx.IMAQdx), 630
IMAQFrameGrabber (class in py-

lablib.devices.IMAQ.IMAQ), 612
implemented (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 517
implemented (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
IMultiaxisStage (class in py-

lablib.devices.interface.stage), 987
in_use (pylablib.devices.uc480.uc480.TCameraInfo at-

tribute), 988
inc (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
inc (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
inc (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 746
inc (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
inc (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute

attribute), 816
inc() (pylablib.devices.interface.camera.FrameNotifier

method), 961

Index 1115

pylablib Documentation, Release 1.4.2

ind (pylablib.core.gui.value_handling.GUIValues.IndicatorsSet
attribute), 313

index (pylablib.devices.Attocube.anc350.ANC350.Reply
attribute), 552

index (pylablib.devices.Attocube.anc350.ANC350.Telegram
attribute), 552

index_to_value() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

Indexed2DTransform (class in py-
lablib.core.dataproc.transform), 158

indicator (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow
attribute), 276

indicator_handler (py-
lablib.core.gui.widgets.param_table.ParamTable.ParamRow
attribute), 276

individual (pylablib.core.utils.dictionary.DictionaryIntersection
attribute), 371

infinite_list (class in pylablib.core.utils.numerical),
429

infinite_list.counter (class in py-
lablib.core.utils.numerical), 429

info (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

init_amp_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

init_result (pylablib.devices.utils.load_lib.TLibraryOpenResult
attribute), 998

initial_guess() (pylablib.core.dataproc.fitting.Fitter
method), 139

InlineTable (class in pylablib.core.fileio.loadfile_utils),
212

InlineTableDictionaryEntry (class in py-
lablib.core.fileio.dict_entry), 201

insert() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

insert() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor
method), 153

insert() (pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor
method), 153

insert() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor
method), 156

insert() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor
method), 155

insert_column() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

insert_column() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

insert_column() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

insert_column() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

insert_column() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

insert_column() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

insert_column() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

insert_column() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

insert_column() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

insert_column() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

insert_layout_column() (in module py-
lablib.core.gui.utils), 297

insert_layout_row() (in module py-
lablib.core.gui.utils), 297

insert_option() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

insert_row() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

insert_row() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

insert_row() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

insert_row() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

insert_row() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

insert_row() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

insert_row() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

insert_row() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

insert_row() (pylablib.core.gui.widgets.param_table.ParamTable
method), 283

insert_row() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

insert_status_line() (in module py-
lablib.devices.interface.camera), 986

install_if_older() (in module py-
lablib.core.utils.module), 424

InstekAFG2000 (class in py-
lablib.devices.AWG.specific), 465

1116 Index

pylablib Documentation, Release 1.4.2

InstekAFG2225 (class in py-
lablib.devices.AWG.specific), 459

int2bits() (in module pylablib.core.utils.strpack), 438
int2bytes() (in module pylablib.core.utils.strpack),

438
integer_distance() (in module py-

lablib.core.utils.numerical), 429
IntegerFormatter (class in py-

lablib.core.gui.formatter), 295
integrate() (in module pylablib.core.dataproc.filters),

134
InterbusBackendError, 703
InterbusError, 703
InterbusSystem (class in py-

lablib.devices.NKT.interbus), 711
interface (pylablib.devices.IMAQ.IMAQ.TDeviceInfo

attribute), 612
interface (pylablib.devices.PCO.SC2.TDeviceInfo at-

tribute), 730
interface (pylablib.devices.PrincetonInstruments.picam.TCameraInfo

attribute), 800
interface (pylablib.devices.PrincetonInstruments.picam.TDeviceInfo

attribute), 803
interpolate1D() (in module py-

lablib.core.dataproc.interpolate), 145
interpolate1D_func() (in module py-

lablib.core.dataproc.interpolate), 144
interpolate2D() (in module py-

lablib.core.dataproc.interpolate), 145
interpolate_trace() (in module py-

lablib.core.dataproc.interpolate), 146
interpolateND() (in module py-

lablib.core.dataproc.interpolate), 145
InterruptException, 355
InterruptExceptionStop, 356
intersect() (pylablib.core.dataproc.image.ROI class

method), 144
intersect() (pylablib.core.dataproc.utils.Range

method), 160
inverse_fourier_transform() (in module py-

lablib.core.dataproc.fourier), 141
invert() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

method), 130
invert_dict() (in module pylablib.core.utils.general),

412
inverted() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
inverted() (pylablib.core.dataproc.transform.LinearTransform

method), 157
io1_oper_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters

attribute), 899
io1_pulse_width (py-

lablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

io1_sig_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

io2_oper_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

io2_pulse_width (py-
lablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

io2_sig_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

io_status (pylablib.devices.uc480.uc480.TFrameInfo
attribute), 990

IObjectCall (class in pylablib.core.utils.functions), 408
IObjectProperty (class in py-

lablib.core.utils.functions), 409
IOutputFileFormat (class in py-

lablib.core.fileio.savefile), 220
IParameterClass (class in py-

lablib.core.devio.interface), 193
IPhotonFocusCamera (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
757

IQContainer (class in py-
lablib.core.gui.widgets.container), 230

IQLayoutManagedWidget (class in py-
lablib.core.gui.widgets.layout_manager),
271

IQWidgetContainer (class in py-
lablib.core.gui.widgets.container), 235

IROICamera (class in pylablib.devices.interface.camera),
976

is_accessory_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

is_acquisition_setup() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

is_acquisition_setup() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 494

is_acquisition_setup() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

is_acquisition_setup() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

is_acquisition_setup() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

is_acquisition_setup() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 576

is_acquisition_setup() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

Index 1117

pylablib Documentation, Release 1.4.2

is_acquisition_setup() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

is_acquisition_setup() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 623

is_acquisition_setup() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

is_acquisition_setup() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

is_acquisition_setup() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

is_acquisition_setup() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 964

is_acquisition_setup() (py-
lablib.devices.interface.camera.IBinROICamera
method), 983

is_acquisition_setup() (py-
lablib.devices.interface.camera.ICamera
method), 956

is_acquisition_setup() (py-
lablib.devices.interface.camera.IExposureCamera
method), 973

is_acquisition_setup() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 969

is_acquisition_setup() (py-
lablib.devices.interface.camera.IROICamera
method), 978

is_acquisition_setup() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

is_acquisition_setup() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 736

is_acquisition_setup() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

is_acquisition_setup() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

is_acquisition_setup() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

is_acquisition_setup() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

is_acquisition_setup() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

is_acquisition_setup() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 807

is_acquisition_setup() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 827

is_acquisition_setup() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 822

is_acquisition_setup() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

is_acquisition_setup() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

is_ascending() (in module py-
lablib.core.dataproc.utils), 158

is_ascii() (pylablib.core.devio.data_format.DataFormat
method), 189

is_at_zero_order() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

is_autorange_enabled() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

is_autorange_enabled() (py-
lablib.devices.Thorlabs.misc.PM160 method),
924

is_autorange_enabled() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 949

is_batch_job_running() (py-
lablib.core.thread.controller.QTaskThread
method), 338

is_bool_array() (in module py-
lablib.core.utils.indexing), 418

is_branch_path() (py-
lablib.core.utils.dictionary.Dictionary
method), 363

is_branch_path() (py-
lablib.core.utils.dictionary.DictionaryPointer
method), 375

is_branch_path() (py-
lablib.core.utils.dictionary.FilterTree method),
392

is_branch_path() (py-
lablib.core.utils.dictionary.PrefixTree method),
384

is_branch_valid() (py-
lablib.core.fileio.dict_entry.DictEntryParser
method), 199

is_branch_valid() (py-
lablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry
class method), 206

1118 Index

pylablib Documentation, Release 1.4.2

is_branch_valid() (py-
lablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry
class method), 204

is_branch_valid() (py-
lablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
class method), 206

is_branch_valid() (py-
lablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry
class method), 203

is_branch_valid() (py-
lablib.core.fileio.dict_entry.IDictionaryEntry
class method), 200

is_branch_valid() (py-
lablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
class method), 205

is_branch_valid() (py-
lablib.core.fileio.dict_entry.IExternalTableDictionaryEntry
class method), 202

is_branch_valid() (py-
lablib.core.fileio.dict_entry.InlineTableDictionaryEntry
class method), 202

is_branch_valid() (py-
lablib.core.fileio.dict_entry.ITableDictionaryEntry
class method), 201

is_burst_enabled() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

is_burst_enabled() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

is_burst_enabled() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

is_burst_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 468

is_burst_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

is_burst_enabled() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

is_burst_enabled() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

is_burst_enabled() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

is_call_done() (pylablib.core.thread.callsync.QCallResultSynchronizer
method), 315

is_call_done() (pylablib.core.thread.callsync.QDirectResultSynchronizer
method), 316

is_CFR_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 759
is_CFR_enabled() (py-

lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

is_CFR_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

is_CFR_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

is_channel_enabled() (py-
lablib.devices.Tektronix.base.DPO2000
method), 874

is_channel_enabled() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

is_channel_enabled() (py-
lablib.devices.Tektronix.base.TDS2000
method), 867

is_channel_enabled() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

is_command (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 518

is_command (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

is_connected() (pylablib.core.utils.net.ClientSocket
method), 427

is_connected() (pylablib.devices.Attocube.anc350.ANC350
method), 553

is_continuous() (py-
lablib.devices.Tektronix.base.DPO2000
method), 874

is_continuous() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

is_continuous() (py-
lablib.devices.Tektronix.base.TDS2000
method), 867

is_convertible() (in module py-
lablib.core.utils.string), 437

is_cooler_on() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

is_cooler_on() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

is_cooling_enabled() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

is_data_valid() (py-
lablib.core.fileio.dict_entry.DictEntryBuilder
method), 199

is_data_valid() (py-
lablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry
class method), 206

Index 1119

pylablib Documentation, Release 1.4.2

is_data_valid() (py-
lablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry
class method), 204

is_data_valid() (py-
lablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry
class method), 206

is_data_valid() (py-
lablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry
class method), 203

is_data_valid() (py-
lablib.core.fileio.dict_entry.IDictionaryEntry
class method), 200

is_data_valid() (py-
lablib.core.fileio.dict_entry.IExternalFileDictionaryEntry
class method), 205

is_data_valid() (py-
lablib.core.fileio.dict_entry.IExternalTableDictionaryEntry
class method), 202

is_data_valid() (py-
lablib.core.fileio.dict_entry.InlineTableDictionaryEntry
class method), 202

is_data_valid() (py-
lablib.core.fileio.dict_entry.ITableDictionaryEntry
class method), 201

is_descending() (in module py-
lablib.core.dataproc.utils), 158

is_dict_entry_branch() (in module py-
lablib.core.fileio.dict_entry), 199

is_dictionary() (in module py-
lablib.core.utils.dictionary), 362

is_dictionary() (py-
lablib.core.utils.dictionary.Dictionary static
method), 363

is_dictionary() (py-
lablib.core.utils.dictionary.DictionaryPointer
static method), 375

is_dictionary() (py-
lablib.core.utils.dictionary.FilterTree static
method), 392

is_dictionary() (py-
lablib.core.utils.dictionary.PrefixTree static
method), 384

is_diffuser_in() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 728

is_drift_compensation_enabled() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

is_enabled() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 540

is_enabled() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

is_enabled() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 542

is_enabled() (pylablib.devices.Attocube.anc300.ANC300
method), 549

is_enabled() (pylablib.devices.Attocube.anc350.ANC350
method), 553

is_enabled() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 651

is_enabled() (pylablib.devices.LaserQuantum.base.Finesse
method), 662

is_enabled() (pylablib.devices.LighthousePhotonics.base.SproutG
method), 669

is_enabled() (pylablib.devices.Pfeiffer.base.TPG260
method), 740

is_enabled() (pylablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

is_fastpiezo_locked() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

is_filter_in() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

is_filter_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

is_fine_tuning() (pylablib.devices.M2.emm.EMM
method), 676

is_flipper_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

is_frame_transfer_enabled() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

is_free() (pylablib.core.fileio.location.FolderFileSystemDataLocation
method), 218

is_free() (pylablib.core.fileio.location.IDataLocation
method), 214

is_free() (pylablib.core.fileio.location.IFileSystemDataLocation
method), 215

is_free() (pylablib.core.fileio.location.OpenedFileLocation
method), 215

is_free() (pylablib.core.fileio.location.PrefixedFileSystemDataLocation
method), 217

is_free() (pylablib.core.fileio.location.SingleFileSystemDataLocation
method), 216

is_grabbing() (pylablib.devices.Tektronix.base.DPO2000
method), 874

is_grabbing() (pylablib.devices.Tektronix.base.ITektronixScope
method), 858

is_grabbing() (pylablib.devices.Tektronix.base.TDS2000
method), 867

is_gui_running() (in module py-
lablib.core.thread.threadprop), 356

is_gui_thread() (in module py-
lablib.core.thread.threadprop), 356

is_handled_widget() (in module py-
lablib.core.gui.value_handling), 310

1120 Index

pylablib Documentation, Release 1.4.2

is_homed() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

is_homing() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

is_homing() (pylablib.devices.Trinamic.base.TMCM1110
method), 946

is_in_controlled() (py-
lablib.core.thread.controller.QTaskThread
method), 344

is_in_controlled() (py-
lablib.core.thread.controller.QThreadController
method), 335

is_integer() (in module pylablib.core.gui.formatter),
294

is_layout_column_empty() (in module py-
lablib.core.gui.utils), 297

is_layout_row_empty() (in module py-
lablib.core.gui.utils), 297

is_leaf_path() (pylablib.core.utils.dictionary.Dictionary
method), 363

is_leaf_path() (pylablib.core.utils.dictionary.DictionaryPointer
method), 375

is_leaf_path() (pylablib.core.utils.dictionary.FilterTree
method), 392

is_leaf_path() (pylablib.core.utils.dictionary.PrefixTree
method), 384

is_led_enabled() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

is_linear() (in module pylablib.core.dataproc.utils),
159

is_looping() (pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper
method), 562

is_looping() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper
method), 688

is_mandatory_arg() (py-
lablib.core.dataproc.callable.FunctionCallable
method), 129

is_mandatory_arg() (py-
lablib.core.dataproc.callable.ICallable
method), 126

is_mandatory_arg() (py-
lablib.core.dataproc.callable.JoinedCallable
method), 128

is_mandatory_arg() (py-
lablib.core.dataproc.callable.MethodCallable
method), 129

is_mandatory_arg() (py-
lablib.core.dataproc.callable.MultiplexedCallable
method), 127

is_measurement_running() (py-
lablib.devices.HighFinesse.wlm.WLM method),
608

is_metadata_enabled() (py-

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

is_metadata_enabled() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

is_metadata_enabled() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

is_moving() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 541

is_moving() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 536

is_moving() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

is_moving() (pylablib.devices.Attocube.anc300.ANC300
method), 550

is_moving() (pylablib.devices.Attocube.anc350.ANC350
method), 553

is_moving() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 716

is_moving() (pylablib.devices.SmarAct.MCS2.MCS2
method), 846

is_moving() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 851

is_moving() (pylablib.devices.Standa.base.Standa8SMC
method), 854

is_moving() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

is_moving() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

is_moving() (pylablib.devices.Trinamic.base.TMCM1110
method), 947

is_nir_boost_enabled() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

is_ocp_enabled() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

is_online_enabled() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

is_online_enabled() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 795

is_online_enabled() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 794

is_opened() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

is_opened() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 183

is_opened() (pylablib.core.devio.comm_backend.ICommBackendWrapper
method), 189

is_opened() (pylablib.core.devio.comm_backend.IDeviceCommBackend

Index 1121

pylablib Documentation, Release 1.4.2

method), 167
is_opened() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 178
is_opened() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 180
is_opened() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 185
is_opened() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 172
is_opened() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 169
is_opened() (pylablib.core.devio.hid.HIDevice

method), 190
is_opened() (pylablib.core.devio.interface.IDevice

method), 192
is_opened() (pylablib.core.devio.SCPI.SCPIDevice

method), 164
is_opened() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 500
is_opened() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 494
is_opened() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 506
is_opened() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 519
is_opened() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph

method), 528
is_opened() (pylablib.devices.Arcus.performax.GenericPerformaxStage

method), 533
is_opened() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 541
is_opened() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 538
is_opened() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 544
is_opened() (pylablib.devices.Arduino.base.IArduinoDevice

method), 547
is_opened() (pylablib.devices.Attocube.anc300.ANC300

method), 551
is_opened() (pylablib.devices.Attocube.anc350.ANC350

method), 555
is_opened() (pylablib.devices.AWG.generic.GenericAWG

method), 444
is_opened() (pylablib.devices.AWG.specific.Agilent33220A

method), 455
is_opened() (pylablib.devices.AWG.specific.Agilent33500

method), 449
is_opened() (pylablib.devices.AWG.specific.InstekAFG2000

method), 468
is_opened() (pylablib.devices.AWG.specific.InstekAFG2225

method), 462
is_opened() (pylablib.devices.AWG.specific.RigolDG1000

method), 486
is_opened() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 474
is_opened() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 480
is_opened() (pylablib.devices.Basler.pylon.BaslerPylonCamera

method), 560
is_opened() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

method), 576
is_opened() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

method), 567
is_opened() (pylablib.devices.Conrad.base.RelayBoard

method), 581
is_opened() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
is_opened() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
is_opened() (pylablib.devices.Cryomagnetics.base.LM510

method), 592
is_opened() (pylablib.devices.DCAM.DCAM.DCAMCamera

method), 597
is_opened() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 607
is_opened() (pylablib.devices.HighFinesse.wlm.WLM

method), 608
is_opened() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 623
is_opened() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 612
is_opened() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 638
is_opened() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 629
is_opened() (pylablib.devices.interface.camera.IAttributeCamera

method), 964
is_opened() (pylablib.devices.interface.camera.IBinROICamera

method), 983
is_opened() (pylablib.devices.interface.camera.ICamera

method), 959
is_opened() (pylablib.devices.interface.camera.IExposureCamera

method), 974
is_opened() (pylablib.devices.interface.camera.IGrabberAttributeCamera

method), 969
is_opened() (pylablib.devices.interface.camera.IROICamera

method), 978
is_opened() (pylablib.devices.interface.stage.IMultiaxisStage

method), 988
is_opened() (pylablib.devices.interface.stage.IStage

method), 987
is_opened() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
is_opened() (pylablib.devices.KJL.base.KJL300

method), 643
is_opened() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
is_opened() (pylablib.devices.Lakeshore.base.Lakeshore370

1122 Index

pylablib Documentation, Release 1.4.2

method), 658
is_opened() (pylablib.devices.LaserQuantum.base.Finesse

method), 662
is_opened() (pylablib.devices.Leybold.base.GenericITR

method), 665
is_opened() (pylablib.devices.Leybold.base.ITR90

method), 667
is_opened() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 669
is_opened() (pylablib.devices.Lumel.base.LumelRE72Controller

method), 672
is_opened() (pylablib.devices.M2.base.ICEBlocDevice

method), 674
is_opened() (pylablib.devices.M2.emm.EMM method),

678
is_opened() (pylablib.devices.M2.solstis.Solstis

method), 685
is_opened() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 687
is_opened() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 695
is_opened() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 717
is_opened() (pylablib.devices.NI.daq.NIDAQ method),

697
is_opened() (pylablib.devices.NKT.interbus.GenericInterbusDevice

method), 705
is_opened() (pylablib.devices.NKT.interbus.GenericInterbusModule

method), 707
is_opened() (pylablib.devices.NKT.interbus.IInterbusModule

method), 706
is_opened() (pylablib.devices.NKT.interbus.InterbusSystem

method), 713
is_opened() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule

method), 708
is_opened() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule

method), 709
is_opened() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule

method), 710
is_opened() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule

method), 711
is_opened() (pylablib.devices.Ophir.base.OphirDevice

method), 726
is_opened() (pylablib.devices.Ophir.base.VegaPowerMeter

method), 729
is_opened() (pylablib.devices.OZOptics.base.DD100

method), 722
is_opened() (pylablib.devices.OZOptics.base.EPC04

method), 724
is_opened() (pylablib.devices.OZOptics.base.OZOpticsDevice

method), 719
is_opened() (pylablib.devices.OZOptics.base.TF100

method), 720
is_opened() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 731
is_opened() (pylablib.devices.Pfeiffer.base.DPG202

method), 744
is_opened() (pylablib.devices.Pfeiffer.base.TPG260

method), 742
is_opened() (pylablib.devices.Photometrics.pvcam.PvcamCamera

method), 748
is_opened() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 761
is_opened() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

method), 785
is_opened() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 768
is_opened() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

method), 777
is_opened() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 791
is_opened() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
is_opened() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
is_opened() (pylablib.devices.PrincetonInstruments.picam.PicamCamera

method), 804
is_opened() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
is_opened() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

method), 828
is_opened() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

method), 817
is_opened() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 837
is_opened() (pylablib.devices.SmarAct.MCS2.MCS2

method), 845
is_opened() (pylablib.devices.SmarAct.scu3d.SCU3D

method), 850
is_opened() (pylablib.devices.Standa.base.Standa8SMC

method), 856
is_opened() (pylablib.devices.Tektronix.base.DPO2000

method), 874
is_opened() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
is_opened() (pylablib.devices.Tektronix.base.TDS2000

method), 867
is_opened() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 891
is_opened() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 894
is_opened() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 898
is_opened() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 908
is_opened() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 912
is_opened() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

Index 1123

pylablib Documentation, Release 1.4.2

method), 916
is_opened() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
is_opened() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
is_opened() (pylablib.devices.Thorlabs.misc.PM160

method), 924
is_opened() (pylablib.devices.Thorlabs.serial.FW

method), 931
is_opened() (pylablib.devices.Thorlabs.serial.FWv1

method), 935
is_opened() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
is_opened() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
is_opened() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

method), 880
is_opened() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 943
is_opened() (pylablib.devices.Trinamic.base.TMCM1110

method), 948
is_opened() (pylablib.devices.uc480.uc480.UC480Camera

method), 990
is_opened() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
is_opened() (pylablib.devices.Voltcraft.multimeter.VC880

method), 954
is_ordered() (in module pylablib.core.dataproc.utils),

158
is_output_enabled() (py-

lablib.devices.AWG.generic.GenericAWG
method), 441

is_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 455

is_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

is_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 468

is_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

is_output_enabled() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

is_output_enabled() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

is_output_enabled() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

is_output_enabled() (py-

lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

is_output_enabled() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 810

is_ovp_enabled() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

is_path_valid() (in module pylablib.core.utils.files),
399

is_peer_closed() (py-
lablib.core.utils.ipc.SharedMemIPCTable
method), 422

is_peer_connected() (py-
lablib.core.utils.ipc.SharedMemIPCTable
method), 422

is_pixel_correction_enabled() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

is_pulse_output_running() (py-
lablib.devices.NI.daq.NIDAQ method), 703

is_range() (in module pylablib.core.utils.indexing),
418

is_remote_enabled() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 605

is_running() (pylablib.core.gui.widgets.container.IQContainer
method), 232

is_running() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

is_running() (pylablib.core.gui.widgets.container.QContainer
method), 234

is_running() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

is_running() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

is_running() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

is_running() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

is_running() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

is_running() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

is_running() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

is_running() (pylablib.core.gui.widgets.param_table.ParamTable
method), 283

is_running() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

is_running() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager
method), 573

is_running() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager
method), 569

1124 Index

pylablib Documentation, Release 1.4.2

is_running() (pylablib.devices.NI.daq.NIDAQ
method), 699

is_running() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager
method), 782

is_sequence() (in module py-
lablib.core.utils.funcargparse), 405

is_servo_enabled() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 795

is_servo_enabled() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

is_shutter_mode_possible() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

is_shutter_opened() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 661

is_shutter_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

is_slice() (in module pylablib.core.utils.indexing),
418

is_slit_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

is_status_line_enabled() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

is_status_line_enabled() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

is_status_line_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

is_status_line_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

is_status_line_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

is_status_line_enabled() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 777

is_stopping() (pylablib.core.gui.widgets.container.IQContainer
method), 232

is_stopping() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 238

is_stopping() (pylablib.core.gui.widgets.container.QContainer
method), 234

is_stopping() (pylablib.core.gui.widgets.container.QDialogContainer
method), 250

is_stopping() (pylablib.core.gui.widgets.container.QFrameContainer
method), 246

is_stopping() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

is_stopping() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

is_stopping() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

is_stopping() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

is_stopping() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

is_stopping() (pylablib.core.gui.widgets.param_table.ParamTable
method), 283

is_stopping() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

is_switcher_channel_enabled() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

is_switcher_channel_shown() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

is_sync_output_enabled() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 468

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

is_sync_output_enabled() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

is_target_reached() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

is_timer_running() (py-
lablib.core.gui.widgets.container.IQContainer
method), 231

is_timer_running() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

is_timer_running() (py-

Index 1125

pylablib Documentation, Release 1.4.2

lablib.core.gui.widgets.container.QContainer
method), 234

is_timer_running() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 250

is_timer_running() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

is_timer_running() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

is_timer_running() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

is_timer_running() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

is_timer_running() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

is_timer_running() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

is_timer_running() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

is_timer_running() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

is_trigger_output_enabled() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.Agilent33500
method), 449

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 468

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 486

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 474

is_trigger_output_enabled() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 480

is_unprintable_character() (in module py-

lablib.core.fileio.loadfile_utils), 212
is_velocity_control_enabled() (py-

lablib.devices.PhysikInstrumente.base.PIE516
method), 792

is_wait_done() (pylablib.devices.interface.camera.FrameCounter
method), 960

is_wavelength_control_present() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

is_wavemeter_connected() (py-
lablib.devices.M2.solstis.Solstis method),
680

is_wavemeter_lock_on() (py-
lablib.devices.M2.solstis.Solstis method),
680

ISingleValueHandler (class in py-
lablib.core.gui.value_handling), 302

ISkippableNotifier (class in py-
lablib.core.thread.notifier), 351

ispan() (pylablib.core.dataproc.image.ROI method),
144

IStage (class in pylablib.devices.interface.stage), 986
ITableDictionaryEntry (class in py-

lablib.core.fileio.dict_entry), 201
ITektronixScope (class in py-

lablib.devices.Tektronix.base), 857
ItemAccessor (class in pylablib.core.utils.dictionary),

397
items() (pylablib.core.utils.dictionary.Dictionary

method), 364
items() (pylablib.core.utils.dictionary.DictionaryPointer

method), 375
items() (pylablib.core.utils.dictionary.FilterTree

method), 392
items() (pylablib.core.utils.dictionary.PrefixTree

method), 384
iter_sublayout_items() (py-

lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

iter_sublayout_items() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

iter_sublayout_items() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 246

iter_sublayout_items() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

iter_sublayout_items() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

iter_sublayout_items() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

1126 Index

pylablib Documentation, Release 1.4.2

iter_sublayout_items() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

iter_sublayout_items() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

iter_sublayout_items() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

iter_sublayout_items() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

iteritems() (pylablib.core.utils.dictionary.Dictionary
method), 364

iteritems() (pylablib.core.utils.dictionary.DictionaryPointer
method), 376

iteritems() (pylablib.core.utils.dictionary.FilterTree
method), 392

iteritems() (pylablib.core.utils.dictionary.PrefixTree
method), 384

iterkeys() (pylablib.core.utils.dictionary.Dictionary
method), 366

iterkeys() (pylablib.core.utils.dictionary.DictionaryPointer
method), 376

iterkeys() (pylablib.core.utils.dictionary.FilterTree
method), 393

iterkeys() (pylablib.core.utils.dictionary.PrefixTree
method), 385

iternodes() (pylablib.core.utils.dictionary.Dictionary
method), 366

iternodes() (pylablib.core.utils.dictionary.DictionaryPointer
method), 376

iternodes() (pylablib.core.utils.dictionary.FilterTree
method), 393

iternodes() (pylablib.core.utils.dictionary.PrefixTree
method), 385

itervalues() (pylablib.core.utils.dictionary.Dictionary
method), 365

itervalues() (pylablib.core.utils.dictionary.DictionaryPointer
method), 376

itervalues() (pylablib.core.utils.dictionary.FilterTree
method), 393

itervalues() (pylablib.core.utils.dictionary.PrefixTree
method), 385

ITextInputFileFormat (class in py-
lablib.core.fileio.loadfile), 206

ITextOutputFileFormat (class in py-
lablib.core.fileio.savefile), 220

ITR90 (class in pylablib.devices.Leybold.base), 665
IValueHandler (class in py-

lablib.core.gui.value_handling), 298
ivalues (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 518
ivalues (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 559
ivalues (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 596
ivalues (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
ivalues (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 746
ivalues (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute

attribute), 756
ivalues (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 803
ivalues (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute

attribute), 816
ivpwr (pylablib.devices.Standa.base.TFullState at-

tribute), 853
ivusb (pylablib.devices.Standa.base.TFullState at-

tribute), 853

J
job (pylablib.core.thread.controller.QTaskThread.TBatchJob

attribute), 336
jog() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 541
jog() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 536
jog() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 543
jog() (pylablib.devices.Attocube.anc300.ANC300

method), 550
jog() (pylablib.devices.Attocube.anc350.ANC350

method), 554
jog() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 716
jog() (pylablib.devices.Standa.base.Standa8SMC

method), 855
jog() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 905
jog() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 911
jog() (pylablib.devices.Trinamic.base.TMCM1110

method), 945
jog1 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams

attribute), 895
jog2 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams

attribute), 895
jog3 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams

attribute), 895
JoinedCallable (class in py-

lablib.core.dataproc.callable), 127
JoinedCallable.NamesBoundCall (class in py-

lablib.core.dataproc.callable), 127
jspan() (pylablib.core.dataproc.image.ROI method),

144

Index 1127

pylablib Documentation, Release 1.4.2

K
Keithley2110 (class in py-

lablib.devices.Keithley.multimeter), 645
kernel (pylablib.core.dataproc.feature.Peak attribute),

131
keyPressEvent() (py-

lablib.core.gui.widgets.edit.NumEdit method),
267

keyPressEvent() (py-
lablib.core.gui.widgets.edit.TextEdit method),
266

keys() (pylablib.core.utils.dictionary.Dictionary
method), 365

keys() (pylablib.core.utils.dictionary.DictionaryPointer
method), 377

keys() (pylablib.core.utils.dictionary.FilterTree
method), 393

keys() (pylablib.core.utils.dictionary.PrefixTree
method), 385

kind (pylablib.core.utils.ipc.TShmemVarDesc attribute),
421

kind (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 517

kind (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 557

kind (pylablib.devices.DCAM.DCAM.DCAMAttribute
attribute), 595

kind (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 627

kind (pylablib.devices.interface.camera.TStatusLineDescription
attribute), 985

kind (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 745

kind (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

kind (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 801

kind (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
attribute), 816

kind (pylablib.devices.Voltcraft.multimeter.TVC880Reading
attribute), 953

KinesisDevice (class in py-
lablib.devices.Thorlabs.kinesis), 896

KinesisMotor (class in py-
lablib.devices.Thorlabs.kinesis), 903

KinesisPiezoMotor (class in py-
lablib.devices.Thorlabs.kinesis), 910

KinesisQuadDetector (class in py-
lablib.devices.Thorlabs.kinesis), 915

kinetic_cycle_time (py-
lablib.devices.Andor.AndorSDK2.TCycleTimings
attribute), 506

KJL300 (class in pylablib.devices.KJL.base), 642
KJLBackendError, 641

KJLError, 641

L
label (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow

attribute), 276
label (pylablib.core.utils.string.TConversionClass at-

tribute), 436
LabelIndicatorHandler (class in py-

lablib.core.gui.value_handling), 311
labels (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 518
labels (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 559
labels (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 596
labels (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
labels (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 746
labels (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute

attribute), 756
labels (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 803
labels (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute

attribute), 816
LabelValueHandler (class in py-

lablib.core.gui.value_handling), 304
Lakeshore218 (class in py-

lablib.devices.Lakeshore.base), 650
Lakeshore370 (class in py-

lablib.devices.Lakeshore.base), 656
LakeshoreBackendError, 649
LakeshoreError, 649
laser (pylablib.devices.LighthousePhotonics.base.TWorkHours

attribute), 668
laser_enabled (pylablib.devices.LaserQuantum.base.TWorkHours

attribute), 661
laser_on (pylablib.devices.Toptica.ibeam.TWorkHours

attribute), 941
laser_threshold (py-

lablib.devices.LaserQuantum.base.TWorkHours
attribute), 661

LaserQuantumBackendError, 660
LaserQuantumError, 660
latching_trigger() (in module py-

lablib.core.dataproc.feature), 132
layout (pylablib.core.gui.utils.TWidgetLocation at-

tribute), 297
left (pylablib.devices.interface.camera.TFramePosition

attribute), 955
left_enable (pylablib.devices.Trinamic.base.TLimitSwitchParams

attribute), 944
level (pylablib.devices.Tektronix.base.TTriggerParameters

attribute), 857

1128 Index

pylablib Documentation, Release 1.4.2

LeyboldBackendError, 663
LeyboldError, 663
LibraryController (class in py-

lablib.devices.Andor.AndorSDK2), 505
LibraryController (class in py-

lablib.devices.Andor.AndorSDK3), 516
LibraryController (class in py-

lablib.devices.Andor.Shamrock), 526
LibraryController (class in py-

lablib.devices.Basler.pylon), 556
LibraryController (class in py-

lablib.devices.DCAM.DCAM), 595
LibraryController (class in py-

lablib.devices.Mightex.MightexSSeries),
686

LibraryController (class in py-
lablib.devices.Photometrics.pvcam), 744

LibraryController (class in py-
lablib.devices.PhotonFocus.PhotonFocus),
755

LibraryController (class in py-
lablib.devices.PrincetonInstruments.picam),
800

LibraryController (class in py-
lablib.devices.SmarAct.MCS2), 844

LibraryController (class in py-
lablib.devices.SmarAct.scu3d), 849

LibraryController (class in py-
lablib.devices.Thorlabs.TLCamera), 878

LibraryController (class in py-
lablib.devices.utils.load_lib), 998

LighthousePhotonicsBackendError, 667
LighthousePhotonicsError, 667
limit (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader

attribute), 650
limit() (pylablib.core.dataproc.image.ROI method),

144
limit_errors_enabled() (py-

lablib.devices.Arcus.performax.Performax2EXStage
method), 541

limit_errors_enabled() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 535

limit_switch (pylablib.devices.Thorlabs.kinesis.THomeParams
attribute), 895

limit_to_range() (in module py-
lablib.core.utils.numerical), 429

LimitError, 295
linear_to_sRGB() (in module py-

lablib.devices.utils.color), 997
LinearTransform (class in py-

lablib.core.dataproc.transform), 157
LineEditValueHandler (class in py-

lablib.core.gui.value_handling), 303

lines (pylablib.devices.Andor.Shamrock.TGratingInfo
attribute), 527

list_applets() (in module py-
lablib.devices.SiliconSoftware.fgrab), 815

list_backend_resources() (in module py-
lablib.core.devio.comm_backend), 188

list_boards() (in module py-
lablib.devices.SiliconSoftware.fgrab), 814

list_cameras() (in module py-
lablib.devices.Basler.pylon), 557

list_cameras() (in module py-
lablib.devices.BitFlow.BitFlow), 567

list_cameras() (in module py-
lablib.devices.IMAQ.IMAQ), 611

list_cameras() (in module py-
lablib.devices.IMAQdx.IMAQdx), 627

list_cameras() (in module py-
lablib.devices.Mightex.MightexSSeries),
686

list_cameras() (in module py-
lablib.devices.PCO.SC2), 730

list_cameras() (in module py-
lablib.devices.Photometrics.pvcam), 745

list_cameras() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
755

list_cameras() (in module py-
lablib.devices.PrincetonInstruments.picam),
800

list_cameras() (in module py-
lablib.devices.Thorlabs.TLCamera), 878

list_cameras() (in module py-
lablib.devices.uc480.uc480), 988

list_devices() (in module pylablib.core.devio.hid),
190

list_devices() (in module pylablib.devices.NI.daq),
696

list_devices() (in module py-
lablib.devices.SmarAct.MCS2), 844

list_devices() (in module py-
lablib.devices.SmarAct.scu3d), 850

list_devices() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice
static method), 892

list_devices() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
static method), 898

list_devices() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
static method), 908

list_devices() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
static method), 913

list_devices() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
static method), 917

list_devices() (pylablib.devices.Thorlabs.kinesis.MFF
static method), 902

list_dir() (in module pylablib.core.utils.files), 400

Index 1129

pylablib Documentation, Release 1.4.2

list_dir_recursive() (in module py-
lablib.core.utils.files), 401

list_kinesis_devices() (in module py-
lablib.devices.Thorlabs.kinesis), 891

list_opened_files() (py-
lablib.core.fileio.location.FolderFileSystemDataLocation
method), 218

list_opened_files() (py-
lablib.core.fileio.location.IDataLocation
method), 215

list_opened_files() (py-
lablib.core.fileio.location.IFileSystemDataLocation
method), 215

list_opened_files() (py-
lablib.core.fileio.location.OpenedFileLocation
method), 215

list_opened_files() (py-
lablib.core.fileio.location.PrefixedFileSystemDataLocation
method), 217

list_opened_files() (py-
lablib.core.fileio.location.SingleFileSystemDataLocation
method), 216

list_resources() (py-
lablib.core.devio.comm_backend.FT232DeviceBackend
static method), 176

list_resources() (py-
lablib.core.devio.comm_backend.HIDeviceBackend
static method), 184

list_resources() (py-
lablib.core.devio.comm_backend.IDeviceCommBackend
static method), 168

list_resources() (py-
lablib.core.devio.comm_backend.NetworkDeviceBackend
static method), 179

list_resources() (py-
lablib.core.devio.comm_backend.PyUSBDeviceBackend
static method), 181

list_resources() (py-
lablib.core.devio.comm_backend.RecordedDeviceBackend
static method), 186

list_resources() (py-
lablib.core.devio.comm_backend.SerialDeviceBackend
static method), 173

list_resources() (py-
lablib.core.devio.comm_backend.VisaDeviceBackend
static method), 169

list_spectrographs() (in module py-
lablib.devices.Andor.Shamrock), 527

list_usb_performax_devices() (in module py-
lablib.devices.Arcus.performax), 533

listen() (in module pylablib.core.utils.net), 428
ListIndex (class in pylablib.core.utils.indexing), 419
ListIndexNoSlice (class in py-

lablib.core.utils.indexing), 419

LM500 (class in pylablib.devices.Cryomagnetics.base),
586

LM510 (class in pylablib.devices.Cryomagnetics.base),
590

load() (in module pylablib.core.utils.strdump), 434
load() (pylablib.core.utils.strdump.StrDumper method),

433
load() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor

method), 578
load_bin() (in module pylablib.core.fileio.loadfile), 209
load_bin_desc() (in module py-

lablib.core.fileio.loadfile), 210
load_csv() (in module pylablib.core.fileio.loadfile), 209
load_csv_desc() (in module py-

lablib.core.fileio.loadfile), 209
load_dict() (in module pylablib.core.fileio.loadfile),

210
load_file() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry

class method), 205
load_file() (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry

class method), 205
load_generic() (in module py-

lablib.core.fileio.loadfile), 211
load_lib() (in module pylablib.devices.utils.load_lib),

997
load_logfile() (in module py-

lablib.core.devio.backend_logger), 165
load_par() (in module pylablib), 999
loads() (in module pylablib.core.utils.strdump), 434
loads() (pylablib.core.utils.strdump.StrDumper

method), 433
loc (pylablib.core.fileio.location.LocationFile attribute),

214
LocationFile (class in pylablib.core.fileio.location),

214
LocationName (class in pylablib.core.fileio.location),

213
lock() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 176
lock() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 184
lock() (pylablib.core.devio.comm_backend.ICommBackendWrapper

method), 189
lock() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 167
lock() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 179
lock() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 181
lock() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 187
lock() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 173
lock() (pylablib.core.devio.comm_backend.VisaDeviceBackend

1130 Index

pylablib Documentation, Release 1.4.2

method), 169
lock() (pylablib.core.devio.SCPI.SCPIDevice method),

164
lock() (pylablib.devices.Arduino.base.IArduinoDevice

method), 547
lock() (pylablib.devices.Attocube.anc300.ANC300

method), 551
lock() (pylablib.devices.Attocube.anc350.ANC350

method), 555
lock() (pylablib.devices.AWG.generic.GenericAWG

method), 445
lock() (pylablib.devices.AWG.specific.Agilent33220A

method), 456
lock() (pylablib.devices.AWG.specific.Agilent33500

method), 450
lock() (pylablib.devices.AWG.specific.InstekAFG2000

method), 468
lock() (pylablib.devices.AWG.specific.InstekAFG2225

method), 462
lock() (pylablib.devices.AWG.specific.RigolDG1000

method), 486
lock() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 474
lock() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 480
lock() (pylablib.devices.Conrad.base.RelayBoard

method), 581
lock() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
lock() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
lock() (pylablib.devices.Cryomagnetics.base.LM510

method), 592
lock() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 607
lock() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
lock() (pylablib.devices.KJL.base.KJL300 method), 643
lock() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
lock() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 658
lock() (pylablib.devices.LaserQuantum.base.Finesse

method), 662
lock() (pylablib.devices.Leybold.base.GenericITR

method), 665
lock() (pylablib.devices.Leybold.base.ITR90 method),

667
lock() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 669
lock() (pylablib.devices.Lumel.base.LumelRE72Controller

method), 672
lock() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 695

lock() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 717

lock() (pylablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

lock() (pylablib.devices.NKT.interbus.InterbusSystem
method), 713

lock() (pylablib.devices.Ophir.base.OphirDevice
method), 726

lock() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 729

lock() (pylablib.devices.OZOptics.base.DD100
method), 722

lock() (pylablib.devices.OZOptics.base.EPC04
method), 724

lock() (pylablib.devices.OZOptics.base.OZOpticsDevice
method), 719

lock() (pylablib.devices.OZOptics.base.TF100 method),
720

lock() (pylablib.devices.Pfeiffer.base.DPG202 method),
744

lock() (pylablib.devices.Pfeiffer.base.TPG260 method),
742

lock() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

lock() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 797

lock() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 794

lock() (pylablib.devices.Rigol.power_supply.DP1116A
method), 812

lock() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 837

lock() (pylablib.devices.Standa.base.Standa8SMC
method), 856

lock() (pylablib.devices.Tektronix.base.DPO2000
method), 874

lock() (pylablib.devices.Tektronix.base.ITektronixScope
method), 862

lock() (pylablib.devices.Tektronix.base.TDS2000
method), 867

lock() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

lock() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

lock() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 898

lock() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 909

lock() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 913

lock() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 917

lock() (pylablib.devices.Thorlabs.kinesis.MFF method),
902

Index 1131

pylablib Documentation, Release 1.4.2

lock() (pylablib.devices.Thorlabs.misc.GenericPM
method), 920

lock() (pylablib.devices.Thorlabs.misc.PM160 method),
924

lock() (pylablib.devices.Thorlabs.serial.FW method),
931

lock() (pylablib.devices.Thorlabs.serial.FWv1 method),
935

lock() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 938

lock() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 928

lock() (pylablib.devices.Toptica.ibeam.TopticaIBeam
method), 943

lock() (pylablib.devices.Trinamic.base.TMCM1110
method), 948

lock() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 950

lock() (pylablib.devices.Voltcraft.multimeter.VC880
method), 954

lock_etalon() (pylablib.devices.M2.solstis.Solstis
method), 681

lock_reference_cavity() (py-
lablib.devices.M2.solstis.Solstis method),
681

lock_wavemeter() (pylablib.devices.M2.solstis.Solstis
method), 680

locking() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 176

locking() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 184

locking() (pylablib.core.devio.comm_backend.ICommBackendWrapper
method), 189

locking() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

locking() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 179

locking() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 182

locking() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 187

locking() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 173

locking() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

locking() (pylablib.core.devio.SCPI.SCPIDevice
method), 164

locking() (pylablib.devices.Arduino.base.IArduinoDevice
method), 547

locking() (pylablib.devices.Attocube.anc300.ANC300
method), 551

locking() (pylablib.devices.Attocube.anc350.ANC350
method), 555

locking() (pylablib.devices.AWG.generic.GenericAWG

method), 445
locking() (pylablib.devices.AWG.specific.Agilent33220A

method), 456
locking() (pylablib.devices.AWG.specific.Agilent33500

method), 450
locking() (pylablib.devices.AWG.specific.InstekAFG2000

method), 468
locking() (pylablib.devices.AWG.specific.InstekAFG2225

method), 462
locking() (pylablib.devices.AWG.specific.RigolDG1000

method), 486
locking() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 474
locking() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 480
locking() (pylablib.devices.Conrad.base.RelayBoard

method), 581
locking() (pylablib.devices.Cryocon.base.Cryocon1x

method), 583
locking() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
locking() (pylablib.devices.Cryomagnetics.base.LM510

method), 592
locking() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 607
locking() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
locking() (pylablib.devices.KJL.base.KJL300 method),

643
locking() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
locking() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 658
locking() (pylablib.devices.LaserQuantum.base.Finesse

method), 663
locking() (pylablib.devices.Leybold.base.GenericITR

method), 665
locking() (pylablib.devices.Leybold.base.ITR90

method), 667
locking() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 670
locking() (pylablib.devices.Lumel.base.LumelRE72Controller

method), 672
locking() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 695
locking() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 717
locking() (pylablib.devices.NKT.interbus.GenericInterbusDevice

method), 705
locking() (pylablib.devices.NKT.interbus.InterbusSystem

method), 713
locking() (pylablib.devices.Ophir.base.OphirDevice

method), 726
locking() (pylablib.devices.Ophir.base.VegaPowerMeter

1132 Index

pylablib Documentation, Release 1.4.2

method), 729
locking() (pylablib.devices.OZOptics.base.DD100

method), 722
locking() (pylablib.devices.OZOptics.base.EPC04

method), 724
locking() (pylablib.devices.OZOptics.base.OZOpticsDevice

method), 719
locking() (pylablib.devices.OZOptics.base.TF100

method), 720
locking() (pylablib.devices.Pfeiffer.base.DPG202

method), 744
locking() (pylablib.devices.Pfeiffer.base.TPG260

method), 742
locking() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 791
locking() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 797
locking() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
locking() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
locking() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 838
locking() (pylablib.devices.Standa.base.Standa8SMC

method), 856
locking() (pylablib.devices.Tektronix.base.DPO2000

method), 874
locking() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
locking() (pylablib.devices.Tektronix.base.TDS2000

method), 867
locking() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 891
locking() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 894
locking() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 898
locking() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 909
locking() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 913
locking() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
locking() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
locking() (pylablib.devices.Thorlabs.misc.GenericPM

method), 920
locking() (pylablib.devices.Thorlabs.misc.PM160

method), 924
locking() (pylablib.devices.Thorlabs.serial.FW

method), 931
locking() (pylablib.devices.Thorlabs.serial.FWv1

method), 935
locking() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
locking() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
locking() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 943
locking() (pylablib.devices.Trinamic.base.TMCM1110

method), 948
locking() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
locking() (pylablib.devices.Voltcraft.multimeter.VC880

method), 954
lockpoint (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters

attribute), 832
log() (pylablib.core.devio.backend_logger.BackendLogger

method), 165
logerror() (in module py-

lablib.core.devio.comm_backend), 166
loop (pylablib.core.gui.widgets.container.TTimerEvent

attribute), 230
loop (pylablib.devices.Thorlabs.elliptec.TMotorInfo at-

tribute), 888
loop() (pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper

method), 732
loop_read() (pylablib.core.devio.hid.HIDevice.Reader

method), 191
lorentzian_k() (in module py-

lablib.core.dataproc.specfunc), 147
low_pass_filter() (in module py-

lablib.core.dataproc.filters), 133
low_thresh (pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings

attribute), 739
low_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings

attribute), 650
low_value (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings

attribute), 655
lower_limit (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters

attribute), 832
lower_limit (pylablib.devices.Sirah.Matisse.TScanParameters

attribute), 832
lowlevel_calibrate() (py-

lablib.devices.SmarAct.MCS2.MCS2 method),
848

lowlevel_move() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
848

lowlevel_reference() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
848

LumelRE72Controller (class in py-
lablib.devices.Lumel.base), 670

M
m (pylablib.core.thread.controller.QTaskThread at-

tribute), 336

Index 1133

pylablib Documentation, Release 1.4.2

m (pylablib.devices.NKT.interbus.InterbusSystem at-
tribute), 711

M2CommunicationError, 673
M2Error, 673
M2ParseError, 673
make_comment_line() (py-

lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

make_comment_line() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

make_comment_line() (py-
lablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

make_flat_namedtuple() (in module py-
lablib.core.utils.general), 411

make_prop_line() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

make_prop_line() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

make_prop_line() (py-
lablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

make_savetime_line() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

make_savetime_line() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

make_savetime_line() (py-
lablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

make_sequence() (in module py-
lablib.core.utils.funcargparse), 405

man_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings
attribute), 650

man_value (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings
attribute), 655

mandatory_args_num() (py-
lablib.core.utils.functions.FunctionSignature
method), 407

manufacturer (pylablib.core.devio.hid.TDeviceDescription
attribute), 190

manufacturer (pylablib.devices.ElektroAutomatik.base.TDeviceInfo
attribute), 604

manufacturer (pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo
attribute), 755

manufacturer (pylablib.devices.Thorlabs.misc.TPMDeviceInfo
attribute), 918

manufacturer (pylablib.devices.uc480.uc480.TDeviceInfo
attribute), 989

map_container() (in module py-

lablib.core.utils.general), 411
map_dict_keys() (in module py-

lablib.core.utils.general), 412
map_dict_values() (in module py-

lablib.core.utils.general), 412
map_self() (pylablib.core.utils.dictionary.Dictionary

method), 369
map_self() (pylablib.core.utils.dictionary.DictionaryPointer

method), 377
map_self() (pylablib.core.utils.dictionary.FilterTree

method), 394
map_self() (pylablib.core.utils.dictionary.PrefixTree

method), 385
mark_unscheduled() (py-

lablib.core.thread.controller.QTaskThread.Job
method), 337

match() (pylablib.core.utils.dictionary.FilterTree
method), 389

MatisseTuner (class in pylablib.devices.Sirah.tuner),
840

max (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 517

max (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

max (pylablib.devices.DCAM.DCAM.DCAMAttribute at-
tribute), 596

max (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

max (pylablib.devices.interface.camera.TAxisROILimit
attribute), 976

max (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 746

max (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

max (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 802

max (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
attribute), 816

max_args_num() (pylablib.core.utils.functions.FunctionSignature
method), 407

max_step_frequency (py-
lablib.devices.SmarAct.MCS2.TCLMoveParams
attribute), 845

max_velocity (pylablib.devices.Thorlabs.kinesis.TJogParams
attribute), 894

max_velocity (pylablib.devices.Thorlabs.kinesis.TVelocityParams
attribute), 894

max_voltage (pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams
attribute), 896

maxbin (pylablib.devices.interface.camera.TAxisROILimit
attribute), 976

mb_get_default_address() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

1134 Index

pylablib Documentation, Release 1.4.2

mb_get_default_address() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 693

mb_get_device_id() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_get_device_id() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_read_coils() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_read_coils() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_read_discrete_inputs() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_read_discrete_inputs() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_read_holding_registers() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_read_holding_registers() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_read_input_registers() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_read_input_registers() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_scan_devices() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_scan_devices() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_set_default_address() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_set_default_address() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_using_address() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_using_address() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_write_multiple_coils() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_write_multiple_coils() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_write_multiple_holding_registers() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_write_multiple_holding_registers() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_write_single_coil() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 672

mb_write_single_coil() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

mb_write_single_holding_register() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 673

mb_write_single_holding_register() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 694

MCS2 (class in pylablib.devices.SmarAct.MCS2), 845
MDT69xA (class in pylablib.devices.Thorlabs.serial), 937
measure_capacitance() (py-

lablib.devices.Attocube.anc300.ANC300
method), 549

measure_level() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

measure_level() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 592

median_filter() (in module py-
lablib.core.dataproc.filters), 134

merge() (in module pylablib.core.dataproc.utils), 159
merge() (pylablib.core.utils.dictionary.Dictionary

method), 367
merge() (pylablib.core.utils.dictionary.DictionaryPointer

method), 377
merge() (pylablib.core.utils.dictionary.FilterTree

method), 394
merge() (pylablib.core.utils.dictionary.PrefixTree

method), 386
merge() (pylablib.core.utils.functions.FunctionSignature

static method), 407
merge_dicts() (in module pylablib.core.utils.general),

411
messageID (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData

attribute), 893
messageID (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort

attribute), 892
MethodCallable (class in py-

lablib.core.dataproc.callable), 129
MethodCallable.NamesBoundCall (class in py-

Index 1135

pylablib Documentation, Release 1.4.2

lablib.core.dataproc.callable), 129
MethodObjectCall (class in py-

lablib.core.utils.functions), 408
MethodObjectProperty (class in py-

lablib.core.utils.functions), 409
MFF (class in pylablib.devices.Thorlabs.kinesis), 899
MightexError, 692
MightexSSeriesCamera (class in py-

lablib.devices.Mightex.MightexSSeries),
687

MightexSSeriesCamera.ReceiveLooper (class in py-
lablib.devices.Mightex.MightexSSeries), 688

MightexTimeoutError, 692
millisecond (pylablib.devices.uc480.uc480.TTimestamp

attribute), 989
min (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 517
min (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
min (pylablib.devices.DCAM.DCAM.DCAMAttribute at-

tribute), 596
min (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
min (pylablib.devices.interface.camera.TAxisROILimit

attribute), 976
min (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 746
min (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute

attribute), 756
min (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 802
min (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute

attribute), 816
min_run_time (pylablib.core.thread.controller.QTaskThread.TBatchJob

attribute), 336
min_velocity (pylablib.devices.Thorlabs.kinesis.TJogParams

attribute), 895
min_velocity (pylablib.devices.Thorlabs.kinesis.TVelocityParams

attribute), 894
minute (pylablib.devices.uc480.uc480.TTimestamp at-

tribute), 989
MissingGUIHandlerError, 312
mod_state (pylablib.devices.Thorlabs.kinesis.TDeviceInfo

attribute), 892
ModbusBackendError, 693
ModbusError, 693
mode (pylablib.devices.ElektroAutomatik.base.TStatus at-

tribute), 604
mode (pylablib.devices.Keithley.multimeter.TAveragingParameters

attribute), 645
mode (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings

attribute), 650
mode (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings

attribute), 656

mode (pylablib.devices.Ophir.base.TWavelengthInfo at-
tribute), 726

mode (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters
attribute), 832

mode (pylablib.devices.Sirah.Matisse.TScanParameters
attribute), 832

mode (pylablib.devices.Thorlabs.kinesis.TJogParams at-
tribute), 895

mode (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams
attribute), 896

mode (pylablib.devices.Trinamic.base.THomeParams at-
tribute), 944

model (pylablib.devices.Basler.pylon.TCameraInfo
attribute), 557

model (pylablib.devices.Basler.pylon.TDeviceInfo at-
tribute), 559

model (pylablib.devices.BitFlow.BitFlow.TDeviceInfo at-
tribute), 567

model (pylablib.devices.DCAM.DCAM.TDeviceInfo at-
tribute), 597

model (pylablib.devices.ElektroAutomatik.base.TDeviceInfo
attribute), 604

model (pylablib.devices.HighFinesse.wlm.TDeviceInfo
attribute), 607

model (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo
attribute), 627

model (pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo
attribute), 629

model (pylablib.devices.Lumel.base.TDeviceInfo at-
tribute), 670

model (pylablib.devices.Mightex.MightexSSeries.TCameraInfo
attribute), 686

model (pylablib.devices.Mightex.MightexSSeries.TDeviceInfo
attribute), 686

model (pylablib.devices.NI.daq.TDeviceInfo attribute),
696

model (pylablib.devices.PCO.SC2.TDeviceInfo at-
tribute), 730

model (pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo
attribute), 757

model (pylablib.devices.PrincetonInstruments.picam.TCameraInfo
attribute), 800

model (pylablib.devices.PrincetonInstruments.picam.TDeviceInfo
attribute), 803

model (pylablib.devices.Thorlabs.TLCamera.TDeviceInfo
attribute), 878

model (pylablib.devices.uc480.uc480.TCameraInfo at-
tribute), 988

model (pylablib.devices.uc480.uc480.TDeviceInfo
attribute), 989

model_no (pylablib.devices.Thorlabs.elliptec.TDeviceInfo
attribute), 887

model_no (pylablib.devices.Thorlabs.kinesis.TDeviceInfo
attribute), 892

1136 Index

pylablib Documentation, Release 1.4.2

module
pylablib, 999
pylablib.core, 440
pylablib.core.dataproc, 161
pylablib.core.dataproc.callable, 125
pylablib.core.dataproc.ctransform_fallback,

130
pylablib.core.dataproc.feature, 131
pylablib.core.dataproc.filters, 133
pylablib.core.dataproc.fitting, 137
pylablib.core.dataproc.fourier, 140
pylablib.core.dataproc.iir_transform, 143
pylablib.core.dataproc.image, 143
pylablib.core.dataproc.interpolate, 144
pylablib.core.dataproc.specfunc, 147
pylablib.core.dataproc.table_wrap, 148
pylablib.core.dataproc.transform, 157
pylablib.core.dataproc.utils, 158
pylablib.core.devio, 198
pylablib.core.devio.backend_logger, 165
pylablib.core.devio.base, 166
pylablib.core.devio.comm_backend, 166
pylablib.core.devio.data_format, 189
pylablib.core.devio.hid, 190
pylablib.core.devio.hid_base, 192
pylablib.core.devio.interface, 192
pylablib.core.devio.SCPI, 161
pylablib.core.fileio, 228
pylablib.core.fileio.datafile, 198
pylablib.core.fileio.dict_entry, 199
pylablib.core.fileio.loadfile, 206
pylablib.core.fileio.loadfile_utils, 212
pylablib.core.fileio.location, 213
pylablib.core.fileio.parse_csv, 218
pylablib.core.fileio.savefile, 220
pylablib.core.fileio.table_stream, 227
pylablib.core.gui, 315
pylablib.core.gui.formatter, 294
pylablib.core.gui.limiter, 295
pylablib.core.gui.utils, 296
pylablib.core.gui.value_handling, 298
pylablib.core.gui.widgets, 294
pylablib.core.gui.widgets.button, 228
pylablib.core.gui.widgets.combo_box, 228
pylablib.core.gui.widgets.container, 230
pylablib.core.gui.widgets.edit, 266
pylablib.core.gui.widgets.label, 268
pylablib.core.gui.widgets.layout_manager,

271
pylablib.core.gui.widgets.param_table,

274
pylablib.core.thread, 357
pylablib.core.thread.callsync, 315
pylablib.core.thread.controller, 326

pylablib.core.thread.multicast_pool, 350
pylablib.core.thread.notifier, 351
pylablib.core.thread.profile, 352
pylablib.core.thread.synchronizing, 352
pylablib.core.thread.threadprop, 354
pylablib.core.thread.utils, 356
pylablib.core.utils, 440
pylablib.core.utils.array_utils, 357
pylablib.core.utils.cext_tools, 357
pylablib.core.utils.crc, 357
pylablib.core.utils.ctypes_wrap, 357
pylablib.core.utils.dictionary, 361
pylablib.core.utils.files, 398
pylablib.core.utils.funcargparse, 405
pylablib.core.utils.functions, 406
pylablib.core.utils.general, 410
pylablib.core.utils.indexing, 418
pylablib.core.utils.ipc, 420
pylablib.core.utils.library_parameters,

422
pylablib.core.utils.module, 423
pylablib.core.utils.nbtools, 424
pylablib.core.utils.net, 425
pylablib.core.utils.numerical, 429
pylablib.core.utils.observer_pool, 430
pylablib.core.utils.py3, 431
pylablib.core.utils.rpyc_utils, 431
pylablib.core.utils.strdump, 433
pylablib.core.utils.string, 434
pylablib.core.utils.strpack, 438
pylablib.core.utils.units, 439
pylablib.devices, 999
pylablib.devices.AlliedVision, 505
pylablib.devices.AlliedVision.Bonito, 490
pylablib.devices.Andor, 532
pylablib.devices.Andor.AndorSDK2, 505
pylablib.devices.Andor.AndorSDK3, 516
pylablib.devices.Andor.atcore_features,

531
pylablib.devices.Andor.base, 531
pylablib.devices.Andor.Shamrock, 526
pylablib.devices.Arcus, 545
pylablib.devices.Arcus.base, 532
pylablib.devices.Arcus.performax, 533
pylablib.devices.Arduino, 548
pylablib.devices.Arduino.base, 545
pylablib.devices.Attocube, 556
pylablib.devices.Attocube.anc300, 548
pylablib.devices.Attocube.anc350, 552
pylablib.devices.Attocube.base, 556
pylablib.devices.AWG, 490
pylablib.devices.AWG.generic, 440
pylablib.devices.AWG.specific, 447
pylablib.devices.Basler, 566

Index 1137

pylablib Documentation, Release 1.4.2

pylablib.devices.Basler.pylon, 556
pylablib.devices.BitFlow, 579
pylablib.devices.BitFlow.BitFlow, 566
pylablib.devices.Conrad, 581
pylablib.devices.Conrad.base, 579
pylablib.devices.Cryocon, 586
pylablib.devices.Cryocon.base, 581
pylablib.devices.Cryomagnetics, 595
pylablib.devices.Cryomagnetics.base, 586
pylablib.devices.DCAM, 603
pylablib.devices.DCAM.DCAM, 595
pylablib.devices.ElektroAutomatik, 607
pylablib.devices.ElektroAutomatik.base,

603
pylablib.devices.HighFinesse, 611
pylablib.devices.HighFinesse.wlm, 607
pylablib.devices.IMAQ, 627
pylablib.devices.IMAQ.IMAQ, 611
pylablib.devices.IMAQ.niimaq_attrtypes,

627
pylablib.devices.IMAQdx, 641
pylablib.devices.IMAQdx.IMAQdx, 627
pylablib.devices.interface, 988
pylablib.devices.interface.camera, 955
pylablib.devices.interface.stage, 986
pylablib.devices.Keithley, 649
pylablib.devices.Keithley.base, 643
pylablib.devices.Keithley.multimeter, 644
pylablib.devices.KJL, 643
pylablib.devices.KJL.base, 641
pylablib.devices.Lakeshore, 660
pylablib.devices.Lakeshore.base, 649
pylablib.devices.LaserQuantum, 663
pylablib.devices.LaserQuantum.base, 660
pylablib.devices.Leybold, 667
pylablib.devices.Leybold.base, 663
pylablib.devices.LighthousePhotonics, 670
pylablib.devices.LighthousePhotonics.base,

667
pylablib.devices.Lumel, 673
pylablib.devices.Lumel.base, 670
pylablib.devices.M2, 686
pylablib.devices.M2.base, 673
pylablib.devices.M2.emm, 676
pylablib.devices.M2.solstis, 679
pylablib.devices.Mightex, 693
pylablib.devices.Mightex.base, 692
pylablib.devices.Mightex.MightexSSeries,

686
pylablib.devices.Modbus, 695
pylablib.devices.Modbus.modbus, 693
pylablib.devices.Newport, 717
pylablib.devices.Newport.base, 713
pylablib.devices.Newport.picomotor, 714

pylablib.devices.NI, 703
pylablib.devices.NI.daq, 695
pylablib.devices.NKT, 713
pylablib.devices.NKT.interbus, 703
pylablib.devices.Ophir, 730
pylablib.devices.Ophir.base, 724
pylablib.devices.OZOptics, 724
pylablib.devices.OZOptics.base, 717
pylablib.devices.PCO, 739
pylablib.devices.PCO.SC2, 730
pylablib.devices.Pfeiffer, 744
pylablib.devices.Pfeiffer.base, 739
pylablib.devices.Photometrics, 755
pylablib.devices.Photometrics.pvcam, 744
pylablib.devices.PhotonFocus, 789
pylablib.devices.PhotonFocus.PhotonFocus,

755
pylablib.devices.PhysikInstrumente, 800
pylablib.devices.PhysikInstrumente.base,

789
pylablib.devices.PrincetonInstruments,

809
pylablib.devices.PrincetonInstruments.picam,

800
pylablib.devices.Rigol, 814
pylablib.devices.Rigol.base, 809
pylablib.devices.Rigol.power_supply, 810
pylablib.devices.SiliconSoftware, 831
pylablib.devices.SiliconSoftware.fgrab,

814
pylablib.devices.Sirah, 844
pylablib.devices.Sirah.base, 840
pylablib.devices.Sirah.Matisse, 831
pylablib.devices.Sirah.tuner, 840
pylablib.devices.SmarAct, 852
pylablib.devices.SmarAct.base, 849
pylablib.devices.SmarAct.MCS2, 844
pylablib.devices.SmarAct.scu3d, 849
pylablib.devices.Standa, 856
pylablib.devices.Standa.base, 852
pylablib.devices.Tektronix, 878
pylablib.devices.Tektronix.base, 856
pylablib.devices.Thorlabs, 940
pylablib.devices.Thorlabs.base, 887
pylablib.devices.Thorlabs.elliptec, 887
pylablib.devices.Thorlabs.kinesis, 891
pylablib.devices.Thorlabs.misc, 918
pylablib.devices.Thorlabs.serial, 927
pylablib.devices.Thorlabs.TLCamera, 878
pylablib.devices.Toptica, 943
pylablib.devices.Toptica.base, 940
pylablib.devices.Toptica.ibeam, 941
pylablib.devices.Trinamic, 948
pylablib.devices.Trinamic.base, 943

1138 Index

pylablib Documentation, Release 1.4.2

pylablib.devices.uc480, 997
pylablib.devices.uc480.uc480, 988
pylablib.devices.utils, 999
pylablib.devices.utils.color, 997
pylablib.devices.utils.load_lib, 997
pylablib.devices.Voltcraft, 955
pylablib.devices.Voltcraft.base, 948
pylablib.devices.Voltcraft.multimeter,

949
pylablib.widgets, 999

module (pylablib.devices.Trinamic.base.TMCM1110.ReplyData
attribute), 944

month (pylablib.devices.uc480.uc480.TTimestamp
attribute), 989

motor (pylablib.devices.Thorlabs.elliptec.TMotorInfo at-
tribute), 888

mousePressEvent() (py-
lablib.core.gui.widgets.label.EnumLabel
method), 269

mousePressEvent() (py-
lablib.core.gui.widgets.label.NumLabel
method), 269

mousePressEvent() (py-
lablib.core.gui.widgets.label.TextLabel
method), 268

move_by() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 541

move_by() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 536

move_by() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

move_by() (pylablib.devices.Attocube.anc300.ANC300
method), 550

move_by() (pylablib.devices.Attocube.anc350.ANC350
method), 554

move_by() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 716

move_by() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 796

move_by() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 793

move_by() (pylablib.devices.SmarAct.MCS2.MCS2
method), 847

move_by() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 851

move_by() (pylablib.devices.Standa.base.Standa8SMC
method), 855

move_by() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

move_by() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

move_by() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

move_by() (pylablib.devices.Trinamic.base.TMCM1110

method), 945
move_by_steps() (py-

lablib.devices.Attocube.anc350.ANC350
method), 554

move_by_steps() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

move_dir() (in module pylablib.core.utils.files), 402
move_file() (in module pylablib.core.utils.files), 399
move_macrostep() (py-

lablib.devices.SmarAct.scu3d.SCU3D method),
850

move_scan_by() (pylablib.devices.SmarAct.MCS2.MCS2
method), 847

move_scan_to() (pylablib.devices.SmarAct.MCS2.MCS2
method), 847

move_to() (pylablib.core.utils.dictionary.DictionaryPointer
method), 372

move_to() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 541

move_to() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 536

move_to() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

move_to() (pylablib.devices.Attocube.anc350.ANC350
method), 554

move_to() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 716

move_to() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 796

move_to() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 793

move_to() (pylablib.devices.SmarAct.MCS2.MCS2
method), 847

move_to() (pylablib.devices.Standa.base.Standa8SMC
method), 854

move_to() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

move_to() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

move_to() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

move_to() (pylablib.devices.Trinamic.base.TMCM1110
method), 945

move_to_state() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
900

move_up() (pylablib.core.utils.dictionary.DictionaryPointer
method), 372

multi_scale_peakdet() (in module py-
lablib.core.dataproc.feature), 132

MulticastPool (class in py-
lablib.core.thread.multicast_pool), 350

MultiplexedCallable (class in py-

Index 1139

pylablib Documentation, Release 1.4.2

lablib.core.dataproc.callable), 126
MultiplexedCallable.NamesBoundCall (class in py-

lablib.core.dataproc.callable), 127
multiplied() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
multiplied() (pylablib.core.dataproc.transform.LinearTransform

method), 157
multiply() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

method), 130
muxaddr() (in module py-

lablib.devices.Newport.picomotor), 714
muxaddr() (in module py-

lablib.devices.Thorlabs.elliptec), 887
muxaxis() (in module py-

lablib.devices.Attocube.anc300), 548
muxaxis() (in module pylablib.devices.interface.stage),

987
muxcall() (in module pylablib.core.utils.general), 417
muxchan() (in module pylablib.devices.Toptica.ibeam),

941
muxchannel() (in module py-

lablib.devices.HighFinesse.wlm), 607
muxchannel() (in module py-

lablib.devices.Tektronix.base), 857
muxchannel() (in module py-

lablib.devices.Thorlabs.kinesis), 896

N
name (pylablib.core.fileio.location.LocationFile at-

tribute), 214
name (pylablib.core.gui.widgets.container.TChild at-

tribute), 230
name (pylablib.core.gui.widgets.container.TTimer at-

tribute), 230
name (pylablib.core.utils.files.TempFile attribute), 399
name (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute

attribute), 517
name (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 557
name (pylablib.devices.Basler.pylon.TCameraInfo at-

tribute), 557
name (pylablib.devices.Basler.pylon.TDeviceInfo at-

tribute), 559
name (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 595
name (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 627
name (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo

attribute), 627
name (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader

attribute), 650
name (pylablib.devices.NI.daq.TDeviceInfo attribute),

696

name (pylablib.devices.Ophir.base.TDeviceInfo at-
tribute), 726

name (pylablib.devices.Ophir.base.THeadInfo attribute),
726

name (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 745

name (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

name (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 801

name (pylablib.devices.PrincetonInstruments.picam.TCameraInfo
attribute), 800

name (pylablib.devices.PrincetonInstruments.picam.TDeviceInfo
attribute), 803

name (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
attribute), 816

name (pylablib.devices.SiliconSoftware.fgrab.TAppletInfo
attribute), 815

name (pylablib.devices.SiliconSoftware.fgrab.TBoardInfo
attribute), 814

name (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

name (pylablib.devices.SmarAct.MCS2.TDeviceInfo at-
tribute), 844

name (pylablib.devices.Thorlabs.misc.TPMDeviceInfo at-
tribute), 918

name (pylablib.devices.Thorlabs.misc.TPMSensorInfo at-
tribute), 918

name (pylablib.devices.Thorlabs.TLCamera.TDeviceInfo
attribute), 879

NamedUIDGenerator (class in py-
lablib.core.utils.general), 414

nchannels (pylablib.devices.Thorlabs.kinesis.TDeviceInfo
attribute), 892

ncycles (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

ndim() (pylablib.core.dataproc.table_wrap.Array1DWrapper
method), 150

ndim() (pylablib.core.dataproc.table_wrap.Array2DWrapper
method), 155

ndim() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 157

ndim() (pylablib.core.dataproc.table_wrap.I1DWrapper
method), 149

ndim() (pylablib.core.dataproc.table_wrap.I2DWrapper
method), 152

ndim() (pylablib.core.dataproc.table_wrap.IGenWrapper
method), 148

ndim() (pylablib.core.dataproc.table_wrap.Series1DWrapper
method), 152

NetworkDeviceBackend (class in py-
lablib.core.devio.comm_backend), 177

new_backend() (in module py-
lablib.core.devio.comm_backend), 187

1140 Index

pylablib Documentation, Release 1.4.2

new_frame() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer
method), 880

new_messages_number() (py-
lablib.core.thread.controller.QTaskThread
method), 344

new_messages_number() (py-
lablib.core.thread.controller.QThreadController
method), 328

new_overflow() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 522

NewportBackendError, 713
NewportError, 713
next() (pylablib.core.utils.general.AccessIterator

method), 417
next() (pylablib.core.utils.numerical.infinite_list.counter

method), 430
NIDAQ (class in pylablib.devices.NI.daq), 696
NIDAQmxError, 696
NIError, 695
no_stopping() (pylablib.core.thread.controller.QTaskThread

method), 344
no_stopping() (pylablib.core.thread.controller.QThreadController

method), 329
NoControllerThreadError, 354
nodes() (pylablib.core.utils.dictionary.Dictionary

method), 366
nodes() (pylablib.core.utils.dictionary.DictionaryPointer

method), 377
nodes() (pylablib.core.utils.dictionary.FilterTree

method), 394
nodes() (pylablib.core.utils.dictionary.PrefixTree

method), 386
NoMessageThreadError, 355
NoParameterError, 298
noreply() (pylablib.devices.M2.base.ICEBlocDevice

method), 674
noreply() (pylablib.devices.M2.emm.EMM method),

678
noreply() (pylablib.devices.M2.solstis.Solstis method),

685
normalize_channel_name() (py-

lablib.devices.Tektronix.base.DPO2000
method), 874

normalize_channel_name() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 857

normalize_channel_name() (py-
lablib.devices.Tektronix.base.TDS2000
method), 867

normalize_fourier_transform() (in module py-
lablib.core.dataproc.fourier), 140

normalize_path() (in module py-
lablib.core.utils.dictionary), 361

normalize_path() (in module pylablib.core.utils.files),

398
normalize_path_entry() (in module py-

lablib.core.utils.dictionary), 361
notes (pylablib.devices.Thorlabs.kinesis.TDeviceInfo at-

tribute), 892
notify() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 316
notify() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
notify() (pylablib.core.thread.callsync.QDummyResultSynchronizer

method), 316
notify() (pylablib.core.thread.notifier.ISkippableNotifier

method), 351
notify() (pylablib.core.thread.synchronizing.QMultiThreadNotifier

method), 353
notify() (pylablib.core.thread.synchronizing.QThreadNotifier

method), 353
notify() (pylablib.core.utils.observer_pool.ObserverPool

method), 431
notify() (pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper

method), 732
notify_exec_point() (py-

lablib.core.thread.controller.QTaskThread
method), 344

notify_exec_point() (py-
lablib.core.thread.controller.QThreadController
method), 334

notifying_state() (py-
lablib.core.thread.callsync.QCallResultSynchronizer
method), 316

notifying_state() (py-
lablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

notifying_state() (py-
lablib.core.thread.notifier.ISkippableNotifier
method), 352

notifying_state() (py-
lablib.core.thread.synchronizing.QThreadNotifier
method), 353

nrois (pylablib.devices.PrincetonInstruments.picam.TROIConstraints
attribute), 801

num_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

num_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

NumberLimit (class in pylablib.core.gui.limiter), 295
NumEdit (class in pylablib.core.gui.widgets.edit), 266
NumLabel (class in pylablib.core.gui.widgets.label), 269
NumpyIndex (class in pylablib.core.utils.indexing), 419

O
obj (pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram

attribute), 605

Index 1141

pylablib Documentation, Release 1.4.2

obj_prop() (in module pylablib.core.utils.functions),
410

ObserverPool (class in py-
lablib.core.utils.observer_pool), 430

ObserverPool.Observer (class in py-
lablib.core.utils.observer_pool), 430

obtain() (in module pylablib.core.utils.rpyc_utils), 431
obtain() (pylablib.core.utils.rpyc_utils.DeviceService

method), 432
obtain() (pylablib.core.utils.rpyc_utils.SocketTunnelService

method), 432
ocp (pylablib.devices.ElektroAutomatik.base.TStatus at-

tribute), 604
off_delay (pylablib.devices.Standa.base.TPowerParams

attribute), 853
off_enabled (pylablib.devices.Standa.base.TPowerParams

attribute), 853
off_thresh (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings

attribute), 740
offset (pylablib.core.utils.ipc.TShmemVarDesc at-

tribute), 421
offset (pylablib.devices.Andor.Shamrock.TGratingInfo

attribute), 527
offset (pylablib.devices.Thorlabs.TLCamera.TFrameInfo

attribute), 879
offset_distance (py-

lablib.devices.Thorlabs.kinesis.THomeParams
attribute), 895

on_connect() (pylablib.core.utils.rpyc_utils.DeviceService
method), 432

on_connect() (pylablib.core.utils.rpyc_utils.SocketTunnelService
method), 432

on_disconnect() (py-
lablib.core.utils.rpyc_utils.DeviceService
method), 432

on_disconnect() (py-
lablib.core.utils.rpyc_utils.SocketTunnelService
method), 432

on_finish() (pylablib.core.thread.controller.QTaskThread
method), 339

on_finish() (pylablib.core.thread.controller.QThreadController
method), 330

on_overflow() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 522

on_start() (pylablib.core.thread.controller.QTaskThread
method), 339

on_start() (pylablib.core.thread.controller.QThreadController
method), 330

on_thresh (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings
attribute), 740

opcode (pylablib.devices.Attocube.anc350.ANC350.Telegram
attribute), 552

open() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

open() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 183

open() (pylablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

open() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

open() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 177

open() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 180

open() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 185

open() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 172

open() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 169

open() (pylablib.core.devio.hid.HIDevice method), 190
open() (pylablib.core.devio.interface.IDevice method),

192
open() (pylablib.core.devio.SCPI.SCPIDevice method),

164
open() (pylablib.core.fileio.location.FolderFileSystemDataLocation

method), 218
open() (pylablib.core.fileio.location.IDataLocation

method), 214
open() (pylablib.core.fileio.location.IFileSystemDataLocation

method), 215
open() (pylablib.core.fileio.location.LocationFile

method), 214
open() (pylablib.core.fileio.location.OpenedFileLocation

method), 215
open() (pylablib.core.fileio.location.PrefixedFileSystemDataLocation

method), 217
open() (pylablib.core.fileio.location.SingleFileSystemDataLocation

method), 216
open() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 500
open() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 490
open() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 506
open() (pylablib.devices.Andor.AndorSDK2.LibraryController

method), 505
open() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 519
open() (pylablib.devices.Andor.AndorSDK3.LibraryController

method), 516
open() (pylablib.devices.Andor.Shamrock.LibraryController

method), 527
open() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph

method), 528
open() (pylablib.devices.Arcus.performax.GenericPerformaxStage

method), 533
open() (pylablib.devices.Arcus.performax.Performax2EXStage

1142 Index

pylablib Documentation, Release 1.4.2

method), 541
open() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 538
open() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 545
open() (pylablib.devices.Arduino.base.IArduinoDevice

method), 547
open() (pylablib.devices.Attocube.anc300.ANC300

method), 548
open() (pylablib.devices.Attocube.anc350.ANC350

method), 555
open() (pylablib.devices.AWG.generic.GenericAWG

method), 445
open() (pylablib.devices.AWG.specific.Agilent33220A

method), 456
open() (pylablib.devices.AWG.specific.Agilent33500

method), 450
open() (pylablib.devices.AWG.specific.InstekAFG2000

method), 468
open() (pylablib.devices.AWG.specific.InstekAFG2225

method), 462
open() (pylablib.devices.AWG.specific.RigolDG1000

method), 486
open() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 474
open() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 480
open() (pylablib.devices.Basler.pylon.BaslerPylonCamera

method), 560
open() (pylablib.devices.Basler.pylon.LibraryController

method), 556
open() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

method), 576
open() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

method), 567
open() (pylablib.devices.Conrad.base.RelayBoard

method), 579
open() (pylablib.devices.Cryocon.base.Cryocon1x

method), 584
open() (pylablib.devices.Cryomagnetics.base.LM500

method), 588
open() (pylablib.devices.Cryomagnetics.base.LM510

method), 592
open() (pylablib.devices.DCAM.DCAM.DCAMCamera

method), 597
open() (pylablib.devices.DCAM.DCAM.LibraryController

method), 595
open() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 605
open() (pylablib.devices.HighFinesse.wlm.WLM

method), 608
open() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 623
open() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 612
open() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 638
open() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 629
open() (pylablib.devices.interface.camera.IAttributeCamera

method), 964
open() (pylablib.devices.interface.camera.IBinROICamera

method), 983
open() (pylablib.devices.interface.camera.ICamera

method), 959
open() (pylablib.devices.interface.camera.IExposureCamera

method), 974
open() (pylablib.devices.interface.camera.IGrabberAttributeCamera

method), 969
open() (pylablib.devices.interface.camera.IROICamera

method), 978
open() (pylablib.devices.interface.stage.IMultiaxisStage

method), 988
open() (pylablib.devices.interface.stage.IStage method),

987
open() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 647
open() (pylablib.devices.KJL.base.KJL300 method), 643
open() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 653
open() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 658
open() (pylablib.devices.LaserQuantum.base.Finesse

method), 663
open() (pylablib.devices.Leybold.base.GenericITR

method), 665
open() (pylablib.devices.Leybold.base.ITR90 method),

667
open() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 670
open() (pylablib.devices.Lumel.base.LumelRE72Controller

method), 673
open() (pylablib.devices.M2.base.ICEBlocDevice

method), 674
open() (pylablib.devices.M2.emm.EMM method), 678
open() (pylablib.devices.M2.solstis.Solstis method), 685
open() (pylablib.devices.Mightex.MightexSSeries.LibraryController

method), 686
open() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 687
open() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice

method), 695
open() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 717
open() (pylablib.devices.NI.daq.NIDAQ method), 697
open() (pylablib.devices.NKT.interbus.GenericInterbusDevice

method), 705
open() (pylablib.devices.NKT.interbus.GenericInterbusModule

Index 1143

pylablib Documentation, Release 1.4.2

method), 707
open() (pylablib.devices.NKT.interbus.IInterbusModule

method), 706
open() (pylablib.devices.NKT.interbus.InterbusSystem

method), 713
open() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule

method), 708
open() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule

method), 709
open() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule

method), 710
open() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule

method), 711
open() (pylablib.devices.Ophir.base.OphirDevice

method), 726
open() (pylablib.devices.Ophir.base.VegaPowerMeter

method), 729
open() (pylablib.devices.OZOptics.base.DD100

method), 722
open() (pylablib.devices.OZOptics.base.EPC04

method), 724
open() (pylablib.devices.OZOptics.base.OZOpticsDevice

method), 719
open() (pylablib.devices.OZOptics.base.TF100 method),

720
open() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 731
open() (pylablib.devices.Pfeiffer.base.DPG202 method),

744
open() (pylablib.devices.Pfeiffer.base.TPG260 method),

742
open() (pylablib.devices.Photometrics.pvcam.LibraryController

method), 745
open() (pylablib.devices.Photometrics.pvcam.PvcamCamera

method), 747
open() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 758
open() (pylablib.devices.PhotonFocus.PhotonFocus.LibraryController

method), 755
open() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

method), 781
open() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 764
open() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

method), 773
open() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 790
open() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 795
open() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
open() (pylablib.devices.PrincetonInstruments.picam.LibraryController

method), 800
open() (pylablib.devices.PrincetonInstruments.picam.PicamCamera

method), 804
open() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
open() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

method), 828
open() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

method), 817
open() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 838
open() (pylablib.devices.SmarAct.MCS2.LibraryController

method), 844
open() (pylablib.devices.SmarAct.MCS2.MCS2

method), 845
open() (pylablib.devices.SmarAct.scu3d.LibraryController

method), 849
open() (pylablib.devices.SmarAct.scu3d.SCU3D

method), 850
open() (pylablib.devices.Standa.base.Standa8SMC

method), 856
open() (pylablib.devices.Tektronix.base.DPO2000

method), 874
open() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
open() (pylablib.devices.Tektronix.base.TDS2000

method), 867
open() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 891
open() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 894
open() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 898
open() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 909
open() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 913
open() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
open() (pylablib.devices.Thorlabs.kinesis.MFF method),

902
open() (pylablib.devices.Thorlabs.misc.GenericPM

method), 918
open() (pylablib.devices.Thorlabs.misc.PM160 method),

924
open() (pylablib.devices.Thorlabs.serial.FW method),

931
open() (pylablib.devices.Thorlabs.serial.FWv1 method),

935
open() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
open() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 927
open() (pylablib.devices.Thorlabs.TLCamera.LibraryController

method), 878
open() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

1144 Index

pylablib Documentation, Release 1.4.2

method), 879
open() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 941
open() (pylablib.devices.Trinamic.base.TMCM1110

method), 944
open() (pylablib.devices.uc480.uc480.UC480Camera

method), 990
open() (pylablib.devices.utils.load_lib.LibraryController

method), 998
open() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 950
open() (pylablib.devices.Voltcraft.multimeter.VC880

method), 954
open_loop_out (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams

attribute), 914
open_result (pylablib.devices.utils.load_lib.TLibraryOpenResult

attribute), 998
opened (pylablib.core.fileio.location.LocationFile

attribute), 214
OpenedFileLocation (class in py-

lablib.core.fileio.location), 215
OphirBackendError, 725
OphirDevice (class in pylablib.devices.Ophir.base), 725
OphirError, 724
opid (pylablib.devices.utils.load_lib.TLibraryOpenResult

attribute), 998
opp (pylablib.devices.ElektroAutomatik.base.TStatus at-

tribute), 604
order_to_pos() (in module py-

lablib.core.gui.formatter), 294
otp (pylablib.devices.ElektroAutomatik.base.TStatus at-

tribute), 604
overflows (pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus

attribute), 519
overruns (pylablib.devices.PCO.SC2.TInternalBufferStatus

attribute), 730
oversamp (pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters

attribute), 831
oversamp (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters

attribute), 832
ovp (pylablib.devices.ElektroAutomatik.base.TStatus at-

tribute), 605
OZOpticsBackendError, 718
OZOpticsDevice (class in py-

lablib.devices.OZOptics.base), 718
OZOpticsError, 717

P
P (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters

attribute), 831
P (pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters

attribute), 831
P (pylablib.devices.Sirah.Matisse.TThinetCtlParameters

attribute), 831

p (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams
attribute), 914

pack_int() (in module pylablib.core.utils.strpack), 439
pack_uint() (in module pylablib.core.utils.strpack),

439
pad_borders() (pylablib.core.gui.widgets.param_table.ParamTable

method), 275
pad_borders() (pylablib.core.gui.widgets.param_table.StatusTable

method), 292
pad_trace() (in module pylablib.core.dataproc.utils),

161
page (pylablib.devices.Leybold.base.TDeviceInfo at-

tribute), 663
param1 (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort

attribute), 892
param2 (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort

attribute), 892
parameter_range_error() (in module py-

lablib.core.utils.funcargparse), 405
parameter_value_error() (in module py-

lablib.core.utils.funcargparse), 405
ParamTable (class in py-

lablib.core.gui.widgets.param_table), 274
ParamTable.ParamRow (class in py-

lablib.core.gui.widgets.param_table), 275
parse_array_data() (py-

lablib.core.devio.SCPI.SCPIDevice static
method), 165

parse_array_data() (py-
lablib.devices.AWG.generic.GenericAWG
static method), 445

parse_array_data() (py-
lablib.devices.AWG.specific.Agilent33220A
static method), 456

parse_array_data() (py-
lablib.devices.AWG.specific.Agilent33500
static method), 450

parse_array_data() (py-
lablib.devices.AWG.specific.InstekAFG2000
static method), 468

parse_array_data() (py-
lablib.devices.AWG.specific.InstekAFG2225
static method), 462

parse_array_data() (py-
lablib.devices.AWG.specific.RigolDG1000
static method), 487

parse_array_data() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
static method), 474

parse_array_data() (py-
lablib.devices.AWG.specific.TektronixAFG1000
static method), 480

parse_array_data() (py-
lablib.devices.Cryocon.base.Cryocon1x static

Index 1145

pylablib Documentation, Release 1.4.2

method), 584
parse_array_data() (py-

lablib.devices.Cryomagnetics.base.LM500
static method), 588

parse_array_data() (py-
lablib.devices.Cryomagnetics.base.LM510
static method), 592

parse_array_data() (py-
lablib.devices.Keithley.multimeter.Keithley2110
static method), 647

parse_array_data() (py-
lablib.devices.Lakeshore.base.Lakeshore218
static method), 653

parse_array_data() (py-
lablib.devices.Lakeshore.base.Lakeshore370
static method), 658

parse_array_data() (py-
lablib.devices.PhysikInstrumente.base.PIE515
static method), 797

parse_array_data() (py-
lablib.devices.Rigol.power_supply.DP1116A
static method), 812

parse_array_data() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
static method), 838

parse_array_data() (py-
lablib.devices.Tektronix.base.DPO2000 static
method), 874

parse_array_data() (py-
lablib.devices.Tektronix.base.ITektronixScope
static method), 862

parse_array_data() (py-
lablib.devices.Tektronix.base.TDS2000 static
method), 867

parse_array_data() (py-
lablib.devices.Thorlabs.misc.GenericPM
static method), 920

parse_array_data() (py-
lablib.devices.Thorlabs.misc.PM160 static
method), 924

parse_array_data() (py-
lablib.devices.Thorlabs.serial.FW static
method), 932

parse_array_data() (py-
lablib.devices.Thorlabs.serial.FWv1 static
method), 935

parse_array_data() (py-
lablib.devices.Thorlabs.serial.MDT69xA
static method), 938

parse_array_data() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
static method), 928

parse_array_data() (py-
lablib.devices.Voltcraft.multimeter.VC7055

static method), 950
parse_dict_line() (in module py-

lablib.core.fileio.loadfile_utils), 212
parse_float() (in module pylablib.core.gui.formatter),

294
parse_metainfo_v1() (in module py-

lablib.devices.Photometrics.pvcam), 754
parse_metainfo_v3() (in module py-

lablib.devices.Photometrics.pvcam), 754
parse_stored_table_data() (in module py-

lablib.core.fileio.dict_entry), 200
part (pylablib.devices.Photometrics.pvcam.TDeviceInfo

attribute), 747
partition_list() (in module py-

lablib.core.utils.general), 412
pass_result (pylablib.core.thread.callsync.QScheduledCall.Callback

attribute), 318
passed() (pylablib.core.utils.general.Countdown

method), 415
passed() (pylablib.core.utils.general.Timer method),

416
path (pylablib.core.devio.hid.TDeviceDescription

attribute), 190
path (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo

attribute), 815
paths() (pylablib.core.utils.dictionary.Dictionary

method), 366
paths() (pylablib.core.utils.dictionary.DictionaryPointer

method), 378
paths() (pylablib.core.utils.dictionary.FilterTree

method), 395
paths() (pylablib.core.utils.dictionary.PrefixTree

method), 386
paths_equal() (in module pylablib.core.utils.files), 398
pause() (pylablib.core.thread.controller.QTaskThread.Job

method), 337
pausing() (pylablib.core.devio.hid.HIDevice.Reader

method), 191
pausing_acquisition() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

pausing_acquisition() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 494

pausing_acquisition() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 514

pausing_acquisition() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

pausing_acquisition() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 564

pausing_acquisition() (py-

1146 Index

pylablib Documentation, Release 1.4.2

lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 576

pausing_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

pausing_acquisition() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

pausing_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 623

pausing_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 617

pausing_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 638

pausing_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

pausing_acquisition() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 964

pausing_acquisition() (py-
lablib.devices.interface.camera.IBinROICamera
method), 983

pausing_acquisition() (py-
lablib.devices.interface.camera.ICamera
method), 956

pausing_acquisition() (py-
lablib.devices.interface.camera.IExposureCamera
method), 974

pausing_acquisition() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 969

pausing_acquisition() (py-
lablib.devices.interface.camera.IROICamera
method), 979

pausing_acquisition() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 690

pausing_acquisition() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

pausing_acquisition() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

pausing_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 761

pausing_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 785

pausing_acquisition() (py-

lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 768

pausing_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

pausing_acquisition() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

pausing_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

pausing_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 822

pausing_acquisition() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

pausing_acquisition() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

payload (pylablib.devices.NKT.interbus.TInterbusTelegram
attribute), 704

payload (pylablib.devices.Voltcraft.multimeter.VC880.TMessage
attribute), 953

PCOSC2Camera (class in pylablib.devices.PCO.SC2), 730
PCOSC2Camera.BufferManager (class in py-

lablib.devices.PCO.SC2), 732
PCOSC2Camera.ScheduleLooper (class in py-

lablib.devices.PCO.SC2), 732
Peak (class in pylablib.core.dataproc.feature), 131
peaks_sum_func() (in module py-

lablib.core.dataproc.feature), 131
Performax2EXStage (class in py-

lablib.devices.Arcus.performax), 538
Performax4EXStage (class in py-

lablib.devices.Arcus.performax), 534
PerformaxDMXJSAStage (class in py-

lablib.devices.Arcus.performax), 542
period (pylablib.core.gui.widgets.container.TTimer at-

tribute), 230
PFCamAttribute (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
756

PfeifferBackendError, 739
PfeifferError, 739
phase (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters

attribute), 831
phase (pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters

attribute), 831
PhotonFocusBitFlowCamera (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
781

PhotonFocusBitFlowCamera.BufferManager (class
in pylablib.devices.PhotonFocus.PhotonFocus),

Index 1147

pylablib Documentation, Release 1.4.2

781
PhotonFocusIMAQCamera (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
763

PhotonFocusSiSoCamera (class in py-
lablib.devices.PhotonFocus.PhotonFocus),
772

PhotonFocusSiSoCamera.BufferManager (class in
pylablib.devices.PhotonFocus.PhotonFocus),
773

PhysikInstrumenteBackendError, 789
PhysikInstrumenteError, 789
PicamAttribute (class in py-

lablib.devices.PrincetonInstruments.picam),
801

PicamCamera (class in py-
lablib.devices.PrincetonInstruments.picam),
803

Picomotor8742 (class in py-
lablib.devices.Newport.picomotor), 714

PIE515 (class in pylablib.devices.PhysikInstrumente.base),
795

PIE516 (class in pylablib.devices.PhysikInstrumente.base),
791

pip_install() (in module pylablib.core.utils.module),
424

PipeIPCChannel (class in pylablib.core.utils.ipc), 420
pixelclock (pylablib.devices.Thorlabs.TLCamera.TFrameInfo

attribute), 879
pixeltype (pylablib.devices.Andor.AndorSDK3.TFrameInfo

attribute), 519
pixeltype (pylablib.devices.DCAM.DCAM.TFrameInfo

attribute), 597
pixeltype (pylablib.devices.Thorlabs.TLCamera.TFrameInfo

attribute), 879
place_widget_at_location() (in module py-

lablib.core.gui.utils), 297
platform (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo

attribute), 815
PM160 (class in pylablib.devices.Thorlabs.misc), 922
points (pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings

attribute), 650
poke() (pylablib.core.thread.controller.QTaskThread

method), 344
poke() (pylablib.core.thread.controller.QThreadController

method), 334
polynomial() (in module py-

lablib.core.utils.numerical), 430
pop() (pylablib.core.utils.dictionary.Dictionary

method), 364
pop() (pylablib.core.utils.dictionary.DictionaryPointer

method), 378
pop() (pylablib.core.utils.dictionary.FilterTree method),

395

pop() (pylablib.core.utils.dictionary.PrefixTree method),
387

pop_call() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

pop_call() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

pop_call() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

pop_message() (pylablib.core.thread.controller.QTaskThread
method), 344

pop_message() (pylablib.core.thread.controller.QThreadController
method), 328

port (pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo
attribute), 755

port_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo
attribute), 747

port_name (pylablib.devices.Photometrics.pvcam.TReadoutInfo
attribute), 747

pos_to_order() (in module py-
lablib.core.gui.formatter), 294

position (pylablib.core.dataproc.feature.Baseline at-
tribute), 131

position (pylablib.core.dataproc.feature.Peak at-
tribute), 131

position (pylablib.core.gui.utils.TWidgetLocation at-
tribute), 297

position (pylablib.devices.DCAM.DCAM.TFrameInfo
attribute), 597

position (pylablib.devices.Standa.base.TFullState at-
tribute), 853

post_open() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

post_open() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 635

post_open() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 629

power (pylablib.devices.ElektroAutomatik.base.TOutputLimits
attribute), 604

power_off() (pylablib.devices.Standa.base.Standa8SMC
method), 855

power_spectral_density() (in module py-
lablib.core.dataproc.fourier), 142

power_up (pylablib.devices.Toptica.ibeam.TWorkHours
attribute), 941

pquery() (pylablib.devices.Standa.base.Standa8SMC
method), 854

precede() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform
method), 130

preceded() (pylablib.core.dataproc.transform.Indexed2DTransform
method), 158

preceded() (pylablib.core.dataproc.transform.LinearTransform
method), 157

PrefixedFileSystemDataLocation (class in py-
lablib.core.fileio.location), 216

1148 Index

pylablib Documentation, Release 1.4.2

PrefixShortcutTree (class in py-
lablib.core.utils.dictionary), 396

PrefixTree (class in pylablib.core.utils.dictionary), 380
preinit() (pylablib.devices.Andor.AndorSDK2.LibraryController

method), 505
preinit() (pylablib.devices.Andor.AndorSDK3.LibraryController

method), 516
preinit() (pylablib.devices.Andor.Shamrock.LibraryController

method), 527
preinit() (pylablib.devices.Basler.pylon.LibraryController

method), 556
preinit() (pylablib.devices.DCAM.DCAM.LibraryController

method), 595
preinit() (pylablib.devices.Mightex.MightexSSeries.LibraryController

method), 686
preinit() (pylablib.devices.Photometrics.pvcam.LibraryController

method), 745
preinit() (pylablib.devices.PhotonFocus.PhotonFocus.LibraryController

method), 755
preinit() (pylablib.devices.PrincetonInstruments.picam.LibraryController

method), 800
preinit() (pylablib.devices.SmarAct.MCS2.LibraryController

method), 844
preinit() (pylablib.devices.SmarAct.scu3d.LibraryController

method), 849
preinit() (pylablib.devices.Thorlabs.TLCamera.LibraryController

method), 878
preinit() (pylablib.devices.utils.load_lib.LibraryController

method), 998
prep() (pylablib.core.utils.ctypes_wrap.CStructWrapper

method), 361
prep_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper

class method), 361
prep_struct_args() (py-

lablib.core.utils.ctypes_wrap.CStructWrapper
class method), 361

presets (pylablib.devices.Ophir.base.TWavelengthInfo
attribute), 726

print_stats() (in module pylablib.core.thread.profile),
352

priority (pylablib.core.thread.controller.QTaskThread.TBatchJob
attribute), 336

priority (pylablib.core.thread.controller.QTaskThread.TCommand
attribute), 336

priority (pylablib.core.utils.observer_pool.ObserverPool.Observer
attribute), 430

process_interrupt() (py-
lablib.core.thread.controller.QTaskThread
method), 344

process_interrupt() (py-
lablib.core.thread.controller.QThreadController
method), 329

process_message() (py-
lablib.core.thread.controller.QTaskThread

method), 344
process_message() (py-

lablib.core.thread.controller.QThreadController
method), 329

product (pylablib.core.devio.hid.TDeviceDescription at-
tribute), 190

product (pylablib.devices.LighthousePhotonics.base.TDeviceInfo
attribute), 668

product (pylablib.devices.Photometrics.pvcam.TDeviceInfo
attribute), 747

product_id (pylablib.core.devio.hid.TDeviceDescription
attribute), 190

ProgressBarValueHandler (class in py-
lablib.core.gui.value_handling), 309

PropertyValueHandler (class in py-
lablib.core.gui.value_handling), 300

props (pylablib.devices.Basler.pylon.TCameraInfo
attribute), 557

props (pylablib.devices.Basler.pylon.TDeviceInfo at-
tribute), 559

PS2000B (class in py-
lablib.devices.ElektroAutomatik.base), 605

PS2000B.TTelegram (class in py-
lablib.devices.ElektroAutomatik.base), 605

pstep (pylablib.devices.interface.camera.TAxisROILimit
attribute), 976

psu (pylablib.devices.LaserQuantum.base.TTemperatures
attribute), 661

psu (pylablib.devices.LaserQuantum.base.TWorkHours
attribute), 661

pulse (pylablib.devices.Thorlabs.elliptec.TDeviceInfo
attribute), 887

pulse_divisor (pylablib.devices.Trinamic.base.TVelocityParams
attribute), 944

PushButtonValueHandler (class in py-
lablib.core.gui.value_handling), 306

pval() (in module pylablib.core.devio.interface), 198
PvcamAttribute (class in py-

lablib.devices.Photometrics.pvcam), 745
PvcamCamera (class in py-

lablib.devices.Photometrics.pvcam), 747
pylablib

module, 999
pylablib.core

module, 440
pylablib.core.dataproc

module, 161
pylablib.core.dataproc.callable

module, 125
pylablib.core.dataproc.ctransform_fallback

module, 130
pylablib.core.dataproc.feature

module, 131
pylablib.core.dataproc.filters

Index 1149

pylablib Documentation, Release 1.4.2

module, 133
pylablib.core.dataproc.fitting

module, 137
pylablib.core.dataproc.fourier

module, 140
pylablib.core.dataproc.iir_transform

module, 143
pylablib.core.dataproc.image

module, 143
pylablib.core.dataproc.interpolate

module, 144
pylablib.core.dataproc.specfunc

module, 147
pylablib.core.dataproc.table_wrap

module, 148
pylablib.core.dataproc.transform

module, 157
pylablib.core.dataproc.utils

module, 158
pylablib.core.devio

module, 198
pylablib.core.devio.backend_logger

module, 165
pylablib.core.devio.base

module, 166
pylablib.core.devio.comm_backend

module, 166
pylablib.core.devio.data_format

module, 189
pylablib.core.devio.hid

module, 190
pylablib.core.devio.hid_base

module, 192
pylablib.core.devio.interface

module, 192
pylablib.core.devio.SCPI

module, 161
pylablib.core.fileio

module, 228
pylablib.core.fileio.datafile

module, 198
pylablib.core.fileio.dict_entry

module, 199
pylablib.core.fileio.loadfile

module, 206
pylablib.core.fileio.loadfile_utils

module, 212
pylablib.core.fileio.location

module, 213
pylablib.core.fileio.parse_csv

module, 218
pylablib.core.fileio.savefile

module, 220
pylablib.core.fileio.table_stream

module, 227
pylablib.core.gui

module, 315
pylablib.core.gui.formatter

module, 294
pylablib.core.gui.limiter

module, 295
pylablib.core.gui.utils

module, 296
pylablib.core.gui.value_handling

module, 298
pylablib.core.gui.widgets

module, 294
pylablib.core.gui.widgets.button

module, 228
pylablib.core.gui.widgets.combo_box

module, 228
pylablib.core.gui.widgets.container

module, 230
pylablib.core.gui.widgets.edit

module, 266
pylablib.core.gui.widgets.label

module, 268
pylablib.core.gui.widgets.layout_manager

module, 271
pylablib.core.gui.widgets.param_table

module, 274
pylablib.core.thread

module, 357
pylablib.core.thread.callsync

module, 315
pylablib.core.thread.controller

module, 326
pylablib.core.thread.multicast_pool

module, 350
pylablib.core.thread.notifier

module, 351
pylablib.core.thread.profile

module, 352
pylablib.core.thread.synchronizing

module, 352
pylablib.core.thread.threadprop

module, 354
pylablib.core.thread.utils

module, 356
pylablib.core.utils

module, 440
pylablib.core.utils.array_utils

module, 357
pylablib.core.utils.cext_tools

module, 357
pylablib.core.utils.crc

module, 357
pylablib.core.utils.ctypes_wrap

1150 Index

pylablib Documentation, Release 1.4.2

module, 357
pylablib.core.utils.dictionary

module, 361
pylablib.core.utils.files

module, 398
pylablib.core.utils.funcargparse

module, 405
pylablib.core.utils.functions

module, 406
pylablib.core.utils.general

module, 410
pylablib.core.utils.indexing

module, 418
pylablib.core.utils.ipc

module, 420
pylablib.core.utils.library_parameters

module, 422
pylablib.core.utils.module

module, 423
pylablib.core.utils.nbtools

module, 424
pylablib.core.utils.net

module, 425
pylablib.core.utils.numerical

module, 429
pylablib.core.utils.observer_pool

module, 430
pylablib.core.utils.py3

module, 431
pylablib.core.utils.rpyc_utils

module, 431
pylablib.core.utils.strdump

module, 433
pylablib.core.utils.string

module, 434
pylablib.core.utils.strpack

module, 438
pylablib.core.utils.units

module, 439
pylablib.devices

module, 999
pylablib.devices.AlliedVision

module, 505
pylablib.devices.AlliedVision.Bonito

module, 490
pylablib.devices.Andor

module, 532
pylablib.devices.Andor.AndorSDK2

module, 505
pylablib.devices.Andor.AndorSDK3

module, 516
pylablib.devices.Andor.atcore_features

module, 531
pylablib.devices.Andor.base

module, 531
pylablib.devices.Andor.Shamrock

module, 526
pylablib.devices.Arcus

module, 545
pylablib.devices.Arcus.base

module, 532
pylablib.devices.Arcus.performax

module, 533
pylablib.devices.Arduino

module, 548
pylablib.devices.Arduino.base

module, 545
pylablib.devices.Attocube

module, 556
pylablib.devices.Attocube.anc300

module, 548
pylablib.devices.Attocube.anc350

module, 552
pylablib.devices.Attocube.base

module, 556
pylablib.devices.AWG

module, 490
pylablib.devices.AWG.generic

module, 440
pylablib.devices.AWG.specific

module, 447
pylablib.devices.Basler

module, 566
pylablib.devices.Basler.pylon

module, 556
pylablib.devices.BitFlow

module, 579
pylablib.devices.BitFlow.BitFlow

module, 566
pylablib.devices.Conrad

module, 581
pylablib.devices.Conrad.base

module, 579
pylablib.devices.Cryocon

module, 586
pylablib.devices.Cryocon.base

module, 581
pylablib.devices.Cryomagnetics

module, 595
pylablib.devices.Cryomagnetics.base

module, 586
pylablib.devices.DCAM

module, 603
pylablib.devices.DCAM.DCAM

module, 595
pylablib.devices.ElektroAutomatik

module, 607
pylablib.devices.ElektroAutomatik.base

Index 1151

pylablib Documentation, Release 1.4.2

module, 603
pylablib.devices.HighFinesse

module, 611
pylablib.devices.HighFinesse.wlm

module, 607
pylablib.devices.IMAQ

module, 627
pylablib.devices.IMAQ.IMAQ

module, 611
pylablib.devices.IMAQ.niimaq_attrtypes

module, 627
pylablib.devices.IMAQdx

module, 641
pylablib.devices.IMAQdx.IMAQdx

module, 627
pylablib.devices.interface

module, 988
pylablib.devices.interface.camera

module, 955
pylablib.devices.interface.stage

module, 986
pylablib.devices.Keithley

module, 649
pylablib.devices.Keithley.base

module, 643
pylablib.devices.Keithley.multimeter

module, 644
pylablib.devices.KJL

module, 643
pylablib.devices.KJL.base

module, 641
pylablib.devices.Lakeshore

module, 660
pylablib.devices.Lakeshore.base

module, 649
pylablib.devices.LaserQuantum

module, 663
pylablib.devices.LaserQuantum.base

module, 660
pylablib.devices.Leybold

module, 667
pylablib.devices.Leybold.base

module, 663
pylablib.devices.LighthousePhotonics

module, 670
pylablib.devices.LighthousePhotonics.base

module, 667
pylablib.devices.Lumel

module, 673
pylablib.devices.Lumel.base

module, 670
pylablib.devices.M2

module, 686
pylablib.devices.M2.base

module, 673
pylablib.devices.M2.emm

module, 676
pylablib.devices.M2.solstis

module, 679
pylablib.devices.Mightex

module, 693
pylablib.devices.Mightex.base

module, 692
pylablib.devices.Mightex.MightexSSeries

module, 686
pylablib.devices.Modbus

module, 695
pylablib.devices.Modbus.modbus

module, 693
pylablib.devices.Newport

module, 717
pylablib.devices.Newport.base

module, 713
pylablib.devices.Newport.picomotor

module, 714
pylablib.devices.NI

module, 703
pylablib.devices.NI.daq

module, 695
pylablib.devices.NKT

module, 713
pylablib.devices.NKT.interbus

module, 703
pylablib.devices.Ophir

module, 730
pylablib.devices.Ophir.base

module, 724
pylablib.devices.OZOptics

module, 724
pylablib.devices.OZOptics.base

module, 717
pylablib.devices.PCO

module, 739
pylablib.devices.PCO.SC2

module, 730
pylablib.devices.Pfeiffer

module, 744
pylablib.devices.Pfeiffer.base

module, 739
pylablib.devices.Photometrics

module, 755
pylablib.devices.Photometrics.pvcam

module, 744
pylablib.devices.PhotonFocus

module, 789
pylablib.devices.PhotonFocus.PhotonFocus

module, 755
pylablib.devices.PhysikInstrumente

1152 Index

pylablib Documentation, Release 1.4.2

module, 800
pylablib.devices.PhysikInstrumente.base

module, 789
pylablib.devices.PrincetonInstruments

module, 809
pylablib.devices.PrincetonInstruments.picam

module, 800
pylablib.devices.Rigol

module, 814
pylablib.devices.Rigol.base

module, 809
pylablib.devices.Rigol.power_supply

module, 810
pylablib.devices.SiliconSoftware

module, 831
pylablib.devices.SiliconSoftware.fgrab

module, 814
pylablib.devices.Sirah

module, 844
pylablib.devices.Sirah.base

module, 840
pylablib.devices.Sirah.Matisse

module, 831
pylablib.devices.Sirah.tuner

module, 840
pylablib.devices.SmarAct

module, 852
pylablib.devices.SmarAct.base

module, 849
pylablib.devices.SmarAct.MCS2

module, 844
pylablib.devices.SmarAct.scu3d

module, 849
pylablib.devices.Standa

module, 856
pylablib.devices.Standa.base

module, 852
pylablib.devices.Tektronix

module, 878
pylablib.devices.Tektronix.base

module, 856
pylablib.devices.Thorlabs

module, 940
pylablib.devices.Thorlabs.base

module, 887
pylablib.devices.Thorlabs.elliptec

module, 887
pylablib.devices.Thorlabs.kinesis

module, 891
pylablib.devices.Thorlabs.misc

module, 918
pylablib.devices.Thorlabs.serial

module, 927
pylablib.devices.Thorlabs.TLCamera

module, 878
pylablib.devices.Toptica

module, 943
pylablib.devices.Toptica.base

module, 940
pylablib.devices.Toptica.ibeam

module, 941
pylablib.devices.Trinamic

module, 948
pylablib.devices.Trinamic.base

module, 943
pylablib.devices.uc480

module, 997
pylablib.devices.uc480.uc480

module, 988
pylablib.devices.utils

module, 999
pylablib.devices.utils.color

module, 997
pylablib.devices.utils.load_lib

module, 997
pylablib.devices.Voltcraft

module, 955
pylablib.devices.Voltcraft.base

module, 948
pylablib.devices.Voltcraft.multimeter

module, 949
pylablib.widgets

module, 999
PyUSBDeviceBackend (class in py-

lablib.core.devio.comm_backend), 179

Q
QCallResultSynchronizer (class in py-

lablib.core.thread.callsync), 315
QContainer (class in py-

lablib.core.gui.widgets.container), 233
QDialogContainer (class in py-

lablib.core.gui.widgets.container), 248
QDirectCallScheduler (class in py-

lablib.core.thread.callsync), 319
QDirectResultSynchronizer (class in py-

lablib.core.thread.callsync), 316
QDummyResultSynchronizer (class in py-

lablib.core.thread.callsync), 316
QFrameContainer (class in py-

lablib.core.gui.widgets.container), 244
QGroupBoxContainer (class in py-

lablib.core.gui.widgets.container), 252
QLayoutManagedWidget (class in py-

lablib.core.gui.widgets.layout_manager),
272

QLockNotifier (class in py-
lablib.core.thread.synchronizing), 354

Index 1153

pylablib Documentation, Release 1.4.2

QMulticastThreadCallScheduler (class in py-
lablib.core.thread.callsync), 325

QMultiQueueScheduler (class in py-
lablib.core.thread.callsync), 324

QMultiThreadNotifier (class in py-
lablib.core.thread.synchronizing), 353

QQueueLengthLimitScheduler (class in py-
lablib.core.thread.callsync), 321

QQueueScheduler (class in py-
lablib.core.thread.callsync), 320

QQueueSizeLimitScheduler (class in py-
lablib.core.thread.callsync), 323

QScheduledCall (class in py-
lablib.core.thread.callsync), 317

QScheduledCall.Callback (class in py-
lablib.core.thread.callsync), 318

QScheduler (class in pylablib.core.thread.callsync), 318
QScrollAreaContainer (class in py-

lablib.core.gui.widgets.container), 256
QScrollAreaContainer.QContainedWidget (class in

pylablib.core.gui.widgets.container), 256
QTabContainer (class in py-

lablib.core.gui.widgets.container), 263
QTaskThread (class in pylablib.core.thread.controller),

335
QTaskThread.CommandAccess (class in py-

lablib.core.thread.controller), 341
QTaskThread.Job (class in py-

lablib.core.thread.controller), 337
QTaskThread.TBatchJob (class in py-

lablib.core.thread.controller), 336
QTaskThread.TCommand (class in py-

lablib.core.thread.controller), 336
QThreadCallScheduler (class in py-

lablib.core.thread.callsync), 324
QThreadController (class in py-

lablib.core.thread.controller), 327
QThreadControllerThread (class in py-

lablib.core.thread.controller), 327
QThreadNotifier (class in py-

lablib.core.thread.synchronizing), 352
query() (pylablib.devices.Arcus.performax.GenericPerformaxStage

method), 533
query() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 541
query() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 538
query() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 545
query() (pylablib.devices.Arduino.base.IArduinoDevice

method), 546
query() (pylablib.devices.Attocube.anc300.ANC300

method), 548
query() (pylablib.devices.Conrad.base.RelayBoard

method), 580
query() (pylablib.devices.ElektroAutomatik.base.PS2000B

method), 605
query() (pylablib.devices.KJL.base.KJL300 method),

642
query() (pylablib.devices.LaserQuantum.base.Finesse

method), 661
query() (pylablib.devices.LighthousePhotonics.base.SproutG

method), 668
query() (pylablib.devices.M2.base.ICEBlocDevice

method), 674
query() (pylablib.devices.M2.emm.EMM method), 678
query() (pylablib.devices.M2.solstis.Solstis method),

685
query() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 714
query() (pylablib.devices.Ophir.base.OphirDevice

method), 725
query() (pylablib.devices.Ophir.base.VegaPowerMeter

method), 729
query() (pylablib.devices.OZOptics.base.DD100

method), 722
query() (pylablib.devices.OZOptics.base.EPC04

method), 722
query() (pylablib.devices.OZOptics.base.OZOpticsDevice

method), 718
query() (pylablib.devices.OZOptics.base.TF100

method), 720
query() (pylablib.devices.Pfeiffer.base.DPG202

method), 742
query() (pylablib.devices.Pfeiffer.base.TPG260

method), 740
query() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 790
query() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794
query() (pylablib.devices.Standa.base.Standa8SMC

method), 854
query() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 889
query() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 893
query() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 898
query() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 909
query() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 913
query() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
query() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
query() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 941

1154 Index

pylablib Documentation, Release 1.4.2

query() (pylablib.devices.Trinamic.base.TMCM1110
method), 945

query_axis() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

query_axis() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 794

query_camera_name() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
755

queue() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 562

quit_sync() (pylablib.core.thread.controller.QThreadControllerThread
method), 327

QWidgetContainer (class in py-
lablib.core.gui.widgets.container), 239

R
ramp_divisor (pylablib.devices.Trinamic.base.TVelocityParams

attribute), 944
ramp_down (pylablib.devices.Thorlabs.elliptec.TMotorInfo

attribute), 888
ramp_enabled (pylablib.devices.Standa.base.TPowerParams

attribute), 853
ramp_time (pylablib.devices.Standa.base.TPowerParams

attribute), 853
ramp_up (pylablib.devices.Thorlabs.elliptec.TMotorInfo

attribute), 888
Range (class in pylablib.core.dataproc.utils), 159
RangeParameterClass (class in py-

lablib.core.devio.interface), 194
ranges (pylablib.devices.Ophir.base.TRangeInfo at-

tribute), 727
rate (pylablib.devices.NI.daq.TVoltageOutputClockParameters

attribute), 696
rate (pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters

attribute), 831
read() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 175
read() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 183
read() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 168
read() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 178
read() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 181
read() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
read() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 172
read() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 170
read() (pylablib.core.devio.hid.HIDevice method), 191

read() (pylablib.core.devio.hid.HIDevice.Reader
method), 191

read() (pylablib.core.devio.SCPI.SCPIDevice method),
163

read() (pylablib.core.fileio.loadfile.BinaryTableInputFileFormatter
method), 208

read() (pylablib.core.fileio.loadfile.CSVTableInputFileFormat
method), 207

read() (pylablib.core.fileio.loadfile.DictionaryInputFileFormat
method), 208

read() (pylablib.core.fileio.loadfile.IInputFileFormat
method), 206

read() (pylablib.core.fileio.loadfile.ITextInputFileFormat
method), 207

read() (pylablib.devices.AWG.generic.GenericAWG
method), 445

read() (pylablib.devices.AWG.specific.Agilent33220A
method), 456

read() (pylablib.devices.AWG.specific.Agilent33500
method), 450

read() (pylablib.devices.AWG.specific.InstekAFG2000
method), 468

read() (pylablib.devices.AWG.specific.InstekAFG2225
method), 462

read() (pylablib.devices.AWG.specific.RigolDG1000
method), 487

read() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 474

read() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 481

read() (pylablib.devices.Cryocon.base.Cryocon1x
method), 584

read() (pylablib.devices.Cryomagnetics.base.LM500
method), 589

read() (pylablib.devices.Cryomagnetics.base.LM510
method), 592

read() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 647

read() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 653

read() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 658

read() (pylablib.devices.NI.daq.NIDAQ method), 699
read() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 798
read() (pylablib.devices.Rigol.power_supply.DP1116A

method), 812
read() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 838
read() (pylablib.devices.Tektronix.base.DPO2000

method), 874
read() (pylablib.devices.Tektronix.base.ITektronixScope

method), 862
read() (pylablib.devices.Tektronix.base.TDS2000

Index 1155

pylablib Documentation, Release 1.4.2

method), 867
read() (pylablib.devices.Thorlabs.misc.GenericPM

method), 921
read() (pylablib.devices.Thorlabs.misc.PM160 method),

925
read() (pylablib.devices.Thorlabs.serial.FW method),

932
read() (pylablib.devices.Thorlabs.serial.FWv1 method),

935
read() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 938
read() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
read() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 951
read_binary_array_data() (py-

lablib.core.devio.SCPI.SCPIDevice method),
165

read_binary_array_data() (py-
lablib.devices.AWG.generic.GenericAWG
method), 445

read_binary_array_data() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

read_binary_array_data() (py-
lablib.devices.AWG.specific.Agilent33500
method), 450

read_binary_array_data() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 468

read_binary_array_data() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 462

read_binary_array_data() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

read_binary_array_data() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

read_binary_array_data() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

read_binary_array_data() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 584

read_binary_array_data() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 589

read_binary_array_data() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

read_binary_array_data() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 648

read_binary_array_data() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 654

read_binary_array_data() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 658

read_binary_array_data() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 798

read_binary_array_data() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 813

read_binary_array_data() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 838

read_binary_array_data() (py-
lablib.devices.Tektronix.base.DPO2000
method), 874

read_binary_array_data() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 862

read_binary_array_data() (py-
lablib.devices.Tektronix.base.TDS2000
method), 867

read_binary_array_data() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 921

read_binary_array_data() (py-
lablib.devices.Thorlabs.misc.PM160 method),
925

read_binary_array_data() (py-
lablib.devices.Thorlabs.serial.FW method),
932

read_binary_array_data() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
935

read_binary_array_data() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 939

read_binary_array_data() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 928

read_binary_array_data() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 951

read_columns() (in module py-
lablib.core.fileio.parse_csv), 219

read_dict_and_comments() (in module py-
lablib.core.fileio.loadfile_utils), 212

read_directly (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 801

read_in_aux_port() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

1156 Index

pylablib Documentation, Release 1.4.2

read_message() (pylablib.devices.Voltcraft.multimeter.VC880
method), 953

read_multichar_term() (py-
lablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

read_multichar_term() (py-
lablib.core.devio.comm_backend.HIDeviceBackend
method), 183

read_multichar_term() (py-
lablib.core.devio.comm_backend.NetworkDeviceBackend
method), 178

read_multichar_term() (py-
lablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 181

read_multichar_term() (py-
lablib.core.devio.comm_backend.SerialDeviceBackend
method), 172

read_multiple_images() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 500

read_multiple_images() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 494

read_multiple_images() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

read_multiple_images() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 526

read_multiple_images() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

read_multiple_images() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 576

read_multiple_images() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

read_multiple_images() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 603

read_multiple_images() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 623

read_multiple_images() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

read_multiple_images() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

read_multiple_images() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 633

read_multiple_images() (py-

lablib.devices.interface.camera.IAttributeCamera
method), 965

read_multiple_images() (py-
lablib.devices.interface.camera.IBinROICamera
method), 983

read_multiple_images() (py-
lablib.devices.interface.camera.ICamera
method), 958

read_multiple_images() (py-
lablib.devices.interface.camera.IExposureCamera
method), 974

read_multiple_images() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 969

read_multiple_images() (py-
lablib.devices.interface.camera.IROICamera
method), 979

read_multiple_images() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

read_multiple_images() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

read_multiple_images() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

read_multiple_images() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

read_multiple_images() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

read_multiple_images() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 769

read_multiple_images() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

read_multiple_images() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 809

read_multiple_images() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

read_multiple_images() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 822

read_multiple_images() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

read_multiple_images() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 996

read_multiple_sweeps() (py-

Index 1157

pylablib Documentation, Release 1.4.2

lablib.devices.Tektronix.base.DPO2000
method), 875

read_multiple_sweeps() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

read_multiple_sweeps() (py-
lablib.devices.Tektronix.base.TDS2000
method), 868

read_newest_image() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 501

read_newest_image() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 494

read_newest_image() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

read_newest_image() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

read_newest_image() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

read_newest_image() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 576

read_newest_image() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 571

read_newest_image() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

read_newest_image() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 623

read_newest_image() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

read_newest_image() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

read_newest_image() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 634

read_newest_image() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 965

read_newest_image() (py-
lablib.devices.interface.camera.IBinROICamera
method), 983

read_newest_image() (py-
lablib.devices.interface.camera.ICamera
method), 959

read_newest_image() (py-

lablib.devices.interface.camera.IExposureCamera
method), 974

read_newest_image() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

read_newest_image() (py-
lablib.devices.interface.camera.IROICamera
method), 979

read_newest_image() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

read_newest_image() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

read_newest_image() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

read_newest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

read_newest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

read_newest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 769

read_newest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

read_newest_image() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

read_newest_image() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

read_newest_image() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 822

read_newest_image() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

read_newest_image() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

read_oldest_image() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 501

read_oldest_image() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 494

read_oldest_image() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

read_oldest_image() (py-

1158 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

read_oldest_image() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

read_oldest_image() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 576

read_oldest_image() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

read_oldest_image() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

read_oldest_image() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

read_oldest_image() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

read_oldest_image() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

read_oldest_image() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 634

read_oldest_image() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 965

read_oldest_image() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

read_oldest_image() (py-
lablib.devices.interface.camera.ICamera
method), 958

read_oldest_image() (py-
lablib.devices.interface.camera.IExposureCamera
method), 974

read_oldest_image() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

read_oldest_image() (py-
lablib.devices.interface.camera.IROICamera
method), 979

read_oldest_image() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

read_oldest_image() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

read_oldest_image() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

read_oldest_image() (py-

lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

read_oldest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

read_oldest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 769

read_oldest_image() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

read_oldest_image() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

read_oldest_image() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

read_oldest_image() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

read_oldest_image() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 885

read_oldest_image() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

read_raw_data() (py-
lablib.devices.Tektronix.base.DPO2000
method), 875

read_raw_data() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

read_raw_data() (py-
lablib.devices.Tektronix.base.TDS2000
method), 868

read_sweep() (pylablib.devices.Tektronix.base.DPO2000
method), 875

read_sweep() (pylablib.devices.Tektronix.base.ITektronixScope
method), 861

read_sweep() (pylablib.devices.Tektronix.base.TDS2000
method), 868

read_table() (in module py-
lablib.core.fileio.parse_csv), 220

read_trigger() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 501

read_trigger() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

read_trigger() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 614

read_trigger() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 769

readable (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 517

readable (pylablib.devices.Basler.pylon.BaslerPylonAttribute

Index 1159

pylablib Documentation, Release 1.4.2

attribute), 558
readable (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 596
readable (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
readable (pylablib.devices.Photometrics.pvcam.PvcamAttribute

attribute), 745
readable (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute

attribute), 756
ReadChangeLock (class in pylablib.core.thread.utils),

356
reading() (pylablib.core.thread.utils.ReadChangeLock

method), 356
readline() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 175
readline() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 183
readline() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 168
readline() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 178
readline() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 180
readline() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
readline() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 172
readline() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 170
readlines() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 176
readlines() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 184
readlines() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 168
readlines() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 179
readlines() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 182
readlines() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 187
readlines() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 173
readlines() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 170
readn() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager

method), 521
reason (pylablib.devices.Attocube.anc350.ANC350.Reply

attribute), 552
reboot() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 731
reboot() (pylablib.devices.Toptica.ibeam.TopticaIBeam

method), 941
reconnect() (pylablib.core.devio.SCPI.SCPIDevice

method), 162
reconnect() (pylablib.devices.AWG.generic.GenericAWG

method), 445
reconnect() (pylablib.devices.AWG.specific.Agilent33220A

method), 456
reconnect() (pylablib.devices.AWG.specific.Agilent33500

method), 450
reconnect() (pylablib.devices.AWG.specific.InstekAFG2000

method), 468
reconnect() (pylablib.devices.AWG.specific.InstekAFG2225

method), 463
reconnect() (pylablib.devices.AWG.specific.RigolDG1000

method), 487
reconnect() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 475
reconnect() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 481
reconnect() (pylablib.devices.Cryocon.base.Cryocon1x

method), 584
reconnect() (pylablib.devices.Cryomagnetics.base.LM500

method), 589
reconnect() (pylablib.devices.Cryomagnetics.base.LM510

method), 593
reconnect() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 648
reconnect() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 654
reconnect() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 659
reconnect() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 798
reconnect() (pylablib.devices.Rigol.power_supply.DP1116A

method), 813
reconnect() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 838
reconnect() (pylablib.devices.Tektronix.base.DPO2000

method), 875
reconnect() (pylablib.devices.Tektronix.base.ITektronixScope

method), 863
reconnect() (pylablib.devices.Tektronix.base.TDS2000

method), 868
reconnect() (pylablib.devices.Thorlabs.misc.GenericPM

method), 921
reconnect() (pylablib.devices.Thorlabs.misc.PM160

method), 925
reconnect() (pylablib.devices.Thorlabs.serial.FW

method), 932
reconnect() (pylablib.devices.Thorlabs.serial.FWv1

method), 935
reconnect() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 939
reconnect() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
reconnect() (pylablib.devices.Voltcraft.multimeter.VC7055

1160 Index

pylablib Documentation, Release 1.4.2

method), 951
RecordedDeviceBackend (class in py-

lablib.core.devio.comm_backend), 185
rectangle_k() (in module py-

lablib.core.dataproc.specfunc), 147
rectangle_w() (in module py-

lablib.core.dataproc.specfunc), 147
rectangle_w_ft() (in module py-

lablib.core.dataproc.specfunc), 148
recursive_map() (in module py-

lablib.core.utils.general), 411
recv() (pylablib.core.utils.ipc.IIPCChannel method),

420
recv() (pylablib.core.utils.ipc.PipeIPCChannel

method), 421
recv() (pylablib.core.utils.ipc.SharedMemIPCChannel

method), 421
recv() (pylablib.core.utils.net.ClientSocket method),

428
recv_ack() (pylablib.core.utils.net.ClientSocket

method), 428
recv_all() (pylablib.core.utils.net.ClientSocket

method), 428
recv_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 889
recv_comm() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 893
recv_comm() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 899
recv_comm() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 909
recv_comm() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 913
recv_comm() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
recv_comm() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
recv_decllen() (pylablib.core.utils.net.ClientSocket

method), 428
recv_delimiter() (pylablib.core.utils.net.ClientSocket

method), 427
recv_fixedlen() (pylablib.core.utils.net.ClientSocket

method), 427
recv_JSON() (in module pylablib.core.utils.net), 428
recv_numpy() (pylablib.core.utils.ipc.IIPCChannel

method), 420
recv_numpy() (pylablib.core.utils.ipc.PipeIPCChannel

method), 421
recv_numpy() (pylablib.core.utils.ipc.SharedMemIPCChannel

method), 421
reduct_delay (pylablib.devices.Standa.base.TPowerParams

attribute), 854
reduct_enabled (pylablib.devices.Standa.base.TPowerParams

attribute), 854

refresh_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

refresh_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

register() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 561

register() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager
method), 635

register() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager
method), 630

regular_grid_from_scatter() (in module py-
lablib.core.dataproc.interpolate), 145

relative_path() (in module pylablib.core.utils.files),
398

RelayBoard (class in pylablib.devices.Conrad.base), 579
RelayBoard.TMessage (class in py-

lablib.devices.Conrad.base), 580
release() (pylablib.core.thread.synchronizing.QLockNotifier

method), 354
relevant (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 801
reload_all() (in module pylablib), 999
reload_package_modules() (in module py-

lablib.core.utils.module), 423
rem() (pylablib.core.utils.functions.AttrObjectProperty

method), 410
rem() (pylablib.core.utils.functions.IObjectProperty

method), 409
rem() (pylablib.core.utils.functions.MethodObjectProperty

method), 409
remap_axes() (pylablib.devices.Arcus.performax.GenericPerformaxStage

method), 534
remap_axes() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 541
remap_axes() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 538
remap_axes() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 545
remap_axes() (pylablib.devices.Attocube.anc300.ANC300

method), 551
remap_axes() (pylablib.devices.Attocube.anc350.ANC350

method), 555
remap_axes() (pylablib.devices.interface.stage.IMultiaxisStage

method), 987
remap_axes() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 717
remap_axes() (pylablib.devices.PhysikInstrumente.base.GenericPIController

method), 791
remap_axes() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 798
remap_axes() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 794

Index 1161

pylablib Documentation, Release 1.4.2

remap_axes() (pylablib.devices.SmarAct.MCS2.MCS2
method), 849

remap_axes() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 852

remap_axes() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 899

remap_axes() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 909

remap_axes() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 913

remap_axes() (pylablib.devices.Thorlabs.kinesis.MFF
method), 902

remote_call() (in module py-
lablib.core.thread.controller), 327

remove_batch_job() (py-
lablib.core.thread.controller.QTaskThread
method), 338

remove_child() (pylablib.core.gui.widgets.container.IQContainer
method), 231

remove_child() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 236

remove_child() (pylablib.core.gui.widgets.container.QContainer
method), 234

remove_child() (pylablib.core.gui.widgets.container.QDialogContainer
method), 251

remove_child() (pylablib.core.gui.widgets.container.QFrameContainer
method), 247

remove_child() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

remove_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

remove_child() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

remove_child() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

remove_child() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 242

remove_child() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

remove_child() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

remove_dir() (in module pylablib.core.utils.files), 400
remove_dir_if_empty() (in module py-

lablib.core.utils.files), 400
remove_exception_hook() (in module py-

lablib.core.thread.controller), 326
remove_handler() (py-

lablib.core.gui.value_handling.GUIValues
method), 312

remove_indicator_handler() (py-
lablib.core.gui.value_handling.GUIValues
method), 313

remove_job() (pylablib.core.thread.controller.QTaskThread
method), 337

remove_layout_element() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

remove_layout_element() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

remove_layout_element() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

remove_layout_element() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

remove_layout_element() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

remove_layout_element() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 242

remove_layout_element() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

remove_layout_element() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

remove_layout_element() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

remove_layout_element() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

remove_longest_term() (in module py-
lablib.core.devio.comm_backend), 168

remove_observer() (py-
lablib.core.utils.observer_pool.ObserverPool
method), 431

remove_path() (pylablib.core.utils.general.StreamFileLogger
method), 417

remove_shortcut() (py-
lablib.core.utils.dictionary.PrefixShortcutTree
method), 397

remove_status_line() (in module py-
lablib.devices.interface.camera), 985

remove_status_line() (in module py-
lablib.devices.PhotonFocus.PhotonFocus),
788

remove_stop_notifier() (py-
lablib.core.thread.controller.QTaskThread
method), 344

remove_stop_notifier() (py-
lablib.core.thread.controller.QThreadController
method), 335

remove_tab() (pylablib.core.gui.widgets.container.QTabContainer
method), 263

remove_widget() (py-

1162 Index

pylablib Documentation, Release 1.4.2

lablib.core.gui.widgets.param_table.ParamTable
method), 277

remove_widget() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

removed (pylablib.core.utils.dictionary.DictionaryDiff
attribute), 370, 371

reopen() (pylablib.devices.Arduino.base.IArduinoDevice
method), 546

rep (pylablib.core.utils.string.TConversionClass at-
tribute), 436

repr (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 559

repr_single_value() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

repr_single_value() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 308

repr_single_value() (py-
lablib.core.gui.value_handling.IBoolValueHandler
method), 305

repr_single_value() (py-
lablib.core.gui.value_handling.ISingleValueHandler
method), 302

repr_single_value() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 305

repr_single_value() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 304

repr_single_value() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

repr_single_value() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

repr_single_value() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

repr_value() (pylablib.core.gui.value_handling.CheckboxValueHandler
method), 306

repr_value() (pylablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

repr_value() (pylablib.core.gui.value_handling.GUIValues
method), 315

repr_value() (pylablib.core.gui.value_handling.IBoolValueHandler
method), 305

repr_value() (pylablib.core.gui.value_handling.ISingleValueHandler
method), 303

repr_value() (pylablib.core.gui.value_handling.IValueHandler
method), 299

repr_value() (pylablib.core.gui.value_handling.LabelIndicatorHandler
method), 311

repr_value() (pylablib.core.gui.value_handling.LabelValueHandler
method), 305

repr_value() (pylablib.core.gui.value_handling.LineEditValueHandler
method), 304

repr_value() (pylablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

repr_value() (pylablib.core.gui.value_handling.PropertyValueHandler
method), 301

repr_value() (pylablib.core.gui.value_handling.PushButtonValueHandler
method), 307

repr_value() (pylablib.core.gui.value_handling.StandardValueHandler
method), 302

repr_value() (pylablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

repr_value() (pylablib.core.gui.value_handling.VirtualValueHandler
method), 300

repr_value() (pylablib.core.gui.widgets.button.ToggleButton
method), 228

repr_value() (pylablib.core.gui.widgets.combo_box.ComboBox
method), 229

repr_value() (pylablib.core.gui.widgets.edit.NumEdit
method), 268

repr_value() (pylablib.core.gui.widgets.label.EnumLabel
method), 269

repr_value() (pylablib.core.gui.widgets.label.NumLabel
method), 270

request_stop() (pylablib.core.thread.controller.QTaskThread
method), 344

request_stop() (pylablib.core.thread.controller.QThreadController
method), 333

requires_symmetric_roi() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

reraise() (in module py-
lablib.core.devio.comm_backend), 166

reraise() (pylablib.core.utils.general.RetryOnException.ExceptionCatcher
method), 413

ReraiseError (pylablib.core.devio.SCPI.SCPIDevice
attribute), 162

ReraiseError (pylablib.devices.AWG.generic.GenericAWG
attribute), 441

ReraiseError (pylablib.devices.AWG.specific.Agilent33220A
attribute), 453

ReraiseError (pylablib.devices.AWG.specific.Agilent33500
attribute), 447

ReraiseError (pylablib.devices.AWG.specific.InstekAFG2000
attribute), 465

ReraiseError (pylablib.devices.AWG.specific.InstekAFG2225
attribute), 459

ReraiseError (pylablib.devices.AWG.specific.RigolDG1000
attribute), 484

ReraiseError (pylablib.devices.AWG.specific.RSInstekAFG21000
attribute), 471

ReraiseError (pylablib.devices.AWG.specific.TektronixAFG1000

Index 1163

pylablib Documentation, Release 1.4.2

attribute), 478
ReraiseError (pylablib.devices.Cryocon.base.Cryocon1x

attribute), 582
ReraiseError (pylablib.devices.Cryomagnetics.base.LM500

attribute), 586
ReraiseError (pylablib.devices.Cryomagnetics.base.LM510

attribute), 591
ReraiseError (pylablib.devices.Keithley.multimeter.Keithley2110

attribute), 645
ReraiseError (pylablib.devices.Lakeshore.base.Lakeshore218

attribute), 651
ReraiseError (pylablib.devices.Lakeshore.base.Lakeshore370

attribute), 656
ReraiseError (pylablib.devices.M2.base.ICEBlocDevice

attribute), 674
ReraiseError (pylablib.devices.M2.emm.EMM at-

tribute), 677
ReraiseError (pylablib.devices.M2.solstis.Solstis

attribute), 684
ReraiseError (pylablib.devices.NI.daq.NIDAQ at-

tribute), 697
ReraiseError (pylablib.devices.PhysikInstrumente.base.PIE515

attribute), 795
ReraiseError (pylablib.devices.Rigol.power_supply.DP1116A

attribute), 810
ReraiseError (pylablib.devices.Sirah.Matisse.SirahMatisse

attribute), 832
ReraiseError (pylablib.devices.Tektronix.base.DPO2000

attribute), 871
ReraiseError (pylablib.devices.Tektronix.base.ITektronixScope

attribute), 857
ReraiseError (pylablib.devices.Tektronix.base.TDS2000

attribute), 864
ReraiseError (pylablib.devices.Thorlabs.misc.GenericPM

attribute), 918
ReraiseError (pylablib.devices.Thorlabs.misc.PM160

attribute), 922
ReraiseError (pylablib.devices.Thorlabs.serial.FW at-

tribute), 931
ReraiseError (pylablib.devices.Thorlabs.serial.FWv1

attribute), 934
ReraiseError (pylablib.devices.Thorlabs.serial.MDT69xA

attribute), 937
ReraiseError (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

attribute), 927
ReraiseError (pylablib.devices.Voltcraft.multimeter.VC7055

attribute), 949
res_range (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings

attribute), 655
rescale() (pylablib.core.dataproc.utils.Range method),

160
rescale_peak() (in module py-

lablib.core.dataproc.feature), 131
reset() (in module pylablib.core.thread.profile), 352

reset() (pylablib.core.dataproc.filters.RunningDebounceFilter
method), 137

reset() (pylablib.core.dataproc.filters.RunningDecimationFilter
method), 136

reset() (pylablib.core.devio.SCPI.SCPIDevice
method), 162

reset() (pylablib.core.utils.general.Countdown
method), 415

reset() (pylablib.core.utils.general.Timer method), 416
reset() (pylablib.core.utils.general.TimeTracker

method), 416
reset() (pylablib.core.utils.general.UIDGenerator

method), 414
reset() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 501
reset() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager

method), 522
reset() (pylablib.devices.AWG.generic.GenericAWG

method), 445
reset() (pylablib.devices.AWG.specific.Agilent33220A

method), 456
reset() (pylablib.devices.AWG.specific.Agilent33500

method), 450
reset() (pylablib.devices.AWG.specific.InstekAFG2000

method), 469
reset() (pylablib.devices.AWG.specific.InstekAFG2225

method), 463
reset() (pylablib.devices.AWG.specific.RigolDG1000

method), 487
reset() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 475
reset() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 481
reset() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager

method), 573
reset() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager

method), 569
reset() (pylablib.devices.Cryocon.base.Cryocon1x

method), 584
reset() (pylablib.devices.Cryomagnetics.base.LM500

method), 589
reset() (pylablib.devices.Cryomagnetics.base.LM510

method), 593
reset() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 624
reset() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 612
reset() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 639
reset() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager

method), 635
reset() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 629
reset() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager

1164 Index

pylablib Documentation, Release 1.4.2

method), 631
reset() (pylablib.devices.interface.camera.FrameCounter

method), 960
reset() (pylablib.devices.interface.camera.FrameNotifier

method), 961
reset() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 648
reset() (pylablib.devices.KJL.base.KJL300 method),

642
reset() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 654
reset() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 659
reset() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 714
reset() (pylablib.devices.NI.daq.NIDAQ method), 697
reset() (pylablib.devices.Ophir.base.VegaPowerMeter

method), 727
reset() (pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper

method), 732
reset() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager

method), 782
reset() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 769
reset() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 798
reset() (pylablib.devices.Rigol.power_supply.DP1116A

method), 813
reset() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 838
reset() (pylablib.devices.Tektronix.base.DPO2000

method), 875
reset() (pylablib.devices.Tektronix.base.ITektronixScope

method), 863
reset() (pylablib.devices.Tektronix.base.TDS2000

method), 868
reset() (pylablib.devices.Thorlabs.misc.GenericPM

method), 921
reset() (pylablib.devices.Thorlabs.misc.PM160

method), 925
reset() (pylablib.devices.Thorlabs.serial.FW method),

932
reset() (pylablib.devices.Thorlabs.serial.FWv1

method), 936
reset() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 939
reset() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 928
reset() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer

method), 880
reset() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 951
reset_api() (in module pylablib.devices.PCO.SC2),

730

reset_board() (pylablib.devices.Arduino.base.IArduinoDevice
method), 546

reset_error() (pylablib.devices.Pfeiffer.base.TPG260
method), 741

reset_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

reset_flipper() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

reset_overflows_counter() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

reset_slit() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

reset_wavelength() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

resizeEvent() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 256

resolution (pylablib.devices.Keithley.multimeter.TConfigurationParameters
attribute), 644

resolution (pylablib.devices.Keithley.multimeter.TGenericFunctionParameters
attribute), 644

restart() (in module pylablib.core.utils.general), 418
restart() (pylablib.devices.OZOptics.base.DD100

method), 722
restart() (pylablib.devices.OZOptics.base.OZOpticsDevice

method), 718
restart() (pylablib.devices.OZOptics.base.TF100

method), 721
restart_app() (in module py-

lablib.core.thread.controller), 350
restart_batch_job() (py-

lablib.core.thread.controller.QTaskThread
method), 338

restart_lib() (in module py-
lablib.devices.Andor.AndorSDK2), 505

restart_lib() (in module py-
lablib.devices.Andor.AndorSDK3), 517

restart_lib() (in module py-
lablib.devices.Andor.Shamrock), 527

restart_lib() (in module py-
lablib.devices.Basler.pylon), 557

restart_lib() (in module py-
lablib.devices.DCAM.DCAM), 595

restart_lib() (in module py-
lablib.devices.Mightex.MightexSSeries),
686

restore_parameters() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 715

retrieve() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager
method), 562

retry_clean_dir() (in module py-

Index 1165

pylablib Documentation, Release 1.4.2

lablib.core.utils.files), 403
retry_copy() (in module pylablib.core.utils.files), 403
retry_copy_dir() (in module pylablib.core.utils.files),

403
retry_ensure_dir() (in module py-

lablib.core.utils.files), 403
retry_move() (in module pylablib.core.utils.files), 403
retry_move_dir() (in module pylablib.core.utils.files),

403
retry_remove() (in module pylablib.core.utils.files),

403
retry_remove_dir() (in module py-

lablib.core.utils.files), 403
retry_remove_dir_if_empty() (in module py-

lablib.core.utils.files), 403
retry_wait() (in module pylablib.core.utils.general),

413
RetryOnException (class in py-

lablib.core.utils.general), 413
RetryOnException.ExceptionCatcher (class in py-

lablib.core.utils.general), 413
revision_number (py-

lablib.devices.HighFinesse.wlm.TDeviceInfo
attribute), 608

right_enable (pylablib.devices.Trinamic.base.TLimitSwitchParams
attribute), 944

RigolDG1000 (class in pylablib.devices.AWG.specific),
483

rise_speed (pylablib.devices.Sirah.Matisse.TScanParameters
attribute), 832

rng (pylablib.devices.Keithley.multimeter.TConfigurationParameters
attribute), 644

rng (pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters
attribute), 644

rng (pylablib.devices.Keithley.multimeter.TGenericFunctionParameters
attribute), 644

rng (pylablib.devices.Ophir.base.TWavelengthInfo
attribute), 726

ROI (class in pylablib.core.dataproc.image), 144
roi (pylablib.devices.interface.camera.TStatusLineDescription

attribute), 985
rom_version (pylablib.devices.Ophir.base.TDeviceInfo

attribute), 726
rotated2d() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
rotated2d() (pylablib.core.dataproc.transform.LinearTransform

method), 158
round_significant() (in module py-

lablib.core.utils.numerical), 429
route (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams

attribute), 914
RSInstekAFG21000 (class in py-

lablib.devices.AWG.specific), 471
run() (pylablib.core.thread.controller.QTaskThread

method), 339
run() (pylablib.core.thread.controller.QThreadController

method), 330
run() (pylablib.core.thread.controller.QThreadControllerThread

method), 327
run_as_batch_job() (py-

lablib.core.thread.controller.QTaskThread
method), 338

run_device_service() (in module py-
lablib.core.utils.rpyc_utils), 433

running() (pylablib.core.thread.controller.QTaskThread
method), 345

running() (pylablib.core.thread.controller.QThreadController
method), 334

running() (pylablib.core.utils.general.Countdown
method), 415

RunningDebounceFilter (class in py-
lablib.core.dataproc.filters), 136

RunningDecimationFilter (class in py-
lablib.core.dataproc.filters), 136

S
same (pylablib.core.utils.dictionary.DictionaryDiff

attribute), 370, 371
samps_per_chan (pylablib.devices.NI.daq.TVoltageOutputClockParameters

attribute), 696
save() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor

method), 578
save_bin() (in module pylablib.core.fileio.savefile), 225
save_bin_desc() (in module py-

lablib.core.fileio.savefile), 225
save_csv() (in module pylablib.core.fileio.savefile), 224
save_csv_desc() (in module py-

lablib.core.fileio.savefile), 224
save_dict() (in module pylablib.core.fileio.savefile),

225
save_file() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry

method), 205
save_file() (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry

method), 205
save_generic() (in module py-

lablib.core.fileio.savefile), 226
save_parameters() (py-

lablib.devices.Newport.picomotor.Picomotor8742
method), 715

save_preset() (pylablib.devices.OZOptics.base.EPC04
method), 723

scale() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform
method), 130

scan_both_motors() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 841

scan_both_motors_quick() (py-
lablib.devices.Sirah.tuner.MatisseTuner

1166 Index

pylablib Documentation, Release 1.4.2

method), 842
scan_centered() (py-

lablib.devices.Sirah.tuner.MatisseTuner
method), 841

scan_coarse_gen() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 843

scan_devices() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 715

scan_quick() (pylablib.devices.Sirah.tuner.MatisseTuner
method), 841

scan_quick_centered() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 841

scan_steps() (pylablib.devices.Sirah.tuner.MatisseTuner
method), 841

schedule() (pylablib.core.thread.callsync.QDirectCallScheduler
method), 319

schedule() (pylablib.core.thread.callsync.QMulticastThreadCallScheduler
method), 326

schedule() (pylablib.core.thread.callsync.QMultiQueueScheduler
method), 324

schedule() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

schedule() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

schedule() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

schedule() (pylablib.core.thread.callsync.QScheduler
method), 319

schedule() (pylablib.core.thread.callsync.QThreadCallScheduler
method), 325

schedule() (pylablib.core.thread.controller.QTaskThread.Job
method), 337

schedule_multiple_queues() (in module py-
lablib.core.thread.callsync), 324

scheduled (pylablib.devices.PCO.SC2.TInternalBufferStatus
attribute), 730

scheduled_max (pylablib.devices.PCO.SC2.TInternalBufferStatus
attribute), 730

scheduler (pylablib.core.thread.controller.QTaskThread.TCommand
attribute), 337

scmd (pylablib.devices.Standa.base.TFullState attribute),
853

SCPIDevice (class in pylablib.core.devio.SCPI), 161
SCPIDevice.NoParameterCaller (class in py-

lablib.core.devio.SCPI), 164
SCU3D (class in pylablib.devices.SmarAct.scu3d), 850
search_frequency() (py-

lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

search_speed (pylablib.devices.Trinamic.base.THomeParams
attribute), 944

second (pylablib.devices.uc480.uc480.TTimestamp at-

tribute), 989
section() (pylablib.core.devio.backend_logger.BackendLogger

method), 165
section() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
select_axis() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 795
select_channel() (py-

lablib.devices.Cryomagnetics.base.LM500
method), 586

select_channel() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

select_channel() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

select_channel() (py-
lablib.devices.Tektronix.base.DPO2000
method), 875

select_channel() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

select_channel() (py-
lablib.devices.Tektronix.base.TDS2000
method), 868

select_current_channel() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

select_current_channel() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

select_current_channel() (py-
lablib.devices.AWG.specific.Agilent33500
method), 450

select_current_channel() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

select_current_channel() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

select_current_channel() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

select_current_channel() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

select_current_channel() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

senc (pylablib.devices.Standa.base.TFullState attribute),
853

send() (pylablib.core.thread.multicast_pool.MulticastPool
method), 351

send() (pylablib.core.utils.ipc.IIPCChannel method),

Index 1167

pylablib Documentation, Release 1.4.2

420
send() (pylablib.core.utils.ipc.PipeIPCChannel

method), 421
send() (pylablib.core.utils.ipc.SharedMemIPCChannel

method), 421
send() (pylablib.core.utils.net.ClientSocket method),

428
send_ack() (pylablib.core.utils.net.ClientSocket

method), 428
send_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor

method), 889
send_comm() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice

method), 892
send_comm() (pylablib.devices.Thorlabs.kinesis.KinesisDevice

method), 899
send_comm() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 909
send_comm() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 913
send_comm() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
send_comm() (pylablib.devices.Thorlabs.kinesis.MFF

method), 902
send_comm_data() (py-

lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 892

send_comm_data() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 899

send_comm_data() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 909

send_comm_data() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 913

send_comm_data() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 917

send_comm_data() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
902

send_command() (pylablib.devices.Leybold.base.GenericITR
method), 664

send_command() (pylablib.devices.Leybold.base.ITR90
method), 667

send_decllen() (pylablib.core.utils.net.ClientSocket
method), 428

send_delimiter() (pylablib.core.utils.net.ClientSocket
method), 428

send_fixedlen() (pylablib.core.utils.net.ClientSocket
method), 428

send_interrupt() (py-
lablib.core.thread.controller.QTaskThread
method), 345

send_interrupt() (py-
lablib.core.thread.controller.QThreadController
method), 333

send_message() (pylablib.core.thread.controller.QTaskThread
method), 345

send_message() (pylablib.core.thread.controller.QThreadController
method), 333

send_message() (pylablib.devices.Voltcraft.multimeter.VC880
method), 953

send_multicast() (py-
lablib.core.thread.controller.QTaskThread
method), 345

send_multicast() (py-
lablib.core.thread.controller.QThreadController
method), 331

send_multicast_sync() (py-
lablib.core.thread.controller.QTaskThread
method), 345

send_multicast_sync() (py-
lablib.core.thread.controller.QThreadController
method), 332

send_numpy() (pylablib.core.utils.ipc.IIPCChannel
method), 420

send_numpy() (pylablib.core.utils.ipc.PipeIPCChannel
method), 421

send_numpy() (pylablib.core.utils.ipc.SharedMemIPCChannel
method), 421

send_software_trigger() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 501

send_software_trigger() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

send_software_trigger() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

send_software_trigger() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

send_software_trigger() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 614

send_software_trigger() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

send_software_trigger() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

send_software_trigger() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

send_software_trigger() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 769

1168 Index

pylablib Documentation, Release 1.4.2

send_software_trigger() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

send_sync() (pylablib.core.thread.controller.QTaskThread
method), 346

send_sync() (pylablib.core.thread.controller.QThreadController
method), 333

sens_id (pylablib.devices.uc480.uc480.TCameraInfo at-
tribute), 988

sensor (pylablib.devices.Leybold.base.TDeviceInfo at-
tribute), 663

sensor (pylablib.devices.PCO.SC2.TDeviceInfo at-
tribute), 730

sensor_type (pylablib.devices.Thorlabs.TLCamera.TSensorInfo
attribute), 879

serial (pylablib.core.devio.hid.TDeviceDescription at-
tribute), 190

serial (pylablib.devices.Attocube.anc300.TDeviceInfo
attribute), 548

serial (pylablib.devices.Basler.pylon.TCameraInfo at-
tribute), 557

serial (pylablib.devices.Basler.pylon.TDeviceInfo at-
tribute), 559

serial (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader
attribute), 650

serial (pylablib.devices.LaserQuantum.base.TDeviceInfo
attribute), 661

serial (pylablib.devices.LighthousePhotonics.base.TDeviceInfo
attribute), 668

serial (pylablib.devices.Mightex.MightexSSeries.TCameraInfo
attribute), 686

serial (pylablib.devices.Mightex.MightexSSeries.TDeviceInfo
attribute), 686

serial (pylablib.devices.Ophir.base.TDeviceInfo at-
tribute), 726

serial (pylablib.devices.Ophir.base.THeadInfo at-
tribute), 726

serial (pylablib.devices.Photometrics.pvcam.TDeviceInfo
attribute), 747

serial (pylablib.devices.SiliconSoftware.fgrab.TBoardInfo
attribute), 814

serial (pylablib.devices.SmarAct.MCS2.TDeviceInfo at-
tribute), 844

serial (pylablib.devices.Thorlabs.misc.TPMDeviceInfo
attribute), 918

serial (pylablib.devices.Thorlabs.misc.TPMSensorInfo
attribute), 918

serial (pylablib.devices.Toptica.ibeam.TDeviceInfo at-
tribute), 941

serial_flush() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 501

serial_flush() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

serial_flush() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 615
serial_flush() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 769
serial_no (pylablib.devices.ElektroAutomatik.base.TDeviceInfo

attribute), 604
serial_no (pylablib.devices.Thorlabs.elliptec.TDeviceInfo

attribute), 887
serial_no (pylablib.devices.Thorlabs.kinesis.TDeviceInfo

attribute), 892
serial_number (pylablib.devices.AlliedVision.Bonito.TDeviceInfo

attribute), 490
serial_number (pylablib.devices.Andor.AndorSDK2.TDeviceInfo

attribute), 505
serial_number (pylablib.devices.Andor.AndorSDK3.TDeviceInfo

attribute), 519
serial_number (pylablib.devices.Andor.Shamrock.TDeviceInfo

attribute), 527
serial_number (pylablib.devices.DCAM.DCAM.TDeviceInfo

attribute), 597
serial_number (pylablib.devices.HighFinesse.wlm.TDeviceInfo

attribute), 608
serial_number (pylablib.devices.IMAQ.IMAQ.TDeviceInfo

attribute), 612
serial_number (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo

attribute), 627
serial_number (pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo

attribute), 629
serial_number (pylablib.devices.NI.daq.TDeviceInfo

attribute), 696
serial_number (pylablib.devices.PCO.SC2.TDeviceInfo

attribute), 730
serial_number (pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo

attribute), 757
serial_number (pylablib.devices.PrincetonInstruments.picam.TCameraInfo

attribute), 800
serial_number (pylablib.devices.PrincetonInstruments.picam.TDeviceInfo

attribute), 803
serial_number (pylablib.devices.Thorlabs.TLCamera.TDeviceInfo

attribute), 879
serial_number (pylablib.devices.uc480.uc480.TCameraInfo

attribute), 988
serial_number (pylablib.devices.uc480.uc480.TDeviceInfo

attribute), 989
serial_query() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 501
serial_query() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 490
serial_read() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 501
serial_read() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 624
serial_read() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 615
serial_read() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

Index 1169

pylablib Documentation, Release 1.4.2

method), 770
serial_readline() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

serial_readline() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

serial_readline() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

serial_readline() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

serial_write() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

serial_write() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 624

serial_write() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

serial_write() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

SerialDeviceBackend (class in py-
lablib.core.devio.comm_backend), 171

Series1DWrapper (class in py-
lablib.core.dataproc.table_wrap), 151

Series1DWrapper.Accessor (class in py-
lablib.core.dataproc.table_wrap), 151

set() (pylablib.core.utils.functions.AttrObjectProperty
method), 410

set() (pylablib.core.utils.functions.IObjectProperty
method), 409

set() (pylablib.core.utils.functions.MethodObjectProperty
method), 409

set_accessory_state() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

set_acquisition_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

set_active_channel() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

set_addr() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 715

set_all_attribute_values() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

set_all_attribute_values() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

set_all_attribute_values() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

set_all_attribute_values() (py-

lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

set_all_attribute_values() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

set_all_attribute_values() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

set_all_attribute_values() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

set_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

set_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

set_all_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

set_all_attribute_values() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

set_all_frequencies() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

set_all_grabber_attribute_values() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

set_all_grabber_attribute_values() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

set_all_grabber_attribute_values() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

set_all_grabber_attribute_values() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

set_all_indicators() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

set_all_indicators() (py-
lablib.core.gui.widgets.container.IQContainer
method), 233

set_all_indicators() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

set_all_indicators() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

set_all_indicators() (py-

1170 Index

pylablib Documentation, Release 1.4.2

lablib.core.gui.widgets.container.QDialogContainer
method), 251

set_all_indicators() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

set_all_indicators() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_all_indicators() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

set_all_indicators() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

set_all_indicators() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

set_all_indicators() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_all_indicators() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

set_all_indicators() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

set_all_relays() (py-
lablib.devices.Conrad.base.RelayBoard
method), 580

set_all_values() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

set_all_values() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

set_all_values() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

set_all_values() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

set_all_values() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

set_all_values() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

set_all_values() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_all_values() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

set_all_values() (py-

lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

set_all_values() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

set_all_values() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_all_values() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

set_all_values() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

set_all_voltages() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

set_amp_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

set_amplitude() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

set_amplitude() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

set_amplitude() (py-
lablib.devices.AWG.specific.Agilent33500
method), 450

set_amplitude() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_amplitude() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 459

set_amplitude() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

set_amplitude() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_amplitude() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_analog_output_value() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

set_analog_output_value() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

set_attenuation() (py-
lablib.devices.OZOptics.base.DD100 method),
721

set_attribute_value() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera

Index 1171

pylablib Documentation, Release 1.4.2

method), 520
set_attribute_value() (py-

lablib.devices.Basler.pylon.BaslerPylonCamera
method), 560

set_attribute_value() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

set_attribute_value() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 639

set_attribute_value() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

set_attribute_value() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 962

set_attribute_value() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

set_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

set_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

set_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 778

set_attribute_value() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 804

set_axis() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

set_axis() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 794

set_axis_correction() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

set_axis_dir() (pylablib.devices.SmarAct.scu3d.SCU3D
method), 850

set_axis_parameter() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 790

set_axis_parameter() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 795

set_axis_parameter() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

set_axis_speed() (py-
lablib.devices.Arcus.performax.Performax2EXStage

method), 541
set_axis_speed() (py-

lablib.devices.Arcus.performax.Performax4EXStage
method), 536

set_axis_speed() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

set_baudrate() (pylablib.devices.Arcus.performax.Performax2EXStage
method), 541

set_baudrate() (pylablib.devices.Arcus.performax.Performax4EXStage
method), 535

set_baudrate() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

set_binning() (pylablib.devices.uc480.uc480.UC480Camera
method), 993

set_bit_alignment() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

set_black_level() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

set_black_level_offset() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_black_level_offset() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

set_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

set_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

set_black_level_offset() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_burst_mode() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

set_burst_mode() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 456

set_burst_mode() (py-
lablib.devices.AWG.specific.Agilent33500
method), 450

set_burst_mode() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_burst_mode() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

1172 Index

pylablib Documentation, Release 1.4.2

set_burst_mode() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

set_burst_mode() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_burst_mode() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_burst_ncycles() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

set_burst_ncycles() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_burst_ncycles() (py-
lablib.devices.AWG.specific.Agilent33500
method), 450

set_burst_ncycles() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_burst_ncycles() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_burst_ncycles() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

set_burst_ncycles() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_burst_ncycles() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_by_name() (pylablib.core.gui.widgets.container.QTabContainer
method), 263

set_calibration_factor() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

set_camera_id() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

set_cap_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

set_channel_power() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 942

set_clear_cycles() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

set_clear_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

set_color_format() (py-

lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

set_color_mode() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

set_column_stretch() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 238

set_column_stretch() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

set_column_stretch() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

set_column_stretch() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_column_stretch() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

set_column_stretch() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_column_stretch() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

set_column_stretch() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 273

set_column_stretch() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

set_column_stretch() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

set_configuration() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

set_container() (py-
lablib.core.dataproc.table_wrap.Array2DWrapper
method), 153

set_control_mode() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 590

set_cooler() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

set_cooler() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

set_coupling() (pylablib.devices.Tektronix.base.DPO2000
method), 875

set_coupling() (pylablib.devices.Tektronix.base.ITektronixScope
method), 859

set_coupling() (pylablib.devices.Tektronix.base.TDS2000
method), 869

Index 1173

pylablib Documentation, Release 1.4.2

set_current() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 606

set_current() (pylablib.devices.Rigol.power_supply.DP1116A
method), 811

set_cursor_order() (py-
lablib.core.gui.widgets.edit.NumEdit method),
268

set_curve() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 651

set_curve_header() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

set_custom_steps() (py-
lablib.core.gui.widgets.edit.NumEdit method),
267

set_data_format() (py-
lablib.devices.Tektronix.base.DPO2000
method), 875

set_data_format() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

set_data_format() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_data_pts_range() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_data_pts_range() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

set_data_pts_range() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_default_addr() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 888

set_default_axis() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

set_default_channel() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

set_default_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

set_default_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 909

set_default_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 913

set_default_channel() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
902

set_defect_correct_mode() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

set_detector_offset() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

set_device_number() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 533

set_device_number() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 541

set_device_number() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 538

set_device_number() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 545

set_device_variable() (py-
lablib.core.devio.comm_backend.ICommBackendWrapper
method), 188

set_device_variable() (py-
lablib.core.devio.interface.IDevice method),
193

set_device_variable() (py-
lablib.core.devio.SCPI.SCPIDevice method),
164

set_device_variable() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_device_variable() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

set_device_variable() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

set_device_variable() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

set_device_variable() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 531

set_device_variable() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

set_device_variable() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 541

set_device_variable() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 538

set_device_variable() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 545

1174 Index

pylablib Documentation, Release 1.4.2

set_device_variable() (py-
lablib.devices.Arduino.base.IArduinoDevice
method), 547

set_device_variable() (py-
lablib.devices.Attocube.anc300.ANC300
method), 551

set_device_variable() (py-
lablib.devices.Attocube.anc350.ANC350
method), 555

set_device_variable() (py-
lablib.devices.AWG.generic.GenericAWG
method), 445

set_device_variable() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_device_variable() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_device_variable() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_device_variable() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_device_variable() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

set_device_variable() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_device_variable() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_device_variable() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

set_device_variable() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_device_variable() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

set_device_variable() (py-
lablib.devices.Conrad.base.RelayBoard
method), 581

set_device_variable() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 584

set_device_variable() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 589

set_device_variable() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

set_device_variable() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

set_device_variable() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 607

set_device_variable() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

set_device_variable() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_device_variable() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

set_device_variable() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

set_device_variable() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 634

set_device_variable() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 965

set_device_variable() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

set_device_variable() (py-
lablib.devices.interface.camera.ICamera
method), 960

set_device_variable() (py-
lablib.devices.interface.camera.IExposureCamera
method), 974

set_device_variable() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

set_device_variable() (py-
lablib.devices.interface.camera.IROICamera
method), 979

set_device_variable() (py-
lablib.devices.interface.stage.IMultiaxisStage
method), 988

set_device_variable() (py-
lablib.devices.interface.stage.IStage method),
987

set_device_variable() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 648

set_device_variable() (py-
lablib.devices.KJL.base.KJL300 method),
643

set_device_variable() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 654

Index 1175

pylablib Documentation, Release 1.4.2

set_device_variable() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 659

set_device_variable() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 663

set_device_variable() (py-
lablib.devices.Leybold.base.GenericITR
method), 665

set_device_variable() (py-
lablib.devices.Leybold.base.ITR90 method),
667

set_device_variable() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 670

set_device_variable() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 673

set_device_variable() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 675

set_device_variable() (py-
lablib.devices.M2.emm.EMM method), 679

set_device_variable() (py-
lablib.devices.M2.solstis.Solstis method),
685

set_device_variable() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

set_device_variable() (py-
lablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 695

set_device_variable() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 717

set_device_variable() (py-
lablib.devices.NI.daq.NIDAQ method), 703

set_device_variable() (py-
lablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

set_device_variable() (py-
lablib.devices.NKT.interbus.GenericInterbusModule
method), 707

set_device_variable() (py-
lablib.devices.NKT.interbus.IInterbusModule
method), 706

set_device_variable() (py-
lablib.devices.NKT.interbus.InterbusSystem
method), 713

set_device_variable() (py-
lablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

set_device_variable() (py-
lablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule

method), 709
set_device_variable() (py-

lablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

set_device_variable() (py-
lablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

set_device_variable() (py-
lablib.devices.Ophir.base.OphirDevice
method), 726

set_device_variable() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 729

set_device_variable() (py-
lablib.devices.OZOptics.base.DD100 method),
722

set_device_variable() (py-
lablib.devices.OZOptics.base.EPC04 method),
724

set_device_variable() (py-
lablib.devices.OZOptics.base.OZOpticsDevice
method), 719

set_device_variable() (py-
lablib.devices.OZOptics.base.TF100 method),
721

set_device_variable() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

set_device_variable() (py-
lablib.devices.Pfeiffer.base.DPG202 method),
744

set_device_variable() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
742

set_device_variable() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

set_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

set_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

set_device_variable() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_device_variable() (py-
lablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

set_device_variable() (py-
lablib.devices.PhysikInstrumente.base.PIE515

1176 Index

pylablib Documentation, Release 1.4.2

method), 798
set_device_variable() (py-

lablib.devices.PhysikInstrumente.base.PIE516
method), 795

set_device_variable() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

set_device_variable() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 813

set_device_variable() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 828

set_device_variable() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_device_variable() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 838

set_device_variable() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
849

set_device_variable() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
852

set_device_variable() (py-
lablib.devices.Standa.base.Standa8SMC
method), 856

set_device_variable() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_device_variable() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 863

set_device_variable() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_device_variable() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

set_device_variable() (py-
lablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

set_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 899

set_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 909

set_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 913

set_device_variable() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector

method), 917
set_device_variable() (py-

lablib.devices.Thorlabs.kinesis.MFF method),
903

set_device_variable() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 921

set_device_variable() (py-
lablib.devices.Thorlabs.misc.PM160 method),
925

set_device_variable() (py-
lablib.devices.Thorlabs.serial.FW method),
932

set_device_variable() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
936

set_device_variable() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 939

set_device_variable() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

set_device_variable() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

set_device_variable() (py-
lablib.devices.Toptica.ibeam.TopticaIBeam
method), 943

set_device_variable() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 948

set_device_variable() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

set_device_variable() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 951

set_device_variable() (py-
lablib.devices.Voltcraft.multimeter.VC880
method), 954

set_diffuser() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

set_digital_gain() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_digital_gain() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 492

set_digital_output() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 542

set_digital_output() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

Index 1177

pylablib Documentation, Release 1.4.2

set_digital_output() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 545

set_digital_output_register() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 542

set_digital_output_register() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 537

set_digital_output_register() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 545

set_digital_outputs() (py-
lablib.devices.NI.daq.NIDAQ method), 700

set_diode_power_lowlevel() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

set_direct_index_action() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

set_display_channel() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
740

set_display_resolution() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
740

set_display_units() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

set_double_image_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

set_duty_cycle() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

set_duty_cycle() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_duty_cycle() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_duty_cycle() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_duty_cycle() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_duty_cycle() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 487

set_duty_cycle() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_duty_cycle() (py-

lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

set_edge_trigger_coupling() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

set_edge_trigger_slope() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_edge_trigger_source() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_edge_trigger_source() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

set_edge_trigger_source() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_EMCCD_gain() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

set_enabled() (pylablib.core.gui.widgets.param_table.ParamTable
method), 280

set_enabled() (pylablib.core.gui.widgets.param_table.StatusTable
method), 292

set_enabled() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 651

set_encoder_reference() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 542

set_encoder_reference() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 535

set_encoder_reference() (py-
lablib.devices.Standa.base.Standa8SMC
method), 854

set_expandable() (py-
lablib.core.gui.widgets.edit.TextEdit method),
266

set_exposure() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_exposure() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

1178 Index

pylablib Documentation, Release 1.4.2

set_exposure() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

set_exposure() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

set_exposure() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

set_exposure() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 598

set_exposure() (pylablib.devices.HighFinesse.wlm.WLM
method), 609

set_exposure() (pylablib.devices.interface.camera.IExposureCamera
method), 971

set_exposure() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

set_exposure() (pylablib.devices.PCO.SC2.PCOSC2Camera
method), 732

set_exposure() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

set_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

set_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 770

set_exposure() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_exposure() (pylablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

set_exposure() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

set_exposure() (pylablib.devices.uc480.uc480.UC480Camera
method), 991

set_exposure_control_mode() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_exposure_control_mode() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

set_exposure_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

set_external_input_modes() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

set_fan_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

set_fan_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

set_fastpiezo_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_fastpiezo_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_fastpiezo_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

set_filter() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

set_fine_lock() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 842

set_first_valid_frame() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

set_fit_parameters() (py-
lablib.core.dataproc.fitting.Fitter method),
138

set_fixed_parameters() (py-
lablib.core.dataproc.fitting.Fitter method),
138

set_flipper_port() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

set_float_formatter() (py-
lablib.core.gui.widgets.edit.NumEdit method),
267

set_float_formatter() (py-
lablib.core.gui.widgets.label.NumLabel
method), 270

set_formatter() (py-
lablib.core.gui.widgets.edit.NumEdit method),
267

set_formatter() (py-
lablib.core.gui.widgets.label.NumLabel
method), 270

set_frame_delay() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

set_frame_format() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_frame_format() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

set_frame_format() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

set_frame_format() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

set_frame_format() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

set_frame_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera

Index 1179

pylablib Documentation, Release 1.4.2

method), 577
set_frame_format() (py-

lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

set_frame_format() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

set_frame_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_frame_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

set_frame_format() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

set_frame_format() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 634

set_frame_format() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 965

set_frame_format() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

set_frame_format() (py-
lablib.devices.interface.camera.ICamera
method), 957

set_frame_format() (py-
lablib.devices.interface.camera.IExposureCamera
method), 974

set_frame_format() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

set_frame_format() (py-
lablib.devices.interface.camera.IROICamera
method), 979

set_frame_format() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

set_frame_format() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 737

set_frame_format() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

set_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

set_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 786

set_frame_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 770
set_frame_format() (py-

lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_frame_format() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

set_frame_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_frame_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_frame_format() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

set_frame_format() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 995

set_frame_info_format() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 502

set_frame_info_format() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

set_frame_info_format() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 515

set_frame_info_format() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 525

set_frame_info_format() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 565

set_frame_info_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_frame_info_format() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

set_frame_info_format() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 602

set_frame_info_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_frame_info_format() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 618

set_frame_info_format() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

set_frame_info_format() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

1180 Index

pylablib Documentation, Release 1.4.2

method), 634
set_frame_info_format() (py-

lablib.devices.interface.camera.IAttributeCamera
method), 965

set_frame_info_format() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

set_frame_info_format() (py-
lablib.devices.interface.camera.ICamera
method), 958

set_frame_info_format() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

set_frame_info_format() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

set_frame_info_format() (py-
lablib.devices.interface.camera.IROICamera
method), 980

set_frame_info_format() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 691

set_frame_info_format() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 738

set_frame_info_format() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 753

set_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 762

set_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_frame_info_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_frame_info_format() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

set_frame_info_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_frame_info_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_frame_info_format() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

set_frame_info_format() (py-
lablib.devices.uc480.uc480.UC480Camera

method), 995
set_frame_info_period() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_frame_info_period() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

set_frame_info_period() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 516

set_frame_info_period() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 526

set_frame_info_period() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 566

set_frame_info_period() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_frame_info_period() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

set_frame_info_period() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 603

set_frame_info_period() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_frame_info_period() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 619

set_frame_info_period() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

set_frame_info_period() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 634

set_frame_info_period() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 965

set_frame_info_period() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

set_frame_info_period() (py-
lablib.devices.interface.camera.ICamera
method), 958

set_frame_info_period() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

set_frame_info_period() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 970

set_frame_info_period() (py-
lablib.devices.interface.camera.IROICamera

Index 1181

pylablib Documentation, Release 1.4.2

method), 980
set_frame_info_period() (py-

lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 692

set_frame_info_period() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 738

set_frame_info_period() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 754

set_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

set_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_frame_info_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_frame_info_period() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 808

set_frame_info_period() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_frame_info_period() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_frame_info_period() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

set_frame_info_period() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 996

set_frame_merge() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_frame_merge() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_frame_merge() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

set_frame_period() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_frame_period() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

set_frame_period() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 510
set_frame_period() (py-

lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

set_frame_period() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

set_frame_period() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

set_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

set_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_frame_period() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_frame_period() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

set_frame_period() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

set_frameskip_behavior() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

set_freq_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

set_frequency() (py-
lablib.devices.Attocube.anc300.ANC300
method), 549

set_frequency() (py-
lablib.devices.Attocube.anc350.ANC350
method), 554

set_frequency() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

set_frequency() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_frequency() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_frequency() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_frequency() (py-
lablib.devices.AWG.specific.InstekAFG2225

1182 Index

pylablib Documentation, Release 1.4.2

method), 463
set_frequency() (py-

lablib.devices.AWG.specific.RigolDG1000
method), 488

set_frequency() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_frequency() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 481

set_frequency() (py-
lablib.devices.OZOptics.base.EPC04 method),
723

set_frequency() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

set_frequency_average_time() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 841

set_func_variable() (py-
lablib.core.thread.controller.QTaskThread
method), 346

set_func_variable() (py-
lablib.core.thread.controller.QThreadController
method), 332

set_function() (pylablib.devices.AWG.generic.GenericAWG
method), 441

set_function() (pylablib.devices.AWG.specific.Agilent33220A
method), 457

set_function() (pylablib.devices.AWG.specific.Agilent33500
method), 451

set_function() (pylablib.devices.AWG.specific.InstekAFG2000
method), 469

set_function() (pylablib.devices.AWG.specific.InstekAFG2225
method), 463

set_function() (pylablib.devices.AWG.specific.RigolDG1000
method), 488

set_function() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_function() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_function() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 645

set_function() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 949

set_function_parameters() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

set_gain() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

set_gain_boost() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

set_gains() (pylablib.devices.uc480.uc480.UC480Camera

method), 991
set_gate_polarity() (py-

lablib.devices.AWG.generic.GenericAWG
method), 443

set_gate_polarity() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_gate_polarity() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_gate_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_gate_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_gate_polarity() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_gate_polarity() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 475

set_gate_polarity() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_general_output() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

set_global_parameter() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

set_global_speed() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 542

set_global_speed() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 536

set_grabber_attribute_value() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_grabber_attribute_value() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_grabber_attribute_value() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 612

set_grabber_attribute_value() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 967

set_grabber_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_grabber_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

Index 1183

pylablib Documentation, Release 1.4.2

method), 779
set_grabber_attribute_value() (py-

lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_grabber_attribute_value() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_grabber_roi() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_grabber_roi() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_grabber_roi() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

set_grabber_roi() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_grabber_roi() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

set_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_grabber_roi() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 779

set_grabber_roi() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_grabber_roi() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

set_grating() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

set_grating_offset() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

set_hardware_id() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

set_hblanking() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

set_high_level() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

set_high_level() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

set_home_offset() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

set_horizontal_offset() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_horizontal_offset() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

set_horizontal_offset() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_horizontal_span() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_horizontal_span() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

set_horizontal_span() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_image_indexing() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_image_indexing() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

set_image_indexing() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 516

set_image_indexing() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 526

set_image_indexing() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 566

set_image_indexing() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_image_indexing() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

set_image_indexing() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 603

set_image_indexing() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 625

set_image_indexing() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 619

set_image_indexing() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

1184 Index

pylablib Documentation, Release 1.4.2

set_image_indexing() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 635

set_image_indexing() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 966

set_image_indexing() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

set_image_indexing() (py-
lablib.devices.interface.camera.ICamera
method), 957

set_image_indexing() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

set_image_indexing() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 971

set_image_indexing() (py-
lablib.devices.interface.camera.IROICamera
method), 980

set_image_indexing() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 692

set_image_indexing() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 738

set_image_indexing() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 754

set_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

set_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_image_indexing() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

set_image_indexing() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 809

set_image_indexing() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_image_indexing() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

set_image_indexing() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

set_image_indexing() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 996

set_index_values() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

set_indicator() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

set_indicator() (py-
lablib.core.gui.widgets.container.IQContainer
method), 232

set_indicator() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 239

set_indicator() (py-
lablib.core.gui.widgets.container.QContainer
method), 234

set_indicator() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

set_indicator() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

set_indicator() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_indicator() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

set_indicator() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

set_indicator() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

set_indicator() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_indicator() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

set_indicator() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 292

set_interval() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

set_interval() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

set_limiter() (pylablib.core.gui.widgets.edit.NumEdit
method), 267

set_limiter() (pylablib.core.gui.widgets.label.NumLabel
method), 270

set_load() (pylablib.devices.AWG.generic.GenericAWG

Index 1185

pylablib Documentation, Release 1.4.2

method), 441
set_load() (pylablib.devices.AWG.specific.Agilent33220A

method), 457
set_load() (pylablib.devices.AWG.specific.Agilent33500

method), 451
set_load() (pylablib.devices.AWG.specific.InstekAFG2000

method), 469
set_load() (pylablib.devices.AWG.specific.InstekAFG2225

method), 463
set_load() (pylablib.devices.AWG.specific.RigolDG1000

method), 488
set_load() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 475
set_load() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 482
set_low_level() (py-

lablib.devices.Cryomagnetics.base.LM500
method), 587

set_low_level() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

set_manual_output() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

set_measurement_filter() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

set_measurement_interval() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

set_measurement_rate() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 949

set_metadata_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 735

set_microstep_resolution() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

set_mode() (pylablib.devices.Attocube.anc300.ANC300
method), 548

set_mode() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

set_mode() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

set_mode() (pylablib.devices.OZOptics.base.EPC04
method), 723

set_mode_parameters() (py-
lablib.devices.BitFlow.BitFlow.CameraFileEditor
method), 578

set_motor_type() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

set_names() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor

method), 154
set_names() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor

method), 156
set_noise_filter_mode() (py-

lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

set_number_pixels() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

set_ocp_threshold() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 607

set_ocp_threshold() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

set_offset() (pylablib.devices.Attocube.anc300.ANC300
method), 549

set_offset() (pylablib.devices.Attocube.anc350.ANC350
method), 554

set_offset() (pylablib.devices.AWG.generic.GenericAWG
method), 442

set_offset() (pylablib.devices.AWG.specific.Agilent33220A
method), 457

set_offset() (pylablib.devices.AWG.specific.Agilent33500
method), 451

set_offset() (pylablib.devices.AWG.specific.InstekAFG2000
method), 469

set_offset() (pylablib.devices.AWG.specific.InstekAFG2225
method), 459

set_offset() (pylablib.devices.AWG.specific.RigolDG1000
method), 488

set_offset() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_offset() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_operation_mode() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

set_options() (pylablib.core.gui.widgets.combo_box.ComboBox
method), 229

set_options() (pylablib.core.gui.widgets.label.EnumLabel
method), 269

set_out_aux_port() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

set_out_of_range() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 228

set_out_of_range() (py-
lablib.core.gui.widgets.label.EnumLabel
method), 269

set_output_mode() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

1186 Index

pylablib Documentation, Release 1.4.2

set_output_parameters() (py-
lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

set_output_polarity() (py-
lablib.devices.AWG.generic.GenericAWG
method), 441

set_output_polarity() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_output_polarity() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_output_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_output_polarity() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_output_polarity() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_output_polarity() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_output_polarity() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_output_power() (py-
lablib.devices.LaserQuantum.base.Finesse
method), 662

set_output_power() (py-
lablib.devices.LighthousePhotonics.base.SproutG
method), 669

set_output_range() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

set_output_range() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_output_range() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_output_range() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 469

set_output_range() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_output_range() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_output_range() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_output_range() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_output_range() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 810

set_output_trigger_slope() (py-
lablib.devices.AWG.generic.GenericAWG
method), 445

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 463

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_output_trigger_slope() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_overflow_behavior() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

set_ovp_threshold() (py-
lablib.devices.ElektroAutomatik.base.PS2000B
method), 606

set_ovp_threshold() (py-
lablib.devices.Rigol.power_supply.DP1116A
method), 811

set_pcount() (pylablib.devices.Thorlabs.serial.FW
method), 930

set_phase() (pylablib.devices.AWG.generic.GenericAWG
method), 442

set_phase() (pylablib.devices.AWG.specific.Agilent33220A
method), 457

set_phase() (pylablib.devices.AWG.specific.Agilent33500
method), 451

set_phase() (pylablib.devices.AWG.specific.InstekAFG2000
method), 470

set_phase() (pylablib.devices.AWG.specific.InstekAFG2225
method), 463

set_phase() (pylablib.devices.AWG.specific.RigolDG1000
method), 488

set_phase() (pylablib.devices.AWG.specific.RSInstekAFG21000

Index 1187

pylablib Documentation, Release 1.4.2

method), 476
set_phase() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 482
set_pid_parameters() (py-

lablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 915

set_piezoet_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

set_piezoet_drive_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_piezoet_feedback_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_piezoet_feedforward_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_piezoet_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_pixel_clock() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

set_pixel_rate() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

set_pixel_rate() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 991

set_pixel_width() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

set_points_number() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_points_number() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

set_points_number() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_position() (pylablib.devices.Thorlabs.serial.FW
method), 930

set_position() (pylablib.devices.Thorlabs.serial.FWv1
method), 934

set_position_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

set_position_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

set_position_reference() (py-
lablib.devices.Arcus.performax.Performax2EXStage

method), 542
set_position_reference() (py-

lablib.devices.Arcus.performax.Performax4EXStage
method), 535

set_position_reference() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 543

set_position_reference() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

set_position_reference() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

set_position_reference() (py-
lablib.devices.Standa.base.Standa8SMC
method), 854

set_position_reference() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

set_position_reference() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

set_position_reference() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 945

set_position_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

set_position_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 793

set_precision() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

set_precision_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

set_probe_attenuation() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_probe_attenuation() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 860

set_probe_attenuation() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_property() (pylablib.devices.SmarAct.MCS2.MCS2
method), 845

set_props() (in module pylablib.core.utils.general),
410

set_pulse_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
610

set_pulse_output() (pylablib.devices.NI.daq.NIDAQ

1188 Index

pylablib Documentation, Release 1.4.2

method), 702
set_pulse_width() (py-

lablib.devices.AWG.generic.GenericAWG
method), 442

set_pulse_width() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_pulse_width() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_pulse_width() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

set_pulse_width() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 464

set_pulse_width() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_pulse_width() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_pulse_width() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 477

set_ramp_symmetry() (py-
lablib.devices.AWG.generic.GenericAWG
method), 442

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 457

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 464

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_ramp_symmetry() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_range() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 728

set_range() (pylablib.devices.Thorlabs.misc.GenericPM
method), 919

set_range() (pylablib.devices.Thorlabs.misc.PM160

method), 925
set_range() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 949
set_range_idx() (py-

lablib.devices.Ophir.base.VegaPowerMeter
method), 728

set_range_limit() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

set_read_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

set_read_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
608

set_readout_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 748

set_readout_speed() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

set_refcell_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_refcell_waveform_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_reg() (pylablib.devices.Lumel.base.LumelRE72Controller
method), 670

set_register() (pylablib.devices.NKT.interbus.GenericInterbusModule
method), 707

set_register() (pylablib.devices.NKT.interbus.IInterbusModule
method), 706

set_register() (pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule
method), 708

set_register() (pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule
method), 709

set_register() (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule
method), 710

set_register() (pylablib.devices.NKT.interbus.SuperKSelectInterbusModule
method), 711

set_relay() (pylablib.devices.Conrad.base.RelayBoard
method), 580

set_relay_setpoints() (py-
lablib.devices.KJL.base.KJL300 method),
642

set_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

set_roi() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

set_roi() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

set_roi() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 523

Index 1189

pylablib Documentation, Release 1.4.2

set_roi() (pylablib.devices.Basler.pylon.BaslerPylonCamera
method), 561

set_roi() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

set_roi() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 568

set_roi() (pylablib.devices.DCAM.DCAM.DCAMCamera
method), 599

set_roi() (pylablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

set_roi() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 613

set_roi() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

set_roi() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 630

set_roi() (pylablib.devices.interface.camera.IBinROICamera
method), 981

set_roi() (pylablib.devices.interface.camera.IROICamera
method), 976

set_roi() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 687

set_roi() (pylablib.devices.PCO.SC2.PCOSC2Camera
method), 733

set_roi() (pylablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

set_roi() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

set_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_roi() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

set_roi() (pylablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

set_roi() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 829

set_roi() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 818

set_roi() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 883

set_roi() (pylablib.devices.uc480.uc480.UC480Camera
method), 993

set_row_stretch() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 239

set_row_stretch() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 251

set_row_stretch() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

set_row_stretch() (py-

lablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_row_stretch() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 259

set_row_stretch() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_row_stretch() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 272

set_row_stretch() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 274

set_row_stretch() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 283

set_row_stretch() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 293

set_scale() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

set_scan_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 837

set_scan_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_scan_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 836

set_sensor_curve_index() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

set_sensor_kind() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 582

set_sensor_mode() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

set_sensor_mode() (py-
lablib.devices.Thorlabs.misc.PM160 method),
925

set_sensor_mode() (py-
lablib.devices.Thorlabs.serial.FW method),
930

set_sensor_type() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 651

set_sensor_voltage() (py-
lablib.devices.Attocube.anc350.ANC350
method), 553

set_serial_parameter() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

1190 Index

pylablib Documentation, Release 1.4.2

method), 503
set_serial_parameter() (py-

lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 490

set_setpointi() (py-
lablib.devices.Lumel.base.LumelRE72Controller
method), 671

set_shutter() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

set_shutter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

set_shutter() (pylablib.devices.LaserQuantum.base.Finesse
method), 662

set_single_value() (py-
lablib.core.gui.value_handling.CheckboxValueHandler
method), 306

set_single_value() (py-
lablib.core.gui.value_handling.ComboBoxValueHandler
method), 308

set_single_value() (py-
lablib.core.gui.value_handling.IBoolValueHandler
method), 305

set_single_value() (py-
lablib.core.gui.value_handling.ISingleValueHandler
method), 302

set_single_value() (py-
lablib.core.gui.value_handling.LabelValueHandler
method), 304

set_single_value() (py-
lablib.core.gui.value_handling.LineEditValueHandler
method), 303

set_single_value() (py-
lablib.core.gui.value_handling.ProgressBarValueHandler
method), 309

set_single_value() (py-
lablib.core.gui.value_handling.PushButtonValueHandler
method), 307

set_single_value() (py-
lablib.core.gui.value_handling.ToolButtonValueHandler
method), 307

set_slit_width() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 529

set_slowpiezo_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_slowpiezo_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_slowpiezo_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 835

set_span() (pylablib.devices.KJL.base.KJL300
method), 642

set_speed_mode() (py-
lablib.devices.Thorlabs.serial.FW method),
930

set_status_line_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 734

set_subsampling() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

set_supported_channels() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

set_switcher_mode() (py-
lablib.devices.HighFinesse.wlm.WLM method),
609

set_temperature() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 507

set_temperature() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 521

set_temperature() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 749

set_thinet_ctl_params() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

set_thinet_ctl_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

set_timeout() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

set_timeout() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 183

set_timeout() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

set_timeout() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 178

set_timeout() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 180

set_timeout() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 187

set_timeout() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 172

set_timeout() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

set_timeout() (pylablib.core.devio.hid.HIDevice
method), 191

set_timeout() (pylablib.core.utils.general.Countdown
method), 415

set_timeout() (pylablib.core.utils.net.ClientSocket
method), 427

set_timeout() (pylablib.devices.M2.base.ICEBlocDevice
method), 674

Index 1191

pylablib Documentation, Release 1.4.2

set_timeout() (pylablib.devices.M2.emm.EMM
method), 679

set_timeout() (pylablib.devices.M2.solstis.Solstis
method), 685

set_trigger_input() (py-
lablib.devices.Attocube.anc300.ANC300
method), 550

set_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 759

set_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

set_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

set_trigger_interleave() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

set_trigger_level() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_trigger_level() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

set_trigger_level() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_trigger_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

set_trigger_mode() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 520

set_trigger_mode() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

set_trigger_mode() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 732

set_trigger_mode() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

set_trigger_mode() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_trigger_mode() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

set_trigger_mode() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_trigger_mode() (py-
lablib.devices.Thorlabs.serial.FW method),

930
set_trigger_mode() (py-

lablib.devices.Thorlabs.serial.FWv1 method),
934

set_trigger_mode() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

set_trigger_slope() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

set_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 458

set_trigger_slope() (py-
lablib.devices.AWG.specific.Agilent33500
method), 451

set_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

set_trigger_slope() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 464

set_trigger_slope() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_trigger_slope() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_trigger_slope() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

set_trigger_source() (py-
lablib.devices.AWG.generic.GenericAWG
method), 443

set_trigger_source() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 458

set_trigger_source() (py-
lablib.devices.AWG.specific.Agilent33500
method), 452

set_trigger_source() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

set_trigger_source() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 464

set_trigger_source() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 488

set_trigger_source() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

set_trigger_source() (py-
lablib.devices.AWG.specific.TektronixAFG1000

1192 Index

pylablib Documentation, Release 1.4.2

method), 482
set_tune_units() (py-

lablib.devices.Sirah.tuner.MatisseTuner
method), 840

set_turret() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

set_units() (pylablib.devices.Leybold.base.ITR90
method), 665

set_units() (pylablib.devices.Pfeiffer.base.TPG260
method), 740

set_value() (pylablib.core.gui.value_handling.CheckboxValueHandler
method), 306

set_value() (pylablib.core.gui.value_handling.ComboBoxValueHandler
method), 309

set_value() (pylablib.core.gui.value_handling.GUIValues
method), 314

set_value() (pylablib.core.gui.value_handling.IBoolValueHandler
method), 306

set_value() (pylablib.core.gui.value_handling.IIndicatorHandler
method), 310

set_value() (pylablib.core.gui.value_handling.ISingleValueHandler
method), 302

set_value() (pylablib.core.gui.value_handling.IValueHandler
method), 299

set_value() (pylablib.core.gui.value_handling.LabelIndicatorHandler
method), 311

set_value() (pylablib.core.gui.value_handling.LabelValueHandler
method), 305

set_value() (pylablib.core.gui.value_handling.LineEditValueHandler
method), 304

set_value() (pylablib.core.gui.value_handling.ProgressBarValueHandler
method), 310

set_value() (pylablib.core.gui.value_handling.PropertyValueHandler
method), 301

set_value() (pylablib.core.gui.value_handling.PushButtonValueHandler
method), 307

set_value() (pylablib.core.gui.value_handling.StandardIndicatorHandler
method), 311

set_value() (pylablib.core.gui.value_handling.StandardValueHandler
method), 301

set_value() (pylablib.core.gui.value_handling.ToolButtonValueHandler
method), 308

set_value() (pylablib.core.gui.value_handling.VirtualValueHandler
method), 300

set_value() (pylablib.core.gui.widgets.button.ToggleButton
method), 228

set_value() (pylablib.core.gui.widgets.combo_box.ComboBox
method), 229

set_value() (pylablib.core.gui.widgets.container.IQContainer
method), 232

set_value() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 239

set_value() (pylablib.core.gui.widgets.container.QContainer
method), 235

set_value() (pylablib.core.gui.widgets.container.QDialogContainer
method), 251

set_value() (pylablib.core.gui.widgets.container.QFrameContainer
method), 247

set_value() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

set_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

set_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

set_value() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

set_value() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 243

set_value() (pylablib.core.gui.widgets.edit.NumEdit
method), 268

set_value() (pylablib.core.gui.widgets.edit.TextEdit
method), 266

set_value() (pylablib.core.gui.widgets.label.EnumLabel
method), 269

set_value() (pylablib.core.gui.widgets.label.NumLabel
method), 270

set_value() (pylablib.core.gui.widgets.label.TextLabel
method), 268

set_value() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

set_value() (pylablib.core.gui.widgets.param_table.StatusTable
method), 293

set_value() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

set_value() (pylablib.devices.Attocube.anc350.ANC350
method), 552

set_value() (pylablib.devices.Basler.pylon.BaslerPylonAttribute
method), 559

set_value() (pylablib.devices.DCAM.DCAM.DCAMAttribute
method), 597

set_value() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
method), 629

set_value() (pylablib.devices.Photometrics.pvcam.PvcamAttribute
method), 746

set_value() (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
method), 757

set_value() (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
method), 803

set_value() (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
method), 816

set_value_labels() (py-
lablib.core.gui.widgets.button.ToggleButton
method), 228

set_variable() (pylablib.core.thread.controller.QTaskThread
method), 346

set_variable() (pylablib.core.thread.controller.QThreadController
method), 332

set_variable() (pylablib.core.utils.ipc.SharedMemIPCTable

Index 1193

pylablib Documentation, Release 1.4.2

method), 422
set_vcr_function_parameters() (py-

lablib.devices.Keithley.multimeter.Keithley2110
method), 645

set_velocity() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

set_velocity() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 890

set_vertical_position() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_vertical_position() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

set_vertical_position() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_vertical_span() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

set_vertical_span() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 859

set_vertical_span() (py-
lablib.devices.Tektronix.base.TDS2000
method), 869

set_visible() (pylablib.core.gui.widgets.param_table.ParamTable
method), 280

set_visible() (pylablib.core.gui.widgets.param_table.StatusTable
method), 293

set_voltage() (pylablib.devices.Attocube.anc300.ANC300
method), 549

set_voltage() (pylablib.devices.Attocube.anc350.ANC350
method), 554

set_voltage() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 606

set_voltage() (pylablib.devices.OZOptics.base.EPC04
method), 723

set_voltage() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 796

set_voltage() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 792

set_voltage() (pylablib.devices.Rigol.power_supply.DP1116A
method), 810

set_voltage() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 937

set_voltage_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

set_voltage_lower_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

set_voltage_outputs() (py-
lablib.devices.NI.daq.NIDAQ method), 700

set_voltage_pattern() (py-
lablib.devices.Attocube.anc300.ANC300
method), 549

set_voltage_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 796

set_voltage_upper_limit() (py-
lablib.devices.PhysikInstrumente.base.PIE516
method), 792

set_vsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 508

set_wait_callback() (py-
lablib.core.utils.net.ClientSocket method),
427

set_waveform() (pylablib.devices.OZOptics.base.EPC04
method), 723

set_wavelength() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 528

set_wavelength() (py-
lablib.devices.Ophir.base.VegaPowerMeter
method), 727

set_wavelength() (py-
lablib.devices.OZOptics.base.TF100 method),
720

set_wavelength() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 919

set_wavelength() (py-
lablib.devices.Thorlabs.misc.PM160 method),
925

set_wavelength_correction() (py-
lablib.devices.OZOptics.base.TF100 method),
719

set_white_balance_matrix() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 880

set_xarg_name() (pylablib.core.dataproc.fitting.Fitter
method), 137

set_zero() (pylablib.devices.KJL.base.KJL300
method), 642

setattr_call() (in module py-
lablib.core.utils.functions), 408

setbp() (in module pylablib), 999
setbp() (in module pylablib.core.utils.general), 417
setdefault() (pylablib.core.utils.dictionary.Dictionary

method), 364
setdefault() (pylablib.core.utils.dictionary.DictionaryPointer

method), 378
setdefault() (pylablib.core.utils.dictionary.FilterTree

method), 395
setdefault() (pylablib.core.utils.dictionary.ItemAccessor

method), 397
setdefault() (pylablib.core.utils.dictionary.PrefixTree

1194 Index

pylablib Documentation, Release 1.4.2

method), 387
setpoint (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters

attribute), 832
setpoint (pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters

attribute), 831
setpoint (pylablib.devices.Sirah.Matisse.TThinetCtlParameters

attribute), 831
settle_time (pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings

attribute), 656
setup() (pylablib.core.gui.widgets.container.IQContainer

method), 230
setup() (pylablib.core.gui.widgets.container.IQWidgetContainer

method), 235
setup() (pylablib.core.gui.widgets.container.QContainer

method), 235
setup() (pylablib.core.gui.widgets.container.QDialogContainer

method), 251
setup() (pylablib.core.gui.widgets.container.QFrameContainer

method), 247
setup() (pylablib.core.gui.widgets.container.QGroupBoxContainer

method), 252
setup() (pylablib.core.gui.widgets.container.QScrollAreaContainer

method), 260
setup() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget

method), 260
setup() (pylablib.core.gui.widgets.container.QTabContainer

method), 265
setup() (pylablib.core.gui.widgets.container.QWidgetContainer

method), 243
setup() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget

method), 271
setup() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget

method), 274
setup() (pylablib.core.gui.widgets.param_table.ParamTable

method), 275
setup() (pylablib.core.gui.widgets.param_table.StatusTable

method), 284
setup() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer

method), 880
setup_accum_mode() (py-

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

setup_acquisition() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

setup_acquisition() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 491

setup_acquisition() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

setup_acquisition() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

setup_acquisition() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

setup_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 577

setup_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

setup_acquisition() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

setup_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

setup_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

setup_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

setup_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

setup_acquisition() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 966

setup_acquisition() (py-
lablib.devices.interface.camera.IBinROICamera
method), 984

setup_acquisition() (py-
lablib.devices.interface.camera.ICamera
method), 956

setup_acquisition() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

setup_acquisition() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 971

setup_acquisition() (py-
lablib.devices.interface.camera.IROICamera
method), 980

setup_acquisition() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

setup_acquisition() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

setup_acquisition() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

setup_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

Index 1195

pylablib Documentation, Release 1.4.2

setup_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 781

setup_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 771

setup_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

setup_acquisition() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

setup_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 830

setup_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 819

setup_acquisition() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

setup_acquisition() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

setup_analog_output() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 652

setup_analog_output() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 657

setup_autocalibration() (py-
lablib.devices.HighFinesse.wlm.WLM method),
611

setup_averaging() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 646

setup_camlink_pixel_format() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

setup_camlink_pixel_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 830

setup_camlink_pixel_format() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 819

setup_channel_range() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 656

setup_cl_move() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

setup_clock() (pylablib.devices.NI.daq.NIDAQ
method), 697

setup_cont_mode() (py-

lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

setup_cooldown() (py-
lablib.core.devio.comm_backend.FT232DeviceBackend
method), 176

setup_cooldown() (py-
lablib.core.devio.comm_backend.HIDeviceBackend
method), 184

setup_cooldown() (py-
lablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

setup_cooldown() (py-
lablib.core.devio.comm_backend.NetworkDeviceBackend
method), 179

setup_cooldown() (py-
lablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 182

setup_cooldown() (py-
lablib.core.devio.comm_backend.RecordedDeviceBackend
method), 187

setup_cooldown() (py-
lablib.core.devio.comm_backend.SerialDeviceBackend
method), 173

setup_cooldown() (py-
lablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

setup_current() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 946

setup_drive() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

setup_edge_trigger() (py-
lablib.devices.Tektronix.base.DPO2000
method), 876

setup_edge_trigger() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

setup_edge_trigger() (py-
lablib.devices.Tektronix.base.TDS2000
method), 870

setup_ethernet() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 715

setup_ext_trigger() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

setup_ext_trigger() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 598

setup_ext_trigger() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

setup_fast_kinetic_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera

1196 Index

pylablib Documentation, Release 1.4.2

method), 510
setup_filter() (pylablib.devices.Lakeshore.base.Lakeshore218

method), 652
setup_filter() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 657
setup_flipper() (py-

lablib.devices.Thorlabs.kinesis.MFF method),
900

setup_func() (in module py-
lablib.core.utils.ctypes_wrap), 357

setup_gauge_control() (py-
lablib.devices.Pfeiffer.base.TPG260 method),
741

setup_gen_move() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

setup_home() (pylablib.devices.Trinamic.base.TMCM1110
method), 946

setup_homing() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

setup_image_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

setup_jog() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

setup_jog() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 911

setup_kcube_trigio() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

setup_kcube_trigpos() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

setup_kinetic_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 510

setup_limit_switch() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

setup_limit_switches() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 946

setup_max_baudrate() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 757

setup_max_baudrate() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

setup_max_baudrate() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

setup_max_baudrate() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

setup_move() (pylablib.devices.Standa.base.Standa8SMC
method), 855

setup_multi_track_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

setup_name() (pylablib.core.gui.widgets.container.IQContainer
method), 230

setup_name() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 239

setup_name() (pylablib.core.gui.widgets.container.QContainer
method), 235

setup_name() (pylablib.core.gui.widgets.container.QDialogContainer
method), 251

setup_name() (pylablib.core.gui.widgets.container.QFrameContainer
method), 247

setup_name() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 255

setup_name() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

setup_name() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

setup_name() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

setup_name() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 243

setup_name() (pylablib.core.gui.widgets.param_table.ParamTable
method), 283

setup_name() (pylablib.core.gui.widgets.param_table.StatusTable
method), 293

setup_pixel_correction() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 881

setup_pixels_from_camera() (py-
lablib.devices.Andor.Shamrock.ShamrockSpectrograph
method), 530

setup_polctl() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 907

setup_power() (pylablib.devices.Standa.base.Standa8SMC
method), 855

setup_random_track_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

setup_scan_move() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
847

setup_serial_params() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 503

setup_serial_params() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

setup_serial_params() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 614

Index 1197

pylablib Documentation, Release 1.4.2

setup_serial_params() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

setup_shutter() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 509

setup_single_track_mode() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 511

setup_step_move() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

setup_switch() (pylablib.devices.Pfeiffer.base.TPG260
method), 741

setup_task() (pylablib.core.thread.controller.QTaskThread
method), 339

setup_terascan() (pylablib.devices.M2.emm.EMM
method), 676

setup_terascan() (pylablib.devices.M2.solstis.Solstis
method), 682

setup_velocity() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 716

setup_velocity() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 906

setup_velocity() (py-
lablib.devices.Trinamic.base.TMCM1110
method), 947

setup_voltage_output_clock() (py-
lablib.devices.NI.daq.NIDAQ method), 701

sfglob() (in module pylablib.core.utils.string), 435
sfregex() (in module pylablib.core.utils.string), 435
ShamrockSpectrograph (class in py-

lablib.devices.Andor.Shamrock), 527
shape() (pylablib.core.dataproc.table_wrap.Array1DWrapper

method), 150
shape() (pylablib.core.dataproc.table_wrap.Array2DWrapper

method), 155
shape() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper

method), 157
shape() (pylablib.core.dataproc.table_wrap.I1DWrapper

method), 149
shape() (pylablib.core.dataproc.table_wrap.I2DWrapper

method), 153
shape() (pylablib.core.dataproc.table_wrap.IGenWrapper

method), 148
shape() (pylablib.core.dataproc.table_wrap.Series1DWrapper

method), 152
SharedMemIPCChannel (class in pylablib.core.utils.ipc),

421
SharedMemIPCTable (class in pylablib.core.utils.ipc),

421
shift() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

method), 130
shifted() (pylablib.core.dataproc.transform.Indexed2DTransform

method), 158
shifted() (pylablib.core.dataproc.transform.LinearTransform

method), 157
show_value() (pylablib.core.gui.widgets.edit.NumEdit

method), 268
show_value() (pylablib.core.gui.widgets.edit.TextEdit

method), 266
shutdown() (pylablib.devices.Andor.AndorSDK2.LibraryController

method), 505
shutdown() (pylablib.devices.Andor.AndorSDK3.LibraryController

method), 516
shutdown() (pylablib.devices.Andor.Shamrock.LibraryController

method), 527
shutdown() (pylablib.devices.Basler.pylon.LibraryController

method), 557
shutdown() (pylablib.devices.DCAM.DCAM.LibraryController

method), 595
shutdown() (pylablib.devices.Mightex.MightexSSeries.LibraryController

method), 686
shutdown() (pylablib.devices.Photometrics.pvcam.LibraryController

method), 745
shutdown() (pylablib.devices.PhotonFocus.PhotonFocus.LibraryController

method), 755
shutdown() (pylablib.devices.PrincetonInstruments.picam.LibraryController

method), 800
shutdown() (pylablib.devices.SmarAct.MCS2.LibraryController

method), 844
shutdown() (pylablib.devices.SmarAct.scu3d.LibraryController

method), 849
shutdown() (pylablib.devices.Thorlabs.TLCamera.LibraryController

method), 878
shutdown() (pylablib.devices.utils.load_lib.LibraryController

method), 999
signature() (pylablib.core.utils.functions.FunctionSignature

method), 406
SilenceException (class in py-

lablib.core.utils.general), 413
SiliconSoftwareCamera (class in py-

lablib.devices.SiliconSoftware.fgrab), 824
SiliconSoftwareCamera.BufferManager (class in

pylablib.devices.SiliconSoftware.fgrab), 824
SiliconSoftwareFrameGrabber (class in py-

lablib.devices.SiliconSoftware.fgrab), 817
SiliconSoftwareFrameGrabber.BufferManager

(class in py-
lablib.devices.SiliconSoftware.fgrab), 819

single_op() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

single_op() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 172

SingleFileSystemDataLocation (class in py-
lablib.core.fileio.location), 216

1198 Index

pylablib Documentation, Release 1.4.2

SirahMatisse (class in pylablib.devices.Sirah.Matisse),
832

size (pylablib.core.utils.ipc.TShmemVarDesc attribute),
421

size (pylablib.devices.Andor.AndorSDK3.TFrameInfo
attribute), 519

size (pylablib.devices.uc480.uc480.TFrameInfo at-
tribute), 990

size() (pylablib.core.dataproc.image.ROI method), 144
size() (pylablib.core.utils.dictionary.Dictionary

method), 364
size() (pylablib.core.utils.dictionary.DictionaryPointer

method), 378
size() (pylablib.core.utils.dictionary.FilterTree

method), 395
size() (pylablib.core.utils.dictionary.PrefixTree

method), 387
skip() (pylablib.core.thread.callsync.QScheduledCall

method), 318
skipped (pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus

attribute), 519
skipped (pylablib.devices.interface.camera.TFramesStatus

attribute), 955
skipped() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 315
skipped() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
SkippedCallError, 355
sleep() (pylablib.core.devio.SCPI.SCPIDevice

method), 162
sleep() (pylablib.core.thread.controller.QTaskThread

method), 346
sleep() (pylablib.core.thread.controller.QThreadController

method), 329
sleep() (pylablib.devices.AWG.generic.GenericAWG

method), 445
sleep() (pylablib.devices.AWG.specific.Agilent33220A

method), 458
sleep() (pylablib.devices.AWG.specific.Agilent33500

method), 452
sleep() (pylablib.devices.AWG.specific.InstekAFG2000

method), 470
sleep() (pylablib.devices.AWG.specific.InstekAFG2225

method), 464
sleep() (pylablib.devices.AWG.specific.RigolDG1000

method), 488
sleep() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 476
sleep() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 482
sleep() (pylablib.devices.Cryocon.base.Cryocon1x

method), 584
sleep() (pylablib.devices.Cryomagnetics.base.LM500

method), 589

sleep() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

sleep() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 648

sleep() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 654

sleep() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 659

sleep() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 798

sleep() (pylablib.devices.Rigol.power_supply.DP1116A
method), 813

sleep() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 838

sleep() (pylablib.devices.Tektronix.base.DPO2000
method), 876

sleep() (pylablib.devices.Tektronix.base.ITektronixScope
method), 863

sleep() (pylablib.devices.Tektronix.base.TDS2000
method), 870

sleep() (pylablib.devices.Thorlabs.misc.GenericPM
method), 921

sleep() (pylablib.devices.Thorlabs.misc.PM160
method), 925

sleep() (pylablib.devices.Thorlabs.serial.FW method),
932

sleep() (pylablib.devices.Thorlabs.serial.FWv1
method), 936

sleep() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 939

sleep() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

sleep() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 951

sliding_average() (in module py-
lablib.core.dataproc.filters), 134

sliding_filter() (in module py-
lablib.core.dataproc.filters), 134

slope (pylablib.devices.Tektronix.base.TTriggerParameters
attribute), 857

SmarActError, 849
smov (pylablib.devices.Standa.base.TFullState attribute),

853
snap() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

method), 504
snap() (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

method), 495
snap() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

method), 516
snap() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

method), 526
snap() (pylablib.devices.Basler.pylon.BaslerPylonCamera

method), 566
snap() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

Index 1199

pylablib Documentation, Release 1.4.2

method), 578
snap() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

method), 572
snap() (pylablib.devices.DCAM.DCAM.DCAMCamera

method), 603
snap() (pylablib.devices.IMAQ.IMAQ.IMAQCamera

method), 626
snap() (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

method), 619
snap() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

method), 640
snap() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

method), 635
snap() (pylablib.devices.interface.camera.IAttributeCamera

method), 966
snap() (pylablib.devices.interface.camera.IBinROICamera

method), 984
snap() (pylablib.devices.interface.camera.ICamera

method), 959
snap() (pylablib.devices.interface.camera.IExposureCamera

method), 975
snap() (pylablib.devices.interface.camera.IGrabberAttributeCamera

method), 971
snap() (pylablib.devices.interface.camera.IROICamera

method), 980
snap() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera

method), 692
snap() (pylablib.devices.PCO.SC2.PCOSC2Camera

method), 738
snap() (pylablib.devices.Photometrics.pvcam.PvcamCamera

method), 754
snap() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera

method), 763
snap() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera

method), 787
snap() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera

method), 772
snap() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera

method), 780
snap() (pylablib.devices.PrincetonInstruments.picam.PicamCamera

method), 809
snap() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera

method), 830
snap() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber

method), 823
snap() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera

method), 886
snap() (pylablib.devices.uc480.uc480.UC480Camera

method), 996
sock (pylablib.core.utils.net.ClientSocket attribute), 427
SocketError, 425
SocketTimeout, 425
SocketTunnelService (class in py-

lablib.core.utils.rpyc_utils), 431

software_version (py-
lablib.devices.Andor.AndorSDK3.TDeviceInfo
attribute), 519

software_version (py-
lablib.devices.LaserQuantum.base.TDeviceInfo
attribute), 661

software_version (py-
lablib.devices.SiliconSoftware.fgrab.TDeviceInfo
attribute), 817

Solstis (class in pylablib.devices.M2.solstis), 679
sort_by() (in module pylablib.core.dataproc.utils), 159
sort_set_by_list() (in module py-

lablib.core.utils.general), 412
source (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings

attribute), 650
source (pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings

attribute), 656
source (pylablib.devices.Tektronix.base.TTriggerParameters

attribute), 857
source (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData

attribute), 893
source (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort

attribute), 892
speed (pylablib.devices.Standa.base.TFullState at-

tribute), 853
speed (pylablib.devices.Standa.base.TMoveParams at-

tribute), 853
speed (pylablib.devices.Trinamic.base.TVelocityParams

attribute), 944
speed_freq (pylablib.devices.Photometrics.pvcam.TReadoutInfo

attribute), 747
speed_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo

attribute), 747
split_in_groups() (in module py-

lablib.core.utils.general), 412
split_into_bins() (in module py-

lablib.core.dataproc.filters), 135
split_path() (in module py-

lablib.core.utils.dictionary), 361
split_units() (in module pylablib.core.utils.units),

439
SproutG (class in py-

lablib.devices.LighthousePhotonics.base),
668

spwr (pylablib.devices.Standa.base.TFullState attribute),
853

src (pylablib.core.thread.multicast_pool.TMulticast at-
tribute), 350

src (pylablib.devices.NKT.interbus.TInterbusTelegram
attribute), 704

sRGB_to_linear() (in module py-
lablib.devices.utils.color), 997

sstep (pylablib.devices.interface.camera.TAxisROILimit
attribute), 976

1200 Index

pylablib Documentation, Release 1.4.2

Standa8SMC (class in pylablib.devices.Standa.base), 854
StandaBackendError, 852
StandaError, 852
StandardIndicatorHandler (class in py-

lablib.core.gui.value_handling), 311
StandardValueHandler (class in py-

lablib.core.gui.value_handling), 301
start (pylablib.core.dataproc.utils.Range property), 160
start (pylablib.core.gui.widgets.container.TTimerEvent

attribute), 230
start() (in module pylablib.core.thread.profile), 352
start() (pylablib.core.devio.backend_logger.BackendLogger

method), 165
start() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
start() (pylablib.core.gui.widgets.container.IQContainer

method), 232
start() (pylablib.core.gui.widgets.container.IQWidgetContainer

method), 239
start() (pylablib.core.gui.widgets.container.QContainer

method), 235
start() (pylablib.core.gui.widgets.container.QDialogContainer

method), 251
start() (pylablib.core.gui.widgets.container.QFrameContainer

method), 247
start() (pylablib.core.gui.widgets.container.QGroupBoxContainer

method), 255
start() (pylablib.core.gui.widgets.container.QScrollAreaContainer

method), 262
start() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget

method), 260
start() (pylablib.core.gui.widgets.container.QTabContainer

method), 265
start() (pylablib.core.gui.widgets.container.QWidgetContainer

method), 243
start() (pylablib.core.gui.widgets.param_table.ParamTable

method), 284
start() (pylablib.core.gui.widgets.param_table.StatusTable

method), 293
start() (pylablib.core.thread.controller.QTaskThread

method), 346
start() (pylablib.core.thread.controller.QThreadController

method), 333
start() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager

method), 635
start() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager

method), 631
start() (pylablib.devices.NI.daq.NIDAQ method), 699
start_acquisition() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 504

start_acquisition() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

start_acquisition() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

start_acquisition() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

start_acquisition() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

start_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 578

start_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

start_acquisition() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

start_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

start_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 615

start_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 640

start_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

start_acquisition() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 966

start_acquisition() (py-
lablib.devices.interface.camera.IBinROICamera
method), 985

start_acquisition() (py-
lablib.devices.interface.camera.ICamera
method), 956

start_acquisition() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

start_acquisition() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 971

start_acquisition() (py-
lablib.devices.interface.camera.IROICamera
method), 980

start_acquisition() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

start_acquisition() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

Index 1201

pylablib Documentation, Release 1.4.2

start_acquisition() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

start_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

start_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 787

start_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

start_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

start_acquisition() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 805

start_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 830

start_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

start_acquisition() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

start_acquisition() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

start_batch_job() (py-
lablib.core.thread.controller.QTaskThread
method), 338

start_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

start_degas() (pylablib.devices.Leybold.base.ITR90
method), 666

start_fast_scan() (py-
lablib.devices.M2.solstis.Solstis method),
683

start_fill() (pylablib.devices.Cryomagnetics.base.LM500
method), 587

start_fill() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

start_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

start_link() (pylablib.devices.M2.base.ICEBlocDevice
method), 675

start_link() (pylablib.devices.M2.emm.EMM
method), 679

start_link() (pylablib.devices.M2.solstis.Solstis
method), 685

start_loop() (pylablib.core.devio.hid.HIDevice.Reader
method), 191

start_loop() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 522

start_loop() (pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper
method), 562

start_loop() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager
method), 573

start_loop() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager
method), 569

start_loop() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager
method), 782

start_loop() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager
method), 773

start_loop() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager
method), 824

start_loop() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager
method), 819

start_measurement() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

start_measurement() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

start_measurement() (py-
lablib.devices.HighFinesse.wlm.WLM method),
608

start_pulse_output() (py-
lablib.devices.NI.daq.NIDAQ method), 702

start_terascan() (pylablib.devices.M2.emm.EMM
method), 676

start_terascan() (pylablib.devices.M2.solstis.Solstis
method), 682

start_timer() (pylablib.core.gui.widgets.container.IQContainer
method), 231

start_timer() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 239

start_timer() (pylablib.core.gui.widgets.container.QContainer
method), 235

start_timer() (pylablib.core.gui.widgets.container.QDialogContainer
method), 251

start_timer() (pylablib.core.gui.widgets.container.QFrameContainer
method), 247

start_timer() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 256

start_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 262

start_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

start_timer() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

start_timer() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 243

start_timer() (pylablib.core.gui.widgets.param_table.ParamTable
method), 284

start_timer() (pylablib.core.gui.widgets.param_table.StatusTable

1202 Index

pylablib Documentation, Release 1.4.2

method), 293
started (pylablib.core.thread.controller.QTaskThread

attribute), 346
started (pylablib.core.thread.controller.QThreadController

attribute), 328
status (pylablib.devices.Leybold.base.TUpdateValue at-

tribute), 664
status (pylablib.devices.PCO.SC2.TCameraStatus at-

tribute), 730
status (pylablib.devices.Trinamic.base.TMCM1110.ReplyData

attribute), 945
status (pylablib.devices.uc480.uc480.TCameraInfo at-

tribute), 988
status_bits (pylablib.devices.Attocube.anc350.ANC350

attribute), 553
status_bits (pylablib.devices.Thorlabs.kinesis.KinesisDevice

attribute), 897
status_bits (pylablib.devices.Thorlabs.kinesis.KinesisMotor

attribute), 909
status_bits (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

attribute), 913
status_bits (pylablib.devices.Thorlabs.kinesis.MFF

attribute), 903
StatusLineChecker (class in py-

lablib.devices.interface.camera), 985
StatusLineChecker (class in py-

lablib.devices.PCO.SC2), 738
StatusLineChecker (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
789

StatusTable (class in py-
lablib.core.gui.widgets.param_table), 284

step (pylablib.devices.DCAM.DCAM.DCAMAttribute
attribute), 596

step_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

step_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams
attribute), 896

step_size (pylablib.devices.Thorlabs.kinesis.TJogParams
attribute), 895

step_size_bk (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams
attribute), 896

step_size_fw (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams
attribute), 896

step_voltage() (pylablib.devices.OZOptics.base.EPC04
method), 723

steps_per_rev (pylablib.devices.Standa.base.TStepperMotorCalibration
attribute), 853

stitched_scan() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 843

stitched_scan_gen() (py-
lablib.devices.Sirah.tuner.MatisseTuner
method), 843

stop (pylablib.core.dataproc.utils.Range property), 160
stop (pylablib.core.gui.widgets.container.TTimerEvent

attribute), 230
stop() (in module pylablib.core.thread.profile), 352
stop() (pylablib.core.devio.backend_logger.BackendLogger

method), 165
stop() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 186
stop() (pylablib.core.gui.widgets.container.IQContainer

method), 232
stop() (pylablib.core.gui.widgets.container.IQWidgetContainer

method), 239
stop() (pylablib.core.gui.widgets.container.QContainer

method), 235
stop() (pylablib.core.gui.widgets.container.QDialogContainer

method), 251
stop() (pylablib.core.gui.widgets.container.QFrameContainer

method), 247
stop() (pylablib.core.gui.widgets.container.QGroupBoxContainer

method), 256
stop() (pylablib.core.gui.widgets.container.QScrollAreaContainer

method), 262
stop() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget

method), 260
stop() (pylablib.core.gui.widgets.container.QTabContainer

method), 265
stop() (pylablib.core.gui.widgets.container.QWidgetContainer

method), 243
stop() (pylablib.core.gui.widgets.param_table.ParamTable

method), 284
stop() (pylablib.core.gui.widgets.param_table.StatusTable

method), 293
stop() (pylablib.core.thread.controller.QTaskThread

method), 346
stop() (pylablib.core.thread.controller.QThreadController

method), 333
stop() (pylablib.core.utils.general.Countdown method),

415
stop() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 542
stop() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 536
stop() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 543
stop() (pylablib.devices.Attocube.anc300.ANC300

method), 550
stop() (pylablib.devices.Attocube.anc350.ANC350

method), 554
stop() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager

method), 635
stop() (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager

method), 631
stop() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 716

Index 1203

pylablib Documentation, Release 1.4.2

stop() (pylablib.devices.NI.daq.NIDAQ method), 699
stop() (pylablib.devices.PhysikInstrumente.base.PIE516

method), 793
stop() (pylablib.devices.SmarAct.MCS2.MCS2

method), 847
stop() (pylablib.devices.SmarAct.scu3d.SCU3D

method), 851
stop() (pylablib.devices.Standa.base.Standa8SMC

method), 855
stop() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 905
stop() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 911
stop() (pylablib.devices.Trinamic.base.TMCM1110

method), 945
stop_acquisition() (py-

lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 504

stop_acquisition() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

stop_acquisition() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 512

stop_acquisition() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 522

stop_acquisition() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 562

stop_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 578

stop_acquisition() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 569

stop_acquisition() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 599

stop_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

stop_acquisition() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 616

stop_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 641

stop_acquisition() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 631

stop_acquisition() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 966

stop_acquisition() (py-
lablib.devices.interface.camera.IBinROICamera
method), 985

stop_acquisition() (py-
lablib.devices.interface.camera.ICamera
method), 956

stop_acquisition() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

stop_acquisition() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 971

stop_acquisition() (py-
lablib.devices.interface.camera.IROICamera
method), 980

stop_acquisition() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 688

stop_acquisition() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 733

stop_acquisition() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 750

stop_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

stop_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 788

stop_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

stop_acquisition() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

stop_acquisition() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 806

stop_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 830

stop_acquisition() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 820

stop_acquisition() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 882

stop_acquisition() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 992

stop_all_controllers() (in module py-
lablib.core.thread.controller), 349

stop_all_operation() (py-

1204 Index

pylablib Documentation, Release 1.4.2

lablib.devices.M2.emm.EMM method), 677
stop_all_operation() (py-

lablib.devices.M2.solstis.Solstis method),
684

stop_app() (in module pylablib.core.thread.controller),
349

stop_batch_job() (py-
lablib.core.thread.controller.QTaskThread
method), 338

stop_coarse_tuning() (py-
lablib.devices.M2.solstis.Solstis method),
681

stop_controller() (in module py-
lablib.core.thread.controller), 349

stop_degas() (pylablib.devices.Leybold.base.ITR90
method), 666

stop_fast_scan() (pylablib.devices.M2.solstis.Solstis
method), 683

stop_fine_tuning() (pylablib.devices.M2.emm.EMM
method), 676

stop_fine_tuning() (py-
lablib.devices.M2.solstis.Solstis method),
680

stop_grabbing() (py-
lablib.devices.Tektronix.base.DPO2000
method), 877

stop_grabbing() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 858

stop_grabbing() (py-
lablib.devices.Tektronix.base.TDS2000
method), 870

stop_loop() (pylablib.core.devio.hid.HIDevice.Reader
method), 191

stop_loop() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager
method), 522

stop_loop() (pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper
method), 562

stop_loop() (pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager
method), 573

stop_loop() (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager
method), 569

stop_loop() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager
method), 782

stop_loop() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager
method), 773

stop_loop() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager
method), 824

stop_loop() (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager
method), 819

stop_lower (pylablib.devices.Sirah.Matisse.TScanMode
attribute), 832

stop_measurement() (py-
lablib.devices.HighFinesse.wlm.WLM method),

608
stop_mode (pylablib.devices.Thorlabs.kinesis.TJogParams

attribute), 895
stop_pulse_output() (py-

lablib.devices.NI.daq.NIDAQ method), 702
stop_scan_web() (pylablib.devices.M2.solstis.Solstis

method), 684
stop_terascan() (pylablib.devices.M2.emm.EMM

method), 677
stop_terascan() (pylablib.devices.M2.solstis.Solstis

method), 682
stop_timer() (pylablib.core.gui.widgets.container.IQContainer

method), 231
stop_timer() (pylablib.core.gui.widgets.container.IQWidgetContainer

method), 239
stop_timer() (pylablib.core.gui.widgets.container.QContainer

method), 235
stop_timer() (pylablib.core.gui.widgets.container.QDialogContainer

method), 252
stop_timer() (pylablib.core.gui.widgets.container.QFrameContainer

method), 247
stop_timer() (pylablib.core.gui.widgets.container.QGroupBoxContainer

method), 256
stop_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer

method), 263
stop_timer() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget

method), 260
stop_timer() (pylablib.core.gui.widgets.container.QTabContainer

method), 265
stop_timer() (pylablib.core.gui.widgets.container.QWidgetContainer

method), 243
stop_timer() (pylablib.core.gui.widgets.param_table.ParamTable

method), 284
stop_timer() (pylablib.core.gui.widgets.param_table.StatusTable

method), 293
stop_upper (pylablib.devices.Sirah.Matisse.TScanMode

attribute), 832
store_axis_parameter() (py-

lablib.devices.Trinamic.base.TMCM1110
method), 945

store_defaults() (py-
lablib.devices.Arcus.performax.GenericPerformaxStage
method), 534

store_defaults() (py-
lablib.devices.Arcus.performax.Performax2EXStage
method), 542

store_defaults() (py-
lablib.devices.Arcus.performax.Performax4EXStage
method), 538

store_defaults() (py-
lablib.devices.Arcus.performax.PerformaxDMXJSAStage
method), 545

store_parameters() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor

Index 1205

pylablib Documentation, Release 1.4.2

method), 889
store_settings() (py-

lablib.devices.Thorlabs.serial.FW method),
930

str_to_float() (in module py-
lablib.core.gui.formatter), 294

strconv() (in module pylablib.core.utils.ctypes_wrap),
360

StrDumper (class in pylablib.core.utils.strdump), 433
StreamFileLogger (class in py-

lablib.core.utils.general), 416
strerror (pylablib.core.thread.threadprop.TimeoutThreadError

attribute), 355
strerror (pylablib.core.utils.net.SocketError attribute),

425
strerror (pylablib.core.utils.net.SocketTimeout at-

tribute), 426
stride (pylablib.devices.Andor.AndorSDK3.TFrameInfo

attribute), 519
string_equal() (in module pylablib.core.utils.string),

434
string_list_idx() (in module py-

lablib.core.utils.indexing), 418
StringFilter (class in pylablib.core.utils.string), 435
strprep() (in module pylablib.core.utils.ctypes_wrap),

360
subcolumn() (pylablib.core.dataproc.table_wrap.Array1DWrapper

method), 150
subcolumn() (pylablib.core.dataproc.table_wrap.I1DWrapper

method), 149
subcolumn() (pylablib.core.dataproc.table_wrap.Series1DWrapper

method), 151
subscribe_commsync() (py-

lablib.core.thread.controller.QTaskThread
method), 340

subscribe_direct() (py-
lablib.core.thread.controller.QTaskThread
method), 346

subscribe_direct() (py-
lablib.core.thread.controller.QThreadController
method), 331

subscribe_direct() (py-
lablib.core.thread.multicast_pool.MulticastPool
method), 350

subscribe_sync() (py-
lablib.core.thread.controller.QTaskThread
method), 347

subscribe_sync() (py-
lablib.core.thread.controller.QThreadController
method), 330

subtable() (pylablib.core.dataproc.table_wrap.Array2DWrapper
method), 154

subtable() (pylablib.core.dataproc.table_wrap.DataFrame2DWrapper
method), 156

subtable() (pylablib.core.dataproc.table_wrap.I2DWrapper
method), 152

subtract_baseline() (in module py-
lablib.core.dataproc.feature), 131

subtype (pylablib.devices.Thorlabs.misc.TPMSensorInfo
attribute), 918

success_wait() (pylablib.core.thread.callsync.QCallResultSynchronizer
method), 316

success_wait() (pylablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

success_wait() (pylablib.core.thread.notifier.ISkippableNotifier
method), 352

success_wait() (pylablib.core.thread.synchronizing.QThreadNotifier
method), 353

sum (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings
attribute), 914

summary() (pylablib.core.utils.general.TimeTracker
method), 416

SuperKExtremeInterbusModule (class in py-
lablib.devices.NKT.interbus), 707

SuperKFrontPanelInterbusModule (class in py-
lablib.devices.NKT.interbus), 708

SuperKSelectDriverInterbusModule (class in py-
lablib.devices.NKT.interbus), 709

SuperKSelectInterbusModule (class in py-
lablib.devices.NKT.interbus), 710

svec (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform
property), 130

sw_kind (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

sw_position_ccw (py-
lablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

sw_position_cw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams
attribute), 895

sw_ver (pylablib.devices.ElektroAutomatik.base.TDeviceInfo
attribute), 604

switch_speed (pylablib.devices.Trinamic.base.THomeParams
attribute), 944

swnd (pylablib.devices.Standa.base.TFullState attribute),
853

swver (pylablib.devices.KJL.base.TKJL300DeviceInfo
attribute), 642

swver (pylablib.devices.Leybold.base.TDeviceInfo
attribute), 663

sync_controller() (in module py-
lablib.core.thread.controller), 349

sync_exec_point() (py-
lablib.core.thread.controller.QTaskThread
method), 348

sync_exec_point() (py-
lablib.core.thread.controller.QThreadController
method), 334

sync_phase() (pylablib.devices.AWG.generic.GenericAWG

1206 Index

pylablib Documentation, Release 1.4.2

method), 442
sync_phase() (pylablib.devices.AWG.specific.Agilent33220A

method), 458
sync_phase() (pylablib.devices.AWG.specific.Agilent33500

method), 452
sync_phase() (pylablib.devices.AWG.specific.InstekAFG2000

method), 470
sync_phase() (pylablib.devices.AWG.specific.InstekAFG2225

method), 464
sync_phase() (pylablib.devices.AWG.specific.RigolDG1000

method), 483
sync_phase() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 476
sync_phase() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 482
sync_stop() (pylablib.core.thread.controller.QTaskThread

method), 348
sync_stop() (pylablib.core.thread.controller.QThreadController

method), 334
sync_variable() (py-

lablib.core.thread.controller.QTaskThread
method), 348

sync_variable() (py-
lablib.core.thread.controller.QThreadController
method), 333

sync_with_ai (pylablib.devices.NI.daq.TVoltageOutputClockParameters
attribute), 696

system (pylablib.devices.Photometrics.pvcam.TDeviceInfo
attribute), 747

system_info (pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo
attribute), 817

T
table_entry_builder() (in module py-

lablib.core.fileio.dict_entry), 204
TableBinaryOutputFileFormat (class in py-

lablib.core.fileio.savefile), 223
TableStreamFile (class in py-

lablib.core.fileio.table_stream), 227
TAcqProgress (class in py-

lablib.devices.Andor.AndorSDK2), 506
TAcqTimings (class in py-

lablib.devices.interface.camera), 971
TAcquiredFramesStatus (class in py-

lablib.devices.uc480.uc480), 989
tag (pylablib.core.thread.multicast_pool.TMulticast at-

tribute), 350
tags (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo

attribute), 815
TAppletInfo (class in py-

lablib.devices.SiliconSoftware.fgrab), 814
TAveragingParameters (class in py-

lablib.devices.Keithley.multimeter), 644

TAxisROILimit (class in py-
lablib.devices.interface.camera), 976

TBoardInfo (class in py-
lablib.devices.SiliconSoftware.fgrab), 814

TCameraInfo (class in pylablib.devices.Basler.pylon),
557

TCameraInfo (class in py-
lablib.devices.IMAQdx.IMAQdx), 627

TCameraInfo (class in py-
lablib.devices.Mightex.MightexSSeries),
686

TCameraInfo (class in py-
lablib.devices.PhotonFocus.PhotonFocus),
755

TCameraInfo (class in py-
lablib.devices.PrincetonInstruments.picam),
800

TCameraInfo (class in pylablib.devices.uc480.uc480),
988

TCameraStatus (class in pylablib.devices.PCO.SC2),
730

TChild (class in pylablib.core.gui.widgets.container),
230

TCLMoveParams (class in py-
lablib.devices.SmarAct.MCS2), 845

TColorFormat (class in py-
lablib.devices.Thorlabs.TLCamera), 879

TColorInfo (class in py-
lablib.devices.Thorlabs.TLCamera), 879

TConfigurationParameters (class in py-
lablib.devices.Keithley.multimeter), 644

TConversionClass (class in pylablib.core.utils.string),
436

TCycleTimings (class in py-
lablib.devices.Andor.AndorSDK2), 505

TDefaultCallInfo (class in py-
lablib.core.thread.callsync), 318

TDeviceDescription (class in pylablib.core.devio.hid),
190

TDeviceInfo (class in py-
lablib.devices.AlliedVision.Bonito), 490

TDeviceInfo (class in py-
lablib.devices.Andor.AndorSDK2), 505

TDeviceInfo (class in py-
lablib.devices.Andor.AndorSDK3), 518

TDeviceInfo (class in py-
lablib.devices.Andor.Shamrock), 527

TDeviceInfo (class in py-
lablib.devices.Attocube.anc300), 548

TDeviceInfo (class in pylablib.devices.Basler.pylon),
559

TDeviceInfo (class in py-
lablib.devices.BitFlow.BitFlow), 567

TDeviceInfo (class in pylablib.devices.DCAM.DCAM),

Index 1207

pylablib Documentation, Release 1.4.2

597
TDeviceInfo (class in py-

lablib.devices.ElektroAutomatik.base), 604
TDeviceInfo (class in py-

lablib.devices.HighFinesse.wlm), 607
TDeviceInfo (class in pylablib.devices.IMAQ.IMAQ),

612
TDeviceInfo (class in py-

lablib.devices.IMAQdx.IMAQdx), 629
TDeviceInfo (class in py-

lablib.devices.LaserQuantum.base), 660
TDeviceInfo (class in pylablib.devices.Leybold.base),

663
TDeviceInfo (class in py-

lablib.devices.LighthousePhotonics.base),
668

TDeviceInfo (class in pylablib.devices.Lumel.base), 670
TDeviceInfo (class in py-

lablib.devices.Mightex.MightexSSeries),
686

TDeviceInfo (class in py-
lablib.devices.Newport.picomotor), 714

TDeviceInfo (class in pylablib.devices.NI.daq), 696
TDeviceInfo (class in pylablib.devices.Ophir.base), 726
TDeviceInfo (class in pylablib.devices.PCO.SC2), 730
TDeviceInfo (class in py-

lablib.devices.Photometrics.pvcam), 746
TDeviceInfo (class in py-

lablib.devices.PhotonFocus.PhotonFocus),
757

TDeviceInfo (class in py-
lablib.devices.PrincetonInstruments.picam),
803

TDeviceInfo (class in py-
lablib.devices.SiliconSoftware.fgrab), 816

TDeviceInfo (class in pylablib.devices.SmarAct.MCS2),
844

TDeviceInfo (class in pylablib.devices.SmarAct.scu3d),
850

TDeviceInfo (class in py-
lablib.devices.Thorlabs.elliptec), 887

TDeviceInfo (class in py-
lablib.devices.Thorlabs.kinesis), 891

TDeviceInfo (class in py-
lablib.devices.Thorlabs.TLCamera), 878

TDeviceInfo (class in pylablib.devices.Toptica.ibeam),
941

TDeviceInfo (class in pylablib.devices.uc480.uc480),
989

TDS2000 (class in pylablib.devices.Tektronix.base), 864
TektronixAFG1000 (class in py-

lablib.devices.AWG.specific), 477
TektronixBackendError, 856
TektronixError, 856

temp (pylablib.devices.Standa.base.TFullState attribute),
853

temp_library_parameters() (in module py-
lablib.core.utils.library_parameters), 422

temp_open() (pylablib.devices.Andor.AndorSDK2.LibraryController
method), 505

temp_open() (pylablib.devices.Andor.AndorSDK3.LibraryController
method), 517

temp_open() (pylablib.devices.Andor.Shamrock.LibraryController
method), 527

temp_open() (pylablib.devices.Basler.pylon.LibraryController
method), 557

temp_open() (pylablib.devices.DCAM.DCAM.LibraryController
method), 595

temp_open() (pylablib.devices.Mightex.MightexSSeries.LibraryController
method), 686

temp_open() (pylablib.devices.Photometrics.pvcam.LibraryController
method), 745

temp_open() (pylablib.devices.PhotonFocus.PhotonFocus.LibraryController
method), 755

temp_open() (pylablib.devices.PrincetonInstruments.picam.LibraryController
method), 800

temp_open() (pylablib.devices.SmarAct.MCS2.LibraryController
method), 844

temp_open() (pylablib.devices.SmarAct.scu3d.LibraryController
method), 850

temp_open() (pylablib.devices.Thorlabs.TLCamera.LibraryController
method), 878

temp_open() (pylablib.devices.utils.load_lib.LibraryController
method), 999

TempFile (class in pylablib.core.utils.files), 399
TEngineType (class in pylablib.devices.Standa.base),

852
test_columns_line() (in module py-

lablib.core.fileio.loadfile_utils), 212
test_row_type() (in module py-

lablib.core.fileio.loadfile_utils), 212
test_savetime_comment() (in module py-

lablib.core.fileio.loadfile_utils), 212
TextEdit (class in pylablib.core.gui.widgets.edit), 266
TextLabel (class in pylablib.core.gui.widgets.label), 268
TF100 (class in pylablib.devices.OZOptics.base), 719
TFastpiezoCtlParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TFlipperParameters (class in py-

lablib.devices.Thorlabs.kinesis), 899
TFrameInfo (class in py-

lablib.devices.Andor.AndorSDK3), 519
TFrameInfo (class in pylablib.devices.DCAM.DCAM),

597
TFrameInfo (class in pylablib.devices.interface.camera),

955
TFrameInfo (class in pylablib.devices.PCO.SC2), 730
TFrameInfo (class in py-

1208 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Photometrics.pvcam), 747
TFrameInfo (class in py-

lablib.devices.PrincetonInstruments.picam),
803

TFrameInfo (class in py-
lablib.devices.SiliconSoftware.fgrab), 817

TFrameInfo (class in py-
lablib.devices.Thorlabs.TLCamera), 879

TFrameInfo (class in pylablib.devices.uc480.uc480),
989

TFramePosition (class in py-
lablib.devices.interface.camera), 955

TFrameSize (class in pylablib.devices.interface.camera),
955

TFramesStatus (class in py-
lablib.devices.interface.camera), 955

TFrequencyFunctionParameters (class in py-
lablib.devices.Keithley.multimeter), 644

TFullAppletInfo (class in py-
lablib.devices.SiliconSoftware.fgrab), 815

TFullBoardInfo (in module py-
lablib.devices.SiliconSoftware.fgrab), 814

TFullState (class in pylablib.devices.Standa.base), 853
TGenericFunctionParameters (class in py-

lablib.devices.Keithley.multimeter), 644
TGenMoveParams (class in py-

lablib.devices.Thorlabs.kinesis), 895
TGratingInfo (class in py-

lablib.devices.Andor.Shamrock), 527
THeadInfo (class in pylablib.devices.Ophir.base), 726
thinet_clear_errors() (py-

lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_get_position() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 833

thinet_get_range() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_get_status() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_get_status_n() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_home() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_is_moving() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_move_to() (py-
lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

thinet_stop() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 834
thinet_wait_move() (py-

lablib.devices.Sirah.Matisse.SirahMatisse
method), 834

THomeParams (class in py-
lablib.devices.Thorlabs.kinesis), 895

THomeParams (class in pylablib.devices.Trinamic.base),
944

ThorlabsBackendError, 887
ThorlabsError, 887
ThorlabsSerialInterface (class in py-

lablib.devices.Thorlabs.serial), 927
ThorlabsTimeoutError, 887
ThorlabsTLCamera (class in py-

lablib.devices.Thorlabs.TLCamera), 879
ThorlabsTLCamera.RingBuffer (class in py-

lablib.devices.Thorlabs.TLCamera), 880
ThreadError, 354
time_left() (pylablib.core.thread.controller.QTaskThread.Job

method), 337
time_left() (pylablib.core.utils.general.Countdown

method), 415
time_left() (pylablib.core.utils.general.Timer

method), 416
time_passed() (pylablib.core.utils.general.Countdown

method), 415
TimeoutError (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera

attribute), 496
TimeoutError (pylablib.devices.AlliedVision.Bonito.IBonitoCamera

attribute), 492
TimeoutError (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera

attribute), 506
TimeoutError (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera

attribute), 519
TimeoutError (pylablib.devices.Basler.pylon.BaslerPylonCamera

attribute), 560
TimeoutError (pylablib.devices.BitFlow.BitFlow.BitFlowCamera

attribute), 573
TimeoutError (pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber

attribute), 567
TimeoutError (pylablib.devices.DCAM.DCAM.DCAMCamera

attribute), 597
TimeoutError (pylablib.devices.IMAQ.IMAQ.IMAQCamera

attribute), 619
TimeoutError (pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber

attribute), 612
TimeoutError (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera

attribute), 636
TimeoutError (pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera

attribute), 629
TimeoutError (pylablib.devices.interface.camera.IAttributeCamera

attribute), 962
TimeoutError (pylablib.devices.interface.camera.IBinROICamera

attribute), 981

Index 1209

pylablib Documentation, Release 1.4.2

TimeoutError (pylablib.devices.interface.camera.ICamera
attribute), 956

TimeoutError (pylablib.devices.interface.camera.IExposureCamera
attribute), 972

TimeoutError (pylablib.devices.interface.camera.IGrabberAttributeCamera
attribute), 967

TimeoutError (pylablib.devices.interface.camera.IROICamera
attribute), 976

TimeoutError (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
attribute), 687

TimeoutError (pylablib.devices.PCO.SC2.PCOSC2Camera
attribute), 731

TimeoutError (pylablib.devices.Photometrics.pvcam.PvcamCamera
attribute), 747

TimeoutError (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
attribute), 759

TimeoutError (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
attribute), 782

TimeoutError (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
attribute), 764

TimeoutError (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
attribute), 773

TimeoutError (pylablib.devices.PrincetonInstruments.picam.PicamCamera
attribute), 804

TimeoutError (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
attribute), 824

TimeoutError (pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
attribute), 817

TimeoutError (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
attribute), 879

TimeoutError (pylablib.devices.uc480.uc480.UC480Camera
attribute), 990

TimeoutThreadError, 354
Timer (class in pylablib.core.utils.general), 415
timer (pylablib.core.gui.widgets.container.TTimer

attribute), 230
timer (pylablib.core.gui.widgets.container.TTimerEvent

attribute), 230
TimerUIDGenerator (py-

lablib.core.gui.widgets.container.IQContainer
attribute), 230

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.IQWidgetContainer
attribute), 236

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QContainer
attribute), 233

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QDialogContainer
attribute), 248

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QFrameContainer
attribute), 244

TimerUIDGenerator (py-

lablib.core.gui.widgets.container.QGroupBoxContainer
attribute), 252

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
attribute), 261

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
attribute), 256

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QTabContainer
attribute), 263

TimerUIDGenerator (py-
lablib.core.gui.widgets.container.QWidgetContainer
attribute), 240

TimerUIDGenerator (py-
lablib.core.gui.widgets.param_table.ParamTable
attribute), 281

TimerUIDGenerator (py-
lablib.core.gui.widgets.param_table.StatusTable
attribute), 285

timestamp (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo
attribute), 817

timestamp (pylablib.devices.uc480.uc480.TFrameInfo
attribute), 990

timestamp_dev (pylablib.devices.Andor.AndorSDK3.TFrameInfo
attribute), 519

timestamp_dev (pylablib.devices.uc480.uc480.TFrameInfo
attribute), 990

timestamp_end (pylablib.devices.PrincetonInstruments.picam.TFrameInfo
attribute), 803

timestamp_end_ns (py-
lablib.devices.Photometrics.pvcam.TFrameInfo
attribute), 747

timestamp_long (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo
attribute), 817

timestamp_start (py-
lablib.devices.PrincetonInstruments.picam.TFrameInfo
attribute), 803

timestamp_start_ns (py-
lablib.devices.Photometrics.pvcam.TFrameInfo
attribute), 747

timestamp_us (pylablib.devices.DCAM.DCAM.TFrameInfo
attribute), 597

TimeTracker (class in pylablib.core.utils.general), 416
timing() (in module pylablib.core.utils.general), 417
TInterbusTelegram (class in py-

lablib.devices.NKT.interbus), 704
TInternalBufferStatus (class in py-

lablib.devices.PCO.SC2), 730
TITR90Status (class in pylablib.devices.Leybold.base),

665
TJogParams (class in pylablib.devices.Thorlabs.kinesis),

894
TKCubeTrigIOParams (class in py-

1210 Index

pylablib Documentation, Release 1.4.2

lablib.devices.Thorlabs.kinesis), 895
TKCubeTrigPosParams (class in py-

lablib.devices.Thorlabs.kinesis), 896
TKJL300DeviceInfo (class in py-

lablib.devices.KJL.base), 641
TLakeshore218AnalogSettings (class in py-

lablib.devices.Lakeshore.base), 650
TLakeshore218CurveHeader (class in py-

lablib.devices.Lakeshore.base), 650
TLakeshore218FilterSettings (class in py-

lablib.devices.Lakeshore.base), 650
TLakeshore370AnalogSettings (class in py-

lablib.devices.Lakeshore.base), 655
TLakeshore370FilterSettings (class in py-

lablib.devices.Lakeshore.base), 656
TLakeshore370RangeSettings (class in py-

lablib.devices.Lakeshore.base), 655
TLibraryCloseResult (class in py-

lablib.devices.utils.load_lib), 998
TLibraryOpenResult (class in py-

lablib.devices.utils.load_lib), 998
TLimitSwitchParams (class in py-

lablib.devices.Thorlabs.kinesis), 895
TLimitSwitchParams (class in py-

lablib.devices.Trinamic.base), 944
tmatr (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform

property), 130
TMCM1110 (class in pylablib.devices.Trinamic.base), 944
TMCM1110.ReplyData (class in py-

lablib.devices.Trinamic.base), 944
TMissedFramesStatus (class in py-

lablib.devices.Andor.AndorSDK3), 519
TModbusFrame (class in py-

lablib.devices.Modbus.modbus), 693
TMotorInfo (class in pylablib.devices.Thorlabs.elliptec),

888
TMoveParams (class in pylablib.devices.Standa.base),

853
TMulticast (class in py-

lablib.core.thread.multicast_pool), 350
to_alias() (pylablib.core.devio.interface.EnumParameterClass

method), 197
to_alias() (pylablib.core.devio.interface.FunctionParameterClass

method), 197
to_alias() (pylablib.core.devio.interface.ICheckingParameterClass

method), 194
to_alias() (pylablib.core.devio.interface.IEnumParameterClass

method), 195
to_alias() (pylablib.core.devio.interface.RangeParameterClass

method), 195
to_callable() (in module py-

lablib.core.dataproc.callable), 130
to_desc() (pylablib.core.devio.data_format.DataFormat

method), 189

to_dict() (in module pylablib.core.utils.general), 412
to_dict() (pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry

method), 206
to_dict() (pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry

method), 203
to_dict() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry

method), 206
to_dict() (pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry

method), 203
to_dict() (pylablib.core.fileio.dict_entry.IDictionaryEntry

method), 200
to_dict() (pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry

method), 204
to_dict() (pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry

method), 202
to_dict() (pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry

method), 201
to_dict() (pylablib.core.fileio.dict_entry.ITableDictionaryEntry

method), 201
to_double_index() (in module py-

lablib.core.utils.indexing), 420
to_Pa() (pylablib.devices.Pfeiffer.base.TPG260

method), 740
to_pairs_list() (in module py-

lablib.core.utils.general), 412
to_path() (pylablib.core.fileio.location.LocationName

method), 213
to_predicate() (in module pylablib.core.utils.general),

411
to_range() (in module pylablib.core.utils.indexing),

418
to_range() (in module pylablib.core.utils.string), 437
to_string() (in module pylablib.core.utils.string), 437
to_string() (pylablib.core.fileio.location.LocationName

method), 213
to_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper

method), 361
to_value() (pylablib.core.devio.interface.EnumParameterClass

method), 197
to_value() (pylablib.core.devio.interface.FunctionParameterClass

method), 197
to_value() (pylablib.core.devio.interface.ICheckingParameterClass

method), 194
to_value() (pylablib.core.devio.interface.IEnumParameterClass

method), 195
to_value() (pylablib.core.devio.interface.RangeParameterClass

method), 194
ToggleButton (class in py-

lablib.core.gui.widgets.button), 228
ToolButtonValueHandler (class in py-

lablib.core.gui.value_handling), 307
tooltip (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
tooltip (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

Index 1211

pylablib Documentation, Release 1.4.2

attribute), 628
top (pylablib.devices.interface.camera.TFramePosition

attribute), 955
toploopSlot() (in module py-

lablib.core.thread.controller), 327
topological_order() (in module py-

lablib.core.utils.general), 412
TopticaBackendError, 940
TopticaError, 940
TopticaIBeam (class in pylablib.devices.Toptica.ibeam),

941
TOpticalParameters (class in py-

lablib.devices.Andor.Shamrock), 527
touch() (in module pylablib.core.utils.files), 398
TOutputLimits (class in py-

lablib.devices.ElektroAutomatik.base), 604
TPG260 (class in pylablib.devices.Pfeiffer.base), 740
TPiezoetDriveParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TPiezoetFeedbackParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TPiezoetFeedforwardParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TPipeMsg (class in pylablib.core.utils.ipc), 420
TPMDeviceInfo (class in py-

lablib.devices.Thorlabs.misc), 918
TPMSensorInfo (class in py-

lablib.devices.Thorlabs.misc), 918
TPolCtlParams (class in py-

lablib.devices.Thorlabs.kinesis), 895
TPowerParams (class in pylablib.devices.Standa.base),

853
TPZMotorDriveParams (class in py-

lablib.devices.Thorlabs.kinesis), 896
TPZMotorJogParams (class in py-

lablib.devices.Thorlabs.kinesis), 896
TQuadDetectorOutputParams (class in py-

lablib.devices.Thorlabs.kinesis), 914
TQuadDetectorPIDParams (class in py-

lablib.devices.Thorlabs.kinesis), 914
TQuadDetectorReadings (class in py-

lablib.devices.Thorlabs.kinesis), 914
TQuadDetectorSetpoint (class in py-

lablib.devices.Thorlabs.kinesis), 914
TRangeInfo (class in pylablib.devices.Ophir.base), 726
transfer() (in module pylablib.core.utils.rpyc_utils),

431
transfer() (pylablib.core.utils.rpyc_utils.DeviceService

method), 432
transfer() (pylablib.core.utils.rpyc_utils.SocketTunnelService

method), 432
transfer_missed (py-

lablib.devices.uc480.uc480.TAcquiredFramesStatus
attribute), 989

transit_time (pylablib.devices.Thorlabs.kinesis.TFlipperParameters
attribute), 899

translate_string_filter() (in module py-
lablib.core.utils.string), 435

transpose() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform
method), 130

travel (pylablib.devices.Thorlabs.elliptec.TDeviceInfo
attribute), 888

TRawParameterValue (class in py-
lablib.core.devio.interface), 198

TReadoutInfo (class in py-
lablib.devices.Photometrics.pvcam), 747

TRefcellWaveformParameters (class in py-
lablib.devices.Sirah.Matisse), 832

trig1_mode (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams
attribute), 895

trig1_pol (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams
attribute), 896

trig2_mode (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams
attribute), 896

trig2_pol (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams
attribute), 896

trigger() (pylablib.core.utils.general.Countdown
method), 415

trim_frames() (in module py-
lablib.devices.interface.camera), 960

trim_frames_range() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

TrinamicBackendError, 943
TrinamicError, 943
TrinamicTimeoutError, 943
TROIConstraints (class in py-

lablib.devices.PrincetonInstruments.picam),
800

truncate_roi_axis() (in module py-
lablib.devices.interface.camera), 976

truncate_trace() (in module py-
lablib.core.dataproc.fourier), 140

truncate_value() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

truncate_value() (py-
lablib.devices.Basler.pylon.BaslerPylonAttribute
method), 559

truncate_value() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
method), 629

truncate_value() (py-
lablib.devices.Photometrics.pvcam.PvcamAttribute
method), 746

truncate_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
method), 757

1212 Index

pylablib Documentation, Release 1.4.2

truncate_value() (py-
lablib.devices.PrincetonInstruments.picam.PicamAttribute
method), 803

truncate_value() (py-
lablib.devices.SiliconSoftware.fgrab.FGrabAttribute
method), 816

try_import_cext() (in module py-
lablib.core.utils.cext_tools), 357

TScanMode (class in pylablib.devices.Sirah.Matisse), 832
TScanMoveParams (class in py-

lablib.devices.SmarAct.MCS2), 845
TScanParameters (class in py-

lablib.devices.Sirah.Matisse), 832
TSensorInfo (class in py-

lablib.devices.Thorlabs.TLCamera), 879
TShmemVarDesc (class in pylablib.core.utils.ipc), 421
TSlowpiezoCtlParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TStatus (class in py-

lablib.devices.ElektroAutomatik.base), 604
TStatusLine (class in py-

lablib.devices.AlliedVision.Bonito), 504
TStatusLine (class in pylablib.devices.PCO.SC2), 738
TStatusLineDescription (class in py-

lablib.devices.interface.camera), 985
TStepMoveParams (class in py-

lablib.devices.SmarAct.MCS2), 845
TStepperMotorCalibration (class in py-

lablib.devices.Standa.base), 852
TTemperatures (class in py-

lablib.devices.LaserQuantum.base), 661
TTemperatures (class in py-

lablib.devices.Toptica.ibeam), 941
TThinetCtlParameters (class in py-

lablib.devices.Sirah.Matisse), 831
TTimer (class in pylablib.core.gui.widgets.container),

230
TTimerEvent (class in py-

lablib.core.gui.widgets.container), 230
TTimestamp (class in pylablib.devices.uc480.uc480),

989
TTPG260GaugeControlSettings (class in py-

lablib.devices.Pfeiffer.base), 739
TTPG260SwitchSettings (class in py-

lablib.devices.Pfeiffer.base), 739
TTriggerParameters (class in py-

lablib.devices.Tektronix.base), 857
tune_etalon() (pylablib.devices.M2.solstis.Solstis

method), 681
tune_laser_resonator() (py-

lablib.devices.M2.solstis.Solstis method),
681

tune_reference_cavity() (py-
lablib.devices.M2.solstis.Solstis method),

681
tune_to() (pylablib.devices.Sirah.tuner.MatisseTuner

method), 843
tune_to_gen() (pylablib.devices.Sirah.tuner.MatisseTuner

method), 842
tunnel_recv() (pylablib.core.utils.rpyc_utils.DeviceService

method), 432
tunnel_recv() (pylablib.core.utils.rpyc_utils.SocketTunnelService

method), 432
tunnel_send() (pylablib.core.utils.rpyc_utils.DeviceService

method), 433
tunnel_send() (pylablib.core.utils.rpyc_utils.SocketTunnelService

method), 432
tup() (pylablib.core.dataproc.image.ROI method), 144
tup() (pylablib.core.dataproc.utils.Range method), 160
tup() (pylablib.core.utils.ctypes_wrap.CStructWrapper

method), 361
tup() (pylablib.core.utils.indexing.IIndex method), 419
tup() (pylablib.core.utils.indexing.ListIndex method),

419
tup() (pylablib.core.utils.indexing.ListIndexNoSlice

method), 420
tup() (pylablib.core.utils.indexing.NumpyIndex

method), 419
tup_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper

class method), 361
TUpdateValue (class in pylablib.devices.Leybold.base),

664
TVC880Reading (class in py-

lablib.devices.Voltcraft.multimeter), 952
TVelocityParams (class in py-

lablib.devices.Thorlabs.kinesis), 894
TVelocityParams (class in py-

lablib.devices.Trinamic.base), 944
TVoltageOutputClockParameters (class in py-

lablib.devices.NI.daq), 696
TWavelengthInfo (class in py-

lablib.devices.Ophir.base), 726
TWidgetLocation (class in pylablib.core.gui.utils), 297
TWorkHours (class in py-

lablib.devices.LaserQuantum.base), 661
TWorkHours (class in py-

lablib.devices.LighthousePhotonics.base),
668

TWorkHours (class in pylablib.devices.Toptica.ibeam),
941

typ (pylablib.devices.NKT.interbus.TInterbusTelegram
attribute), 704

typ (pylablib.devices.Voltcraft.multimeter.VC880.TMessage
attribute), 953

type (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo
attribute), 627

type (pylablib.devices.Ophir.base.THeadInfo attribute),
726

Index 1213

pylablib Documentation, Release 1.4.2

type (pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo
attribute), 755

type (pylablib.devices.Thorlabs.misc.TPMSensorInfo at-
tribute), 918

U
UC480Camera (class in pylablib.devices.uc480.uc480),

990
uid (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo

attribute), 815
UIDGenerator (class in pylablib.core.utils.general), 414
unescape_string() (in module py-

lablib.core.utils.string), 437
uninit_result (pylablib.devices.utils.load_lib.TLibraryCloseResult

attribute), 998
unique_slices() (in module py-

lablib.core.dataproc.utils), 159
unit (pylablib.devices.DCAM.DCAM.DCAMAttribute

attribute), 596
unit (pylablib.devices.Voltcraft.multimeter.TVC880Reading

attribute), 953
units (pylablib.devices.Basler.pylon.BaslerPylonAttribute

attribute), 558
units (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute

attribute), 628
unity() (in module pylablib.core.utils.numerical), 430
unload_all() (in module pylablib), 999
unload_package_modules() (in module py-

lablib.core.utils.module), 423
unlock() (pylablib.core.devio.comm_backend.FT232DeviceBackend

method), 176
unlock() (pylablib.core.devio.comm_backend.HIDeviceBackend

method), 185
unlock() (pylablib.core.devio.comm_backend.ICommBackendWrapper

method), 189
unlock() (pylablib.core.devio.comm_backend.IDeviceCommBackend

method), 167
unlock() (pylablib.core.devio.comm_backend.NetworkDeviceBackend

method), 179
unlock() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend

method), 182
unlock() (pylablib.core.devio.comm_backend.RecordedDeviceBackend

method), 187
unlock() (pylablib.core.devio.comm_backend.SerialDeviceBackend

method), 174
unlock() (pylablib.core.devio.comm_backend.VisaDeviceBackend

method), 169
unlock() (pylablib.core.devio.SCPI.SCPIDevice

method), 164
unlock() (pylablib.devices.Arduino.base.IArduinoDevice

method), 547
unlock() (pylablib.devices.Attocube.anc300.ANC300

method), 551

unlock() (pylablib.devices.Attocube.anc350.ANC350
method), 555

unlock() (pylablib.devices.AWG.generic.GenericAWG
method), 445

unlock() (pylablib.devices.AWG.specific.Agilent33220A
method), 458

unlock() (pylablib.devices.AWG.specific.Agilent33500
method), 452

unlock() (pylablib.devices.AWG.specific.InstekAFG2000
method), 470

unlock() (pylablib.devices.AWG.specific.InstekAFG2225
method), 464

unlock() (pylablib.devices.AWG.specific.RigolDG1000
method), 489

unlock() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 476

unlock() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 482

unlock() (pylablib.devices.Conrad.base.RelayBoard
method), 581

unlock() (pylablib.devices.Cryocon.base.Cryocon1x
method), 584

unlock() (pylablib.devices.Cryomagnetics.base.LM500
method), 589

unlock() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

unlock() (pylablib.devices.ElektroAutomatik.base.PS2000B
method), 607

unlock() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 648

unlock() (pylablib.devices.KJL.base.KJL300 method),
643

unlock() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 654

unlock() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 659

unlock() (pylablib.devices.LaserQuantum.base.Finesse
method), 663

unlock() (pylablib.devices.Leybold.base.GenericITR
method), 665

unlock() (pylablib.devices.Leybold.base.ITR90
method), 667

unlock() (pylablib.devices.LighthousePhotonics.base.SproutG
method), 670

unlock() (pylablib.devices.Lumel.base.LumelRE72Controller
method), 673

unlock() (pylablib.devices.Modbus.modbus.GenericModbusRTUDevice
method), 695

unlock() (pylablib.devices.Newport.picomotor.Picomotor8742
method), 717

unlock() (pylablib.devices.NKT.interbus.GenericInterbusDevice
method), 705

unlock() (pylablib.devices.NKT.interbus.InterbusSystem
method), 713

1214 Index

pylablib Documentation, Release 1.4.2

unlock() (pylablib.devices.Ophir.base.OphirDevice
method), 726

unlock() (pylablib.devices.Ophir.base.VegaPowerMeter
method), 729

unlock() (pylablib.devices.OZOptics.base.DD100
method), 722

unlock() (pylablib.devices.OZOptics.base.EPC04
method), 724

unlock() (pylablib.devices.OZOptics.base.OZOpticsDevice
method), 719

unlock() (pylablib.devices.OZOptics.base.TF100
method), 721

unlock() (pylablib.devices.Pfeiffer.base.DPG202
method), 744

unlock() (pylablib.devices.Pfeiffer.base.TPG260
method), 742

unlock() (pylablib.devices.PhysikInstrumente.base.GenericPIController
method), 791

unlock() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 798

unlock() (pylablib.devices.PhysikInstrumente.base.PIE516
method), 795

unlock() (pylablib.devices.Rigol.power_supply.DP1116A
method), 813

unlock() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 838

unlock() (pylablib.devices.Standa.base.Standa8SMC
method), 856

unlock() (pylablib.devices.Tektronix.base.DPO2000
method), 877

unlock() (pylablib.devices.Tektronix.base.ITektronixScope
method), 863

unlock() (pylablib.devices.Tektronix.base.TDS2000
method), 870

unlock() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 891

unlock() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice
method), 894

unlock() (pylablib.devices.Thorlabs.kinesis.KinesisDevice
method), 899

unlock() (pylablib.devices.Thorlabs.kinesis.KinesisMotor
method), 910

unlock() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 914

unlock() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector
method), 917

unlock() (pylablib.devices.Thorlabs.kinesis.MFF
method), 903

unlock() (pylablib.devices.Thorlabs.misc.GenericPM
method), 921

unlock() (pylablib.devices.Thorlabs.misc.PM160
method), 925

unlock() (pylablib.devices.Thorlabs.serial.FW method),
932

unlock() (pylablib.devices.Thorlabs.serial.FWv1
method), 936

unlock() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 939

unlock() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

unlock() (pylablib.devices.Toptica.ibeam.TopticaIBeam
method), 943

unlock() (pylablib.devices.Trinamic.base.TMCM1110
method), 948

unlock() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 951

unlock() (pylablib.devices.Voltcraft.multimeter.VC880
method), 954

unlock_all() (pylablib.devices.Sirah.tuner.MatisseTuner
method), 842

unlock_etalon() (pylablib.devices.M2.solstis.Solstis
method), 681

unlock_reference_cavity() (py-
lablib.devices.M2.solstis.Solstis method),
681

unpack_int() (in module pylablib.core.utils.strpack),
439

unpack_numpy_u12bit() (in module py-
lablib.core.utils.strpack), 439

unpack_uint() (in module pylablib.core.utils.strpack),
439

unread (pylablib.devices.interface.camera.TFramesStatus
attribute), 955

unschedule() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler
method), 322

unschedule() (pylablib.core.thread.callsync.QQueueScheduler
method), 320

unschedule() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler
method), 324

unschedule() (pylablib.core.thread.controller.QTaskThread.Job
method), 337

unsubscribe() (pylablib.core.thread.controller.QTaskThread
method), 348

unsubscribe() (pylablib.core.thread.controller.QThreadController
method), 331

unsubscribe() (pylablib.core.thread.multicast_pool.MulticastPool
method), 351

unwrap_mod_data() (in module py-
lablib.core.dataproc.utils), 161

unzip_file() (in module pylablib.core.utils.files), 405
unzip_folder() (in module pylablib.core.utils.files),

404
update() (pylablib.core.utils.dictionary.Dictionary

method), 367
update() (pylablib.core.utils.dictionary.DictionaryPointer

method), 378
update() (pylablib.core.utils.dictionary.FilterTree

method), 395

Index 1215

pylablib Documentation, Release 1.4.2

update() (pylablib.core.utils.dictionary.PrefixTree
method), 387

update_acquired_frames() (py-
lablib.devices.interface.camera.FrameCounter
method), 960

update_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 758

update_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 788

update_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

update_attribute_value() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 780

update_available_axes() (py-
lablib.devices.Attocube.anc300.ANC300
method), 548

update_fit_parameters() (py-
lablib.core.dataproc.fitting.Fitter method),
138

update_fixed_parameters() (py-
lablib.core.dataproc.fitting.Fitter method),
138

update_full_data() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 731

update_indicators() (py-
lablib.core.gui.value_handling.GUIValues
method), 314

update_indicators() (py-
lablib.core.gui.widgets.container.IQContainer
method), 233

update_indicators() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 239

update_indicators() (py-
lablib.core.gui.widgets.container.QContainer
method), 235

update_indicators() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 252

update_indicators() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 247

update_indicators() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 256

update_indicators() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer
method), 263

update_indicators() (py-

lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

update_indicators() (py-
lablib.core.gui.widgets.container.QTabContainer
method), 265

update_indicators() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 243

update_indicators() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 281

update_indicators() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 293

update_limits() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

update_limits() (py-
lablib.devices.Basler.pylon.BaslerPylonAttribute
method), 559

update_limits() (py-
lablib.devices.DCAM.DCAM.DCAMAttribute
method), 596

update_limits() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
method), 628

update_limits() (py-
lablib.devices.Photometrics.pvcam.PvcamAttribute
method), 746

update_limits() (py-
lablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
method), 757

update_limits() (py-
lablib.devices.PrincetonInstruments.picam.PicamAttribute
method), 803

update_limits() (py-
lablib.devices.SiliconSoftware.fgrab.FGrabAttribute
method), 816

update_properties() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
method), 518

update_reports() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 674

update_reports() (pylablib.devices.M2.emm.EMM
method), 679

update_reports() (pylablib.devices.M2.solstis.Solstis
method), 685

update_sensor_modes() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 918

update_sensor_modes() (py-
lablib.devices.Thorlabs.misc.PM160 method),
925

1216 Index

pylablib Documentation, Release 1.4.2

update_status() (py-
lablib.core.thread.controller.QTaskThread
method), 339

update_status_line() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 285

update_value() (pylablib.core.gui.value_handling.GUIValues
method), 315

update_value() (pylablib.core.gui.widgets.container.IQContainer
method), 232

update_value() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 239

update_value() (pylablib.core.gui.widgets.container.QContainer
method), 235

update_value() (pylablib.core.gui.widgets.container.QDialogContainer
method), 252

update_value() (pylablib.core.gui.widgets.container.QFrameContainer
method), 247

update_value() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 256

update_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer
method), 263

update_value() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

update_value() (pylablib.core.gui.widgets.container.QTabContainer
method), 265

update_value() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 243

update_value() (pylablib.core.gui.widgets.param_table.ParamTable
method), 281

update_value() (pylablib.core.gui.widgets.param_table.StatusTable
method), 293

updated() (pylablib.core.utils.dictionary.Dictionary
method), 368

updated() (pylablib.core.utils.dictionary.DictionaryPointer
method), 378

updated() (pylablib.core.utils.dictionary.FilterTree
method), 395

updated() (pylablib.core.utils.dictionary.PrefixShortcutTree
method), 397

updated() (pylablib.core.utils.dictionary.PrefixTree
method), 387

upper_limit (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters
attribute), 832

upper_limit (pylablib.devices.Sirah.Matisse.TScanParameters
attribute), 832

usb_version (pylablib.devices.uc480.uc480.TDeviceInfo
attribute), 989

use_parameters() (in module py-
lablib.core.devio.interface), 198

use_xarg() (pylablib.core.dataproc.fitting.Fitter
method), 138

user_name (pylablib.devices.Basler.pylon.TCameraInfo
attribute), 557

user_name (pylablib.devices.Basler.pylon.TDeviceInfo
attribute), 559

using_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisDevice
method), 897

using_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 910

using_channel() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 914

using_channel() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
903

using_default_addr() (py-
lablib.devices.Thorlabs.elliptec.ElliptecMotor
method), 888

using_default_axis() (py-
lablib.devices.SmarAct.MCS2.MCS2 method),
846

using_device() (pylablib.core.devio.interface.CombinedParameterClass
method), 198

using_device() (pylablib.core.devio.interface.EnumParameterClass
method), 197

using_device() (pylablib.core.devio.interface.FunctionParameterClass
method), 197

using_device() (pylablib.core.devio.interface.ICheckingParameterClass
method), 194

using_device() (pylablib.core.devio.interface.IEnumParameterClass
method), 196

using_device() (pylablib.core.devio.interface.IParameterClass
method), 193

using_device() (pylablib.core.devio.interface.RangeParameterClass
method), 195

using_layout() (pylablib.core.gui.widgets.container.IQWidgetContainer
method), 239

using_layout() (pylablib.core.gui.widgets.container.QDialogContainer
method), 252

using_layout() (pylablib.core.gui.widgets.container.QFrameContainer
method), 248

using_layout() (pylablib.core.gui.widgets.container.QGroupBoxContainer
method), 256

using_layout() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

using_layout() (pylablib.core.gui.widgets.container.QWidgetContainer
method), 243

using_layout() (pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

using_layout() (pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 274

using_layout() (pylablib.core.gui.widgets.param_table.ParamTable
method), 284

using_layout() (pylablib.core.gui.widgets.param_table.StatusTable
method), 293

Index 1217

pylablib Documentation, Release 1.4.2

using_method() (in module pylablib.core.utils.general),
410

using_new_sublayout() (py-
lablib.core.gui.widgets.container.IQWidgetContainer
method), 239

using_new_sublayout() (py-
lablib.core.gui.widgets.container.QDialogContainer
method), 252

using_new_sublayout() (py-
lablib.core.gui.widgets.container.QFrameContainer
method), 248

using_new_sublayout() (py-
lablib.core.gui.widgets.container.QGroupBoxContainer
method), 256

using_new_sublayout() (py-
lablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget
method), 260

using_new_sublayout() (py-
lablib.core.gui.widgets.container.QWidgetContainer
method), 244

using_new_sublayout() (py-
lablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget
method), 271

using_new_sublayout() (py-
lablib.core.gui.widgets.layout_manager.QLayoutManagedWidget
method), 274

using_new_sublayout() (py-
lablib.core.gui.widgets.param_table.ParamTable
method), 275

using_new_sublayout() (py-
lablib.core.gui.widgets.param_table.StatusTable
method), 293

using_timeout() (py-
lablib.core.devio.comm_backend.FT232DeviceBackend
method), 176

using_timeout() (py-
lablib.core.devio.comm_backend.HIDeviceBackend
method), 185

using_timeout() (py-
lablib.core.devio.comm_backend.IDeviceCommBackend
method), 167

using_timeout() (py-
lablib.core.devio.comm_backend.NetworkDeviceBackend
method), 179

using_timeout() (py-
lablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 182

using_timeout() (py-
lablib.core.devio.comm_backend.RecordedDeviceBackend
method), 187

using_timeout() (py-
lablib.core.devio.comm_backend.SerialDeviceBackend
method), 174

using_timeout() (py-

lablib.core.devio.comm_backend.VisaDeviceBackend
method), 171

using_timeout() (pylablib.core.utils.net.ClientSocket
method), 427

using_write_buffer() (py-
lablib.core.devio.SCPI.SCPIDevice method),
162

using_write_buffer() (py-
lablib.devices.AWG.generic.GenericAWG
method), 446

using_write_buffer() (py-
lablib.devices.AWG.specific.Agilent33220A
method), 458

using_write_buffer() (py-
lablib.devices.AWG.specific.Agilent33500
method), 452

using_write_buffer() (py-
lablib.devices.AWG.specific.InstekAFG2000
method), 470

using_write_buffer() (py-
lablib.devices.AWG.specific.InstekAFG2225
method), 464

using_write_buffer() (py-
lablib.devices.AWG.specific.RigolDG1000
method), 489

using_write_buffer() (py-
lablib.devices.AWG.specific.RSInstekAFG21000
method), 476

using_write_buffer() (py-
lablib.devices.AWG.specific.TektronixAFG1000
method), 482

using_write_buffer() (py-
lablib.devices.Cryocon.base.Cryocon1x
method), 584

using_write_buffer() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 589

using_write_buffer() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 593

using_write_buffer() (py-
lablib.devices.Keithley.multimeter.Keithley2110
method), 648

using_write_buffer() (py-
lablib.devices.Lakeshore.base.Lakeshore218
method), 654

using_write_buffer() (py-
lablib.devices.Lakeshore.base.Lakeshore370
method), 659

using_write_buffer() (py-
lablib.devices.PhysikInstrumente.base.PIE515
method), 798

using_write_buffer() (py-
lablib.devices.Rigol.power_supply.DP1116A

1218 Index

pylablib Documentation, Release 1.4.2

method), 813
using_write_buffer() (py-

lablib.devices.Sirah.Matisse.SirahMatisse
method), 838

using_write_buffer() (py-
lablib.devices.Tektronix.base.DPO2000
method), 877

using_write_buffer() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 863

using_write_buffer() (py-
lablib.devices.Tektronix.base.TDS2000
method), 870

using_write_buffer() (py-
lablib.devices.Thorlabs.misc.GenericPM
method), 921

using_write_buffer() (py-
lablib.devices.Thorlabs.misc.PM160 method),
926

using_write_buffer() (py-
lablib.devices.Thorlabs.serial.FW method),
932

using_write_buffer() (py-
lablib.devices.Thorlabs.serial.FWv1 method),
936

using_write_buffer() (py-
lablib.devices.Thorlabs.serial.MDT69xA
method), 939

using_write_buffer() (py-
lablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

using_write_buffer() (py-
lablib.devices.Voltcraft.multimeter.VC7055
method), 951

usteps_per_step (py-
lablib.devices.Standa.base.TStepperMotorCalibration
attribute), 853

V
value (pylablib.core.devio.interface.TRawParameterValue

attribute), 198
value (pylablib.core.thread.multicast_pool.TMulticast

attribute), 350
value (pylablib.devices.Leybold.base.TUpdateValue at-

tribute), 664
value (pylablib.devices.Trinamic.base.TMCM1110.ReplyData

attribute), 945
value (pylablib.devices.Voltcraft.multimeter.TVC880Reading

attribute), 953
value_access (pylablib.devices.PrincetonInstruments.picam.PicamAttribute

attribute), 801
value_changed (pylablib.core.gui.widgets.button.ToggleButton

attribute), 228

value_changed (pylablib.core.gui.widgets.combo_box.ComboBox
attribute), 229

value_changed (pylablib.core.gui.widgets.edit.NumEdit
attribute), 268

value_changed (pylablib.core.gui.widgets.edit.TextEdit
attribute), 266

value_changed (pylablib.core.gui.widgets.label.EnumLabel
attribute), 269

value_changed (pylablib.core.gui.widgets.label.NumLabel
attribute), 270

value_changed (pylablib.core.gui.widgets.label.TextLabel
attribute), 268

value_entered (pylablib.core.gui.widgets.edit.NumEdit
attribute), 268

value_entered (pylablib.core.gui.widgets.edit.TextEdit
attribute), 266

value_handler (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow
attribute), 276

value_to_index() (py-
lablib.core.gui.widgets.combo_box.ComboBox
method), 229

values (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 518

values (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 559

values (pylablib.devices.DCAM.DCAM.DCAMAttribute
attribute), 596

values (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

values (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 746

values (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

values (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 803

values (pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute
attribute), 816

values() (pylablib.core.utils.dictionary.Dictionary
method), 365

values() (pylablib.core.utils.dictionary.DictionaryPointer
method), 378

values() (pylablib.core.utils.dictionary.FilterTree
method), 395

values() (pylablib.core.utils.dictionary.PrefixTree
method), 387

VC7055 (class in pylablib.devices.Voltcraft.multimeter),
949

VC880 (class in pylablib.devices.Voltcraft.multimeter),
953

VC880.TMessage (class in py-
lablib.devices.Voltcraft.multimeter), 953

VC880ParseError, 952
VegaPowerMeter (class in pylablib.devices.Ophir.base),

727

Index 1219

pylablib Documentation, Release 1.4.2

velocity (pylablib.devices.SmarAct.MCS2.TCLMoveParams
attribute), 845

velocity (pylablib.devices.SmarAct.MCS2.TScanMoveParams
attribute), 845

velocity (pylablib.devices.Thorlabs.kinesis.THomeParams
attribute), 895

velocity (pylablib.devices.Thorlabs.kinesis.TPolCtlParams
attribute), 895

velocity (pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams
attribute), 896

velocity (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams
attribute), 896

vendor (pylablib.devices.Basler.pylon.TCameraInfo at-
tribute), 557

vendor (pylablib.devices.Basler.pylon.TDeviceInfo at-
tribute), 559

vendor (pylablib.devices.DCAM.DCAM.TDeviceInfo at-
tribute), 597

vendor (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo
attribute), 627

vendor (pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo
attribute), 629

vendor (pylablib.devices.Photometrics.pvcam.TDeviceInfo
attribute), 747

vendor_id (pylablib.core.devio.hid.TDeviceDescription
attribute), 190

version (pylablib.core.devio.hid.TDeviceDescription at-
tribute), 190

version (pylablib.devices.AlliedVision.Bonito.TDeviceInfo
attribute), 490

version (pylablib.devices.Attocube.anc300.TDeviceInfo
attribute), 548

version (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo
attribute), 627

version (pylablib.devices.LighthousePhotonics.base.TDeviceInfo
attribute), 668

version (pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo
attribute), 755

version (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo
attribute), 815

version (pylablib.devices.Toptica.ibeam.TDeviceInfo at-
tribute), 941

viewitems() (pylablib.core.utils.dictionary.Dictionary
method), 364

viewitems() (pylablib.core.utils.dictionary.DictionaryPointer
method), 379

viewitems() (pylablib.core.utils.dictionary.FilterTree
method), 395

viewitems() (pylablib.core.utils.dictionary.PrefixTree
method), 387

viewkeys() (pylablib.core.utils.dictionary.Dictionary
method), 366

viewkeys() (pylablib.core.utils.dictionary.DictionaryPointer
method), 379

viewkeys() (pylablib.core.utils.dictionary.FilterTree
method), 396

viewkeys() (pylablib.core.utils.dictionary.PrefixTree
method), 388

viewvalues() (pylablib.core.utils.dictionary.Dictionary
method), 365

viewvalues() (pylablib.core.utils.dictionary.DictionaryPointer
method), 379

viewvalues() (pylablib.core.utils.dictionary.FilterTree
method), 396

viewvalues() (pylablib.core.utils.dictionary.PrefixTree
method), 388

virtual_gui_values() (in module py-
lablib.core.gui.value_handling), 315

VirtualIndicatorHandler (in module py-
lablib.core.gui.value_handling), 310

VirtualValueHandler (class in py-
lablib.core.gui.value_handling), 299

VisaDeviceBackend (class in py-
lablib.core.devio.comm_backend), 169

visibility (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

visibility (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

voltage (pylablib.devices.ElektroAutomatik.base.TOutputLimits
attribute), 604

W
wait() (pylablib.core.devio.SCPI.SCPIDevice method),

163
wait() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 316
wait() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
wait() (pylablib.core.thread.notifier.ISkippableNotifier

method), 351
wait() (pylablib.core.thread.synchronizing.QMultiThreadNotifier

method), 353
wait() (pylablib.core.thread.synchronizing.QThreadNotifier

method), 353
wait() (pylablib.devices.AWG.generic.GenericAWG

method), 446
wait() (pylablib.devices.AWG.specific.Agilent33220A

method), 458
wait() (pylablib.devices.AWG.specific.Agilent33500

method), 452
wait() (pylablib.devices.AWG.specific.InstekAFG2000

method), 470
wait() (pylablib.devices.AWG.specific.InstekAFG2225

method), 464
wait() (pylablib.devices.AWG.specific.RigolDG1000

method), 489
wait() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 476

1220 Index

pylablib Documentation, Release 1.4.2

wait() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 483

wait() (pylablib.devices.Cryocon.base.Cryocon1x
method), 584

wait() (pylablib.devices.Cryomagnetics.base.LM500
method), 589

wait() (pylablib.devices.Cryomagnetics.base.LM510
method), 593

wait() (pylablib.devices.interface.camera.FrameNotifier
method), 961

wait() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 648

wait() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 654

wait() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 659

wait() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 798

wait() (pylablib.devices.Rigol.power_supply.DP1116A
method), 813

wait() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 838

wait() (pylablib.devices.Tektronix.base.DPO2000
method), 877

wait() (pylablib.devices.Tektronix.base.ITektronixScope
method), 863

wait() (pylablib.devices.Tektronix.base.TDS2000
method), 870

wait() (pylablib.devices.Thorlabs.misc.GenericPM
method), 921

wait() (pylablib.devices.Thorlabs.misc.PM160 method),
926

wait() (pylablib.devices.Thorlabs.serial.FW method),
932

wait() (pylablib.devices.Thorlabs.serial.FWv1 method),
936

wait() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 939

wait() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

wait() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 951

wait_dev() (pylablib.core.devio.SCPI.SCPIDevice
method), 163

wait_dev() (pylablib.devices.AWG.generic.GenericAWG
method), 446

wait_dev() (pylablib.devices.AWG.specific.Agilent33220A
method), 458

wait_dev() (pylablib.devices.AWG.specific.Agilent33500
method), 452

wait_dev() (pylablib.devices.AWG.specific.InstekAFG2000
method), 470

wait_dev() (pylablib.devices.AWG.specific.InstekAFG2225
method), 464

wait_dev() (pylablib.devices.AWG.specific.RigolDG1000
method), 489

wait_dev() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 477

wait_dev() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 483

wait_dev() (pylablib.devices.Cryocon.base.Cryocon1x
method), 585

wait_dev() (pylablib.devices.Cryomagnetics.base.LM500
method), 589

wait_dev() (pylablib.devices.Cryomagnetics.base.LM510
method), 594

wait_dev() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 648

wait_dev() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 654

wait_dev() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 659

wait_dev() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 799

wait_dev() (pylablib.devices.Rigol.power_supply.DP1116A
method), 813

wait_dev() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 839

wait_dev() (pylablib.devices.Tektronix.base.DPO2000
method), 877

wait_dev() (pylablib.devices.Tektronix.base.ITektronixScope
method), 863

wait_dev() (pylablib.devices.Tektronix.base.TDS2000
method), 870

wait_dev() (pylablib.devices.Thorlabs.misc.GenericPM
method), 921

wait_dev() (pylablib.devices.Thorlabs.misc.PM160
method), 926

wait_dev() (pylablib.devices.Thorlabs.serial.FW
method), 932

wait_dev() (pylablib.devices.Thorlabs.serial.FWv1
method), 936

wait_dev() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 939

wait_dev() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

wait_dev() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 951

wait_done() (pylablib.devices.interface.camera.FrameCounter
method), 960

wait_for_any_message() (py-
lablib.core.thread.controller.QTaskThread
method), 348

wait_for_any_message() (py-
lablib.core.thread.controller.QThreadController
method), 329

wait_for_fine_tuning() (py-
lablib.devices.M2.emm.EMM method), 676

Index 1221

pylablib Documentation, Release 1.4.2

wait_for_fine_tuning() (py-
lablib.devices.M2.solstis.Solstis method),
680

wait_for_frame() (py-
lablib.devices.AlliedVision.Bonito.BonitoIMAQCamera
method), 504

wait_for_frame() (py-
lablib.devices.AlliedVision.Bonito.IBonitoCamera
method), 495

wait_for_frame() (py-
lablib.devices.Andor.AndorSDK2.AndorSDK2Camera
method), 516

wait_for_frame() (py-
lablib.devices.Andor.AndorSDK3.AndorSDK3Camera
method), 526

wait_for_frame() (py-
lablib.devices.Basler.pylon.BaslerPylonCamera
method), 566

wait_for_frame() (py-
lablib.devices.BitFlow.BitFlow.BitFlowCamera
method), 578

wait_for_frame() (py-
lablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber
method), 572

wait_for_frame() (py-
lablib.devices.DCAM.DCAM.DCAMCamera
method), 603

wait_for_frame() (py-
lablib.devices.IMAQ.IMAQ.IMAQCamera
method), 626

wait_for_frame() (py-
lablib.devices.IMAQ.IMAQ.IMAQFrameGrabber
method), 619

wait_for_frame() (py-
lablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera
method), 641

wait_for_frame() (py-
lablib.devices.IMAQdx.IMAQdx.IMAQdxCamera
method), 635

wait_for_frame() (py-
lablib.devices.interface.camera.IAttributeCamera
method), 966

wait_for_frame() (py-
lablib.devices.interface.camera.IBinROICamera
method), 985

wait_for_frame() (py-
lablib.devices.interface.camera.ICamera
method), 957

wait_for_frame() (py-
lablib.devices.interface.camera.IExposureCamera
method), 975

wait_for_frame() (py-
lablib.devices.interface.camera.IGrabberAttributeCamera
method), 971

wait_for_frame() (py-
lablib.devices.interface.camera.IROICamera
method), 980

wait_for_frame() (py-
lablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera
method), 692

wait_for_frame() (py-
lablib.devices.PCO.SC2.PCOSC2Camera
method), 738

wait_for_frame() (py-
lablib.devices.Photometrics.pvcam.PvcamCamera
method), 754

wait_for_frame() (py-
lablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera
method), 763

wait_for_frame() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera
method), 788

wait_for_frame() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera
method), 772

wait_for_frame() (py-
lablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera
method), 781

wait_for_frame() (py-
lablib.devices.PrincetonInstruments.picam.PicamCamera
method), 809

wait_for_frame() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera
method), 830

wait_for_frame() (py-
lablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber
method), 823

wait_for_frame() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera
method), 886

wait_for_frame() (py-
lablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer
method), 881

wait_for_frame() (py-
lablib.devices.uc480.uc480.UC480Camera
method), 996

wait_for_grabbing() (py-
lablib.devices.Tektronix.base.DPO2000
method), 877

wait_for_grabbing() (py-
lablib.devices.Tektronix.base.ITektronixScope
method), 857

wait_for_grabbing() (py-
lablib.devices.Tektronix.base.TDS2000
method), 870

wait_for_home() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

1222 Index

pylablib Documentation, Release 1.4.2

wait_for_keypress() (in module py-
lablib.core.utils.general), 418

wait_for_measurement() (py-
lablib.devices.Cryomagnetics.base.LM500
method), 587

wait_for_measurement() (py-
lablib.devices.Cryomagnetics.base.LM510
method), 594

wait_for_message() (py-
lablib.core.thread.controller.QTaskThread
method), 348

wait_for_message() (py-
lablib.core.thread.controller.QThreadController
method), 328

wait_for_report() (py-
lablib.devices.M2.base.ICEBlocDevice
method), 675

wait_for_report() (pylablib.devices.M2.emm.EMM
method), 679

wait_for_report() (py-
lablib.devices.M2.solstis.Solstis method),
685

wait_for_sample() (pylablib.devices.NI.daq.NIDAQ
method), 699

wait_for_scan() (py-
lablib.devices.Newport.picomotor.Picomotor8742
method), 715

wait_for_status() (py-
lablib.devices.SmarAct.scu3d.SCU3D method),
851

wait_for_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 904

wait_for_status() (py-
lablib.devices.Thorlabs.kinesis.KinesisPiezoMotor
method), 910

wait_for_status() (py-
lablib.devices.Thorlabs.kinesis.MFF method),
900

wait_for_stop() (py-
lablib.devices.Thorlabs.kinesis.KinesisMotor
method), 905

wait_for_sync() (py-
lablib.core.thread.controller.QTaskThread
method), 349

wait_for_sync() (py-
lablib.core.thread.controller.QThreadController
method), 329

wait_for_terascan_update() (py-
lablib.devices.M2.emm.EMM method), 677

wait_for_terascan_update() (py-
lablib.devices.M2.solstis.Solstis method),
682

wait_move() (pylablib.devices.Arcus.performax.Performax2EXStage

method), 542
wait_move() (pylablib.devices.Arcus.performax.Performax4EXStage

method), 536
wait_move() (pylablib.devices.Arcus.performax.PerformaxDMXJSAStage

method), 543
wait_move() (pylablib.devices.Attocube.anc300.ANC300

method), 550
wait_move() (pylablib.devices.Attocube.anc350.ANC350

method), 554
wait_move() (pylablib.devices.Newport.picomotor.Picomotor8742

method), 716
wait_move() (pylablib.devices.SmarAct.MCS2.MCS2

method), 846
wait_move() (pylablib.devices.SmarAct.scu3d.SCU3D

method), 851
wait_move() (pylablib.devices.Standa.base.Standa8SMC

method), 854
wait_move() (pylablib.devices.Thorlabs.kinesis.KinesisMotor

method), 905
wait_move() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor

method), 911
wait_move() (pylablib.devices.Trinamic.base.TMCM1110

method), 947
wait_scan() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 836
wait_start() (pylablib.devices.interface.camera.FrameCounter

method), 960
wait_sync() (pylablib.core.devio.SCPI.SCPIDevice

method), 163
wait_sync() (pylablib.devices.AWG.generic.GenericAWG

method), 446
wait_sync() (pylablib.devices.AWG.specific.Agilent33220A

method), 458
wait_sync() (pylablib.devices.AWG.specific.Agilent33500

method), 452
wait_sync() (pylablib.devices.AWG.specific.InstekAFG2000

method), 470
wait_sync() (pylablib.devices.AWG.specific.InstekAFG2225

method), 464
wait_sync() (pylablib.devices.AWG.specific.RigolDG1000

method), 489
wait_sync() (pylablib.devices.AWG.specific.RSInstekAFG21000

method), 477
wait_sync() (pylablib.devices.AWG.specific.TektronixAFG1000

method), 483
wait_sync() (pylablib.devices.Cryocon.base.Cryocon1x

method), 585
wait_sync() (pylablib.devices.Cryomagnetics.base.LM500

method), 590
wait_sync() (pylablib.devices.Cryomagnetics.base.LM510

method), 594
wait_sync() (pylablib.devices.Keithley.multimeter.Keithley2110

method), 648
wait_sync() (pylablib.devices.Lakeshore.base.Lakeshore218

Index 1223

pylablib Documentation, Release 1.4.2

method), 654
wait_sync() (pylablib.devices.Lakeshore.base.Lakeshore370

method), 659
wait_sync() (pylablib.devices.PhysikInstrumente.base.PIE515

method), 799
wait_sync() (pylablib.devices.Rigol.power_supply.DP1116A

method), 813
wait_sync() (pylablib.devices.Sirah.Matisse.SirahMatisse

method), 839
wait_sync() (pylablib.devices.Tektronix.base.DPO2000

method), 877
wait_sync() (pylablib.devices.Tektronix.base.ITektronixScope

method), 863
wait_sync() (pylablib.devices.Tektronix.base.TDS2000

method), 870
wait_sync() (pylablib.devices.Thorlabs.misc.GenericPM

method), 922
wait_sync() (pylablib.devices.Thorlabs.misc.PM160

method), 926
wait_sync() (pylablib.devices.Thorlabs.serial.FW

method), 933
wait_sync() (pylablib.devices.Thorlabs.serial.FWv1

method), 936
wait_sync() (pylablib.devices.Thorlabs.serial.MDT69xA

method), 939
wait_sync() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface

method), 929
wait_sync() (pylablib.devices.Voltcraft.multimeter.VC7055

method), 952
wait_until() (pylablib.core.thread.controller.QTaskThread

method), 349
wait_until() (pylablib.core.thread.controller.QThreadController

method), 329
wait_until() (pylablib.core.thread.synchronizing.QMultiThreadNotifier

method), 353
waiting() (pylablib.core.thread.callsync.QCallResultSynchronizer

method), 316
waiting() (pylablib.core.thread.callsync.QDirectResultSynchronizer

method), 317
waiting() (pylablib.core.thread.notifier.ISkippableNotifier

method), 351
waiting() (pylablib.core.thread.synchronizing.QThreadNotifier

method), 353
waiting_state() (py-

lablib.core.thread.callsync.QCallResultSynchronizer
method), 316

waiting_state() (py-
lablib.core.thread.callsync.QDirectResultSynchronizer
method), 317

waiting_state() (py-
lablib.core.thread.notifier.ISkippableNotifier
method), 352

waiting_state() (py-
lablib.core.thread.synchronizing.QThreadNotifier

method), 353
walk_dir() (in module pylablib.core.utils.files), 401
warnings (pylablib.devices.PCO.SC2.TCameraStatus

attribute), 730
wheelEvent() (pylablib.core.gui.widgets.combo_box.ComboBox

method), 228
widget (pylablib.core.gui.widgets.container.TChild at-

tribute), 230
widget (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow

attribute), 276
width (pylablib.core.dataproc.feature.Baseline at-

tribute), 131
width (pylablib.core.dataproc.feature.Peak attribute),

131
width (pylablib.devices.interface.camera.TFrameSize at-

tribute), 955
width (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams

attribute), 896
window (pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings

attribute), 650
window (pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings

attribute), 656
with_traceback() (py-

lablib.core.devio.base.DeviceError method),
166

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceBackendError
method), 166

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceFT232Error
method), 174

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceHIDError
method), 182

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceNetworkError
method), 177

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceRecordedError
method), 185

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceSerialError
method), 171

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceUSBError
method), 179

with_traceback() (py-
lablib.core.devio.comm_backend.DeviceVisaError
method), 168

with_traceback() (py-
lablib.core.devio.hid_base.HIDError method),
192

with_traceback() (py-
lablib.core.devio.hid_base.HIDLibError

1224 Index

pylablib Documentation, Release 1.4.2

method), 192
with_traceback() (py-

lablib.core.devio.hid_base.HIDTimeoutError
method), 192

with_traceback() (py-
lablib.core.gui.limiter.LimitError method),
295

with_traceback() (py-
lablib.core.gui.value_handling.MissingGUIHandlerError
method), 312

with_traceback() (py-
lablib.core.gui.value_handling.NoParameterError
method), 298

with_traceback() (py-
lablib.core.thread.threadprop.DuplicateControllerThreadError
method), 354

with_traceback() (py-
lablib.core.thread.threadprop.InterruptException
method), 356

with_traceback() (py-
lablib.core.thread.threadprop.InterruptExceptionStop
method), 356

with_traceback() (py-
lablib.core.thread.threadprop.NoControllerThreadError
method), 354

with_traceback() (py-
lablib.core.thread.threadprop.NoMessageThreadError
method), 355

with_traceback() (py-
lablib.core.thread.threadprop.SkippedCallError
method), 355

with_traceback() (py-
lablib.core.thread.threadprop.ThreadError
method), 354

with_traceback() (py-
lablib.core.thread.threadprop.TimeoutThreadError
method), 355

with_traceback() (pylablib.core.utils.net.SocketError
method), 425

with_traceback() (py-
lablib.core.utils.net.SocketTimeout method),
426

with_traceback() (py-
lablib.devices.AlliedVision.Bonito.BonitoError
method), 490

with_traceback() (py-
lablib.devices.Andor.base.AndorError
method), 531

with_traceback() (py-
lablib.devices.Andor.base.AndorFrameTransferError
method), 532

with_traceback() (py-
lablib.devices.Andor.base.AndorNotSupportedError
method), 532

with_traceback() (py-
lablib.devices.Andor.base.AndorTimeoutError
method), 532

with_traceback() (py-
lablib.devices.Arcus.base.ArcusBackendError
method), 533

with_traceback() (py-
lablib.devices.Arcus.base.ArcusError method),
532

with_traceback() (py-
lablib.devices.Arduino.base.ArduinoBackendError
method), 546

with_traceback() (py-
lablib.devices.Arduino.base.ArduinoError
method), 545

with_traceback() (py-
lablib.devices.Attocube.base.AttocubeBackendError
method), 556

with_traceback() (py-
lablib.devices.Attocube.base.AttocubeError
method), 556

with_traceback() (py-
lablib.devices.AWG.generic.GenericAWGBackendError
method), 440

with_traceback() (py-
lablib.devices.AWG.generic.GenericAWGError
method), 440

with_traceback() (py-
lablib.devices.BitFlow.BitFlow.BitFlowError
method), 566

with_traceback() (py-
lablib.devices.BitFlow.BitFlow.BitFlowTimeoutError
method), 567

with_traceback() (py-
lablib.devices.Conrad.base.ConradBackendError
method), 579

with_traceback() (py-
lablib.devices.Conrad.base.ConradError
method), 579

with_traceback() (py-
lablib.devices.Cryocon.base.CryoconBackendError
method), 582

with_traceback() (py-
lablib.devices.Cryocon.base.CryoconError
method), 581

with_traceback() (py-
lablib.devices.Cryomagnetics.base.CryomagneticsBackendError
method), 586

with_traceback() (py-
lablib.devices.Cryomagnetics.base.CryomagneticsError
method), 586

with_traceback() (py-
lablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError
method), 604

Index 1225

pylablib Documentation, Release 1.4.2

with_traceback() (py-
lablib.devices.ElektroAutomatik.base.ElektroAutomatikError
method), 604

with_traceback() (py-
lablib.devices.interface.camera.DefaultFrameTransferError
method), 955

with_traceback() (py-
lablib.devices.Keithley.base.GenericKeithleyBackendError
method), 644

with_traceback() (py-
lablib.devices.Keithley.base.GenericKeithleyError
method), 644

with_traceback() (py-
lablib.devices.KJL.base.KJLBackendError
method), 641

with_traceback() (py-
lablib.devices.KJL.base.KJLError method),
641

with_traceback() (py-
lablib.devices.Lakeshore.base.LakeshoreBackendError
method), 650

with_traceback() (py-
lablib.devices.Lakeshore.base.LakeshoreError
method), 649

with_traceback() (py-
lablib.devices.LaserQuantum.base.LaserQuantumBackendError
method), 660

with_traceback() (py-
lablib.devices.LaserQuantum.base.LaserQuantumError
method), 660

with_traceback() (py-
lablib.devices.Leybold.base.LeyboldBackendError
method), 663

with_traceback() (py-
lablib.devices.Leybold.base.LeyboldError
method), 663

with_traceback() (py-
lablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError
method), 668

with_traceback() (py-
lablib.devices.LighthousePhotonics.base.LighthousePhotonicsError
method), 667

with_traceback() (py-
lablib.devices.M2.base.M2CommunicationError
method), 674

with_traceback() (pylablib.devices.M2.base.M2Error
method), 673

with_traceback() (py-
lablib.devices.M2.base.M2ParseError
method), 673

with_traceback() (py-
lablib.devices.Mightex.base.MightexError
method), 692

with_traceback() (py-

lablib.devices.Mightex.base.MightexTimeoutError
method), 692

with_traceback() (py-
lablib.devices.Modbus.modbus.ModbusBackendError
method), 693

with_traceback() (py-
lablib.devices.Modbus.modbus.ModbusError
method), 693

with_traceback() (py-
lablib.devices.Newport.base.NewportBackendError
method), 714

with_traceback() (py-
lablib.devices.Newport.base.NewportError
method), 713

with_traceback() (py-
lablib.devices.NI.daq.NIDAQmxError method),
696

with_traceback() (pylablib.devices.NI.daq.NIError
method), 696

with_traceback() (py-
lablib.devices.NKT.interbus.InterbusBackendError
method), 704

with_traceback() (py-
lablib.devices.NKT.interbus.InterbusError
method), 703

with_traceback() (py-
lablib.devices.Ophir.base.OphirBackendError
method), 725

with_traceback() (py-
lablib.devices.Ophir.base.OphirError method),
725

with_traceback() (py-
lablib.devices.OZOptics.base.OZOpticsBackendError
method), 718

with_traceback() (py-
lablib.devices.OZOptics.base.OZOpticsError
method), 718

with_traceback() (py-
lablib.devices.Pfeiffer.base.PfeifferBackendError
method), 739

with_traceback() (py-
lablib.devices.Pfeiffer.base.PfeifferError
method), 739

with_traceback() (py-
lablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError
method), 790

with_traceback() (py-
lablib.devices.PhysikInstrumente.base.PhysikInstrumenteError
method), 789

with_traceback() (py-
lablib.devices.Rigol.base.GenericRigolBackendError
method), 810

with_traceback() (py-
lablib.devices.Rigol.base.GenericRigolError

1226 Index

pylablib Documentation, Release 1.4.2

method), 810
with_traceback() (py-

lablib.devices.Sirah.base.GenericSirahBackendError
method), 840

with_traceback() (py-
lablib.devices.Sirah.base.GenericSirahError
method), 840

with_traceback() (py-
lablib.devices.Sirah.tuner.FrequencyReadSirahError
method), 840

with_traceback() (py-
lablib.devices.SmarAct.base.SmarActError
method), 849

with_traceback() (py-
lablib.devices.Standa.base.StandaBackendError
method), 852

with_traceback() (py-
lablib.devices.Standa.base.StandaError
method), 852

with_traceback() (py-
lablib.devices.Tektronix.base.TektronixBackendError
method), 857

with_traceback() (py-
lablib.devices.Tektronix.base.TektronixError
method), 856

with_traceback() (py-
lablib.devices.Thorlabs.base.ThorlabsBackendError
method), 887

with_traceback() (py-
lablib.devices.Thorlabs.base.ThorlabsError
method), 887

with_traceback() (py-
lablib.devices.Thorlabs.base.ThorlabsTimeoutError
method), 887

with_traceback() (py-
lablib.devices.Toptica.base.TopticaBackendError
method), 940

with_traceback() (py-
lablib.devices.Toptica.base.TopticaError
method), 940

with_traceback() (py-
lablib.devices.Trinamic.base.TrinamicBackendError
method), 943

with_traceback() (py-
lablib.devices.Trinamic.base.TrinamicError
method), 943

with_traceback() (py-
lablib.devices.Trinamic.base.TrinamicTimeoutError
method), 944

with_traceback() (py-
lablib.devices.Voltcraft.base.GenericVoltcraftBackendError
method), 948

with_traceback() (py-
lablib.devices.Voltcraft.base.GenericVoltcraftError

method), 948
with_traceback() (py-

lablib.devices.Voltcraft.multimeter.VC880ParseError
method), 952

WLM (class in pylablib.devices.HighFinesse.wlm), 608
wrap() (in module pylablib.core.dataproc.table_wrap),

157
wrap1d() (in module py-

lablib.core.dataproc.table_wrap), 157
wrap2d() (in module py-

lablib.core.dataproc.table_wrap), 157
wrap_annotated() (py-

lablib.core.utils.ctypes_wrap.CFunctionWrapper
method), 359

wrap_bare() (pylablib.core.utils.ctypes_wrap.CFunctionWrapper
method), 358

wrap_function() (py-
lablib.core.utils.functions.FunctionSignature
method), 406

writable (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute
attribute), 517

writable (pylablib.devices.Basler.pylon.BaslerPylonAttribute
attribute), 558

writable (pylablib.devices.DCAM.DCAM.DCAMAttribute
attribute), 596

writable (pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute
attribute), 628

writable (pylablib.devices.Photometrics.pvcam.PvcamAttribute
attribute), 745

writable (pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute
attribute), 756

writable (pylablib.devices.PrincetonInstruments.picam.PicamAttribute
attribute), 801

write() (pylablib.core.devio.comm_backend.FT232DeviceBackend
method), 175

write() (pylablib.core.devio.comm_backend.HIDeviceBackend
method), 184

write() (pylablib.core.devio.comm_backend.IDeviceCommBackend
method), 168

write() (pylablib.core.devio.comm_backend.NetworkDeviceBackend
method), 178

write() (pylablib.core.devio.comm_backend.PyUSBDeviceBackend
method), 181

write() (pylablib.core.devio.comm_backend.RecordedDeviceBackend
method), 186

write() (pylablib.core.devio.comm_backend.SerialDeviceBackend
method), 173

write() (pylablib.core.devio.comm_backend.VisaDeviceBackend
method), 170

write() (pylablib.core.devio.hid.HIDevice method), 191
write() (pylablib.core.devio.SCPI.SCPIDevice

method), 163
write() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat

method), 222

Index 1227

pylablib Documentation, Release 1.4.2

write() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write() (pylablib.core.fileio.savefile.IBinaryOutputFileFormat
method), 223

write() (pylablib.core.fileio.savefile.IOutputFileFormat
method), 220

write() (pylablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat
method), 224

write() (pylablib.core.utils.general.StreamFileLogger
method), 417

write() (pylablib.devices.AWG.generic.GenericAWG
method), 446

write() (pylablib.devices.AWG.specific.Agilent33220A
method), 458

write() (pylablib.devices.AWG.specific.Agilent33500
method), 452

write() (pylablib.devices.AWG.specific.InstekAFG2000
method), 471

write() (pylablib.devices.AWG.specific.InstekAFG2225
method), 464

write() (pylablib.devices.AWG.specific.RigolDG1000
method), 489

write() (pylablib.devices.AWG.specific.RSInstekAFG21000
method), 477

write() (pylablib.devices.AWG.specific.TektronixAFG1000
method), 483

write() (pylablib.devices.Cryocon.base.Cryocon1x
method), 585

write() (pylablib.devices.Cryomagnetics.base.LM500
method), 590

write() (pylablib.devices.Cryomagnetics.base.LM510
method), 594

write() (pylablib.devices.Keithley.multimeter.Keithley2110
method), 648

write() (pylablib.devices.Lakeshore.base.Lakeshore218
method), 654

write() (pylablib.devices.Lakeshore.base.Lakeshore370
method), 659

write() (pylablib.devices.PhysikInstrumente.base.PIE515
method), 799

write() (pylablib.devices.Rigol.power_supply.DP1116A
method), 813

write() (pylablib.devices.Sirah.Matisse.SirahMatisse
method), 839

write() (pylablib.devices.Tektronix.base.DPO2000
method), 877

write() (pylablib.devices.Tektronix.base.ITektronixScope
method), 863

write() (pylablib.devices.Tektronix.base.TDS2000
method), 870

write() (pylablib.devices.Thorlabs.misc.GenericPM
method), 922

write() (pylablib.devices.Thorlabs.misc.PM160
method), 926

write() (pylablib.devices.Thorlabs.serial.FW method),
933

write() (pylablib.devices.Thorlabs.serial.FWv1
method), 936

write() (pylablib.devices.Thorlabs.serial.MDT69xA
method), 939

write() (pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface
method), 929

write() (pylablib.devices.Voltcraft.multimeter.VC7055
method), 952

write_comments() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

write_comments() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write_comments() (py-
lablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write_data() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

write_data() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write_data() (pylablib.core.fileio.savefile.IBinaryOutputFileFormat
method), 223

write_data() (pylablib.core.fileio.savefile.IOutputFileFormat
method), 220

write_data() (pylablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write_data() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat
method), 224

write_file() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

write_file() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write_file() (pylablib.core.fileio.savefile.IBinaryOutputFileFormat
method), 223

write_file() (pylablib.core.fileio.savefile.IOutputFileFormat
method), 220

write_file() (pylablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write_file() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat
method), 224

write_header() (pylablib.core.utils.general.StreamFileLogger
method), 417

write_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat
static method), 222

write_line() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat
static method), 223

write_line() (pylablib.core.fileio.savefile.ITextOutputFileFormat
static method), 221

write_multiple_rows() (py-

1228 Index

pylablib Documentation, Release 1.4.2

lablib.core.fileio.table_stream.TableStreamFile
method), 227

write_props() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

write_props() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write_props() (pylablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write_row() (pylablib.core.fileio.table_stream.TableStreamFile
method), 227

write_savetime() (py-
lablib.core.fileio.savefile.CSVTableOutputFileFormat
method), 222

write_savetime() (py-
lablib.core.fileio.savefile.DictionaryOutputFileFormat
method), 223

write_savetime() (py-
lablib.core.fileio.savefile.ITextOutputFileFormat
method), 221

write_text_lines() (py-
lablib.core.fileio.table_stream.TableStreamFile
method), 227

wrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints
attribute), 801

X
xbins (pylablib.devices.PrincetonInstruments.picam.TROIConstraints

attribute), 801
xdiff (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings

attribute), 914
xgain (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams

attribute), 914
xmax (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams

attribute), 914
xmin (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams

attribute), 914
xpos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings

attribute), 914
xpos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint

attribute), 914
xrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints

attribute), 801
xy2c() (in module pylablib.core.dataproc.utils), 161

Y
ybins (pylablib.devices.PrincetonInstruments.picam.TROIConstraints

attribute), 801
ydiff (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings

attribute), 914
year (pylablib.devices.Thorlabs.elliptec.TDeviceInfo at-

tribute), 888
year (pylablib.devices.uc480.uc480.TTimestamp at-

tribute), 989

ygain (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams
attribute), 915

ymax (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams
attribute), 915

ymin (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams
attribute), 915

ypos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings
attribute), 914

ypos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint
attribute), 914

yrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints
attribute), 801

Z
zip_file() (in module pylablib.core.utils.files), 404
zip_folder() (in module pylablib.core.utils.files), 403
zip_multiple_files() (in module py-

lablib.core.utils.files), 404

Index 1229

	Related projects
	Citation
	Installation
	Standard install
	Minimal install
	Anaconda install
	Usage
	Dependencies and requirements
	Installing from GitHub
	Support and feedback

	Devices overview
	Basics of device communication
	Connection
	Operation
	Asynchronous operation and multi-threading

	Error handling
	Getting more information
	Universal settings access
	Dependencies and external software
	Advanced examples
	Available devices

	Cameras
	Cameras control basics
	Basic examples
	Basic concepts
	Frames buffer
	Acquisition setup
	Region of interest (ROI) and binning
	Exposure and frame rate
	Triggering

	Application notes and examples
	Simple acquisition
	Acquisition loop
	Returned frame format
	Frame indexing
	ROI, detector size and frame shape
	Exposure and frame period
	Camera attributes
	Trigger setup
	Frame metainfo

	Related projects
	Currently supported cameras

	Andor cameras
	Andor SDK 2
	Software requirements
	Connection
	Operation

	Andor SDK 3
	Software requirements
	Connection
	Operation

	Allied Vision Bonito cameras
	Software requirements
	Connection
	Operation

	Basler cameras interface
	Software requirements
	Connection
	Operation
	Known issues

	BitFlow Axion frame grabbers interface
	Software requirements
	Connection
	Operation
	Fast buffer readout and frames merging

	Communication with the camera and camera files
	Known issues

	DCAM cameras interface
	Software requirements
	Connection
	Operation

	NI IMAQ frame grabbers interface
	Software requirements
	Connection
	Operation
	Fast buffer readout mode

	Communication with the camera and camera files
	Known issues

	NI IMAQdx cameras interface
	Software requirements
	Connection
	Operation
	Known issues

	Photon Focus pfcam interface
	Software requirements
	Connection
	Operation

	PCO SC2 cameras interface
	Software requirements
	Connection
	Operation
	Known issues

	Princeton Instruments Picam cameras
	Software requirements
	Connection
	Operation
	Known issues

	Photometrics PVCAM cameras
	Software requirements
	Connection
	Operation
	Fast buffer readout mode

	Known issues

	Silicon Software frame grabbers interface
	Software requirements
	Connection
	Operation
	Fast buffer readout mode

	Communication with the camera
	Known issues

	Thorlabs Scientific Cameras interface
	Software requirements
	Connection
	Operation

	Uc480/uEye camera interface
	Software requirements
	Connection
	Operation

	Mightex cameras interface
	Software requirements
	Connection
	Operation

	Stages
	Stages control basics
	Basic example
	Basic concepts
	Counters, encoders, homing, and limit switches
	Steps and real coordinates
	Speed control

	Application notes and examples
	Motion
	Status and synchronization
	Position readout
	Axis selection
	Homing

	Attocube positioners
	Attocube ANC300
	Software requirements
	Connection
	Operation

	Attocube ANC350
	Software requirements
	Connection
	Operation

	Thorlabs APT/Kinesis devices
	Software requirements
	Connection
	Operation

	Standard motors
	Piezo motors
	Quadrature detector
	Thorlabs Elliptec devices
	Software requirements
	Connection
	Operation

	Newport Picomotor controller
	Software requirements
	Connection
	Operation

	Arcus Performax positioners
	Software requirements
	Connection
	Operation

	Trinamic TMCM-1110 controller
	Software requirements
	Connection
	Operation

	SmarAct positioners
	SmarAct CU/HCU/SCU
	Software requirements
	Connection
	Operation

	SmarAct MCS2 stages
	Software requirements
	Connection
	Operation

	Physik Instrumente (PI) controllers
	Software requirements
	Connection
	Operation

	Standa motorized stages
	Software requirements
	Connection
	Operation

	Basic sensors
	Basics of sensors communication
	Basic example
	Application notes and examples
	Readout
	Non-numerical values
	Units
	Channel selection

	Currently supported sensors

	HighFinesse wavemeters
	Software requirements
	Connection
	Operation

	Ophir power meters
	Software requirements
	Connection
	Operation

	Thorlabs PM100/PM160 series power meters
	Software requirements
	Connection
	Operation

	Lakeshore temperature sensors
	Software requirements
	Connection
	Operation

	CryoCon temperature sensors
	Software requirements
	Connection
	Operation

	Cryomagnetics level monitor
	Software requirements
	Connection
	Operation

	Pfeiffer pressure gauges
	Software requirements
	Connection
	Operation
	TPG260 series
	DPG202/TPG202 controller

	Leybold pressure gauges
	Software requirements
	Connection
	Operation
	ITR90

	Kurt J. Lesker pressure gauges
	Software requirements
	Connection
	Operation
	KJL300

	Basic lasers
	Basic example
	Lighthouse Photonics Sprout
	Laser Quantum Finesse

	M2 Solstis laser
	Software requirements
	Connection
	Operation

	M2 external mixing module (EMM)
	Software requirements
	Connection
	Operation

	Toptica iBeam Smart laser
	Software requirements
	Connection
	Operation
	Power and output control
	Detailed info
	Notes and issues

	Sirah Matisse laser
	Software requirements
	Connection
	Operation

	NKT lasers
	Software requirements
	Connection
	Operation

	Tektronix oscilloscopes
	Software requirements
	Connection
	Operation

	Keithley multimeters
	Software requirements
	Connection
	Operation

	Rigol laboratory power supplies
	Software requirements
	Connection
	Operation

	NI DAQmx interface
	Software requirements
	Connection
	Operation

	Generic AWGs
	Software requirements
	Connection
	Operation

	Andor Shamrock spectrometers
	Software requirements
	Connection
	Operation

	Miscellaneous Thorlabs devices
	Software requirements
	Connection
	Operation
	MFF101/102 flip mount
	FW102/212 filter wheel
	MDT693/694 high-voltage source

	OZ Optics devices
	Software requirements
	Connection
	Operation
	EPC04 fiber polarization controller
	DD100 fiber attenuator
	TF100 fiber filter

	Elektro Automatik sources
	Software requirements
	Connection
	Operation

	Voltcraft multimeters
	Software requirements
	Connection
	Operation

	Lumel automation electronics
	Software requirements
	Connection
	Operation
	RE72

	Miscellaneous devices
	Software requirements
	Connection
	Operation
	Conrad relay board
	Generic Arduino class

	Generic protocols
	Modbus
	Software requirements
	Connection
	Operation

	Data processing
	Fitting
	Examples

	Filtering and decimation
	Fourier transform
	Feature detection
	Miscellaneous utilities

	Data storage
	Multi-level dictionary
	File IO
	Binary files
	CSV files
	Dictionary files

	Various utilities
	File system
	Network
	Strings
	Misc utilities

	Change log
	Version 1.x
	1.4.2
	1.4.1
	1.4.0
	1.3.3
	1.3.2
	1.3.1
	1.3.0
	1.2.1
	1.2.0
	1.1.0
	1.0.0

	Version 0.x
	0.4.1
	0.4.0

	pylablib
	pylablib package
	Subpackages
	pylablib.core package
	Subpackages
	pylablib.core.dataproc package
	Submodules
	pylablib.core.dataproc.callable module
	pylablib.core.dataproc.ctransform_fallback module
	pylablib.core.dataproc.feature module
	pylablib.core.dataproc.filters module
	pylablib.core.dataproc.fitting module
	pylablib.core.dataproc.fourier module
	pylablib.core.dataproc.iir_transform module
	pylablib.core.dataproc.image module
	pylablib.core.dataproc.interpolate module
	pylablib.core.dataproc.specfunc module
	pylablib.core.dataproc.table_wrap module
	pylablib.core.dataproc.transform module
	pylablib.core.dataproc.utils module
	Module contents
	pylablib.core.devio package
	Submodules
	pylablib.core.devio.SCPI module
	pylablib.core.devio.backend_logger module
	pylablib.core.devio.base module
	pylablib.core.devio.comm_backend module
	pylablib.core.devio.data_format module
	pylablib.core.devio.hid module
	pylablib.core.devio.hid_base module
	pylablib.core.devio.interface module
	Module contents
	pylablib.core.fileio package
	Submodules
	pylablib.core.fileio.datafile module
	pylablib.core.fileio.dict_entry module
	pylablib.core.fileio.loadfile module
	pylablib.core.fileio.loadfile_utils module
	pylablib.core.fileio.location module
	pylablib.core.fileio.parse_csv module
	pylablib.core.fileio.savefile module
	pylablib.core.fileio.table_stream module
	Module contents
	pylablib.core.gui package
	Subpackages
	pylablib.core.gui.widgets package
	Submodules
	pylablib.core.gui.widgets.button module
	pylablib.core.gui.widgets.combo_box module
	pylablib.core.gui.widgets.container module
	pylablib.core.gui.widgets.edit module
	pylablib.core.gui.widgets.label module
	pylablib.core.gui.widgets.layout_manager module
	pylablib.core.gui.widgets.param_table module
	Module contents
	Submodules
	pylablib.core.gui.formatter module
	pylablib.core.gui.limiter module
	pylablib.core.gui.utils module
	pylablib.core.gui.value_handling module
	Module contents
	pylablib.core.thread package
	Submodules
	pylablib.core.thread.callsync module
	pylablib.core.thread.controller module
	pylablib.core.thread.multicast_pool module
	pylablib.core.thread.notifier module
	pylablib.core.thread.profile module
	pylablib.core.thread.synchronizing module
	pylablib.core.thread.threadprop module
	pylablib.core.thread.utils module
	Module contents
	pylablib.core.utils package
	Submodules
	pylablib.core.utils.array_utils module
	pylablib.core.utils.cext_tools module
	pylablib.core.utils.crc module
	pylablib.core.utils.ctypes_wrap module
	pylablib.core.utils.dictionary module
	pylablib.core.utils.files module
	pylablib.core.utils.funcargparse module
	pylablib.core.utils.functions module
	pylablib.core.utils.general module
	pylablib.core.utils.indexing module
	pylablib.core.utils.ipc module
	pylablib.core.utils.library_parameters module
	pylablib.core.utils.module module
	pylablib.core.utils.nbtools module
	pylablib.core.utils.net module
	pylablib.core.utils.numerical module
	pylablib.core.utils.observer_pool module
	pylablib.core.utils.py3 module
	pylablib.core.utils.rpyc_utils module
	pylablib.core.utils.strdump module
	pylablib.core.utils.string module
	pylablib.core.utils.strpack module
	pylablib.core.utils.units module
	Module contents
	Module contents

	pylablib.devices package
	Subpackages
	pylablib.devices.AWG package
	Submodules
	pylablib.devices.AWG.generic module
	pylablib.devices.AWG.specific module
	Module contents
	pylablib.devices.AlliedVision package
	Submodules
	pylablib.devices.AlliedVision.Bonito module
	Module contents
	pylablib.devices.Andor package
	Submodules
	pylablib.devices.Andor.AndorSDK2 module
	pylablib.devices.Andor.AndorSDK3 module
	pylablib.devices.Andor.Shamrock module
	pylablib.devices.Andor.atcore_features module
	pylablib.devices.Andor.base module
	Module contents
	pylablib.devices.Arcus package
	Submodules
	pylablib.devices.Arcus.base module
	pylablib.devices.Arcus.performax module
	Module contents
	pylablib.devices.Arduino package
	Submodules
	pylablib.devices.Arduino.base module
	Module contents
	pylablib.devices.Attocube package
	Submodules
	pylablib.devices.Attocube.anc300 module
	pylablib.devices.Attocube.anc350 module
	pylablib.devices.Attocube.base module
	Module contents
	pylablib.devices.Basler package
	Submodules
	pylablib.devices.Basler.pylon module
	Module contents
	pylablib.devices.BitFlow package
	Submodules
	pylablib.devices.BitFlow.BitFlow module
	Module contents
	pylablib.devices.Conrad package
	Submodules
	pylablib.devices.Conrad.base module
	Module contents
	pylablib.devices.Cryocon package
	Submodules
	pylablib.devices.Cryocon.base module
	Module contents
	pylablib.devices.Cryomagnetics package
	Submodules
	pylablib.devices.Cryomagnetics.base module
	Module contents
	pylablib.devices.DCAM package
	Submodules
	pylablib.devices.DCAM.DCAM module
	Module contents
	pylablib.devices.ElektroAutomatik package
	Submodules
	pylablib.devices.ElektroAutomatik.base module
	Module contents
	pylablib.devices.HighFinesse package
	Submodules
	pylablib.devices.HighFinesse.wlm module
	Module contents
	pylablib.devices.IMAQ package
	Submodules
	pylablib.devices.IMAQ.IMAQ module
	pylablib.devices.IMAQ.niimaq_attrtypes module
	Module contents
	pylablib.devices.IMAQdx package
	Submodules
	pylablib.devices.IMAQdx.IMAQdx module
	Module contents
	pylablib.devices.KJL package
	Submodules
	pylablib.devices.KJL.base module
	Module contents
	pylablib.devices.Keithley package
	Submodules
	pylablib.devices.Keithley.base module
	pylablib.devices.Keithley.multimeter module
	Module contents
	pylablib.devices.Lakeshore package
	Submodules
	pylablib.devices.Lakeshore.base module
	Module contents
	pylablib.devices.LaserQuantum package
	Submodules
	pylablib.devices.LaserQuantum.base module
	Module contents
	pylablib.devices.Leybold package
	Submodules
	pylablib.devices.Leybold.base module
	Module contents
	pylablib.devices.LighthousePhotonics package
	Submodules
	pylablib.devices.LighthousePhotonics.base module
	Module contents
	pylablib.devices.Lumel package
	Submodules
	pylablib.devices.Lumel.base module
	Module contents
	pylablib.devices.M2 package
	Submodules
	pylablib.devices.M2.base module
	pylablib.devices.M2.emm module
	pylablib.devices.M2.solstis module
	Module contents
	pylablib.devices.Mightex package
	Submodules
	pylablib.devices.Mightex.MightexSSeries module
	pylablib.devices.Mightex.base module
	Module contents
	pylablib.devices.Modbus package
	Submodules
	pylablib.devices.Modbus.modbus module
	Module contents
	pylablib.devices.NI package
	Submodules
	pylablib.devices.NI.daq module
	Module contents
	pylablib.devices.NKT package
	Submodules
	pylablib.devices.NKT.interbus module
	Module contents
	pylablib.devices.Newport package
	Submodules
	pylablib.devices.Newport.base module
	pylablib.devices.Newport.picomotor module
	Module contents
	pylablib.devices.OZOptics package
	Submodules
	pylablib.devices.OZOptics.base module
	Module contents
	pylablib.devices.Ophir package
	Submodules
	pylablib.devices.Ophir.base module
	Module contents
	pylablib.devices.PCO package
	Submodules
	pylablib.devices.PCO.SC2 module
	Module contents
	pylablib.devices.Pfeiffer package
	Submodules
	pylablib.devices.Pfeiffer.base module
	Module contents
	pylablib.devices.Photometrics package
	Submodules
	pylablib.devices.Photometrics.pvcam module
	Module contents
	pylablib.devices.PhotonFocus package
	Submodules
	pylablib.devices.PhotonFocus.PhotonFocus module
	Module contents
	pylablib.devices.PhysikInstrumente package
	Submodules
	pylablib.devices.PhysikInstrumente.base module
	Module contents
	pylablib.devices.PrincetonInstruments package
	Submodules
	pylablib.devices.PrincetonInstruments.picam module
	Module contents
	pylablib.devices.Rigol package
	Submodules
	pylablib.devices.Rigol.base module
	pylablib.devices.Rigol.power_supply module
	Module contents
	pylablib.devices.SiliconSoftware package
	Submodules
	pylablib.devices.SiliconSoftware.fgrab module
	Module contents
	pylablib.devices.Sirah package
	Submodules
	pylablib.devices.Sirah.Matisse module
	pylablib.devices.Sirah.base module
	pylablib.devices.Sirah.tuner module
	Module contents
	pylablib.devices.SmarAct package
	Submodules
	pylablib.devices.SmarAct.MCS2 module
	pylablib.devices.SmarAct.base module
	pylablib.devices.SmarAct.scu3d module
	Module contents
	pylablib.devices.Standa package
	Submodules
	pylablib.devices.Standa.base module
	Module contents
	pylablib.devices.Tektronix package
	Submodules
	pylablib.devices.Tektronix.base module
	Module contents
	pylablib.devices.Thorlabs package
	Submodules
	pylablib.devices.Thorlabs.TLCamera module
	pylablib.devices.Thorlabs.base module
	pylablib.devices.Thorlabs.elliptec module
	pylablib.devices.Thorlabs.kinesis module
	pylablib.devices.Thorlabs.misc module
	pylablib.devices.Thorlabs.serial module
	Module contents
	pylablib.devices.Toptica package
	Submodules
	pylablib.devices.Toptica.base module
	pylablib.devices.Toptica.ibeam module
	Module contents
	pylablib.devices.Trinamic package
	Submodules
	pylablib.devices.Trinamic.base module
	Module contents
	pylablib.devices.Voltcraft package
	Submodules
	pylablib.devices.Voltcraft.base module
	pylablib.devices.Voltcraft.multimeter module
	Module contents
	pylablib.devices.interface package
	Submodules
	pylablib.devices.interface.camera module
	pylablib.devices.interface.stage module
	Module contents
	pylablib.devices.uc480 package
	Submodules
	pylablib.devices.uc480.uc480 module
	Module contents
	pylablib.devices.utils package
	Submodules
	pylablib.devices.utils.color module
	pylablib.devices.utils.load_lib module
	Module contents
	Module contents

	Submodules
	pylablib.widgets module
	Module contents

	Indices and tables
	Python Module Index
	Index

