

PyLabLib: Python package for device control and experiment automation

PyLabLib aims to provide support for device control and experiment automation. It interfaces with lots of different devices, including several different camera interfaces, translational stages, oscilloscopes, AWGs, sensors, and more. The interface is implemented in a natural way through Python objects, and is easy to understand. For example, here is a complete script which steps Thorlabs KDC101 stage by 10000 steps ten times, and each time grabs a frame with Andor iXon camera:

from pylablib.devices import Thorlabs, Andor # import the device libraries
import numpy as np # import numpy for saving

connect to the devices
with Thorlabs.KinesisMotor("27000000") as stage, Andor.AndorSDK2Camera() as cam:
 # change some camera parameters
 cam.set_exposure(50E-3)
 cam.set_roi(0, 128, 0, 128, hbin=2, vbin=2)
 # start the stepping loop
 images = []
 for _ in range(10):
 stage.move_by(10000) # initiate a move
 stage.wait_move() # wait until it's done
 img = cam.snap() # grab a single frame
 images.append(img)

np.array(images).astype("<u2").tofile("frames.bin") # save frames as raw binary

The list of the devices is constantly expanding.

Additional utilities are added to simplify data acquisition, storage, and processing:

	Simplified data processing utilities: convenient fitting, filtering, feature detection, FFT (mostly wrappers around NumPy and SciPy).

	Universal multi-level dictionaries which are convenient for storing heterogeneous data and settings in human-readable format.

	Assorted functions for dealing with file system (creating, moving and removing folders, zipping/unzipping, path normalization), network (simplified interface for client and server sockets), strings (conversion of various Python objects to and from string), and more.

	Tools for GUI generation and advanced multi-threading built on top of Qt5 (still in development stage: the documentation is incomplete, and the interfaces can change in later versions)

The library only works on Python 3, and has been most extensively tested on Windows 10 with 64-bit Python. Linux is, in principle, supported, but devices which require manufacturer-provided DLLs (mostly cameras) might, potentially, have problems.

Note

This is documentation for the newer 1.x version of the library. The older 0.x documentation can be found at https://pylablib-v0.readthedocs.io/en/latest/ .

Related projects

Pylablib cam-control [https://github.com/AlexShkarin/pylablib-cam-control] - software for universal camera control and camera data acquisition.

Citation

If you found this package useful in your scientific work, you can cite via Zenodo [https://doi.org/10.5281/zenodo.7324875] either referencing to the package in general using the DOI 10.5281/zenodo.7324875, or to a specific version, as found on the Zenodo [https://doi.org/10.5281/zenodo.7324875] page.

Contents:

	Installation
	Standard install

	Minimal install

	Anaconda install

	Usage

	Dependencies and requirements

	Installing from GitHub

	Support and feedback

	Devices overview
	Basics of device communication

	Cameras

	Stages

	Basic sensors

	Basic lasers

	M2 Solstis laser

	M2 external mixing module (EMM)

	Toptica iBeam Smart laser

	Sirah Matisse laser

	NKT lasers

	Tektronix oscilloscopes

	Keithley multimeters

	Rigol laboratory power supplies

	NI DAQmx interface

	Generic AWGs

	Andor Shamrock spectrometers

	Miscellaneous Thorlabs devices

	OZ Optics devices

	Elektro Automatik sources

	Voltcraft multimeters

	Lumel automation electronics

	Miscellaneous devices

	Generic protocols

	Data processing
	Fitting

	Filtering and decimation

	Fourier transform

	Feature detection

	Miscellaneous utilities

	Data storage
	Multi-level dictionary

	File IO

	Various utilities
	File system

	Network

	Strings

	Misc utilities

	Change log
	Version 1.x

	Version 0.x

	API reference
	pylablib package

Indices and tables

	Index

	Module Index

	Search Page

Installation

Standard install

You can install the library from PyPi:

pip install pylablib

If you already have it installed, you can upgrade it to get the newest version:

pip install -U pylablib

This will install the full set of dependencies: basic dependencies and computing packages (numpy, scipy, pandas, numba, rpyc), basic device communication packages (pyft232, pyvisa, pyserial, pyusb), and PyQt5-based GUI (pyqt5 and pyqtgraph). You can also install additional device library dependencies (nidaqmx and websocket-client) using the extra requirements feature of pip:

pip install -U pylablib[devio-full]

Minimal install

In case you do not want some of these packages installed, or they are unavailable on your platform, you can install a lightweight version of pylablib called pylablib-lightweight. It contains exactly the same code, but has only the most basic dependencies (numpy, scipy, and pandas):

pip install -U pylablib-lightweight

With this, the basic functionality (such as data processing or file IO) will work, but more advanced features such as device communication and GUI, will require additional packages. In most cases, the raised errors will notify which packages are missing. These can be installed either manually, or using the extra requirements:

	[extra] extra packages used in some situations: numba (speeds up some data processing) and rpyc (communication between different PCs)

	[devio] basic devio packages: pyft232, pyvisa, pyserial, and pyusb

	[devio-extra] additional devio packages: nidaqmx and websocket-client

	[gui-pyqt5] PyQt5 [https://www.riverbankcomputing.com/software/pyqt/]-based GUI: pyqt5 and pyqtgraph. Should not be used together with [gui-pyside2]

	[gui-pyside2] PySide2 [https://www.pyside.org/]-based GUI: pyside2 and pyqtgraph. Should not be used together with [gui-pyqt5]

The options can be combined. For example,

pip install pylablib-lightweight[extra,devio,gui-pyside2]

installs the dependencies as the usual pylablib distribution, but with PySide2 Qt5 backend instead of PyQt5.

Anaconda install

The package is also available on Anaconda via conda-forge channel. To install it, run

conda install -c conda-forge pylablib

in the Anaconda prompt.

The Anaconda version of pylablib comes with all the standard dependencies except for pyft232 , nidaqmx and websocket-client, which are not available on conda-forge channel. This means, that Thorlabs APT/Kinesis, NI DAQs, and some functionality of M2 Solstis laser are not accessible. To use those, it is recommended to either install those packages explicitly via pip (keep in mind that it can break Anaconda environment), or use a standalone Python distribution.

Usage

To access to the most common features simply import the library:

import pylablib as pll
Create a parameter dictionary (e.g., for some processing script)
parameters = pll.Dictionary({"par/x":1, "par/y":2, "par/z":[3,4,5], "out":"result"})
pll.save_dict(parameters, "parameters.dat") # save parameters to a text file

More advanced features (e.g., device communication) should be imported directly:

from pylablib.devices import Andor # import Andor devices module
cam = Andor.AndorSDK2Camera() # connect to Andor SDK2 camera (e.g., iXon)
cam.set_exposure(0.1) # set exposure to 100ms
frame = cam.snap() # grab a single frame
cam.close() # close the connection

Dependencies and requirements

The basic package dependencies are NumPy [https://docs.scipy.org/doc/numpy/] for basic computations and overall array interface, SciPy [https://docs.scipy.org/doc/scipy/reference/] for advanced computations (interpolation, optimization, special functions), and pandas [https://pandas.pydata.org/] for heterogeneous tables (DataFrame). In addition, it is recommended to have Numba [https://numba.pydata.org/] package to speed up some computations. Finally, if you use options for remote computing and communication between different PCs, you need to install RPyC [https://rpyc.readthedocs.io/en/latest/]. Note that when installed directly from pip, numpy comes with the OpenBLAS version of the linear algebra library; if other version (e.g., Intel MKL) is preferred, it is a good idea to have numpy already installed before installing pylablib.

The main device communication packages are PyVISA [https://pyvisa.readthedocs.io/en/master/] and pySerial [https://pythonhosted.org/pyserial/], which cover the majority of devices. Several devices (e.g., Thorlabs Kinesis and Attocube ANC 350) require additional communication packages: pyft232 [https://github.com/lsgunth/pyft232] and PyUSB [https://pyusb.github.io/pyusb/]. Finally, some particular devices completely or partially rely on specific packages: NI-DAQmx [https://nidaqmx-python.readthedocs.io/en/latest/] for NIDAQ and websocket-client [https://websocket-client.readthedocs.io/en/latest/] for additional M2 Solstis functionality.

Finally, GUI and advanced multi-threading relies on Qt5, which has two possible options. The first (default) option is PyQt5 [https://www.riverbankcomputing.com/software/pyqt/] with sip [https://www.riverbankcomputing.com/software/sip/] for some memory management functionality. Note that while newer PyQt5 versions >=5.11 already come with PyQt5-sip, older versions require a separate sip installation. Hence, if you use an older PyQt5 version, you need to install sip separately. The second possible Qt5 option is PySide2 [https://www.pyside.org/] with shiboken2 [https://wiki.qt.io/Qt_for_Python/Shiboken]. Both PyQt5 and PySide2 should work equally well, and the choice mostly depends on what is already installed, because having both PyQt5 and PySide2 might lead to conflicts. Finally, plotting relies on pyqtgraph [http://www.pyqtgraph.org/], which, starting with version 0.11m is compatible with both PySide2 and PyQt5.

The package has been tested with Python 3.6 through 3.9, and is incompatible with Python 2. The last version officially supporting Python 2.7 is 0.4.0. Furthermore, testing has been mostly performed on 64-bit Python. This is the recommended option, as 32-bit version limitations (most notably, limited amount of accessible RAM) mean that it should only be used when absolutely necessary, e.g., when some required packages or libraries are only available in 32-bit version.

Installing from GitHub

The most recent and extensive, but less tested and documented, version of this library is available on GitHub at https://github.com/AlexShkarin/pyLabLib/. There are several versions of installing it:

	Install using pip using GitHub as a library source:

pip install -U git+https://github.com/AlexShkarin/pyLabLib.git

	Download it as a zip-file and unpack it into any appropriate place (can be folder of the project you’re working on, Python site-packages folder, or any folder added to PATH or PYTHONPATH variable).

To download the code of a specific version, you can choose it in the dropdown Branch menu under Tags tab. This is the same code as available on PyPi.

Keep in mind that, unlike the first method, the required packages will not be automatically installed, so this has to be done manually:

pip install numpy scipy pandas numba rpyc
pip install pyft232 pyvisa pyserial pyusb nidaqmx websocket-client
pip install pyqt5 pyqtgraph

	Clone the repository to your computer In order to easily get updates in order to easily get updates. For that, you need to install Git (https://git-scm.com/), and use the following commands in the command line (in the folder where you want to store the library):

git clone https://github.com/AlexShkarin/pyLabLib
cd ./pyLabLib

Whenever you want to update to the most recent version, simply type

git pull

in the library folder. Keep in mind that any changes that you make to the library code might conflict with the new version that you pull from GitHub, so you should not modify anything in this folder if possible.

Support and feedback

If you have any issues, suggestions, or feedback, you can either raise an issue on GitHub at https://github.com/AlexShkarin/pyLabLib/issues, or send an e-mail to pylablib@gmail.com.

Devices overview

Basic concepts are described at the general device communication page.

Currently supported devices:

	Cameras

	Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

	Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ frame grabber.

	Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

	BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with PhotonFocus MV-D1024E camera.

	DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

	NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

	NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

	Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-CL).

	PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and with pco.pixelfly usb cameras.

	Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

	PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

	Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers together with PhotonFocus MV-D1024E camera.

	Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

	Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M and Thorlabs DCC1545M.

	Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series cameras.

	Stages

	Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with Ethernet and USB connection for ANC300, and USB connection for ANC350.

	Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101, K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102 (described at a different page)

	Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational mounts.

	Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport 8742 Picomotor driver using Ethernet or USB connection.

	Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands: Arcus, Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

	Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with USB connection.

	Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25 stepper motor stage.

	SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 controllers are supported. Tested with a standard HCU controller unit and an MCS2 controller with several SLx stages.

	Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

	Basic sensors

	HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

	Ophir: optical power and energy meters. Tested with Ophir Vega.

	Thorlabs: optical power and energy meters. Tested with PM160.

	Lakeshore: temperature sensors. Tested with Lakeshore 218.

	Cryocon: temperature sensors. Tested with CryoCon 14C.

	Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

	Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

	Leybold: pressure gauges. Tested with ITR90 gauge.

	Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

	Thorlabs quadrature detector controller. Tested with TPA101.

	Keithley multimeters. Tested with model 2110.

	Voltcraft multimeters. Tested with VC-7055BT and VC880.

	Lasers

	Basic lasers

	Lighthouse Photonics SproutG

	Laser Quantum Finesse

	M2 Solstis laser and external mixing module

	Toptica iBeam Smart laser

	Sirah Matisse laser

	NKT Photonics lasers

	Tektronix oscilloscopes. Tested with TDS2002B, TDS2004B, and DPO2004B.

	NI DAQs. Tested with NI USB-6008, NI USB-6343, and NI PCIe-6323.

	Generic AWGs. Tested with Agilent 33500 and 33220A, Rigol DG1022, Tektronix AFG1022, GW Instek AFG2225 and AFG2115, and RS Comp AFG21005.

	Andor spectrographs. Tested with Kymera 328i spectrograph connected via an Andor Newton camera through I2C interface.

	Miscellaneous Thorlabs devices: MFF101/102 motorized flip mirror mount, FW102/212 motorized filter wheel, and MDT693/694 high-voltage source.

	Miscellaneous OZOptics devices: EPC04 fiber polarization controller, DD100 motorized fiber attenuator, and TF100 motorized fiber filter.

	Lumel devices: RE72 temperature controller

	Miscellaneous devices

	Conrad relay board

	Basic Arduino communication

	ElektroAutomatik power supplies

	Rigol power supplies

	Mid-level protocols

	Modbus

Basics of device communication

The devices are represented as Python objects. In most cases, one object controls one device, although sometimes one object can be responsible for multiple interconnected devices (e.g., when daisy-chaining of several devices is used, as in Picomotor stage). All the device control functions are contained within the class. Occasionally, there are auxiliary function present for listing available devices, dealing with data generated by the device, or adjusting global parameters.

Note

Some specific devices functionality might not be completely covered in the current release. If this is the case for your device, you can let the developers know by raising an issue on GitHub [https://github.com/AlexShkarin/pyLabLib/issues], or sending an e-mail to pylablib@gmail.com.

Connection

The device identifier or address needs to be provided upon the device object creation, after which it is automatically connected. Getting the address usually depends on the kind of device:

	Simple message-style devices, such as AWG, oscilloscopes, sensors and gauges, require an address which depends on the exact connection protocol. For example, serial devices addresses look like "COM1" (or "/dev/ttyUSB0" or Linux), Visa addresses as "USB0::0x1313::0x8070::000000::INSTR", and network addresses take IP and, possibly, port "192.168.1.3:7230". To get the list of all connected devices, you can run comm_backend.list_backend_resources():

>> import pylablib as pll
>> pll.list_backend_resources("serial") # list serial port resources
['COM38', 'COM1', 'COM36', 'COM3']
>> pll.list_backend_resources("visa") # note that, by default, visa also includes all the COM ports
('USB0::0x1313::0x8070::000000::INSTR',
'ASRL1::INSTR',
'ASRL3::INSTR',
'ASRL10::INSTR',
'ASRL36::INSTR',
'ASRL38::INSTR')

Network devices do not easily provide such functionality (and there are, in principle, many unrelated devices connected to the network), so you might need to learn the device IP elsewhere. Usually, it is set on the device front panel or using some kind of configuration tool and a different connection, such as serial or USB.

In most cases, the connection address is all you need. However, sometimes the connection might require some additional information. The most common situations are ports for the network connection and baud rates for the serial connections. Ports can be supplied either as a part of the string "192.168.1.3:7230", or as a tuple ("192.168.1.3", 7230). The baud rates are, similarly, provided as a tuple: ("COM1", 19200). By default, the devices would use the baud rate which is most common for them, but in some cases (e.g., if the device baud rate can be changed), you might need to provide it explicitly. If it is provided incorrectly, then no communication can be done, and requests will typically return a timeout error:

>> from pylablib.devices import Ophir
>> meter = Ophir.VegaPowerMeter("COM3") # for this power meter 9600 baud are used by default
>> meter.get_power() # let us assume that the devices is currently set up with 38400 baud
...
OphirBackendError: backend exception: 'timeout during read'
>> meter.close() # need to close the connection before reopening
>> meter = Ophir.VegaPowerMeter(("COM3",38400)) # explicitly specifying the correct baud rate
>> meter.get_power()
1E-6

	More complicated devices using custom DLLs (usually cameras or some translation stages) will have more unique methods of addressing individual devices: serial number, device index, device ID, etc. In most cases such devices come with list_devices or get_devices_number functions, which give the necessary information.

After communication is done, the connection needs to be closed, since in most cases it can only be opened in one program or part of the script at a time. It also implies that usually it’s impossible to connect to the device while its manufacturer software is still running.

The devices have open and close methods, but they can also work in together with Python with statements:

import Thorlabs device classes
from pylablib.devices import Thorlabs

connect to FW102 motorized filter wheel
wheel = Thorlabs.FW("COM1")
set the position
wheel.set_position(1)
close the connection (until that it's impossible to establish a different connection to this device)
wheel.close()

a better approach
with Thorlabs.FW("COM1") as wheel: # connection is closed automatically when leaving the with-block
 wheel.set_position(1)

Because the devices are automatically connected on creation, open method is almost never called explicitly. It is generally only used to reconnect to the device after the connection has been previously closed, although in this case creating a new device object would work just as well.

Operation

The devices are controlled by calling their methods; attributes and properties are very rarely used. Effort is made to maintain consistent naming conventions, e.g., most getter-methods will start with get_ and setter methods with set_ or setup_ (depending on the complexity of the method). It is also common for setter methods to return the new value as a result, which is useful in CLI operation and debugging. Devices of the same kind have the same names for similar or identical functions: most stages have move_by, jog and stop methods, and cameras have wait_for_frame and read_multiple_images methods. Whenever it makes sense, these methods will also have the same signatures.

Asynchronous operation and multi-threading

For simplicity of usage and construction, devices interfaces are designed to be synchronous and single-threaded. Asynchronous operation can be achieved by explicit usage of Python multi-threading. Furthermore, the device classes are not designed to be thread safe, i.e., it is not recommended to use the same device simultaneously from two separate threads. However, non-simultaneous calling of device methods from different threads (synchronized, e.g., using locks) or simultaneous usage of several separate devices of the same class is supported.

Error handling

Errors raised by the devices are usually specific to the device and manufacturer, e.g., AttocubeError or TrinamicError. These can be obtained from the module containing the device class, or from the class itself as Error attribute:

>> from pylablib.devices import Attocube
>> atc = Attocube.ANC300("192.168.1.1")
>> atc.disable_axis(1)
>> atc.move_by(1,10) # move on a disabled axis raises an error for ANC300
...
AttocubeError: Axis in wrong mode
>> try:
.. atc.move_by(1,10)
.. except atc.Error: # could also write "except Attocube.AttocubeError"
.. print("Can not move")
Can not move

All of the device errors inherit from DeviceError, which in turn is a subclass of RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]. Therefore, one can also use those exception classes instead:

>> import pylablib as pll
>> try:
.. atc.move_by(1,10)
.. except pll.DeviceError:
.. print("Can not move")
Can not move

Getting more information

A lot of information about the devices can be gained just from their method names and descriptions (docstrings). There are several ways of getting these:

	In many cases your IDE (PyCharm, Spyder, VS Code with installed Python extension) supports code inspection. In this case, the list of methods will usually pop up after you time the device object name and a dot (such as cam.), and the method docstring will show up after you type the method name and parenthesis (such as cam.get_roi(). However, sometimes it might take a while for these pop-ups to show up.

	You can use console, such as Jupyter QtConsole, Jupyter Notebook, or a similar console built into the IDE. Here the list of methods can be obtained using the autocomplete feature: type name of the class or object with a dot (such as cam.) and then press Tab. The list of all methods should appear. To get the description of a particular class or method, type it with a question mark (such as cam? or cam.get_roi?) and execute the result (Enter or Shift-Enter, depending on the console). A description should appear with the argument names and the description.

	You can also use the auto-generated documentation within this manual through the search bar: simply type the name of the class or the method (such as AndorSDK3Camera or AndorSDK3Camera.get_roi) and look through the results. However, the formatting of the auto-generated documentation might be a bit overwhelming.

Universal settings access

All devices have get_settings and apply_settings methods which, correspondingly, return Python dictionaries with the most common settings or take these dictionaries and apply the contained settings. These can be used to easily store and re-apply device configuration within a script.

Additionally, there is get_full_info method, which returns as complete information as possible. It is particularly useful to check the device status and see if it is connected and working properly, and to save the devices configuration when acquiring the data. Finally, the settings can also be accessed through .dv attribute, which provides dictionary-like interface:

>>> wheel = Thorlabs.FW("COM1") # connect to FW102 motorized filter wheel
>>> wheel.get_position()
1
>>> wheel.get_settings()
{'pcount': 6,
'pos': 1,
'sensors_mode': 'off',
'speed_mode': 'high',
'trigger_mode': 'in'}
>>> wheel.dv["pos"]
1
>>> wheel.apply_settings({"pos":2})
>>> wheel.get_position()
2
>>> wheel.dv["pos"] = 3
>>> wheel.get_position()
3
>>> wheel.close()

By default not all information is shown, as it can take long time (up to several seconds) to obtain it, and it takes a lot of space on the screen. To get a full set of parameters, you can call get_full_info("all"):

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_full_info()
{ 'roi': (0, 1312, 0, 1082),
 'acquisition_in_progress': False,
 'frames_status': TFramesStatus(acquired=0, unread=0, skipped=0, buffer_size=0),
 'cls': 'IMAQdxCamera',
 'conn': 'cam0',
 'detector_size': (1312, 1082),
 'device_info': TDeviceInfo(vendor='Photonfocus AG', model='HD1-D1312-80-G2-12', serial_number='0000000000000000', bus_type='Ethernet') }
>>
>> cam.get_full_info("all")
{ 'roi': (0, 1312, 0, 1082),
 'acquisition_in_progress': False,
 'frames_status': TFramesStatus(acquired=0, unread=0, skipped=0, buffer_size=0),
 'camera_attributes': Dictionary('AcquisitionAttributes/AdvancedEthernet/BandwidthControl/ActualPeakBandwidth': 1000.0
 ... lots and lots of attributes
 'OffsetX': 0
 'OffsetY': 0
 'PayloadSize': 1419584
 'PixelFormat': Mono8
 'Width': 1312),
 'cls': 'IMAQdxCamera',
 'conn': 'cam0',
 'detector_size': (1312, 1082),
 'device_info': TDeviceInfo(vendor='Photonfocus AG', model='HD1-D1312-80-G2-12', serial_number='0000000000000000', bus_type='Ethernet') }

Dependencies and external software

Many devices require external software not provided with this package.

The simpler devices using serial connection (either with an external USB-to-Serial adapter, or with a similar built-in chip) only need the corresponding drivers: either standard adapter drivers or the ones supplied by the manufacturer, e.g., via Thorlabs APT software. If the device already shows up as a serial communication port in the OS, no additional software is normally needed. Similarly, devices using Ethernet connection do not need any external software, as long as they are properly connected to the network. Finally, devices using Visa connection require NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]. See also PyVISA documentation [https://pyvisa.readthedocs.io/en/master/] for details.

Devices which require manufacturer DLLs are harder to set up. For most of them, at the very least, you need to install the manufacturer-provided software for communication. Frequently it already includes the necessary libraries, which means that nothing else is required. However, sometimes you would need to download either an additional SDK package, or DLLs directly from the website. Since these libraries take a lot of space and are often proprietary, they are not distributed with the pylablib.

Note that DLLs can have 32-bit and 64-bit version, and this version should agree with the Python version that you use. Unless you have a really good reason to do otherwise, it is strongly recommended to use 64-bit Python, which means that you would need 64-bit DLLs, which is the standard in most cases these days. To check your Python bitness, you can read the prompt when running the Python console, or run python -c "import platform; print(platform.architecture()[0])" in the command line.

In addition, you need to provide pylablib with the path to the DLLs. In many cases it checks the standard locations such as the default System32 folder (used, e.g., in DCAM or IMAQ cameras), paths contained on the PATH environment variable, or defaults paths for manufacturer software (such as C:/Program Files/Andor SOLIS for Andor cameras). If the software path is different, or if you choose to obtain DLLs elsewhere, you can also explicitly provide path by setting the library parameter:

import pylablib as pll
pll.par["devices/dlls/andor_sdk3"] = "D:/Program Files/Andor SOLIS"
from pylablib.devices import Andor
cam = Andor.AndorSDK3Camera()

All of these requirements are described in detail for the specific devices.

Starting from Python 3.8 the DLL search path is changed to not include the files contained in PATH environment variable and in the script folder. By default, this behavior is still emulated when pylablib searches for the DLLs, since it is required in some cases (e.g., Photon Focus pfcam interface). If needed, it can be turned off (i.e., switched to the new default behavior of Python 3.8+) by setting pll.par["devices/dlls/add_environ_paths"]=False.

Advanced examples

Connecting to a Cryomagnetics LM500 level meter and reading out the level at the first channel:

from pylablib.devices import Cryomagnetics # import the device library
with Cryomagnetics.LM500("COM1") as lm:
 level = lm.get_level(1) # read the level

Stepping the M Squared laser wavelength and recording an image from the Andor iXon camera at each step:

with M2.Solstis("192.168.1.2", 34567) as laser, Andor.AndorSDK2Camera() as cam: # connect to the devices
 # change some camera parameters
 cam.set_exposure(50E-3)
 cam.set_roi(0, 128, 0, 128, hbin=2, vbin=2)
 cam.setup_shutter("open")
 # start camera acquisition
 wavelength = 770E-9 # initial wavelength (in meters)
 images = []
 cam.start_acquisition()
 while wavelength < 780E-9:
 laser.coarse_tune_wavelength(wavelength) # tune the laser frequency (using coarse tuning)
 time.sleep(0.5) # wait until the laser stabilizes
 cam.wait_for_frame() # ensure that there's a frame in the camera queue
 img = cam.read_newest_image()
 images.append(img)
 wavelength += 0.5E-9

Available devices

	Cameras

	Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

	Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ frame grabber.

	Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

	BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with PhotonFocus MV-D1024E camera.

	DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

	NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

	NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

	Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-CL).

	PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and with pco.pixelfly usb cameras.

	Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

	PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

	Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers together with PhotonFocus MV-D1024E camera.

	Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

	Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M and Thorlabs DCC1545M.

	Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series cameras.

	Stages

	Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with Ethernet and USB connection for ANC300, and USB connection for ANC350.

	Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101, K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102 (described at a different page)

	Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational mounts.

	Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport 8742 Picomotor driver using Ethernet or USB connection.

	Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands: Arcus, Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

	Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with USB connection.

	Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25 stepper motor stage.

	SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 controllers are supported. Tested with a standard HCU controller unit and an MCS2 controller with several SLx stages.

	Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

	Basic sensors

	HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

	Ophir: optical power and energy meters. Tested with Ophir Vega.

	Thorlabs: optical power and energy meters. Tested with PM160.

	Lakeshore: temperature sensors. Tested with Lakeshore 218.

	Cryocon: temperature sensors. Tested with CryoCon 14C.

	Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

	Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

	Leybold: pressure gauges. Tested with ITR90 gauge.

	Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

	Thorlabs quadrature detector controller. Tested with TPA101.

	Keithley multimeters. Tested with model 2110.

	Voltcraft multimeters. Tested with VC-7055BT and VC880.

	Lasers

	Basic lasers

	Lighthouse Photonics SproutG

	Laser Quantum Finesse

	M2 Solstis laser and external mixing module

	Toptica iBeam Smart laser

	Sirah Matisse laser

	NKT Photonics lasers

	Tektronix oscilloscopes. Tested with TDS2002B, TDS2004B, and DPO2004B.

	NI DAQs. Tested with NI USB-6008, NI USB-6343, and NI PCIe-6323.

	Generic AWGs. Tested with Agilent 33500 and 33220A, Rigol DG1022, Tektronix AFG1022, GW Instek AFG2225 and AFG2115, and RS Comp AFG21005.

	Andor spectrographs. Tested with Kymera 328i spectrograph connected via an Andor Newton camera through I2C interface.

	Miscellaneous Thorlabs devices: MFF101/102 motorized flip mirror mount, FW102/212 motorized filter wheel, and MDT693/694 high-voltage source.

	Miscellaneous OZOptics devices: EPC04 fiber polarization controller, DD100 motorized fiber attenuator, and TF100 motorized fiber filter.

	Lumel devices: RE72 temperature controller

	Miscellaneous devices

	Conrad relay board

	Basic Arduino communication

	ElektroAutomatik power supplies

	Rigol power supplies

	Mid-level protocols

	Modbus

Cameras

Basic concepts are described at the cameras communication page.

Currently supported cameras:

	Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

	Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ frame grabber.

	Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

	BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with PhotonFocus MV-D1024E camera.

	DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

	NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

	NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

	Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-CL).

	PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and with pco.pixelfly usb cameras.

	Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

	PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

	Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers together with PhotonFocus MV-D1024E camera.

	Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

	Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M and Thorlabs DCC1545M.

	Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series cameras.

Note

General device communication concepts are described on the corresponding page.

Cameras control basics

Basic examples

Basic camera usage is fairly straightforward:

from pylablib import Andor
cam = Andor.AndorSDK3Camera() # connect to the camera
cam.set_exposure(10E-3) # set 10ms exposure
cam.set_roi(0,128,0,128) # set 128x128px ROI in the upper left corner
images = cam.grab(10) # grab 10 frames
cam.close()

In case you need to grab and process frames continuously, the example is a bit more complicated:

with Andor.AndorSDK2Camera() as cam: # to close the camera automatically
 cam.start_acquisition() # start acquisition (automatically sets it up as well)
 while True: # acquisition loop
 cam.wait_for_frame() # wait for the next available frame
 frame=cam.read_oldest_image() # get the oldest image which hasn't been read yet
 # ... process frame ...

Some concepts are explained below in more detail.

Basic concepts

Frames buffer

In most cases, the frames acquired by the camera are first temporarily stored in the local camera and / or frame grabber memory, from which they are transferred to the PC RAM by the camera drivers. Afterwards, this memory is made available to all other applications. In principle, it should be enough to store only the most recent frame in RAM, and for the user software to continuously wait for a new frame, immediately read it from RAM and process it. However, such approach is very demanding to the user code: if the new frame is acquired before the previous one is processed or copied, then the RAM data is overwritten, and the old frame is lost. Hence, it is more practical to have a buffer of several most recently acquired frames to account for inevitable interruptions in the user wait-read-process loop caused by OS scheduling and by other jobs. In this case, the frames get lost only when the buffer is completely filled, and the oldest frames starts getting overwritten.

When using the camera classes provided by pylablib, you do not need to worry about setting up the buffer yourself, since it is done behind the scene either by the manufacturer’s code or by the device class. However, it is important to keep in mind the existence of the buffer when setting up the acquisition, interpreting the buffer and acquired frames status, or identifying the skipped frames.

The size of the buffer can almost always be selected by the user. Typically it is a good idea to have at least 100ms worth of frames there, although, depending on the other jobs performed by the software, it can be larger.

Acquisition setup

Setting up an acquisition process might take a lot of time (up to 10s in more extreme cases). This happens mostly because of the buffer allocation and setting up internal API structures; initiating the acquisition process itself is fairly fast. Hence, it is useful to separate setting up / cleaning up and starting / stopping.

The first two procedures correspond to setup_acquisition and clear_acquisition method, which are slow, but rarely called. Usually, they only need to be invoked right after connecting to the camera, or when the acquired image size is changed (e.g., due to a change in binning or ROI). Since these methods deal with buffer allocation, in almost all cases they take a parameter specifying buffer size (typically called nframes).

The other two procedures correspond to start_acquisition and stop_acquisition methods. These try to be as fast as possible, as they need to be called any time the acquisition is started or stopped, or when minor parameters (frame rate, exposure, trigger mode) are called.

Region of interest (ROI) and binning

Most cameras allow the user to select only a part of the whole sensor for readout and transfer. Since the readout speed is usually the factor limiting the frame rate, selecting smaller ROI frequently lets you achieve higher frame rate. In addition, it also reduces the size of the frame buffer and the data transfer load. Same goes for binning: many cameras can combine values of several consecutive pixels in the same row or column (or both), which results in smaller images and, depending on the camera architecture, higher signal-to-noise ratio compared to binning in post-processing. Much less frequently you can set up subsampling instead of binning, which skips pixels instead of averaging them together.

Both operations depend very strongly on the exact hardware, so there are typically many associated restriction. The most common are minimal sizes in width and height, positions and sizes being factors of some power of 2 (up to 32 for some cameras), or equal binning for both axes. Device classes will typically round the ROI to the nearest allowed value. Furthermore, the scaling of the maximal frame rate with the ROI size is also hardware-dependent; for example, in many sCMOS chips readout speed only depends on the vertical extent, since the readout is done simultaneously for the whole row. In most cases, it takes some experiments to get a hang of the camera behavior.

Exposure and frame rate

Almost all scientific cameras let user change the exposure, typically in a wide range (down to sub-ms). Frequently they also allow to separately change the frame period (inverse of the frame rate). Usually (but not always) the minimal frame period is set by the exposure plus some readout time, which depends on the ROI and some additional parameters such as pixel clock or simultaneous readout mode. Usually exposure takes priority over the frame period, i.e., if the frame period is set too short, it is automatically adjusted. Notable exception from this rule is Uc480 interface, where this dependence in reversed.

Triggering

Usually the cameras will have several different options for triggering, i.e., choosing when to start acquiring a new frame or a new batch of frames. The default option is the internal trigger, which means that the internal timer generates trigger event at a constant rate (frame rate). Many cameras will also take an external trigger signal to synchronize acquisition to external events or other cameras. Typically, a rising edge from 0 to 5V on the input will initiate the frame acquisition, but more exotic options (different polarities or levels, exposure control with pulse width, line-readout trigger) can be present.

Application notes and examples

Here we talk more practically about performing tasks common to most cameras.

Simple acquisition

Frame acquisition is, understandably, the most important part of the camera. Basic acquisition can be done without explicitly setting up the acquisition loop, simply by using ICamera.snap() and ICamera.grab() methods which, correspondingly, grab a single frame or a given number of frames:

from pylablib import Andor
cam = Andor.AndorSDK3Camera() # connect to the camera
img = cam.snap() # grab a single frame
images = cam.grab(10) # grab 10 frames (return a list of frames)
cam.close()

These allow for quick tests of whether the camera works properly, and for occasional frames acquisition. However, these methods have to start and stop acquisition every time they are called, which for some cameras can take about a second. Hence, if continuous acquisition and high frame rate are required, you would need to set up the acquisition loop.

Acquisition loop

A typical simple acquisition loop has already been shown above:

nframes=100 relates to the size of the frame buffer; the acquisition will continue indefinitely
cam.setup_acquisition(mode="sequence", nframes=100) # could be combined with start_acquisition, or kept separate
cam.start_acquisition()
while True: # acquisition loop
 cam.wait_for_frame() # wait for the next available frame
 frame = cam.read_oldest_image() # get the oldest image which hasn't been read yet
 # ... process frame ...
 if time_to_stop:
 break
cam.stop_acquisition()

It relies on 3 sets of methods. First, starting and stopping acquisition using start_acquisition and stop_acquisition. As explained above, one also has an option to setup the acquisition first using setup_acquisition, which makes the subsequent start_acquisition call faster. However, one can also supply the same setup parameters to start_acquisition method, which automatically sets up the acquisition if it is not set up yet, or if any parameters are different from the current ones.

Second are the methods for checking on the acquisition process. The method used above is wait_for_frame, which by default waits until there is at least one unread frame in the buffer (i.e., it exits immediately if there is already a frame available). Its arguments modify this behavior by changing the point from which the new frame is acquired (e.g., from the current call), or the minimal required number of frames. Alternatively, there is a method get_new_images_range, which returns a range of the frame indices which have been acquired but not read. This method allows for a quick check of a number of unread frames without pausing the acquisition.

Finally, there are methods for reading out the frames. The simplest method is read_oldest_image, which return the oldest image which hasn’t been read yet, and marks it as read. A more powerful is the read_multiple_images method, which can return a range of images (by default, all unread images). Both of these methods also take a peek argument, which allows one to read the frames without marking them as read.

Returned frame format

ICamera.read_multiple_images() method described above has several different formats for returning the frames, which can be controlled using ICamera.set_frame_format() and checked ICamera.get_frame_format(). The default format is "list", which returns a list of individual frames. The second possibility is "array", which returns a single 3D numpy array with all the frames. Finally, "chunks" returns a list of 3D arrays, each containing several consecutive frames.

While "chunks" format is the hardest to work with, it provides the best performance. First, it does not require any extra memory copies, which negatively affect performance at very high data rates, above ~1Gb/s. Second, it can combine multiple small frames together into a single array, which makes further processing faster, as it does require explicit Python loop over every frame. This usually becomes important at frames rates above ~10kFPS, where treating each frame as an individual 2D array leads to significant overhead.

Frame indexing

Different areas and libraries adopt different indexing convention for 2D arrays. The two most common ones are coordinate-like xy (the first index is the x coordinate, the second is y coordinate, and the origin is in the lower left corner) and matrix-like ij (the first index is row, the second index is column, the origin is int the upper right corner). Almost all cameras adopt the ij convention. The only exception is Andor SDK2, which uses similar row-column indexing, but counting from the bottom.

By default, the frames returned by the camera are indexed in the preferred convention, to reduce the overhead on re-indexing the frames. It is possible to check and change it using ICamera.get_image_indexing() and ICamera.set_image_indexing() methods:

>> cam.set_roi(0,256,0,128) # 256px horizontally, 128 vertically
>> cam.snap().shape # 128 rows, 256 columns
(128, 256)
>> cam.set_image_indexing("xyb") # standard xy indexing, starting from the bottom
>> cam.snap().shape
(256, 128)

ROI, detector size and frame shape

Both ROI and binning are controlled by one pair of methods get_roi and set_roi which, depending on whether camera supports binning, take (and return) 4 or 6 arguments: start and stop positions of ROI along both axes and, optionally, binning along the axes:

cam.set_roi(0,128,0,256) # set 128x256px (width x height) ROI in the (typically) upper left controller
cam.set_roi(0,128) # set roi with 128px width and full height (non-supplied arguments take extreme values)
cam.set_roi(0,128,0,128,2,2) # set 128x128px ROI with 2x2 binning; the resulting image size is 64x64

Regardless of the frame indexing, the first pair of arguments always controls horizontal span, the second pair controls vertical span, and the last pair controls horizontal and vertical binning (if applicable).

In addition, there is a couple of methods to acquire the detector and frame size. The first method is get_detector_size. It always returns the full camera detector size as a tuple (width, height) and, therefore, is not affected by ROI, binning, and indexing. The second method is get_data_dimensions, which returns the shape of the returned frame given the currently set up indexing. The results of this method do depend on the ROI, binning, and indexing:

>> cam.get_detector_size() # (width, height)
(2560, 1920)
>> cam.get_data_dimensions() # (rows, columns), i.e., (height, width)
(1920, 2560)

>> cam.set_roi(0,256,0,128,2,2) # 256px horizontally, 128 vertically, 2x2 binning
>> cam.get_detector_size() # unaffected
(2560, 1920)
>> cam.get_data_dimensions() # depends on ROI
(64, 128)

>> cam.set_image_indexing("xyb")
>> cam.get_detector_size() # unaffected
(2560, 1920)
>> cam.get_data_dimensions() # depends on indexing
(128, 64)

Exposure and frame period

In pylablib these parameters are normally controlled by get_exposure/set_exposure and, correspondingly get_frame_period/set_frame_period methods. In addition, get_frame_timings method provides an overview of all the relevant times. Exposure typically takes priority over frame period: if the frame period is set too small, it becomes the smallest possible for the given exposure; at the same time, if the exposure is set too big, it is still applied, and the frame period becomes the smallest possible with this exposure:

>> cam.get_frame_timings() # frame period is a usually bit larger due to the readout time
TAcqTimings(exposure=0.1, frame_period=0.12)

>> cam.set_exposure(0.01)
>> cam.get_frame_timings() # smaller exposure is still compatible with this frame period
TAcqTimings(exposure=0.01, frame_period=0.12)

>> cam.set_frame_period(0) # effectively means "set the highest possible frame rate"
>> cam.get_frame_timings()
TAcqTimings(exposure=0.01, frame_period=0.03)

>> cam.set_exposure(0.2)
>> cam.get_frame_timings() # frame period is increased accordingly
TAcqTimings(exposure=0.2, frame_period=0.22)

There are exceptions for some camera types, which are discussed separately.

Camera attributes

Some camera interfaces, e.g., Thorlabs Scientific Cameras, PCO SC2, or NI IMAQ are fairly specific, and only apply to a handful of devices with very similar capabilities. In this case, pylablib usually attempts to implement as much of the functionality as possible given the available hardware, and to present it via the camera object methods.

In other cases, e.g., NI IMAQdx, Andor SDK3, or DCAM, the same interface deals with many fairly different cameras. This is especially true for IMAQdx, which covers hundreds of cameras from dozens of manufacturers, all with very different capabilities and purpose. Since managing such cameras can not usually be conformed to a small set of functions, it is implemented through camera attributes mechanism. That is, for each camera the interface defines a set of attributes (sometimes also called properties or features), which can be queried or set by their names, and whose exact meaning and possible values depend on the specific camera.

Typically, cameras dealing with attributes will implement IAttributeCamera.get_attribute_value() and IAttributeCamera.set_attribute_value() for querying and setting the attributes, as well as dictionary-like .cav (stands for “camera attribute value”) interface to do the same thing:

>> cam = Andor.AndorSDK3Camera()
>> cam.get_attribute_value("CameraAcquiring") # check if the camera is acquiring
0
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_value("ExposureTime")
0.1

Additionally, there are IAttributeCamera.get_all_attribute_values() and IAttributeCamera.set_all_attribute_values() which get and set all camera attributes (possibly only within the given branch, if camera attributes form a hierarchy). Finally, methods IAttributeCamera.get_attribute() and IAttributeCamera.get_all_attributes(), together with the corresponding .ca interface, allow to query specific attribute objects, which provide additional information about the attributes: whether they are writable or readable, their range, description, possible values, types, etc.:

>> cam = DCAM.DCAMCamera()
>> attr=cam.ca["EXPOSURE TIME"] # get the exposure attribute
DCAMAttribute(name='EXPOSURE TIME', id=2031888, min=0.001, max=10.0, unit=1)
>> attr.max
10.0
>> attr.set_value(0.1) # same as cam.set_attribute_value("EXPOSURE TIME", 0.1)

Note that, depending on the camera, the attribute properties (especially minimal and maximal value) can depend on the other camera attributes. For example, minimal exposure can depend on the frame size:

>> cam = DCAM.DCAMCamera()
>> attr=cam.ca["EXPOSURE TIME"] # get the exposure attribute
DCAMAttribute(name='EXPOSURE TIME', id=2031888, min=0.001, max=10.0, unit=1)
>> attr.min
0.001
>> cam.set_roi(0, 0, 0, 0) # set the minimal possible ROI
(0, 4, 0, 4, 1, 1)
>> attr.min # minimal value hasn't been updated yet
0.001
>> attr.update_limits() # update the property limits
>> attr.min # now the minimal possible exposure is smaller
7.795e-05

If the documentation is not available (as is the case for, e.g., some IMAQdx cameras), the best way to learn about the attributes is to use the native software (whenever available) to modify camera settings and then check how the attributes change. Besides that, it is always useful to check attribute description (available for IMAQdx parameter), their range, and the available values for enum attributes.

Trigger setup

The trigger is usually set up using set_trigger_mode method, although it might be different if more specialized modes are used. When external trigger is involved, most of the code (such as acquisition set up and start) stays the same. The only difference is the rate at which the frames are generated:

frame = cam.snap() # starts acquiring immediately, returns after a single frame
cam.set_trigger_mode("ext") # set up the trigger mode
frame = cam.snap()
after cam.snap() is called, the execution will wait
for an external trigger pulse to acquire the frame and return

Frame metainfo

Many cameras supply additional information together with the frames. Most frequently it contains the internal framestamp and timestamp (which are useful for tracking missing frames), but sometimes it also includes additional information such as frame size or location, status, or auxiliary input bits. To get this information, you can supply the argument return_info=True to the read_multiple_images method. In this case, instead of a single list of frames, it will return a tuple of two lists, where the second list contains this metainfo.

There are several slightly different metainfo formats, which can be set using ICamera.set_frame_info_format() method. The default representation is a (possibly nested) named tuple, but it is also possible to represent it as a flat list, flat dictionary, or a numpy array. The exact structure and values depend on the camera.

Keep in mind, that for some camera interfaces (e.g., Uc480 or Silicon Software) obtaining the additional information might take relatively long, even longer than the proper frame readout. Hence, at higher frame rates it might become a bottleneck, and would need to be turned off.

Related projects

Pylablib cam-control [https://github.com/AlexShkarin/pylablib-cam-control] is a standalone software package which builds on camera classes included in pylablib. It provides an easy way to detect and control many different cameras and acquire their data. In addition, it supports custom on-line image processing, flexible data acquisition, and control by external software using a TCP/IP server.

Currently supported cameras

	Andor SDK2 and Andor SDK3: variety of Andor (currently part of Oxford Instruments) cameras. Tested with Andor iXon, Luca, Newton, Zyla, Neo and Marana.

	Allied Vision Bonito cameras: CameraLink-interfaced cameras. Tested with Bonito CL-400B/C and NI IMAQ frame grabber.

	Basler: Basler pylon-compatible cameras. Tested with an emulated Basler camera.

	BitFlow: BitFlow Axion family frame grabbers. Tested with BitFlow Axion 1xB frame grabber together with PhotonFocus MV-D1024E camera.

	DCAM: Hamamatsu cameras. Tested with Hamamatsu Orca Flash 4.0 and ImagEM.

	NI IMAQ: National Instruments frame grabbers. Tested with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

	NI IMAQdx: National Instruments universal camera interface. Tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

	Photon Focus: Photon Focus pfcam interface. Tested with PhotonFocus MV-D1024E camera connected through either NI frame grabbers (PCI-1430 and PCI-1433) or Silicon Software frame grabbers (microEnable IV AD4-CL).

	PCO SC2: PCO cameras. Tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and with pco.pixelfly usb cameras.

	Picam: Princeton Instruments cameras. Tested with a PIXIS 400 camera.

	PVCAM: Photometrics cameras. Tested with a Prime 95B camera.

	Silicon Software: Silicon Software frame grabbers. Tested with microEnable IV AD4-CL frame grabbers together with PhotonFocus MV-D1024E camera.

	Thorlabs Scientific Cameras: Thorlabs sCMOS cameras. Tested with Thorlabs Kiralux camera.

	Uc480/uEye: multiple cameras, including simple Thorlabs and IDS cameras. Tested with IDS SC2592R12M and Thorlabs DCC1545M.

	Mightex: several different USB camera types with different APIs. Implemented and tested only for S-series cameras.

Note

General camera communication concepts are described on the corresponding page

Andor cameras

Andor implements two completely separate interfaces for different cameras. The older one, called SDK2, or simply SDK, provides interface for the older cameras: iXon, iKon, iStart, iDus, iVac, Luca, Newton. The details of this SDK are available in the manual [https://andor.oxinst.com/downloads/uploads/Andor_Software_Development_Kit_2.pdf].

The newer SDK, called SDK3, covers newer cameras: Zyla, Neo, Apogee, Sona, Marana, and Balor. The manual [https://andor.oxinst.com/downloads/uploads/Andor_SDK3_Manual.pdf] describes the cameras and capabilities in more details.

The required DLLs are distributed with Andor Solis [https://andor.oxinst.com/products/solis-software/] or the corresponding Andor SKD [https://andor.oxinst.com/products/software-development-kit/]. In most cases, you have Andor Solis already installed to provide the drivers and to communicate with the cameras to begin with.

Andor SDK 2

This is an older SDK, which mainly involves older cameras. It has been tested with Andor iXon, Luca, and Newton.

The code is located in pylablib.devices.Andor, and the main camera class is pylablib.devices.Andor.AndorSDK2Camera.

Software requirements

The required DLL can have different names depending on the Solis version and SDK bitness. For 64-bit version it will be called atmcd64d.dll or atmcd64d_legacy.dll. For 32-bit version, correspondingly, atmcd32d.dll or atmcd32d_legacy.dll. By default, library searches for DLLs in Andor Solis and Andor SDK folder in Program Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/andor_sdk2:

import pylablib as pll
pll.par["devices/dlls/andor_sdk2"] = "path/to/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK2Camera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run Andor.get_cameras_number_SDK2:

>> from pylablib.devices import Andor
>> Andor.get_cameras_number_SDK2()
2
>> cam1 = Andor.AndorSDK2Camera(idx=0)
>> cam2 = Andor.AndorSDK2Camera(idx=1)
>> cam1.close()
>> cam2.close()

Warning

It is important to close all camera connections before finishing your script. Otherwise, DLL resources might become permanently blocked, and the only way to solve it would be to restart the PC.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	Since the manufacturer DLLs do not provide methods to get most of the camera parameters (such as exposure or ROI), it is impossible to know them when connecting the camera. To get around it, the camera is put into a “default” state any time the connection is opened.

	When applicable, it is important to properly set the cooling setpoint and the fan mode. By default, the fan is turned off, and the cooling is set to the 20’th percentile of the whole range (e.g., -80C for Andor iXon). It is possible to pass these parameters on camera creation:

cam = Andor.AndorSDK2Camera(temperature=-50, fan_mode="on")

	Often cameras have a lot of different readout parameters: channel, amplifier, vertical and horizontal scan speed, etc. These parameters greatly affect the camera sensitivity and readout speed. Upon the connection, the parameter are typically set to the slowest mode. To get the list of all possible parameter combinations, you can use AndorSDK2Camera.get_all_amp_modes() and AndorSDK2Camera.get_max_vsspeed(). Afterwards, you can set them using AndorSDK2Camera.set_amp_mode() and AndorSDK2Camera.set_vsspeed().

	The default shutter parameter is "closed". This preserves camera from possible high illumination, but can lead to confusion, if you expect to see some image.

	This SDK does not allow for specifying number of frames in the frames buffer. However, the parameters chosen by the SDK are usually reasonable (at least a second worth of acquisition).

	Some cameras (e.g., iXon) have lots of readout (full frame, ROI, full vertical binning, etc.) and acquisition modes (single, continuous, accumulating, kinetic cycle, etc.). They are described in details in the manual [https://andor.oxinst.com/downloads/uploads/Andor_Software_Development_Kit_2.pdf].

Andor SDK 3

This is a newer SDK, which covers the newer cameras. It has been tested with Andor Zyla, Neo and Marana.

The code is located in pylablib.devices.Andor, and the main camera class is pylablib.devices.Andor.AndorSDK3Camera.

Software requirements

This library requires several DLLs all located in the same folder: atcore.dll, atblkbx.dll, atcl_bitflow.dll, atdevapogee.dll, atdevregcam.dll, atusb_libusb.dll, atusb_libusb10.dll. Same as for SDK2, pylablib looks for DLLs in Andor Solis and Andor SDK3 folders in Program Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. A custom DLLs path can be specified using the library parameter devices/dlls/andor_sdk3:

import pylablib as pll
pll.par["devices/dlls/andor_sdk3"] = "path/to/SDK3/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK3Camera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run Andor.get_cameras_number_SDK3:

>> from pylablib.devices import Andor
>> Andor.get_cameras_number_SDK3()
2
>> cam1 = Andor.AndorSDK3Camera(idx=0)
>> cam2 = Andor.AndorSDK3Camera(idx=1)
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is also relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	The SDK also provides a universal interface for getting and setting various camera attributes (called “features” in the documentation) using their name. You can use AndorSDK3Camera.get_attribute_value() and AndorSDK3Camera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = Andor.AndorSDK3Camera()
>> cam.get_attribute_value("CameraAcquiring") # check if the camera is acquiring
0
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_value("ExposureTime")
0.1

Some values serve as commands; these can be invoked using AndorSDK3Camera.call_command() method. To see all available attributes, you can call AndorSDK3Camera.get_all_attributes() to get a dictionary with attribute objects, and AndorSDK3Camera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: their kind, whether they are implemented, readable, or writable, what are their limits or possible values, etc:

>> cam = Andor.AndorSDK3Camera()
>> attr = cam.get_attribute("SensorTemperature")
>> attr.readable
True
>> attr.writable
False
>> (attr.min, attr.max)
(-100.0, 50.0)

The description of the attributes is given in manual [https://andor.oxinst.com/downloads/uploads/Andor_SDK3_Manual.pdf].

	USB cameras can, in principle, generate data at higher rate than about 320Mb/s that the USB3 bus supports. For example, Andor Zyla with 16 bit readout has a single full frame size of 8Mb, which puts the maximal USB throughput at about 40FPS. At the same time, the camera itself is capable of reading up to 100FPS at the full frame. Hence, it is possible to overflow the camera internal buffer (size on the order of 1Gb) regardless of the PC performance. If this happens, the acquisition process halts and needs to be restarted. You can check the number of buffer overflows using AndorSDK3Camera.get_missed_frames_status(), and reset this counter using AndorSDK3Camera.reset_overflows_counter(); the counter is also automatically resets on acquisition clearing, but not stopping.

Furthermore, the class implements different strategies when encountering overflow while waiting for a new frame. The specific strategy is selected using AndorSDK3Camera.set_overflow_behavior(), and it can be "error" (raise AndorFrameTransferError, which is the default behavior), "restart" (restart the acquisition and immediately raise timeout error), or "ignore" (ignore the overflow, which will eventually lead to a timeout error, as the new frames are no longer generated).

Note

General camera communication concepts are described on the corresponding page.

Allied Vision Bonito cameras

Allied Vision manufactures a variety of cameras with different interfaces: USB, GigE, and CameraLink. Currently, only CameraLink Bonito cameras using NI IMAQ frame grabber are supported. It has been tested with Bonito CL-400B/C and NI IMAQ frame grabber.

The code is located in pylablib.devices.AlliedVision, and the main camera class is pylablib.devices.AlliedVision.BonitoIMAQCamera.

Software requirements

Since the camera control is done purely through the frame grabber interface, the requirements are the same as for generic IMAQ cameras. However, the correct camera file still needs to be specified to determine the correct serial communication parameters (especially the termination character)

Connection

The cameras are identified by their name, which usually looks like "img0". To get the list of all cameras, you can use NI MAX (Measurement and Automation Explorer), or IMAQ.list_cameras():

>> from pylablib.devices import IMAQ, AlliedVision
>> IMAQ.list_cameras()
['img0']
>> cam = AlliedVision.BonitoIMAQCamera('img0')
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	Bonito.BonitoIMAQCamera supports all of IMAQ.IMAQCamera features, such as trigger control and fast buffer acquisition. Some methods have been modified to make them more convenient: e.g., Bonito.BonitoIMAQCamera.set_roi() method sets the camera ROI and automatically adjusts the frame grabber ROI to match.

	Internally the camera only supports vertical ROI (number of rows), so the horizontal ROI is set via the frame grabber. This means that regardless of the horizontal ROI settings the whole rows are always transmitted between the camera and the frame grabber, so it does not affect, e.g., the maximal frame rate.

	The camera supports a status line, which replaces the first 8 pixels in the upper row encoded frame number. You can use AlliedVision.Bonito.get_status_lines() function to identify and extract the data in the status lines from the supplied frames. Note that due to the full row transfer mentioned earlier, the status line is only available if the horizontal ROI span starts from zero; otherwise, it will be partially or completely cut off.

	You can use the function AlliedVision.Bonito.check_grabber_association() to check if the given IMAQ camera is a Bonito model by sending several standard Bonito commands and checking replies.

Note

General camera communication concepts are described on the corresponding page

Basler cameras interface

Basler manufactures a wide variety of cameras, which implement GenICam-based interface through its pylon API. It has been tested with pylon-provided emulated camera.

The code is located in pylablib.devices.Basler, and the main camera class is pylablib.devices.Basler.BaslerPylonCamera.

Software requirements

These cameras require PylonC_vX_Y.dll (where X and Y is the pylon version, e.g., PylonC_V7_1.dll), which is installed with the freely available upon registration Basler pylon Camera Software Suite [https://www.baslerweb.com/en/downloads/software-downloads/] (the current latest version is 7.1.0 [https://www.baslerweb.com/en/downloads/software-downloads/software-pylon-7-1-0-windows/]). After installation, the path to the DLL (for pylon 7.1.0 located by default in Basler/pylon 7/Runtime/x64 folder in Program Files) is automatically added to system PATH variable, which is one of the places where pylablib looks for it by default. If the DLLs are located elsewhere, the path (either to the DLL file, or to the containing folder) can be specified using the library parameter devices/dlls/basler_pylon:

import pylablib as pll
pll.par["devices/dlls/basler_pylon"] = "path/to/dlls"
from pylablib.devices import Basler
cam = Basler.BaslerPylonCamera()

Connection

The cameras are identified either by their index among the present cameras (starting from 0), or by their name. To get the list of all cameras, you can use pylon Viewer, or Basler.list_cameras:

>> from pylablib.devices import Basler
>> Basler.list_cameras()
[TCameraInfo(name='Emulation (0815-0000)', model='Emulation', serial='0815-0000', devclass='BaslerCamEmu', devversion='', vendor='Basler', friendly_name='Basler Emulation (0815-0000)', user_name='', props={'DeviceFactory': 'CamEmu/BaslerCamEmu 7.1.0.19126', 'InterfaceID': 'DefaultInterface', 'TLType': 'CamEmu'})]
>> cam = Basler.BaslerPylonCamera() # by default, connect to the first available camera
>> cam.close()
>> cam = Basler.BaslerPylonCamera(name="Emulation (0815-0000)")
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can use BaslerPylonCamera.get_attribute_value() and BaslerPylonCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = Basler.BaslerPylonCamera()
>> cam.get_attribute_value("StatusInformation/AcqInProgress") # check if the camera is acquiring
0
>> cam.set_attribute_value("Width", 512) # set the ROI width to 512px
>> cam.cav["Width"] # get the exposure; could also use cam.get_attribute_value("Width")
512

To see all available attributes, you can call BaslerPylonCamera.get_all_attributes() to get a dictionary with attribute objects, and BaslerPylonCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, enum, string, etc.), range (either numerical range, or selection of values for enum attributes), description string, etc.:

>> cam = Basler.BaslerPylonCamera()
>> attr = cam.get_attribute("Width")
>> attr.description
'This value sets the width of the area of interest in pixels.'
>> attr.writable
True
>> (attr.min, attr.max)
(1, 4096)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI (without binning), acquisition status, and exposure (if present). For many specific cameras you might need to explore the attributes tree (either using the Python class and, e.g., a console, or via pylon Viewer) and operate them directly in your code.

Known issues

	Currently only the basic unpacked monochrome pixel formats are supported: Mono8, Mono10, Mono12, Mono16, and Mono32. The reason is that even nominally well-defined types (e.g., Mono12Packed) have different formats for different cameras. Currently any unsupported format will raise an error on readout by default. It it still possible to read these out as raw frame data in the form of 1D or 2D numpy 'u1' array by enabling raw frame readout using BaslerPylonCamera.enable_raw_readout() method:

>> cam = Basler.BaslerPylonCamera()
>> cam.get_detector_size() # 1024px x 1024px frame
(1024, 1024)
>> cam.set_attribute_value("PixelFormat", "BGRA8Packed") # unsupported format
>> cam.snap().shape
...
BaslerError: pixel format BGRA8Packed is not supported
>> cam.enable_raw_readout("frame") # frame data is returned as a flat array
>> cam.snap().shape # 1024 * 1024 * 4 = 4194304 bytes
(1, 4194304)

Note

General camera communication concepts are described on the corresponding page

BitFlow Axion frame grabbers interface

BitFlow manufacturers several kinds of camera interface cards, including CameraLink. Currently, only newer CameraLink Axion family is supported. It has been tested with NI BitFlow Axion 1xB frame grabbers together with PhotonFocus MV-D1024E camera.

The code is located in pylablib.devices.BitFlow, and the main camera class is pylablib.devices.BitFlow.BitFlowCamera.

Software requirements

This interfaces requires two pieces of software, both freely available on the BitFlow website [https://www.bitflow.com/current-downloads/]. First, you need BitFlow SDK 6.5 [https://www.bitflow.com/downloads/bfsdk65.zip], which also includes all the necessary drivers. The free version does not provide any headers and documentation to the DLLs, so yo use it you also need to install the manufacturer-provided Python packages, either for Python 3.6.6 [https://www.bitflow.com/downloads/BFPython36_Release.zip], or for Python 3.8.10 [https://www.bitflow.com/downloads/BFPython38_Release.zip]. Note that only these two Python versions are officially supported.

After installation, the DLL locations are automatically added to the PATH environment variable. To facilitate proper package import and DLL loading on Python 3.8, it is recommended to install BitFlow SDK into its default library, or at least leave BitFlow in the folder name.

Connection

The cameras are identified by their index, starting from 0. To get the list of all cameras, you can use BitFlow.list_cameras():

>> from pylablib.devices import BitFlow
>> cam = BitFlow.BitFlowCamera(bitflow_idx=0)
>> cam.close()

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

	ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512. Any attempts to set it higher result in the frozen acquisition, as the frame grabber expects a larger frame than it receives, and waits forever to get the rest.

Fast buffer readout and frames merging

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations (resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using BitFlowCamera.set_frame_format() method to set frames format to "chunks". In this case, instead of a list of individual frames (which is the standard behavior), the method returns list of chunks of varying size, which contain several consecutive frames.

On top of that, due to unavoidable Python loop required by the BitFlow Python interface, the frame rate is usually limited to about 2-4kFPS. However, there is a way to overcome this by merging n consecutive frames to a single “super-frame” with n times larger height. This merging can be specified by frame_merge parameter in the BitFlowCamera.setup_acquisition() or BitFlowCamera.start_acquisition() methods (by default it is 1, meaning no merging). Adjusting the frame grabber ROI and splitting the resulting files is done transparently for the user; the only difference is that frames always arrive in batches, e.g., with frame_merge=10 and 10FPS rate the frames will arrive once a second in batches of 10. Therefore, it makes sense to adjust the merging to keep the “merged” frame rate high enough for real-time operations but lower than the 2kFPS limit (e.g., around 100FPS).

Communication with the camera and camera files

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts, aux lines mapping, etc. This information is contained in the so-called camera files, which for Axion cameras have .bfml extension. These files can be assigned to cameras using SysReg utility located in the Bin64 folder of your BitFlow installation (by default, C:\BitFlow SDK 6.5\Bin64).

In addition, due to limitations of the provided Python interfaces, some operations such as changing ROI and bitness can only be done by altering the camera file. Hence, there is an option to create a temporary camera file and alter it to control these parameters. However, it needs the original camera file to serve as a template (this original file is only used as source and not modified). Since there is no possibility to get a path to this file within the Python interface, it should be provided using camfile parameter upon creation.

Known issues

	As mentioned above, ROI is defined within a frame transferred by the camera. Hence, if it includes pixels with positions outside of the transferred frame, the acquisition will time out. For example, suppose the camera sensor is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber is concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI (i.e., 512x512 starting at 256,256), it will expect at least 768x768px frame. Since the frame is, actually, 512x512px, the acquisition will time out. The correct solution is to set frame grabber ROI from 0 to 512px on both axes. In general, it is a good idea to always follow this pattern: control ROI only on camera, and always set frame grabber ROI to cover the whole transfer frame.

Note

General camera communication concepts are described on the corresponding page.

DCAM cameras interface

DCAM is the interface used in Hamamatsu cameras. It has been tested with Hamamatsu Orca Flash and ImagEM.

The code is located in pylablib.devices.DCAM, and the main camera class is pylablib.devices.DCAM.DCAMCamera.

Software requirements

These cameras require dcamapi.dll, which is installed with most of Hamamatsu software (such as HoKaWo or HiPic), as well as with the freely available DCAM API [https://dcam-api.com/], which also includes all the necessary drivers. Keep in mind, that you also need to install the drivers for required corresponding camera type (USB, Ethernet, IEEE 1394). These drivers are in the same installer, but need to be installed separately. You should also pay attention to the cameras supported by the given DCAM driver version, since newer version do not support older cameras (e.g., ImageEM C9100 cameras are only supported up to version 15). After installation, the DLL is automatically added to the System32 folder, where pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/dcamapi:

import pylablib as pll
pll.par["devices/dlls/dcamapi"] = "path/to/dlls"
from pylablib.devices import DCAM
cam = DCAM.DCAMCamera()

Connection

The cameras are identified by their index, starting from zero. To get the total number of cameras, you can run DCAM.get_cameras_number():

>> from pylablib.devices import DCAM
>> DCAM.get_cameras_number()
2
>> cam1 = DCAM.DCAMCamera(idx=0)
>> cam2 = DCAM.DCAMCamera(idx=1)
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for getting and setting various camera attributes (called “properties” in the documentation) using their name. You can use DCAMCamera.get_attribute_value() and DCAMCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = DCAM.DCAMCamera()
>> cam.get_attribute_value("BINNING") # get the camera binning (no binning, by default)
1
>> cam.set_attribute_value("EXPOSURE TIME", 0.1) # set the exposure to 100ms
>> cam.cav["EXPOSURE TIME"] # get the exposure; could also use cam.get_attribute_value("EXPOSURE TIME")
0.1

To see all available attributes, you can call DCAMCamera.get_all_attributes() to get a dictionary with attribute objects, and DCAMCamera.get_all_attribute_values() to get the dictionary of attribute values, with an option of representing enum attributes either as text or as integer values. The attribute objects provide additional information: attribute range, step, and units:

>> cam = DCAM.DCAMCamera()
>> attr = cam.get_attribute("EXPOSURE TIME")
>> (attr.min, attr.max)
(0.001, 10.0)

Additionally, there’s a couple of differences from the standard libraries worth highlighting:

	The library supports only symmetric binning, i.e., the binning factor is the same in both directions. For compatibility DCAMCamera.get_roi() and DCAMCamera.set_roi() still return and accept both binning parameters independently, but they are always the same when returned, and vbin is ignored when set.

	By default, the SDK does not provide independent control of the frame period and the exposure. Hence, set_frame_period method is unavailable, and the frame rate is defined solely by the exposure.

Note

General camera communication concepts are described on the corresponding page

NI IMAQ frame grabbers interface

NI IMAQ is the interface from National Instruments, which is used in a variety of frame grabbers. It has been tested with NI PCI-1430 and PCI-1433 frame grabbers together with PhotonFocus MV-D1024E camera.

The code is located in pylablib.devices.IMAQ, and the main camera class is pylablib.devices.IMAQ.IMAQCamera.

Software requirements

This interfaces requires imaq.dll, which is installed with the freely available Vision Acquisition Software [https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html], which also includes all the necessary drivers. After installation, the DLL is automatically added to the System32 folder, where pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/niimaq:

import pylablib as pll
pll.par["devices/dlls/niimaq"] = "path/to/dlls"
from pylablib.devices import IMAQ
cam = IMAQ.IMAQCamera()

Connection

The cameras are identified by their name, which usually looks like "img0". To get the list of all cameras, you can use NI MAX (Measurement and Automation Explorer), or IMAQ.list_cameras():

>> from pylablib.devices import IMAQ
>> IMAQ.list_cameras()
['img0', 'img1']
>> cam1 = IMAQ.IMAQCamera('img0')
>> cam2 = IMAQ.IMAQCamera('img1')
>> cam1.close()
>> cam2.close()

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

	External trigger controls frame transfer, not frame acquisition, which is defined by the camera. By default, when the internal frame grabber trigger is used, the frame grabber transfer rate is synchronized to the camera, so every frame gets transferred. However, if the external transfer trigger is used and it is out of sync with the camera, it can result in duplicate or missing frames.

	ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512. Any attempts to set it higher result in the frozen acquisition, as the frame grabber expects a larger frame than it receives, and waits forever to get the rest.

The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can use IMAQCamera.get_grabber_attribute_value() and IMAQCamera.set_grabber_attribute_value() for that:

>> cam = IMAQ.IMAQCamera()
>> cam.get_grabber_attribute_value("FRAMEWAIT_MSEC") # frame read request timeout
1000

To get a all available attributes as a dictionary, you can call IMAQCamera.get_all_grabber_attribute_values(). Their meaning, as well as descriptions of trigger modes and other settings, is explained in the manual supplied with the Vision Acquisition Software [https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html].

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations (resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using IMAQCamera.set_frame_format() method to set frames format to "chunks" (former way of supplying fastbuff=True in IMAQCamera.read_multiple_images() is now deprecated). In this case, instead of a list of individual frames (which is the standard behavior), the method returns list of chunks about 1Mb in size, which contain several consecutive frames.

Communication with the camera and camera files

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts, aux lines mapping, etc. In NI MAQ this information is contained in the so-called camera files. These files can be assigned to cameras in the NI MAX, and are usually supplied by NI or by the camera manufacturer. In addition, NI MAX allows one to adjust some settings within these files, which are read-only within the NI IMAQ software. These include frame timeout and camera bit depth.

The communication with the camera itself greatly varies between different cameras. Some will have additional connection to control the parameters. Others use serial communication built into the CameraLink interface. This communication can be set up with IMAQCamera.setup_serial_params() and used via IMAQCamera.serial_read() and IMAQCamera.serial_write(). The communication protocols are camera-dependent, and are frequently described in the camera manual. However, some other cameras (e.g., Photon Focus) use proprietary communication protocol. In this case, they provide their own DLLs, which independently use NI-provided DLLs for serial communication (most notably, clallserial.dll) to communicate with the camera. In this case, one needs to maintain two independent connections: one directly to the NI frame grabber to obtain the frame data, and one to the manufacturer library to control the camera. This is the way it is implemented in PhotonFocus camera interface.

Known issues

	Sometimes when the acquisition is stopped and restarted without being cleared, the acquired frame counter does not refresh. This might show up as the software not reporting any new frames. It has been tracked down to a very low (~1ms) frame read timeout. Hence, it is recommended to keep this timeout at least at 500ms.

	If you are unable to access full camera sensor size, check the camera file (it can be opened in the text editor). MaxImageSize parameter defines the maximal allowed image size, and it should be equal to the camera sensor size.

	Same goes for bitness. If the camera bitness is higher than set up in the frame grabber, a single camera pixel gets treated as several pixels by the frame grabber, typically resulting in 1px-wide vertical stripes on the image. In the opposite case, the frame grabber expects more bytes than the camera sends, it never receives the full frame, and the acquisition times out.

	Keep in mind that as long as the frame grabber is accessed in NI MAX, it is blocked from use in any other software. Hence, you need to close NI MAX before running your code.

	As mentioned above, ROI is defined within a frame transferred by the camera. Hence, if it includes pixels with positions outside of the transferred frame, the acquisition will time out. For example, suppose the camera sensor is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber is concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI (i.e., 512x512 starting at 256,256), it will expect at least 768x768px frame. Since the frame is, actually, 512x512px, the acquisition will time out. The correct solution is to set frame grabber ROI from 0 to 512px on both axes. In general, it is a good idea to always follow this pattern: control ROI only on camera, and always set frame grabber ROI to cover the whole transfer frame.

	Some frame grabbers have a limit on the data transfer rate (for one model observed to be about 200 Mb/s). If the camera data generation rate exceeds it (e.g., it produces 1024x1024px 16-bit frames at >100FPS), then the camera will raise IMG_ERR_FIFO error shortly after the acquisition start. In this case, you will need to reduce the data rate by reducing the frame rate or frame size (through ROI, binning, or bitness).

Note

General camera communication concepts are described on the corresponding page

NI IMAQdx cameras interface

NI IMAQdx is the interface provided by National Instruments and which supports a wide variety of cameras. It is completely separate from IMAQ, and it supports different communication interfaces: USB, Ethernet and FireWire. It has been tested with Ethernet-connected PhotonFocus HD1-D1312 camera.

The code is located in pylablib.devices.IMAQdx, and the main camera class is pylablib.devices.IMAQdx.IMAQdxCamera.

Software requirements

These cameras require imaqdx.dll, which is installed with the freely available Vision Acquisition Software [https://www.ni.com/en-us/support/downloads/drivers/download.vision-acquisition-software.html]. However, the IMAQdx part of the software is proprietary, and requires purchase to use. If the software license is invalid, then any attempt to communicate with cameras will result in License not activated error (although simply listing the cameras still works). After installation, the DLL is automatically added to the System32 folder, where pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/niimaqdx:

import pylablib as pll
pll.par["devices/dlls/niimaqdx"] = "path/to/dlls"
from pylablib.devices import IMAQdx
cam = IMAQdx.IMAQdxCamera()

Connection

The cameras are identified by their name, which usually looks like "cam0". To get the list of all cameras, you can use NI MAX (Measurement and Automation Explorer), or IMAQdx.list_cameras():

>> from pylablib.devices import IMAQdx
>> IMAQdx.list_cameras()
['cam0', 'cam1']
>> cam1 = IMAQdx.IMAQdxCamera('cam0')
>> cam2 = IMAQdx.IMAQdxCamera('cam1')
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can use IMAQdxCamera.get_attribute_value() and IMAQdxCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_attribute_value("StatusInformation/AcqInProgress") # check if the camera is acquiring
0
>> cam.set_attribute_value("Width", 512) # set the ROI width to 512px
>> cam.cav["Width"] # get the exposure; could also use cam.get_attribute_value("Width")
512

To see all available attributes, you can call IMAQdxCamera.get_all_attributes() to get a dictionary with attribute objects, and IMAQdxCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, enum, string, etc.), range (either numerical range, or selection of values for enum attributes), description string, etc.:

>> cam = IMAQdx.IMAQdxCamera()
>> attr = cam.get_attribute("Width")
>> attr.description
'Width of the Image provided by the device (in pixels).'
>> attr.writable
True
>> (attr.min, attr.max)
(448, 1312)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI (without binning) and acquisition status. For many specific cameras you might need to explore the attributes tree (either using the Python class and, e.g., a console, or via NI MAX) and operate them directly in your code.

Known issues

	It seems like sometimes the camera communication settings might be interfering with its operation. It can show up in an unexpected way, e.g., as an Attribute value is out of range error when starting acquisition. If it looks like this might be the case, it is a good idea to open the camera in NI MAX (note that Ethernet cameras are listed under Network Devices, not in the general device list) and try to snap a single frame. NI MAX might report some problems with the settings and suggest resolution methods. Once the camera is operational, you can close NI MAX and save the camera settings (request is shown upon closing).

	In general, Ethernet cameras work better with larger packet sizes. However, packets above 1500 bits (so-called jumbo packets) are not supported by all network adapters by default. If this is the case, any attempt to acquire images causes IMAQdxErrorTestPacketNotReceived error. One way to deal with that is to set the packet size to 1500, which is done automatically when small_packet=True is supplied upon the camera creation. The other is to enable jumbo packets in the adapter properties (in Windows this is done in Device Manager).

	Currently only the basic unpacked monochrome pixel formats are supported: Mono8, Mono10, Mono12, Mono16, and Mono32. The reason is that even nominally well-defined types (e.g., Mono12Packed) have different formats for different cameras. Currently any unsupported format will raise an error on readout by default. It it still possible to read these out as raw frame data in the form of 1D or 2D numpy 'u1' array by enabling raw frame readout using IMAQdxCamera.enable_raw_readout() method:

>> cam = IMAQdx.IMAQdxCamera()
>> cam.get_detector_size() # 1280px x 1024px frame
(1280, 1024)
>> cam.set_attribute_value("PixelFormat", "BGRA 8 Packed") # unsupported format
>> cam.snap().shape
...
IMAQdxError: pixel format BGRA 8 Packed is not supported
>> cam.enable_raw_readout("frame") # frame data is returned as a flat array
>> cam.snap().shape # 1280 * 1024 * 4 = 5242880 bytes
(5242880,)

Note

General camera communication concepts are described on the corresponding page.

Photon Focus pfcam interface

Photon Focus CameraLink cameras transfer their data to the PC using frame grabbers (e.g., via NI IMAQ or Silicon Software interfaces). Hence, the camera control is done through the serial port built into the CameraLink interface. However, the cameras use a closed binary protocol, so all the control is done through the pfcam library provided by Photon Focus. It relies on the libraries exposed by the frame grabber manufacturers (e.g., the standard cl*serial.dll) to communicate with the camera directly, meaning that the pfcam user simply calls its method, and all the communication happens behind the scenes.

In principle, pfcam can work with any frame grabber. Because of that, there are two different kinds of classes for this camera. To start with, there is .PhotonFocus.IPhotonFocusCamera, which provides interface for addressing camera properties, but can not handle actual frame acquisition. Using this class directly leads to errors in any frame data related methods (e.g., wait_for_frame, or read_multiple_images), and it is mostly intended to serve as a base class to be combined with the actual frame grabber. Two such combined classes are already provided: .PhotonFocus.PhotonFocusIMAQCamera for National Instruments frame grabbers using the NI IMAQ interface, .PhotonFocus.PhotonFocusSiSoCamera for Silicon Software frame grabbers, and .PhotonFocus.PhotonFocusBitFlowCamera for BitFlow frame grabbers. All classes are complete and ready to use. In addition to combining camera and frame grabber control, they also implement basic consistency support, such as automatic adjustment of frame grabber ROI and data transfer format.

Software requirements

These cameras require pfcam.dll, which is installed with freely available (upon registration) PFInstaller [https://www.photonfocus.com/support/software/]. In addition, this DLL requires comdll.dll and the DLLs referring to a particular camera, e.g., mv_d1024e_160.dll. After installation, the path to the DLLs (all located by default in Photonfocus/PFRemote/bin folder in Program Files) is automatically added to system PATH variable, which is one of the places where pylablib looks for it by default. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/pfcam:

import pylablib as pll
pll.par["devices/dlls/pfcam"] = "path/to/dlls"
from pylablib.devices import PhotonFocus
cam = PhotonFocus.PhotonFocusIMAQCamera()

Connection

The camera class requires two pieces of information. First is the frame grabber interface connection, e.g., NI IMAQ interface name (e.g., "img0") identified as described in the NI IMAQ documentation, or Silicon Software board and applet described in Silicon Software documentation. The second piece of information is the pfcam port, which is either a number starting from zero indexing the port in the ports list, or a tuple (manufacturer, port), e.g., ("National Instruments", "port0"). To list all of the connected pfcam-compatible cameras, you can use the PFRemote software (the interface number is given in parentheses after every connection option in the list) or run PhotonFocus.list_cameras():

>> from pylablib.devices import PhotonFocus, IMAQ
>> IMAQ.list_cameras() # get all IMAQ frame grabber devices
['img0.iid']
>> PhotonFocus.list_cameras() # by default, get only the ports which support pfcam interface
[(1, TCameraInfo(manufacturer='National Instruments', port='port0', version=5, type=0))]
>> cam = PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name="img0.iid", pfcam_port=("National Instruments", "port0"))
>> cam.close()
>> cam = PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name="img0.iid", pfcam_port=1) # same effect as above
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	The SDK also provides a universal interface for getting and setting various camera attributes (called “properties” in the documentation) using their name. You can use IPhotonFocusCamera.get_attribute_value() and IPhotonFocusCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = PhotonFocus.PhotonFocusIMAQCamera()
>> cam.get_attribute_value("Window/W") # get the ROI width
256
>> cam.set_attribute_value("ExposureTime", 0.1) # set the exposure to 100ms
>> cam.cav["ExposureTime"] # get the exposure; could also use cam.get_attribute_value("ExposureTime")
0.1

Some values (e.g., Window.Max or Reset) serve as commands; these can be invoked using PhotonFocusIMAQCamera.call_command() method. To see all available attributes, you can call IPhotonFocusCamera.get_all_attributes() to get a dictionary with attribute objects, and IPhotonFocusCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute range, step, and units:

>> cam = PhotonFocus.PhotonFocusIMAQCamera()
>> attr = cam.get_attribute("Window/W")
>> attr.writable
True
>> (attr.min, attr.max)
(16, 1024)

	PhotonFocus.PhotonFocusIMAQCamera supports all of IMAQ.IMAQCamera features, such as trigger control and fast buffer acquisition. Some methods have been modified to make them more convenient: e.g., PhotonFocusIMAQCamera.set_roi() method sets the camera ROI and automatically adjusts the frame grabber ROI to match.

	Same is true for PhotonFocus.PhotonFocusSiSoCamera, which, e.g., provides access to all of the frame grabber variables.

	The camera supports a status line, which replaces the bottom one or two rows of the frame with encoded frame-related data such as frame number and timestamp. You can use PhotonFocus.get_status_lines() function to identify and extract the data in the status lines from the supplied frames. In addition, you can use PhotonFocus.remove_status_line() to remove the status lines in several possible ways: zeroing out, masking with the previous frame, cutting off entirely, etc.

	If several PhotonFocus cameras are connected, you need to correctly associate different PFCam ports with the corresponding frame grabbers. To do that, you can use the function PhotonFocus.check_grabber_association().

Note

General camera communication concepts are described on the corresponding page

PCO SC2 cameras interface

SC2 is the interface used with PCO cameras. It has been tested with pco.edge cameras with CLHS and regular CameraLink interfaces, and with pco.pixelfly usb cameras. A detailed description of the interface is given in the manual [https://www.pco.de/fileadmin/fileadmin/user_upload/pco-manuals/pco.sdk_manual.pdf].

The code is located in pylablib.devices.PCO, and the main camera class is pylablib.devices.PCO.PCOSC2Camera.

Software requirements

These cameras require SC2_Cam.dll, which is installed with the freely available pco.camware [https://www.pco.de/software/camera-control-software/pcocamware/] and pco.sdk [https://www.pco.de/software/development-tools/pcosdk/] tools. By default, the library searches for DLLs in Digital Camera Toolbox/Camware4 and PCO Digital Camera Toolbox/pco.sdk/bin folder in Program Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/pco_sc2:

import pylablib as pll
pll.par["devices/dlls/pco_sc2"] = "path/to/dlls"
from pylablib.devices import PCO
cam = PCO.PCOSC2Camera()

Connection

The cameras are identified by their index, starting from zero, and, possibly, by their interface. To get the total number of connected cameras, you can run PCO.get_cameras_number:

>> from pylablib.devices import PCO
>> PCO.get_cameras_number()
2
>> cam1 = PCO.PCOSC2Camera(idx=0)
>> cam2 = PCO.PCOSC2Camera(idx=1)
>> cam1.close()
>> cam2.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. The class also provides read-access to all of the relevant camera data using PCOSC2Camera.get_full_camera_data(). This method returns data in the internal manufacturer format; to interpret it, you should consult the manual [https://www.pco.de/fileadmin/fileadmin/user_upload/pco-manuals/pco.sdk_manual.pdf].

Known issues

	Some cameras support only ROIs which are symmetric with respect to vertical flip. In other words, if the camera detector has vertical size of 2160px, the vertical ROI should always have the form (x0, 2160-x0). It is still possible to set non-symmetric ROI, but it is achieved by the software clipping, while the camera still reads out the smallest symmetric ROI contained the selected one. As a result, the readout time for the same ROI size strongly depends on the ROI position. For example, while vertical ROI of (0, 8) has only 8 pixel rows, it is not symmetric, and requires reading the whole frame; hence, it will be as slow as the full-frame acquisition. On the other hand, ROI of (1076, 1084) is symmetric, so the camera does read out only 8 rows. This results in vastly faster readout time. You can use PCOSC2Camera.requires_symmetric_roi() to check if the symmetric ROI is required.

Note

General camera communication concepts are described on the corresponding page

Princeton Instruments Picam cameras

Picam is the interface provided by Teledyne Princeton Instruments and which supports a set of their cameras. It has been tested with PIXIS 400 camera.

The code is located in pylablib.devices.PrincetonInstruments, and the main camera class is pylablib.devices.PrincetonInstruments.PicamCamera.

Software requirements

These cameras require picam.dll, which is installed with the freely available PICam software [https://www.princetoninstruments.com/products/software-family/pi-cam]. By default, the library searches for DLLs in Princeton Instruments/PICam/Runtime folder in Program Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/picam:

import pylablib as pll
pll.par["devices/dlls/picam"] = "path/to/dlls"
from pylablib.devices import PrincetonInstruments
cam = PrincetonInstruments.PicamCamera()

Connection

The cameras are identified by their serial number, which can look like "2800000001". To get the list of all cameras, you can use .PrincetonInstruments.list_cameras:

>> from pylablib.devices import PrincetonInstruments
>> PrincetonInstruments.list_cameras()
[TCameraInfo(name='E2V 1340 x 400 (CCD 36)(B)(R)', serial_number='2800000001', model='PIXIS: 400BR', interface='USB 2.0'),
 TCameraInfo(name='E2V 1340 x 400 (CCD 36)(B)(R)', serial_number='2800000002', model='PIXIS: 400BR', interface='USB 2.0')]
>> cam1 = PrincetonInstruments.PicamCamera('2800000001')
>> cam2 = PrincetonInstruments.PicamCamera('2800000002')
>> cam1.close()
>> cam2.close()

If no serial number is supplied, the first available camera is connected.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can use PicamCamera.get_attribute_value() and PicamCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = PrincetonInstruments.PicamCamera()
>> cam.get_attribute_value("Pixel Format") # get the current pixel format
'Monochrome 16-bit'
>> cam.set_attribute_value("Exposure Time", 10) # set the exposure time to 10 ms
>> cam.cav["Exposure Time"] # get the exposure; could also use cam.get_attribute_value("Exposure Time")
10.0

To see all available attributes, you can call PicamCamera.get_all_attributes() to get a dictionary with attribute objects, and PicamCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, enum, float, etc.), range (either numerical range, or selection of values for enum attributes), default value, etc.:

>> cam = PrincetonInstruments.PicamCamera()
>> attr = cam.get_attribute("Exposure Time")
>> attr.default
100.0
>> attr.writable
True
>> (attr.min, attr.max)
(0.0, 8355840.0)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI (without binning), exposure, and acquisition status. For many specific cameras you might need to explore the attributes tree using the Python class and operate them directly in your code.

Known issues

	Frame period obtained using PicamCamera.get_frame_period() can be an underestimate (i.e., it can overestimate the frame rate).

	While the cameras support multiple ROIs, only single-ROI readout is currently supported.

	Changing readout mode ("Readout Control Mode") to "Kinetics" might invalidate the current ROI, if it was originally too large. Therefore, you would need to call set_roi again after setting this mode.

	In principle, the cameras support a variety of different metainfos which can be enabled or disabled separately. However, for simplicity only two modes are supported in the camera class: either no metainfo, or full “standard” metainfo (frame stamp, and start and stop timestamps). Any time the metainfo is enabled, disabled, or queried, it is automatically “truncated” to one of these two modes.

Note

General camera communication concepts are described on the corresponding page

Photometrics PVCAM cameras

PVCAM is the interface provided by Teledyne Photometrics and which supports a set of their cameras. It has been tested with Prime 95B camera.

The code is located in pylablib.devices.Photometrics, and the main camera class is pylablib.devices.Photometrics.PvcamCamera.

Software requirements

These cameras require pvcam32.dll or pvcam64.dll, which is installed with the freely available (upon registration) PVCAM software [https://www.photometrics.com/support/download/pvcam]. By default, the library searches for DLL is automatically added to the System32 folder, where pylablib looks for them by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/pvcam:

import pylablib as pll
pll.par["devices/dlls/pvcam"] = "path/to/dlls"
from pylablib.devices import Photometrics
cam = Photometrics.PvcamCamera()

Connection

The cameras are identified by their name, which can look like "PMUSBCam00". To get the list of all cameras, you can use .Photometrics.list_cameras:

>> from pylablib.devices import Photometrics
>> Photometrics.list_cameras()
['PMUSBCam00', 'PMUSBCam01']
>> cam1 = Photometrics.PvcamCamera('PMUSBCam00')
>> cam2 = Photometrics.PvcamCamera('PMUSBCam01')
>> cam1.close()
>> cam2.close()

If no name is supplied, the first camera in the list is connected.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, starting and stopping acquisition, and operating the frame reading loop. The SDK also provides a universal interface for getting and setting various camera attributes using their name. You can use PvcamCamera.get_attribute_value() and PvcamCamera.set_attribute_value() for that, as well as .cav attribute which gives a dictionary-like access:

>> cam = Photometrics.PvcamCamera()
>> cam.get_attribute_value("EXPOSURE_MODE") # get the current exposure mode
'Internal Trigger'
>> cam.set_attribute_value("METADATA_ENABLED", True) # enable frame metadata
>> cam.cav["METADATA_ENABLED"] # check if metadata is enabled; could also use cam.get_attribute_value("METADATA_ENABLED")
True

To see all available attributes, you can call PvcamCamera.get_all_attributes() to get a dictionary with attribute objects, and PvcamCamera.get_all_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, enum, float, etc.), range (either numerical range, or selection of values for enum attributes), default value, etc.:

>> cam = Photometrics.PvcamCamera()
>> attr = cam.get_attribute("EXPOSURE_TIME")
>> attr.default
0
>> attr.readable
True
>> (attr.min, attr.max)
(0, 10000)

Since these properties vary a lot between different cameras, it is challenging to write a universal class covering a large range of cameras. Hence, currently the universal class only has the basic camera parameter control such as ROI (without binning), exposure, and acquisition status. For many specific cameras you might need to explore the attributes tree using the Python class and operate them directly in your code.

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations (resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using PvcamCamera.set_frame_format() method to set frames format to "chunks". In this case, instead of a list of individual frames (which is the standard behavior), the method returns list of chunks, which contain several consecutive frames.

Known issues

	Frame period obtained using PvcamCamera.get_frame_period() can be an underestimate (i.e., it can overestimate the frame rate), especially for USB-connected devices.

	While the cameras support multiple ROIs, only single-ROI readout is currently supported.

	Exposure time, exposure mode, and ROI are configured using special methods separately from other camera attributes. Therefore, their corresponding attributes are read-only.

	Not all horizontal and vertical binning combinations are supported. The allowed combinations can be queries using PvcamCamera.get_supported_binning_modes(). If the combination is not supported, it is truncated down to the smallest supported one.

Note

General camera communication concepts are described on the corresponding page

Silicon Software frame grabbers interface

Silicon Software produces a range of frame grabbers, which can be used to control different cameras with a CameraLink interface. It has been tested with microEnable IV AD4-CL frame grabber together with PhotonFocus MV-D1024E camera.

The code is located in pylablib.devices.SiliconSoftware, and the main camera class is pylablib.devices.SiliconSoftware.SiliconSoftwareCamera.

Software requirements

This interfaces requires fglib5.dll, which is installed with the freely available (upon registration) Silicon Software Runtime Environment [https://www.baslerweb.com/en/sales-support/downloads/software-downloads/#type=framegrabbersoftware;language=all;version=all;os=windows64bit] (the newest version for 64-bit Windows is 5.7.0 [https://www.baslerweb.com/en/sales-support/downloads/software-downloads/complete-installation-for-windows-64bit-ver-5-7-0/]), which also includes all the necessary drivers. After installation, the path to the DLL (located by default in SiliconSoftware/Runtime5.7.0/bin folder in Program Files) is automatically added to system PATH variable, which is one of the places where pylablib looks for it by default. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/sisofgrab:

import pylablib as pll
pll.par["devices/dlls/sisofgrab"] = "path/to/dlls"
from pylablib.devices import SiliconSoftware
cam = SiliconSoftware.SiliconSoftwareCamera()

Connection

Figuring out the connection parameters is a multi-stage process. First, one must identify one of several boards. The boards can be identified using SiliconSoftware.list_boards function. Second, one must select an applet. These provide different board readout modes and, for Advanced Applets, various post-processing capabilities. These applets can be identified using SiliconSoftware.list_applets method, or directly from the Silicon Software RT microDisplay software supplied with the runtime. The choice depends on the color mode (color vs. gray-scale and different bitness), readout mode (area or line), and camera connection (single, double, or quad). Finally, depending on the board and the camera connection, one of several ports must be selected. For example, if the frame grabber has two connectors, but the camera only uses a single interface, then the double camera applet (e.g., DualAreaGray16) must be selected, and the port should specify the board connector (0 for A, 1 for B):

>> from pylablib.devices import SiliconSoftware
>> SiliconSoftware.list_boards() # first list the connected boards
[TBoardInfo(name='mE4AD4-CL', full_name='microEnable IV AD4-CL')]
>> SiliconSoftware.list_applets(0) # list all applets on the first board
[...,
TAppletInfo(name='DualAreaGray16', file='DualAreaGray16.dll'),
...]
>> cam = SiliconSoftware.SiliconSoftwareCamera(0, 'DualAreaGray16') # connect to the first board (port 0 by default)
>> cam.close()

Note that currently the code is organized in such a way, that only one port on a single board can be in use at one time.

Operation

Unlike most camera classes, the frame grabber interface only deals with the frame transfer between the camera and the PC over the CameraLink interface. Therefore, in can not directly control camera parameters such as exposure, frame rate, triggering, ROI, etc. Some similar-looking parameters are still present, but they have a different meaning:

	External trigger controls frame transfer, not frame acquisition, which is defined by the camera. By default, when the internal frame grabber trigger is used, the frame grabber transfer rate is synchronized to the camera, so every frame gets transferred. However, if the external transfer trigger is used and it is out of sync with the camera, it can result in duplicate or missing frames.

	ROI is defined within the transferred image, whose size itself is determined by the camera ROI. Hence, e.g., if the camera chip is 1024x1024px and its roi is 512x512, then the frame grabber ROI can go only up to 512x512. Any attempts to set it higher result in frame being misshapen or having random data outside of the image area.

The SDK also provides a universal interface for getting and setting various attributes using their name. You can use SiliconSoftwareCamera.get_grabber_attribute_value() and SiliconSoftwareCamera.set_grabber_attribute_value() for that, as well as .gav attribute which gives a dictionary-like access:

>> cam = SiliconSoftware.SiliconSoftwareCamera()
>> cam.get_grabber_attribute_value("CAMERA_LINK_CAMTYP") # get the camera data format
'FG_CL_SINGLETAP_8_BIT'
>> cam.set_grabber_attribute_value("WIDTH", 512) # set the readout frame width to 512px
>> cam.gav["WIDTH"] # get the width; could also use cam.get_grabber_attribute_value("WIDTH")
512

To see all available attributes, you can call SiliconSoftwareCamera.get_all_grabber_attributes() to get a dictionary with attribute objects, and SiliconSoftwareCamera.get_all_grabber_attribute_values() to get the dictionary of attribute values. The attribute objects provide additional information: attribute kind (integer, string, etc.), range (either numerical range, or selection of values for enum attributes), description string, etc.:

>> cam = SiliconSoftware.SiliconSoftwareCamera()
>> attr = cam.get_grabber_attribute("BITALIGNMENT")
>> attr.values
{1: 'FG_LEFT_ALIGNED', 0: 'FG_RIGHT_ALIGNED'}

The parameter can also be inspected in the Silicon Software RT microDisplay software.

Fast buffer readout mode

At high frame rates (above ~10kFPS) dealing with each frame individually becomes too slow for Python. Hence, there is an option to read out and process frames in larger ‘chunks’, which are 3D numpy arrays with the first axis enumerating the frame index. This approach leverages the ability to store several frame buffers in the contiguous memory locations (resulting in a single 3D array), and it essentially eliminates the overhead for dealing with multiple frames at high frame rates, as long as the total data rate is manageable (typically below 600Mb/s).

This option can be accessed by calling using SiliconSoftwareCamera.set_frame_format() method to set frames format to "chunks" (former way of supplying fastbuff=True in SiliconSoftwareCamera.read_multiple_images() is now deprecated). In this case, instead of a list of individual frames (which is the standard behavior), the method returns list of chunks about 1Mb in size, which contain several consecutive frames.

Communication with the camera

The frame grabber needs some basic information about the camera: sensor size, bit depth, data transfer format, timeouts, aux lines mapping. This information can be specified using the grabber attributes. The most important transfer parameters are the number of taps and the bitness of the transferred data, which can be set up using SiliconSoftwareCamera.setup_camlink_pixel_format(). The values for this parameters can usually be obtained from the camera manuals.

Known issues

	The maximal frame rate is limited for some boards (at least for the tested microEnable IV AD4-CL board) by about 20kFPS. It seems to be relatively independent of the frame size, i.e., it is not the data transfer rate issue. One possible way to get around it is to use line readout applet, e.g., DualLineGray16, and set the frame height to be the integer multiple of the camera frame. This will combine several camera frames into a single frame-grabber frame, effectively lowering the frame rate at avoiding the issue. However, this sometimes leads to incorrect frame splitting: the top line of the “combined” frame does not coincide with the top line of the original camera frame, so all frames are shifted cyclically by some number of rows. Hence, it might require some post-processing with frames merging and re-splitting.

	As mentioned above, ROI is defined within a frame transferred by the camera. Therefore, if it includes pixels with positions outside of the transferred frame, the acquisition will be faulty. For example, suppose the camera sensor is 1024x1024px, and the camera ROI is selected to be central 512x512 region. As far as the frame grabber is concerned, now the camera sensor size is 512x512px. Hence, if you try to set the same frame grabber ROI (i.e., 512x512 starting at 256,256), it will expect 768x768px frame. Since the frame is, actually, 512x512px, the returned frame will partially contain random data. The correct solution is to set frame grabber ROI from 0 to 512px on both axes. In general, it is a good idea to always follow this pattern: control ROI only on camera, and always set frame grabber ROI to cover the whole transfer frame.

Note

General camera communication concepts are described on the corresponding page

Thorlabs Scientific Cameras interface

This is the interface used in Thorlabs scientific sCMOS cameras such as Kiralux or Zelux. It has been tested with Thorlabs Kiralux camera.

The code is located in pylablib.devices.Thorlabs, and the main camera class is pylablib.devices.Thorlabs.ThorlabsTLCamera.

Software requirements

These cameras require thorlabs_tsi_camera_sdk.dll, as well as several additional DLLs: thorlabs_unified_sdk_kernel.dll, thorlabs_unified_sdk_main.dll, thorlabs_tsi_usb_driver.dll, thorlabs_tsi_usb_hotplug_monitor.dll, thorlabs_tsi_cs_camera_device.dll, tsi_sdk.dll, tsi_usb.dll. All of them is automatically installed with the freely available ThorCam [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam] tools. By default, the library searches for DLLs in Thorlabs/Scientific Imaging/ThorCam folder in Program Files folder (or Program files (x86), if 32-bit version of Python is running), as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/thorlabs_tlcam:

import pylablib as pll
pll.par["devices/dlls/thorlabs_tlcam"] = "path/to/dlls"
from pylablib.devices import Thorlabs
cam = Thorlabs.ThorlabsTLCamera()

Connection

The cameras are identified by their serial number. To list all of the connected cameras, you can run Thorlabs.list_cameras_tlcam:

>> from pylablib.devices import Thorlabs
>> Thorlabs.list_cameras_tlcam()
['12001', '12002']
>> cam1 = Thorlabs.ThorlabsTLCamera(serial="12001")
>> cam2 = Thorlabs.ThorlabsTLCamera(serial="12002")
>> cam1.close()
>> cam2.close()

If no serial is provided, the software connects to the first available camera.

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop.

For color cameras, several readout modes are available, which can be set up using ThorlabsTLCamera.set_color_format() method. By default, the color cameras output the frames in the linear RGB format (each frame is a 3D array with the last axis encoding color channel).

Warning

The library appears to be not entirely stable: every time acquisition start is issued, there is small (0.1-1%) chance that it will not actually start, which results in timeout errors. Furthermore, there are occasional crashes on the SDK unloading (i.e., camera closing), especially when acquisition has been started and stopped multiple times. It is unclear, what is the cause of this behavior, but it seems to originate from the manufacturer’s DLL (bare-bones example and the native Python library reproduce this behavior). Hence, it might be different with different DLL versions.

Note

The DLL prints some debug information in the console when camera list is requested and when the camera is opened. At the moment, it is unclear how to get rid of it.

Note

General camera communication concepts are described on the corresponding page

Uc480/uEye camera interface

This is the interface used in multiple cameras, including many simple Thorlabs and IDS cameras. It has been tested with IDS SC2592R12M and Thorlabs DCC1545M.

Essentially identical interface is available under two different implementations: either as Thorlabs uc480 or as IDS uEye. Both of these seem to cover exactly the same cameras, both are freely available from the manufacturers, and both implement exactly the same functionality. However, these interfaces are not interchangeable, and each camera will only interact with one of them depending on which driver it happens to use (usually based on which of the software packages was installed last). Hence, if you have both ThorCam [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam] and IDS Software Suite [https://en.ids-imaging.com/ids-software-suite.html] installed, you would need to check both interfaces. Normally, the interface should correspond to the software which can connect to the camera (either ThorCam or uEye Cockpit).

The code is located in pylablib.devices.uc480, and the main camera class is pylablib.devices.uc480.UC480Camera. Note that while the names only refer to uc480, the same functions and classes equally cover IDS uEye interface if the appropriate backend argument is provided.

Software requirements

Depending on the interface, these cameras require either uc480.dll, or ueye_api.dll. These are automatically installed with, correspondingly, the freely available ThorCam [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ThorCam] software or with IDS Software Suite [https://en.ids-imaging.com/ids-software-suite.html] (upon registration; note that you need specifically IDS Software Suite, and not IDS peak). By default, the library searches for DLLs in the corresponding Program Files folder (Thorlabs/Scientific Imaging/ThorCam or IDS/uEye), in the locations placed in PATH during the installation, as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/uc480 or devices/dlls/ueye:

import pylablib as pll
pll.par["devices/dlls/uc480"] = "path/to/uc480/dlls"
from pylablib.devices import uc480
cam = uc480.UC480Camera()
pll.par["devices/dlls/ueye"] = "path/to/ueye/dlls"
cam = uc480.UC480Camera(backend="ueye")

Connection

The cameras are identified by their camera ID or device ID (both starting from 1). Device ID corresponds to the connection order of the cameras: it is guaranteed to be unique, but will change if the camera is disconnected and reconnected again. On the other hand, camera ID is tied to the camera, but it is set to 1 by default for all cameras, and needs to be manually assigned using UC480Camera.set_camera_id(). Alternatively, one can use other characteristics (model or serial number) as a unique identifier. To list all of the connected cameras together with their basic information, you can run uc480.list_cameras():

>> from pylablib.devices import uc480
>> uc480.list_cameras()
[TCameraInfo(cam_id=4, dev_id=1, sens_id=11, model='SC2592R12M', serial_number='1234567890', in_use=False, status=0)]
>> cam = uc480.UC480Camera(cam_id=4) # connect to the camera using cam_id
>> img = cam.snap()
>> cam.close()
>> cam = uc480.UC480Camera(dev_id=1) # connecting to the same camera using dev_id
>> cam.close()
>> cam = uc480.UC480Camera() # connecting to the first available camera
>> cam.close()

If cam_id = 0 is provided (default), the software connects to the first available camera.

By default, the code above uses Thorlabs uc480 interface. If you want to use ueye interface, you need to specify backend="ueye" argument to the corresponding functions and to the camera class upon creation. With that, the example above becomes:

>> from pylablib.devices import uc480
>> uc480.list_cameras(backend="ueye") # list all cameras for uEye backend
[TCameraInfo(cam_id=4, dev_id=1, sens_id=11, model='SC2592R12M', serial_number='1234567890', in_use=False, status=0)]
>> cam = uc480.UC480Camera(cam_id=4, backend="ueye") # connect to the camera using cam_id and ueye backend
>> img = cam.snap()
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI and exposure, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	Some cameras support both binning (adding several pixels together) and subsampling (skipping some pixels). However, only one can be enabled at a time. They can be set independently using, correspondingly, UC480Camera.get_binning()/UC480Camera.set_binning() and UC480Camera.get_subsampling()/UC480Camera.set_subsampling(). They can also be set as binning factors in UC480Camera.get_roi()/UC480Camera.set_roi(). Whether binning or subsampling is set there can be determined by the roi_binning_mode parameter supplied on creation.

	Uc480 API supports many different pixel modes, including packed ones. However, pylablib currently supports only monochrome unpacked modes.

	Occasionally (especially at high frame rates) frames get skipped during transfer, before they are placed into the frame buffer by the camera driver. This can happen in two different ways. First, the frame is simply dropped without any indication. This typically can not be detected without using the framestamp contained in the frame info, as the frames flow appear to be uninterrupted. In the second way, the acquisition appears to get “restarted” (the internal number of acquired frames is dropped to zero), which is detected by the library. In this case there are several different ways the software can react, which are controlled using UC480Camera.set_frameskip_behavior().

The default way to address this “restart” event ("ignore") is to ignore it and only adjust the internal acquired frame counter; this manifests as quietly dropped frames, exactly the same as the first kind of event. In the other method ("skip"), some number of frames are marked as skipped, so that the difference between the number of acquired frames and the internal framestamp is kept constant. This makes the gap explicit in the camera frame counters. Finally ("error"), the software can raise uc480FrameTransferError when such event is detected, which can be used to, e.g., restart the acquisition.

One needs to keep in mind, that while the last two methods make “restarts” more explicit, they do not address the first kind of events (quiet drops). The most direct way to deal with them is to use frame information by setting return_info=True in frame reading methods like read_multiple_images. This information contains the internal camera framestamp, which lets one detect any skipped frames.

Note

General camera communication concepts are described on the corresponding page

Mightex cameras interface

Mightex manufactures a set of USB2 and USB3-interfaced cameras with several somewhat different APIs. Currently only S-series cameras are implemented and tested.

The code is located in pylablib.devices.Mightex, and the main camera class is pylablib.devices.Mightex.MightexSSeriesCamera.

Software requirements

These cameras require MT_USBCamera_SDK_DS.dll and accompanying MtUsbLib.dll, which can be obtained in the freely available S-series camera software package [https://www.mightexsystems.com/product/s-series-ultra-compact-usb2-0-color-3mp-cmos-cameras/] (the current latest version is from 2019.01.04 [https://mightex.wpenginepowered.com/wp-content/uploads/2019/04/Mightex_SCX_CDROM_20190104.zip]). This software does not require installation, and the required DLLs are contained in the DirectShow/MightexClassicCameraEngine folder withing the archive (do not confuse them with the regular MT_USBCamera_SDK.dll library, which is similar, but has some downsides regarding threading). Since these DLLs are not registered anywhere OS-wide, you should either specify them using the library parameter devices/dlls/mightex_sseries (both the containing folder path and the direct file path work), or copy the two DLL files to the folder containing your script:

import pylablib as pll
pll.par["devices/dlls/mightex_sseries"] = "path/to/dlls"
from pylablib.devices import Mightex
cam = Mightex.MightexSSeriesCamera()

Connection

The cameras are identified by their index among the present cameras (starting from 1). To get the list of all cameras, you can use Mightex.list_cameras_s:

>> import pylablib as pll
>> pll.par["devices/dlls/mightex_sseries"] = "path/to/dlls"
>> from pylablib.devices import Mightex
>> Mightex.list_cameras_s()
[TCameraInfo(idx=1, model='SCE-B013-U', serial='13-160000-001')]
>> cam = Mightex.MightexSSeriesCamera() # by default, connect to the camera with index 1
>> cam.close()

Operation

The operation of these cameras is relatively standard. They support all the standard methods for dealing with ROI, starting and stopping acquisition, and operating the frame reading loop. However, there’s a couple of differences from the standard libraries worth highlighting:

	The multi-camera support from the SDK is fairly poor, e.g., only a single OS process can communicate with cameras (even if different processes try to access different cameras), and several cameras are always polled in sequence, meaning that the slowest camera determines the overall frame rate. Therefore, only the single camera operation is supported, although one can still select specific camera if several are connected to the same PC.

	In some cases ROIs with extreme aspect ratios (e.g., 32x1024 px) can freeze the camera, such that it only start operating again after the software restart. Therefore, there should be generally be avoided.

	Colored cameras are in principle supported, but the returned image is not debayered, meaning that it is still a monochrome image with different pixels within 2x2 sub-squares corresponding to different colors.

Stages

Basic concepts are described at the stages communication page.

Currently supported stages:

	Attocube ANC300 and Attocube ANC350: most common Attocube positioner controllers. Tested with Ethernet and USB connection for ANC300, and USB connection for ANC350.

	Thorlabs APT/Kinesis: basic Thorlabs motorized stages and optomechanics devices. Tested with KDC101, K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, as well as MFF101 and FW102 (described at a different page)

	Thorlabs Elliptec: resonant piezoelectric Thorlabs stages. Tested with ELL18 and ELL14 rotational mounts.

	Newport Picomotor: precision piezo-actuated screws based on slip-stick principle. Tested with Newport 8742 Picomotor driver using Ethernet or USB connection.

	Arcus Performax: fairly common single- and multi-axis motor controllers sold under different brands: Arcus, Nippon Pulse America, or Newmark Systems. Tested with PMX-4EX device with USB connection.

	Trinamic: universal motor controllers and drivers. Tested with a single-axis TMCM-1110 controller with USB connection.

	Standa: Standa motorized positioners. Tested with a 8SMC4-USB single-axis controller and 8MT167-25 stepper motor stage.

	SmarAct: high-performance piezo sliders. Currently simple open-loop SCU controllers and MCS2 controllers are supported. Tested with a standard HCU controller unit and an MCS2 controller with several SLx stages.

	Physik Instrumente: piezo controllers. So far only PI E-515 and PI E-516 is supported and tested.

Note

General device communication concepts are described on the corresponding page.

Stages control basics

Basic example

Almost all stages implement the same basic functionality for moving, stopping, homing, and querying the status:

stage = Thorlabs.KinesisMotor("27000001") # connect to the stage
stage.home() # home the stage
stage.wait_for_home() # wait until homing is done
stage.move_by(1000) # move by 1000 steps
stage.wait_move() # wait until moving is done
stage.jog("+") # initiate jog (continuous move) in the positive direction
time.sleep(1.) # wait for 1 second
stage.stop() # stop the motion
stage.close()

Some stages will miss some of this functions (e.g., no homing), but if it’s present, it works roughly in the same manner.

Some concepts are explained below in more detail.

Basic concepts

Counters, encoders, homing, and limit switches

Stages have two basic strategies for keeping track of the position. The first one is counting the steps. The problem with it is that once the device is powered up, its position in unknown. Hence, it requires some kind of homing procedure, which usually involves moving to a predefined position and zeroing out the step counter there. This position is defined by the hardware, usually in the form of a limit switch: a physical switch located at the end of the stage travel range, which changes the state when the stage reaches its position. It also usually automatically turns off the motion when tripped, to prevent the motor from overheating or the stage from breaking.

When stepper motors are used, the size of each step (or microstep, if used) is a reasonably well-defined fraction of a turn, so counting them gives fairly reproducible results. On the other hand, piezo slip-stick sliders (such as Attocube, SmarAct, or Picomotor) have inherently unreliable steps size which depends on, e.g., load, direction, position, temperature, or other environmental factors. In this case steps counting, while possible, usually leads to long-term drifts.

If the reliable counting is impossible, like in the case of sliders or regular DC (as opposed to stepper) motors, the manufacturer might add a hardware position readout. It can be digital (encoder) or analog (e.g., resistive, capacitive, or optical readout). The first kind is generally simpler, cheaper and more reliable, but the second one can provide much higher resolution, and can work in more extreme environments (high vacuum, cryogenics). In both cases, the controllers would typically have some kind of feedback loop to smoothly control the motion speed and direction to approach a given position.

Steps and real coordinates

Almost all stages allow control or readout of position in motor steps, encoder steps, or some other internal units. It is usually not straightforward, or sometimes even impossible, to convert those to real units. In cases where it is possible, it is defined by the motor gearbox and the screw pitch (for linear stages); in most cases, this ratio is provided in the motor or translation stage manual (which can be different from the motor controller manual, and the two might even be completely independent). Sometimes, one even has to do explicit calculations, e.g., getting the number of microsteps per revolution from the controller and motor manufacturer, and the displacement per step from the stage manufacturer.

Speed control

In many cases, the motor speed is ramped up and down linearly rather than abruptly; hence, both the “cruising” speed and the ramping acceleration can, in principle, be configured. Usually they are defined in, respectively, steps/s and steps/s^2, although sometimes internal units have to be used.

Application notes and examples

Here we talk more practically about using pylablib to perform common tasks.

Motion

The most standard motion methods are move_to, which moves to a specified position, move_by, which moves by a specified distance or number of steps, and jog, which moves continuously in a given direction until stopped or run into a limit switch. If both move_to and move_by are present, they usually perform the same operation under the hood: stage.move_by(s) and stage.move_to(stage.get_position()+s) yield the same result.

In almost all cases these commands are asynchronous, in the sense that they simply initialize the motion and continue immediately:

>> stage.move_by(1000)
>> stage.is_moving() # the stage is moving, but the execution continues
True
>> time.sleep(1.)
>> stage.is_moving() # after 1s the motion is done
False

To stop immediately (which is usually only used with jog commands) you can use the stop method. In some cases, there are two different stop kinds: “soft” with a ramp-down, or “hard” which immediately ceases motion.

Status and synchronization

Since the motion commands are asynchronous, the devices provide two methods to synchronize it with the script execution. The first one, is_moving, checks if the stage is currently in motion. The second one, wait_move, pauses the execution until the stage motion is finished.

In addition, many stages provide methods to obtain additional information, e.g., get_status (which, usually, returns state of motion, limit switches, possible errors, etc.), or get_current_speed.

Position readout

If a stage has position readout (either hardware sensor, or step counting), it is implemented with the get_position method. In most cases, it will be accompanied with the set_position_reference method, which lets one change the currently stored position, effectively adding an offset to all further position readings:

>> stage.get_position()
10000
>> stage.set_position_reference(20000) # change current reference to
>> stage.get_position() # note that it reacts immediately, unlike move_to; no physical motion happened
20000
>> stage.move_to(21000) # move by 1000 steps; equivalent to .move_by(1000), or .move_to(11000) before the reference change

Note that it only changes the internal counter state, and does not cause any stage motion (which is performed by move_to).

Axis selection

Many controllers support simultaneous control of several different motors. In this case, all of their methods take an additional axis (in most cases) or channel argument, which specify the exact motor. In cases where usually only one motor is controlled (e.g., TMCM1110 or Thorlabs KDC101), this parameters is set to the default value, and is closer to the end of the parameter list. If having multiple controlled stages is the default (e.g., Attocube ANC350 or Arcus Performax), this parameter is usually the first one, and it has to be specified. In this cases, the methods frequently allow to set this parameter to "all", which means that the action is performed for all axes, or the results is returned for all axes (usually in a form of a list or a dictionary).

The channels are usually specified by their index starting from 0 or 1, although some stages adopt a different labeling (e.g., Arcus Performax labels them as X, Y, Z, and U). The exact specification is given in the specific class description.

Homing

As mentioned above, often stages require homing to get absolute position readings. It needs to be done every time the stage is power-cycled, but the homing parameters usually persist between different re-connections.

If homing is implemented, it is done using the home method. In addition, there can also be an is_homed method, which checks if the homing has already been performed. If the method is present, then by default home will not execute if is_homed returns True, unless forced.

Some stages do not have an explicit homing method, but can be manually homed by, e.g., running the stage to the limit switch and setting the position reference to 0.

Note

General stage communication concepts are described on the corresponding page

Attocube positioners

Attocube has two main positioner controllers: ANC300 and ANC350. These cover different but somewhat overlapping positioner classes, and have fairly different programming interfaces.

Attocube ANC300

This controller is aimed at open-loop (i.e., no position readout) positioners. It is a chassis with a single PC communication module and up to 7 individual piezo control modules: ANM150 (only stepping), ANM200 (only scanning), or ANM250 (stepping and scanning).

The device class is pylablib.devices.Attocube.ANC300.

Software requirements

The controller has several communication modes: USB, RS232, and Ethernet. USB mode requires a driver supplied with the controller (or downloaded from the controller itself using its Ethernet connection and HTTP port), which makes ANC300 appear as a virtual COM port. RS232 requires a USB-to-RS232 adapter, which usually manifests in the same way. Finally, Ethernet connection works like any other networks device. The controller has been tested with USB and Ethernet communication modes (RS232 is identical to USB, so it should operate as well).

Of all of these modes only USB requires specialized drivers, and the other two are usually available purely through the built-in OS capabilities.

Connection

The device is identified by its communication address. It can be either a serial port (e.g., "COM5"), or an IP address (e.g., "192.168.1.100"); see connection description for more information. The backend is chosen automatically based on the connection parameter. Additionally, Ethernet connection requires a password; by default, the standard Attocube password "123456" is used, but if you specified a custom password, you need to provide it upon connection:

>> from pylablib.devices import Attocube
>> atc1 = Attocube.ANC300("COM5") # USB or RS232 connection
>> atc2 = Attocube.ANC300("192.168.1.1", pwd="root") # Ethernet connection; no need to provide a password, if it is default
>> atc1.close()
>> atc2.close()

Note that since Ethernet inherently supports multiple connections, it is possible to control the same devices in multiple scripts at the same time.

Operation

This controller has several features and differences compared to most other stages and sliders:

	The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are numbered starting from 1, and are addressed according to the chassis spaces, so some can be skipped or missing. To update the list of connected axes, use ANC300.update_available_axes() (called automatically on connection).

	Different control modules provide different functionality. Hence, not all methods would work for all axes: offset voltage commands such as ANC300.set_offset() do not work with ANM150 module, while stepping commands such as ANC300.move_by() do not work with ANM200 module. To get the module kinds and serial numbers, use ANC300.get_axis_serial().

	The most important stepping parameters are step voltage amplitude and step frequency (number of steps per second). These can be controlled with, correspondingly, ANC300.get_voltage()/ANC300.set_voltage() and ANC300.get_frequency()/ANC300.set_frequency().

	Different axes can be enabled and disabled (i.e., connected or grounded) using ANC300.enable_axis() and ANC300.disable_axis(). Disabling an axis completely shuts off the connection to the positioner, which usually reduces the noise. In addition, there can be different operation modes for only offset, only stepping, or combination of the two.

	It is possible to measure the positioner capacitance using ANC300.get_capacitance(), which is useful in identifying breaks or shorts in the wiring or faults in the piezos. By default, this method simply returns the last measured value. To re-measure, call it with measure=True. Note that after the measurement is done, the axis is automatically disabled, and needs to be enabled explicitly:

>> atc = ANC300("COM5")
>> atc.get_capacitance(1, measure=True) # get the capacitance (in F) on the first axis; the method waits until the measurement is done (about 1s)
200E-9
>> atc.is_enabled(1)
False

Note that this is also the only way to know if there is an actual positioner connected to the given control module.

Attocube ANC350

This controller is aimed at closed-loop (i.e., with position readout) positioners. It can control up to 3 positioners.

The device class is pylablib.devices.Attocube.ANC350.

Software requirements

The controller has USB and Ethernet modes. USB mode requires a driver supplied with the controller. The communication is done via PyUSB [https://pyusb.github.io/pyusb/], which means that it does not require any additional Attocube DLLs, although you might need to install libusb (see PyUSB [https://pyusb.github.io/pyusb/] for more details). Ethernet control is supplied as an additional purchasable option and can be configured using the supplied Daisy control software.

This device has only been tested with a USB connection.

Connection

When using a USB connection, the device is identified by its index among all the connected ANC350 devices. To get the total number of devices, you can use Attocube.get_usb_devices_number_ANC350:

>> from pylablib.devices import Attocube
>> Attocube.get_usb_devices_number_ANC350()
2
>> atc1 = Attocube.ANC350() # use 0 index by default
>> atc2 = Attocube.ANC350(1)
>> atc1.close()
>> atc2.close()

Ethernet connection should work in the same manner as any other similar devices, i.e., the address and, possibly, the port should be provided.

Operation

This controller has several features and differences compared to most other stages and sliders:

	The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are numbered 0 through 2. You can check if the slide is connected to the given axis using ANC350.is_connected().

	Different axes can be enabled and disabled (i.e., connected or grounded) using ANC300.enable_axis() and ANC300.disable_axis(). Disabling an axis completely shuts off the connection to the positioner, which usually reduces the noise.

	It is also possible to control the sensor voltage using ANC350.get_sensor_voltage()/ANC350.set_sensor_voltage() methods. Reducing this voltage lowers the heating produced by the sensor, which becomes especially important at very low (<1K) temperatures.

	The most important stepping parameters are step voltage amplitude and step frequency (number of steps per second). These can be controlled with, correspondingly, ANC350.get_voltage()/ANC350.set_voltage() and ANC350.get_frequency()/ANC350.set_frequency().

	It is possible to measure the positioner capacitance using ANC350.get_capacitance(), which is useful in identifying breaks or shorts in the wiring. By default, this method simply returns the last measured value. To re-measure, call it with measure=True.

	Fine positioning is performed using the position readout and the feedback loop. Then a move_to/move_by command is issued, this feedback loop is activated, and the positioner tries to reach and stay at the current position. You can use ANC350.is_target_reached() to check if the target is reached, ANC350.get_target_position() to get the target, and ANC350.get_precision()/ANC350.set_precision() to control the target precision.

	In addition, there is a method ANC350.move_by_steps(), which mimics ANC300.move_by() by moving for a given number of steps instead of a given distance. However, due to implementation limitations, this method is synchronous, i.e., it waits until all steps are performed. Nevertheless, ANC350.jog() is still asynchronous.

Note

General stage communication concepts are described on the corresponding page

Thorlabs APT/Kinesis devices

Thorlabs has a variety of APT/Kinesis devices for various motion-related functionality (mostly motor controllers and piezo drivers), which share the same API. The library uses an older and more low-level APT protocol to communicate with these devices. So far it has been only implemented for motor controllers and some specialized devices and tested with KDC101, KST101, K10CR1, and BSC201 motor controllers, KIM101 piezo motor controller, and TPA101 quadrature sensor controller.

The main device classes are pylablib.devices.Thorlabs.BasicKinesisDevice for a generic Kinesis/APT devices pylablib.devices.Thorlabs.KinesisMotor aimed at motor controllers such as K10CR1 or KDC101, and pylablib.devices.Thorlabs.KinesisPiezoMotor for piezo drivers such as KIM and TIM.

Software requirements

The connection is done using Thorlabs APT protocol, so it needs the corresponding APT drivers [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control&viewtab=1]. Pylablib communicates directly with the FTDI USB-to-RS232 using pyft232 [https://github.com/lsgunth/pyft232] chip inside the controller, so it bypasses most of the Thorlabs software. This means that it does not need any Thorlabs-supplied DLLs, but it also means that it can not work with the simulated devices, since these are simulated on a level above the direct serial communication.

In some cases pyft232 library can not find the required ftd2xx.dll library, which leads to an error. There are several ways to get around this. First, you can install the FTDI drivers from the manufacturer’s website [https://ftdichip.com/drivers/d2xx-drivers/]. Setup executable for Windows automatically places the necessary DLL into the System32 folder, where pyft232 can discover them. Alternatively, you can copy the DLLs there yourself from the Thorlabs APT installation. Their default location is Program Files\Thorlabs\APT\Drivers\APT\USB Driver\amd64 for 64-bit version or Program Files\Thorlabs\APT\Drivers\APT\USB Driver\i386 for 32-bit version. Note that in the first case the file is called ftd2xx64.dll, and you will need to rename it to ftd2xx.dll when copying to the System32 folder.

Connection

On Windows devices are identified by their address, which correspond to their serial numbers. To get the list of all the connected devices, you can use Thorlabs.list_kinesis_devices:

>> from pylablib.devices import Thorlabs
>> Thorlabs.list_kinesis_devices()
[('27500001', 'Kinesis K-Cube DC Driver')]
>> stage = Thorlabs.KinesisMotor("27500001")
>> stage.close()

On Linux they directly appear as virtual serial ports, e.g., /dev/ttyUSB0. Hence, there you need to identify which device file corresponds your device (e.g., by unplugging and plugging it back in to see which device shows up). After that, you can use this name as the device address:

>> from pylablib.devices import Thorlabs
>> stage = Thorlabs.KinesisMotor("/dev/ttyUSB0")
>> stage.close()

Note that on Linux Thorlabs.list_kinesis_devices will not produce a correct list, since it uses a different API. In the worst case, it can crash the process.

Operation

Standard motors

This controller has several features and differences compared to most other stages and sliders:

	There are two different classes of devices which require slightly different communication approach: generic USB devices and rack-bay devices. These are hard to detect a priori, so by default generic USB device (which covers the majority of equipment) is assumed. If this assumption is incorrect, the communication becomes impossible, and an attempt to connect to the device raises a communication error ThorlabsBackendError: backend exception: 'read returned less data than expected' ('read returned less data than expected'). If you experience this error, you should first power-cycle the device, as it often gets stuck in a non-communicable state, and then double-check that the standard Thorlabs software (Kinesis or APT) can detect and control it. If this is the case, you should supply is_rack_system=True to the controller:

stage = Thorlabs.KinesisMotor("70000001", is_rack_system=True)

	There are several different ways to specify the stage calibration, which are controlled by the scale parameter supplied upon the connection. By default (scale = "step"), it accepts and returns position in motor steps, velocity in steps/s and acceleration in steps/s^2 (scaling coefficients for the latter two are determined from the controller model). If scale = "stage", the class attempts to autodetect the stage and use meters or degrees instead of steps; in addition you can supply the stage name (e.g., "MTS25-Z8") as a scale instead of relying on the autodetection. If there is no calibration for the stage that you have, you can instead supply a single scaling factor, which specifies the number of steps per physical unit (e.g., for "MTS25-Z8" stage and mm units, one would supply scale = 34304). The stage scaling can be obtained from the APT [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Control&viewtab=1] manual. Finally, one can supply a 3-tuple of scales for position, velocity and acceleration (all relative to the internal units). The details are given in the APT manual. To ensure that the units have been applied and/or autodetected correctly, you can use KinesisMotor.get_scale(), KinesisMotor.get_scale_units() and KinesisMotor.get_stage() methods.

	By default, the controllers are treated as single-axis. If several axes are supported, they can be specified using channel argument in the corresponding methods such as move_to or get_status. In addition, you can specify the number of channels using KinesisMotor.set_supported_channels() method, in which case settings channel="all" in the method would act on all the channels.

	The motor power-up parameters for homing, jogging, limit switches, etc., can be different from the parameters showing up in the APT/Kinesis controller. This can lead to problems if, e.g., homing speed is too low, so the motor appears stationary while homing. You should make sure to check those parameters using KinesisMotor.get_velocity_parameters(), KinesisMotor.get_jog_parameters(), KinesisMotor.get_homing_parameters(), KinesisMotor.get_gen_move_parameters(), and KinesisMotor.get_limit_switch_parameters().

Piezo motors

This controller has several features and differences compared to most other stages and sliders:

	The controllers are treated as multi-axis. However, to be compatible with other Kinesis motor, the channel argument is not required, and it defaults to the currently selected “default” channel (1 in the beginning). To control different channels, you can either supply channel argument explicitly, or specify a different default channel using KinesisPiezoMotor.set_default_channel() or KinesisPiezoMotor.using_channel().

	The motor power-up parameters for jogging and drive can be different from the parameters showing up in the APT/Kinesis controller. This can lead to problems if, e.g., speed is too low. You should make sure to check those parameters using KinesisPiezoMotor.get_drive_parameters() and KinesisPiezoMotor.get_jog_parameters().

	Even open-loop controllers support absolute positioning, which is achieved simply by counting steps in both directions. However, unlike stepper motors or encoders, these steps can be different depending on the direction, position, instantaneous load, speed, etc. Hence, the absolute positions quickly become unreliable. It is, therefore, recommended to generally use relative positioning using KinesisPiezoMotor.move_by() method.

Quadrature detector

These are fairly different from the other discussed devices, since they are more related to sensors than to motors. This controller takes signal from a quadrature photodetector and implements a PI control loop to feed back to some control device (e.g., a piezo driver or a galvo mirror). Hence, all of its methods are fairly distinct from the usual motors. Nevertheless, it is described here, since it still belongs to the APT/Kinesis family of devices and shares their detection and connection approach. The device is implemented in the pylablib.devices.Thorlabs.KinesisQuadDetector class.

The operation is fairly straightforward: it implements control of PID parameters, output parameters (such as limits), operation mode (open/close loop), allows for reading current state and setting outputs in the open-loop mode.

Note

General stage communication concepts are described on the corresponding page

Thorlabs Elliptec devices

Thorlabs has a line of basic resonant piezoelectric motor stages from Elliptec, which include several rotational and linear stages and feature step-motion and position readout. The library has been tested with ELL18 and ELL14 rotational mounts.

The main device class is pylablib.devices.Thorlabs.ElliptecMotor.

Software requirements

The connection is done using a USB connection together with a built-in USB-to-RS232 chip. It is automatically recognized as a serial port, and no additional software is required. In case the device is not recognized as a serial port, you can fix it by installing freely available Thorlabs Elliptec software [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=ELL].

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Thorlabs
>> stage = Thorlabs.ElliptecMotor("COM5")
>> stage.close()

Operation

These devices have several features and differences compared to most other stages and sliders:

	There is a possibility to have several (up to 16) devices connected to the same controller board (i.e., the same serial port address) using bus distributor. However, since they all use the same serial port, they are all controlled from a single ElliptecMotor instance. Hence, in order to refer to specific devices, each communication requires an address (integer from 0 to 15), which is specified by addr argument available in almost all methods. When this argument is None (which is the default value), the so-called default address is used, which can be accessed via ElliptecMotor.get_default_addr() and ElliptecMotor.set_default_addr() methods. By default, all connected devices are discovered up the connection, and the first available devices is used as default; therefore, if only a single devices is connected, addr argument does not have to be used.

	Compared to most motor controllers, Elliptec devices have some limitation related to their inability to communicate while the motor is moving. Therefore, there are no methods to query whether the motor is moving, or stop the motion once initiated. To address that and to simplify the library and the user code, all motion-related methods (ElliptecMotor.move_to(), ElliptecMotor.move_by(), and ElliptecMotor.home()) are made synchronous, i.e., the execution is paused until the motion is complete. Note that this is true even when several devices are connected to the same port.

	There are several different ways to specify the stage calibration, which are controlled by the scale parameter supplied upon the connection. By default (scale = "stage"), the internal device calibration is used, so all of the positions are expressed in device-specific units (deg or mm). If scale = "step", all of the position are specified in internal device steps instead. Finally, if scale is a number, it is the proportionality coefficient between the position units and the internal steps, i.e., the position in user-defined units is multiplied by it to specify the position in steps. The scale for individually addressed devices can be set using ElliptecMotor.get_scale() and ElliptecMotor.set_scale() methods.

Note

General stage communication concepts are described on the corresponding page

Newport Picomotor controller

Newport Picomotor is a series of actuators, usually in a screw format, based on the slip-stick piezo actuation mechanism (similar to, e.g., Attocubes). Operating them requires a driver/controller to output specific voltage pulses. The basic modern open-loop controller is Newport 8742, which can drive up to 4 actuators (but only one at a time), supports connection via USB or Ethernet, and can be daisy-chained to communicate with several controllers through one connection. The class has been tested with this controller and a single standard actuator.

The device class is pylablib.devices.Newport.Picomotor8742.

Software requirements

The controller has two communication modes: USB, and Ethernet. USB mode requires a driver supplied with the freely available PicomotorApp software [https://www.newport.com/p/8742-4-KIT], while Ethernet connection works like any other networks device and does not require any additional software. The controller has been tested both with USB and Ethernet communication modes.

Connection

When using the USB connection, the device is identified by its index, starting from 0. To get the number of connected devices, you can use Newport.get_usb_devices_number_picomotor:

>> from pylablib.devices import Newport
>> Newport.get_usb_devices_number_picomotor()
2
>> stage1 = Newport.Picomotor8742()
>> stage2 = Newport.Picomotor8742(1)
>> stage1.close()
>> stage2.close()

Ethernet connection requires a host name or an IP address. Both can be set up by first connecting the device via USB or by using the PicomotorApp software (in the Setup -> Ethernet menu). After that, they can be supplied to the class instead of index:

>> from pylablib.devices import Newport
>> stage1 = Newport.Picomotor8742("8742-12345") # by default, all host names start with 8742
>> stage1.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

	The controller is inherently multi-axis, hence it always take the axis as the first argument. The axes are labeled numerically starting from 1 (i.e., 1, 2, 3, and 4). The list of all axes is related to the exact controller, an can be obtained using Picomotor8742.get_all_axes().

	There is an option to auto-detect motors and their kind using Picomotor8742.autodetect_motors() method. However, since it involves stepping the motor, it usually makes more sense to detect them once and then store them into the non-volatile (i.e., power-independent) memory using Picomotor8742.save_parameters().

	Even open-loop controllers support absolute positioning, which is achieved simply by counting steps in both directions. However, unlike stepper motors or encoders, these steps can be different depending on the direction, position, instantaneous load, speed, etc. Hence, the absolute positions quickly become unreliable. It is, therefore, recommended to generally use relative positioning using Picomotor8742.move_by() method.

	As mentioned above, the controller support daisy-chaining using RS-485 connections. It allows to connect several controllers together while still only using a single PC connection. In this case, it is recommended to supply multiaddr=True upon connecting to the device. If, in addition scan=True is set (default), then upon connection the controller scans for all other connected devices, resolves their address conflicts, and builds the list of the available addresses (address is a number between 1 and 31). The list can later be read using Picomotor8742.get_addr_map(), and the network rescanned using Picomotor8742.scan_devices(). To refer to a specific device, its address should be specified using addr parameter of a method; by default it is set to None, which selects the device connected to the PC.

Note

General stage communication concepts are described on the corresponding page

Arcus Performax positioners

Arcus has several motor controllers and drivers, which are mainly different in their number of axes, communication possibilities, and driving function. They are also distributed under different names, e.g., Nippon Pulse America (NPA) or Newmark Systems. However, the models nomenclature is the same: there is 4EX for 4-axis controllers with USB and RS485 connection, 2EX/2ED for 2-axis controllers with USB and RS485 connections, and 4ET for 4-axis controllers with Ethernet connection. The class has been tested with 4EX and (partially) 2ED controllers with USB and RS-485 connectivity mode, but other controllers mentioned above should also work.

The main device classes are pylablib.devices.Arcus.Performax4EXStage or 4-axis controllers, pylablib.devices.Arcus.Performax2EXStage for 2-axis controllers, and pylablib.devices.Arcus.PerformaxDMXJSAStage for simple single-axis controller (DMX-J-SA). In addition to a different number of axes, they have several syntax differences, so one can not substitute for the other.

In addition, there is also a generic Performax stage class pylablib.devices.Arcus.GenericPerformaxStage, which implements only the most basic functions: ASCII communication with the device and basic methods such as device name request. It can be used with new or not currently supported Arcus stages to directly control them using the ASCII control language (usually described in the stage manual).

Software requirements

The controller has several communication modes: USB, RS485, and Ethernet. USB mode requires a driver supplied with the operation software: Arcus Drivers and Tools [https://www.arcus-technology.com/support/downloads/download-info/drivers-and-tools-installer/], Performax Series Installer [https://www.arcus-technology.com/support/downloads/download-info/performax-series-installer/], and Performax USB Setup [https://www.arcus-technology.com/support/downloads/download-info/performax-usb-setup/] (all obtained at Arcus website [https://www.arcus-technology.com/support/downloads/]). Installing all three seem to be sufficient. Once the appropriate USB drivers are installed, one can connect the device directly via its USB port and use the manufacturer DLLs PerformaxCom.dll and SiUSBXp.dll to communicate with the device. They can be obtained on the manufacturer’s website [https://www.arcus-technology.com/support/downloads/download-info/usb-64-bit-dll/] and placed in the folder with the script, or in the System32 Windows folder. If the DLL is located elsewhere, the path can be specified using the library parameter devices/dlls/arcus_performax:

import pylablib as pll
pll.par["devices/dlls/arcus_performax"] = "path/to/dll"
from pylablib.devices import Arcus
stage = Arcus.Performax4EXStage()

Warning

There appear to be some issues for USB-controlled devices with Python 3.6 which result in out-of-bounds write, memory corruption, and undefined behavior. Hence, Python 3.7+ is required to work with this device.

RS-485 connection does not require any device-specific drivers or DLLs, but it does need RS-485 controller connected to the PC. Such controllers usually show up as virtual COM ports, and they typically do not need any additional drivers.

Connection

When using the USB connection, the device is identified by its index, starting from 0. To get the list of all the connected devices, you can use Arcus.list_usb_performax_devices:

>> from pylablib.devices import Arcus
>> Arcus.list_usb_performax_devices()
[(0, '4ex01', 'Performax USB',
 '\\\\?\\usb#vid_1589&pid_a101#4ex01#{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}', '1589', 'a101'),
 (1, '4ex21', 'Performax USB',
 '\\\\?\\usb#vid_1589&pid_a101#4ex21#{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}', '1589', 'a101')]
>> stage1 = Arcus.Performax4EXStage()
>> stage2 = Arcus.Performax2EXStage(idx=1)
>> stage1.close()
>> stage2.close()

When using the RS-485 connection, you need to specify the serial port corresponding to your RS-485 connection and, possibly, its baud rate:

stage = Arcus.Performax4EXStage(conn = "COM5")
stage2 = Arcus.Performax4EXStage(conn = ("COM5",38400)) # specify a baud rate

The baud rate is 9600 by default, which is the standard value for the controllers. However, it can be changed using Performax4EXStage.set_baudrate() method, in which case you would need to explicitly specify it during the next connection.

In RS-485 mode idx parameter is still used, and it specifies the device number connected to this controller. By default this number is 0, and it can be queried (using USB connection) via Performax4EXStage.get_device_number(). It can also be set using Performax4EXStage.set_device_number(), although the changes takes effect only after the device is power cycled. Although in principle idx can be used to distinguish several Arcus controllers connected to the same bus (i.e., sharing the same RS-485 COM port), currently only single device connection is supported.

To switch between USB and RS-485 control modes, you need to plug or unplug USB connection. It is strongly recommended to power cycle the device after that, since otherwise it might stop responding to RS-485 commands.

Operation

This controller has several features and differences compared to most other stages and sliders:

	The 4-axis and 2-axis controllers are inherently multi-axis, hence they always take the axis as the first argument. The axes are labeled with letters "x", "y" for a 2-axis version, or "x", "y", "z", "u" for a 4-axis one. The list of all axes is related to the exact controller, an can be obtained using Performax4EXStage.get_all_axes(). A single-axis controller does not take an axis argument.

	Different axes can be enabled and disabled using Performax4EXStage.enable_axis(). Note that disabled axes still behave the same as the enabled ones; e.g., their position will increment as usual, when move_to is called. This can lead to some confusion, as the axis appears mostly operational, but the motor does not move.

	In the default controller configuration the limit errors are enabled. In this case, once a single axes reaches the limit switch during motion, it is put into an error state, which immediately stops this an all other axes. Any further motion command on this axis will raise an error, although it is still possible to restart motion on other axes. The axis motion can only be resumed by calling Performax4EXStage.clear_limit_error(). If, however, limit errors are disabled, then only the axis which reached the limit is stopped, and all other axes are unaffected. Furthermore, the motion on the offending axis can be resumed without clearing its error status.
In many cases the default limit error behavior is undesirable, so the class turns it off upon connection. It can be subsequently turned on and off using Performax4EXStage.enable_limit_errors(), and checked using Performax4EXStage.limit_errors_enabled().

	Since simplified single-axis controller (DMX-J-SA) always has limit errors disabled, its behavior is specified a bit differently. Upon connection you can specify autoclear argument (True by default), which indicates that before every movement command the limit error should be automatically cleared.

	The controllers also have analog and digital inputs and digital outputs, which can be queried and set with the corresponding commands.

	The controller has an option to connect an encoder for a separate position readout. By default, all of the commands (e.g., for moving, getting position, getting current speed, etc.) still work in the step-counting mode, and the encoder values are only accessed via Performax4EXStage.get_encoder()/Performax4EXStage.set_encoder_reference(). In principle, there is a closed-loop mode call StepNLoop, but it is not currently supported in the code.

	The built-in motion command has 2 modes: relative and absolute. The code sets the absolute mode on connection and assumes it in all commands. However, if the mode changes for any reason, the move commands will stop working properly.

Note

General stage communication concepts are described on the corresponding page

Trinamic TMCM-1110 controller

TMCM-1110 is a universal single-axis stepper motor controller from Trinamic. It provides multiple connection options, but so far has only been tested with USB connection.

The main device class is pylablib.devices.Trinamic.TMCM1110.

Software requirements

USB connection needs drivers, which are supplied with the freely-available TMCL-IDE [https://www.trinamic.com/support/software/tmcl-ide/#c3291], or TMCL-LITE [https://www.trinamic.com/products/modules/details/tmcm-1110/#downloads-4]. With those drivers installed, the controllers show up as virtual COM ports. Note that when several devices are connected, they sometimes get assigned conflicting (i.e., overlapping) COM ports. In this case, you might need to manually reassign these in the Device Manager.

Connection

Since the devices are identified as virtual COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Trinamic
>> stage1 = Trinamic.TMCM1110("COM5")
>> stage2 = Trinamic.TMCM1110("COM8")
>> stage1.close()
>> stage2.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

	The controller allows one to control the number of microsteps per step using TMCM1110.get_microstep_resolution() and TMCM1110.set_microstep_resolution(). Hence, the calibration of the real position to the controller readout position depends on this resolution. Furthermore, changing this resolution does not affect the step counter, meaning that changing it, performing a move, and changing it back will result in a different position. Hence, it is not recommended to change it after homing or referencing the position.

	Similarly, the controller has variable frequency divisors, which control the ratio between internal and real units for the velocity and the acceleration. They are set up together with the maximal velocity and acceleration using TMCM1110.setup_velocity() and TMCM1110.get_velocity_parameters(), and the conversion factors can be obtained using TMCM1110.get_acceleration_factor() and TMCM1110.get_velocity_factor().

	The device has an option of controlling maximal output current using TMCM1110.setup_current() and TMCM1110.get_current_parameters(). Change them carefully, since the values which are too large can damage the motor. Also take into account, that the currents are defined relative to the maximal output current, which is controlled using the physical jumper on the board.

Note

General stage communication concepts are described on the corresponding page

SmarAct positioners

SmarAct has multiple different controller covering different slider kinds. So far only simple controllers (CU/HCU/SCU) are implemented.

SmarAct CU/HCU/SCU

This is a simple controller, which is mostly aimed at open-loop (i.e., no position readout) positioners. It can control up to 3 axes, and connects to the PC via the USB port.

The device class is pylablib.devices.SmarAct.SCU3D. Currently only open-loop controllers are supported.

Software requirements

The controller shows up as a virtual COM port, and it has a standard FTDI chip, so it does not need any special drivers. However, to communicate with the device, it still needs SCU3DControl.dll library. It is supplied on a CD together with the device, although it might also be possible to request it from SmarAct.

Connection

The devices are identified by their index starting from 0. To get the list of all the connected devices, you can use SmarAct.list_scu_devices:

>> from pylablib.devices import SmarAct
>> SmarAct.list_scu_devices()
[TDeviceInfo(device_id=0, firmware_version='1.3.0.0', dll_version='4.3.0.0')]
>> stage = SmarAct.SCU3D(idx=0) # connect to the first device in the list
>> stage.close()

Due to the manufacturer’s API organization, it is currently only possible to “reserve” all connected stages of the same type simultaneously in one application. This means that no other application can connect to any of the stages as long as at least one stage is being controlled (though it does not make any difference if only one stage is connected).

In addition, currently there is no check on whether the stage is already controlled in the other part of the code. This is in contrast with the vast majority of the devices, which issue a unique handle making it impossible to create two different device objects even within the same application. Hence, one needs to be careful to not connect to the same device twice, which can lead to confusing behavior.

Operation

This controller has several features and differences compared to most other stages and sliders:

	The motion is generally executed in “macrosteps”, which is a sequence of several “microsteps” with a given amplitude, frequency, and number. A single macrostep with the defined parameters can be performed with SCU3D.move_macrostep(), while SCU3D.move_by() executes a series of these macrosteps with one of the predefined sizes (from 0 to 20). These sizes are configured to roughly correspond to the step sizes selectable by the controller, although the agreement is not exact.

SmarAct MCS2 stages

This is an advanced controller, which can control multiple open-loop and closed-loop stages using multiple sensor modules. It connects to the PC via the USB or the Ethernet port.

The device class is pylablib.devices.SmarAct.MCS2. It has been tested with an Ethernet-connected MCS module with several SLx stages.

Software requirements

The controller requires libraries supplied with the SmarAct MCS2 software, which is usually distributed with the device. The required DLL is called SmarActCTL.dll and is located in the MCS2 folder (either MCS/SDK/lib64 for 64-bit systems). By default, pyLabLib searches for these DLLs in the default MCS2 software location (C:/SmarAct/MCS2), in the folder defined by the corresponding environment variable upon installation (MCS2_SDK), as well as in the folder containing the script. If the DLLs are located elsewhere, the path can be specified using the library parameter devices/dlls/smaract_mcs2:

import pylablib as pll
pll.par["devices/dlls/smaract_mcs2"] = "path/to/MCS2/dlls"
from pylablib.devices import SmarAct
stage = SmarAct.MCS2("network:sn:MCS2-00000001")

Connection

The devices are identified by their locator string, which may look like, e.g., "network:sn:MCS2-00000001" or "usb:sn:MCS2-00000001". To get the list of all the connected devices, you can use SmarAct.list_mcs2_devices:

>> from pylablib.devices import SmarAct
>> SmarAct.list_msc2_devices()
["usb:sn:MCS2-00000123"]
>> stage = SmarAct.MCS2("usb:sn:MCS2-00000123")
>> stage.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

	The provided class implements the basic functionality required for the regular levels of automation: movement, accessing position and status, setting up basic parameters (velocity, acceleration, step frequency, etc.), homing. However, it does not cover more advanced and rarely used functions like details of the sensor operation, auxiliary IO, triggering, operation modes (normal, low noise, etc.), PID parameters, and so on. These can still be accessed using MCS2.get_property() and MCS2.set_property() methods, but the interpretation of the property values is up to the user.

Note

General stage communication concepts are described on the corresponding page

Physik Instrumente (PI) controllers

Physik Instrumente produces a variety of piezo, servo, and slider controller. So far, only PI E-515 and PI E-516 are supported and tested via a standard serial connection.

The main device classes are pylablib.devices.PhysikInstrumente.PIE515 and pylablib.devices.PhysikInstrumente.PIE516.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Note that these devices frequently require cross-cable (also called null-modem cable), in which connections between Rx and Tx lines are switched. In addition, one might need to activate RS-232 communication in the front panel menu, as otherwise the device would not respond.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import PhysikInstrumente
>> stage1 = PhysikInstrumente.PIE516("COM5")
>> stage2 = PhysikInstrumente.PIE516("COM8")
>> stage1.close()
>> stage2.close()

Operation

These controllers has several features and differences compared to most other stages and sliders:

	The controllers support either servo (position feedback) or direct voltage output modes, controlled with PIE516.enable_servo() method. In the servo mode they are more similar to a stage controller, and you can use, e.g., PIE516.move_to() and PIE516.stop() (only for E-516) methods. In the direct voltage mode you can use PIE516.set_voltage() to set the voltage directly.

	The controllers only accepts commands from the PC when it is in the “online” (i.e., remote) mode, in which case external voltage controls are ignored. This mode is enabled automatically upon connection if auto_online=True is supplied upon creation (default), and can be connected via PIE516.enable_online() method. Note that in this case manual servo switches should be turned off, since otherwise the device is permanently in the servo mode.

	PI E-515 bring additional complications due to its mechanism of switching between the manual and online modes:

	First, the online mode is only accessible when the servo mode switches on the front panel are off. At the same time, even when online mode is not enabled (and the voltages/positions can not be controlled remotely), it is still possible to switch the servo mode on and off remotely, so one must be careful when calling PIE515.enable_servo().

	Second, when switching to the online mode, all of the voltages and positions are set to the last time they were updated (or zero, if they have not been changed since the device was turned on). It is possible to set the remote voltages to match the local ones before switching the modes, which is done automatically when safe=True is supplied to PIE515.enable_online(). The same can not be done for servo positions, since these can only be changed when the servo mode is on.

	Finally, when the online mode is turned back off, the output voltages go back to the values set by manual knobs, which can be different from the current remote settings.

As a result, one should expect and look out for sudden changes in the stage positions when switching between online and offline modes, and when switching the servo on and off.

Note

General stage communication concepts are described on the corresponding page

Standa motorized stages

Standa produces a variety of motorized stages and positions, which are generally controlled by a single controller model 8SCM4 (older version) or 8SMC5 (newer version).

The main device class are pylablib.devices.Standa.Standa8SMC. The code has been tested with 8SMC4-USB single-axis controller and 8MT167-25 stepper motor stage.

Software requirements

The controllers have a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port by the OS, so no additional software is required.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Standa
>> stage = Standa.Standa8SMC("COM3")
>> stage.close()

Operation

This controller has several features and differences compared to most other stages and sliders:

	The controllers provide a large set of methods for checking and adjusting various motion parameters, controlling different accessories, etc. So far only a basic subset of these commands is implemented, which allows one to start and stop the motion, home the stage, set up basic velocity parameters, and query the status. If you need advanced functionality, you can examine the list of commands in the documentation [https://doc.xisupport.com/en/8smc4-usb/8SMCn-USB/Programming/Communication_protocol_specification.html#all-controller-commands] and implement them in your code using Standa8SMC.query() method.

	All commands dealing with distances (e.g., moving, getting position, velocity, etc.) use internal units. For DC motors these are steps (derived from the rotational encoder), while for stepper motors these are microsteps, whose resolution can be found using Standa8SMC.get_stepper_motor_calibration(). This means that, e.g., given a stepper motor with 200 steps per revolution and 256 microsteps per step, one can rotate it by a full turn (before taking a possible gearbox into account) by calling stage.move_by(200*256).

	Some stages can come with a built-in linear encoder. In this case, the position can be accessed both using Standa8SMC.get_position() method like for all other stages, and using Standa8SMC.get_encoder() method. If there is not linear encoder, Standa8SMC.get_encoder() will return zero.

Basic sensors

Basic concepts are described at the basic sensors communication page.

Currently supported sensors:

	HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

	Ophir: optical power and energy meters. Tested with Ophir Vega.

	Thorlabs: optical power and energy meters. Tested with PM160.

	Lakeshore: temperature sensors. Tested with Lakeshore 218.

	Cryocon: temperature sensors. Tested with CryoCon 14C.

	Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

	Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

	Leybold: pressure gauges. Tested with ITR90 gauge.

	Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

	Thorlabs quadrature detector controller. Tested with TPA101.

	Keithley multimeters. Tested with model 2110.

	Voltcraft multimeters. Tested with VC-7055BT and VC880.

Note

General device communication concepts are described on the corresponding page.

Basics of sensors communication

Basic example

Basic sensors usually only implement a handful of functions related to reading out the measurements (possibly on different channels) and setting up measurements modes:

>> gauge = Pfeiffer.TPG260("COM1") # connect to the gauge
>> gauge.enable(1) # enable the first channel (usually it's already enabled)
>> gauge.get_pressure() # read pressure at the default channel (1)
100E3
>> gauge.close()

Application notes and examples

Here we talk more practically about using pylablib to perform commons sensor tasks.

Readout

The main readout methods almost always start with get_ prefix, e.g., get_pressure, get_temperature, or get_level. In some cases there would be two different measurement modes: one which just reads the latest measurement result, and one which initializes the measurement, waits until it’s done, and returns the result. These two approaches may be implemented differently in different devices, and it is addressed in their description:

>> meter = Cryomagnetics.LM500("COM1")
>> meter.get_level(1) # immediately return the latest reading
20.0
>> meter.get_level(1) # return the same reading
20.0
>> meter.measure_level(1) # initialize a new measurement; takes some time
19.8

Non-numerical values

In some cases the readout method would return a non-numerical values. This usually happens when the sensor readings are outside of its range, or if it is in a wrong state (off, warming up, error, etc.) These cases are documented in the querying method description:

>> meter = Ophir.VegaPowerMeter("COM1")
>> meter.get_power() # power is higher than the current range
'over'
>> meter.set_range_idx(0) # set the maximal power range
>> meter.get_power() # now the reading is numerical
10E-3

Units

Unless absolutely necessary and obvious, all the readout values are specified in SI units (even, e.g., laser frequency in Hz, or pressure in Pa). In rare cases when the devices allows for selection of readout units (e.g., Pfeiffer TPG260 gauges), it only affects the displayed value, but not the results returned by the corresponding methods:

>> gauge = Pfeiffer.TPG260("COM1")
>> gauge.set_units("pa")
>> gauge.get_pressure()
100E3
>> gauge.set_units("mbar")
>> gauge.get_pressure() # pressure still in Pa
100E3
>> gauge.get_pressure(display_units=True) # pressure in display units
1000

Channel selection

Some gauges support simultaneous readout on several channels. In this case, all of their methods take an additional channel (in most cases) argument, which specify the read channel.

The channels are usually specified by their index starting from 0 or 1, although some devices adopt more complicated labeling schemes (e.g., Lakeshore 218 temperature sensor can only assign a sensor type to a group of 4 sensors, which is labeled "A" or "B"). The exact specification is given in the specific class description.

Currently supported sensors

	HighFinesse: laser wavelength meters. Tested with WS6 and WS7 USB-controlled devices.

	Ophir: optical power and energy meters. Tested with Ophir Vega.

	Thorlabs: optical power and energy meters. Tested with PM160.

	Lakeshore: temperature sensors. Tested with Lakeshore 218.

	Cryocon: temperature sensors. Tested with CryoCon 14C.

	Cryomagnetics: liquid nitrogen or helium level sensor. Tested with LM-500 and LM-510 sensors.

	Pfeiffer: pressure gauges. Tested with TPG261 and DPG202 controllers.

	Leybold: pressure gauges. Tested with ITR90 gauge.

	Kurt J. Lesker: pressure gauges. Tested with KJL300 gauge.

	Thorlabs quadrature detector controller. Tested with TPA101.

	Keithley multimeters. Tested with model 2110.

	Voltcraft multimeters. Tested with VC-7055BT and VC880.

Note

General sensor communication concepts are described on the corresponding page

HighFinesse wavemeters

HighFinesse produces a variety of fiber-coupled wavelength meters. Currently pylablib only deals with WS series which uses a USB connection. The code has been tested with several WS6 and WS7 wavemeters.

The main device class is pylablib.devices.HighFinesse.WLM.

Software requirements

HighFinesse employs a fairly unique control system.

First, one needs to install the control software, which is uniquely tied to a particular wavemeter and is supplied with it. In theory, software from another wavemeter might still work, but the results are not guaranteed.

Second, this control software runs an application server which processes all requests from third-party software. This means, that the main application needs to be running to perform any device communication from the code. The code has an option of automatically starting it, but on some occasions it might fail, in which case it is necessary to either manually start it, or supply the location of the executable file.

Note

The control software should keep running the whole time. As soon as it is closed, the device will raise an error.

Finally, one needs the DLL to communicate with this software. It is usually named wlmData.dll, and it is located in the main controller software folder either in Com-Test (for 32-bit applications) or Projects/64 (for 64-bit applications).

Connection

The device class makes an attempt to search for the DLL and executable in the standard installation folders, as well as use the DLL in the standard location and its executable auto-detection capabilities. However, depending on the number of installed wavemeters and their installation locations, one needs to provide up to 3 arguments on connection. First, the wavemeter ID, which simply a 1 to 5-digit number (e.g. 1234). It is used to identify the correct instance of the control software, either by searching for the correct folder, or via DLL autostart capabilities. Second, one might need to provide the path to wlmData.dll (either including the name, or simply the containing folder). Its location is described in the above section. Finally, you might also need to give the path to the application executable, which is located in the main installation folder and is named wlm_ws*.exe, where * is the wavemeter generation (e.g., wlm_ws7.exe for WS7 wavemeters). Hence, the fully qualified (and, therefore, most robust) instantiation looks like this:

>> import os
>> from pylablib.devices import HighFinesse
>> app_folder = r"C:\Program Files\HighFinesse\Wavelength Meter WS7 1234"
>> dll_path = os.path.join(app_folder, "Projects", "64")
>> app_path = os.path.join(app_folder, "wlm_ws7.exe")
>> wm = HighFinesse.WLM(1234, dll_path=dll_path, app_path=app_path)
>> wm.close()

A unique property of this device is the ability to control it simultaneously from several applications. Keep this in mind, since it might cause confusion or strange results if the control attempts are not synchronized.

Warning

Communication with several simultaneously running wavemeters from a single application has not been tested, and might not work correctly.

Operation

The operation of the wavemeter is fairly straightforward, but there is a couple of points to keep in mind:

	By default, the main measurement functions (WLM.get_frequency() and WLM.get_wavelength()) raise an error on over- or under-exposure. If this is undesirable (e.g., the laser has power jumps), one can instead make it return "over" or "under" on these occasions.

	The measurement result is returned immediately, but it is updated only about every 15-30ms (+ exposure time). Hence, fast consecutive calls to WLM.get_frequency() and WLM.get_wavelength() will return the same value.

	Multi-channel devices have two working modes: single-channel (when only one channel is enabled at a time) and cycling (the wavemeter constantly cycles through several channels for quasi-simultaneous measurements). Some methods only make sense in one of this modes, e.g., WLM.set_active_channel() only works in the single-channel mode, while WLM.enable_switcher_channel() only in the multi-channel mode. By default, these methods will automatically switch to the corresponding mode.

	Due to a minor control software bug, change in the exposure on some channels might not be reported until the control software is switched to the corresponding channel’s exposure control tab (in the upper right corner). By default, the device class performs this switching any time the exposure value is queried, which solves the issue. However, it does take about 10ms. If it is critical, it’s possible to turn of this behavior by setting auto_channel_tab attribute to False.

Note

General sensor communication concepts are described on the corresponding page

Ophir power meters

Ophir produces a variety of power and energy meters with different controllers and measurement heads. The class has been tested with Ophir Vega controller with a photodiode head.

The main device classes are pylablib.devices.Ophir.OphirDevice for a generic device and pylablib.devices.Ophir.VegaPowerMeter for Vega power meter.

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5) and the baudrate, if it is different from the standard one (9600 baud):

>> from pylablib.devices import Ophir
>> meter1 = Ophir.VegaPowerMeter("COM5") # default connection assumes 9600 baud
>> meter2 = Ophir.VegaPowerMeter(("COM6", 19200)) # if the second power meter has a different baudrate
>> meter1.close()
>> meter2.close()

Operation

The operation of the power meter is fairly straightforward, but there is a couple of points to keep in mind:

	On the Vega controller the results can be sent at most 15 times a second. However, they are not necessarily updated at this rate, so several consecutive request might yield the same result.

	The device provides the way to change the communication baud rate. If the rate is changed, the device is automatically disconnected, and the new object needs to be instantiated with the updated baudrate.

	The device might return "over" instead of the power reading on overexposure. To fix that, you can adjust the measurement range using VegaPowerMeter.set_range_idx().

Note

General sensor communication concepts are described on the corresponding page

Thorlabs PM100/PM160 series power meters

Thorlabs produces several different models of power and energy meters with different controllers and measurement heads, but relatively similar interfaces. The class has been tested with PM160 standalone power VegaPowerMeter.

The main device class pylablib.devices.Thorlabs.PM160.

Software requirements

The drivers for USB devices are provided in the Thorlabs Optical Power Monitor software [https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=OPM] software. PyLabLib uses NI VISA communication interface to communicate with this device. Hence, it also requires NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]. Finally, to make the devices run with VISA interface, you need to run Power Meter Driver Switcher (comes with the Optical Power Monitor software) and switch all the desired power meters to PM100D mode (it is called PM100D even for other power meters such as PM160).

Devices with pure RS232 interface do not require Thorlabs software, and only need an appropriate USB-to-RS232 adapter with its own drivers.

Devices with bluetooth connection can be used on Windows via a bluetooth COM port. For that, first you need co connect the power meter to your PC by making sure it is active (i.e., the display is lit up), and then adding a new bluetooth device in Bluetooth and other devices settings (the power meter should show up in the list of discovered devices). After that, you need to open More Bluetooth options (in the panel on the right side) and navigate to the COM Ports tab. There should already be several COM ports in the list corresponding to the added power meter. You are interested in the one marked with Outgoing direction, with the name containing 'SPP' (e.g., Thorlabs PM160 400000 'SPP'). The corresponding COM port (e.g., COM5) is the one you need to use for communication.

Connection

Depending on the protocol used (VISA or RS232/bluetooth), you will need to supply either a VISA name (e.g., "USB0::0x1313::0x807B::400000::INSTR") or a COM port name (e.g., "COM5"), potentially with the baud rate if it is different from the standard 115200 baud (e.g., ("COM5", 19200); only applies to RS232 devices, not bluetooth):

>> from pylablib.devices import Thorlabs
>> meter1 = Thorlabs.PM160("USB0::0x1313::0x807B::400000::INSTR") # USB connection uses VISA interface
>> meter2 = Thorlabs.PM160("COM3") # bluetooth connection uses a COM port
>> meter1.close()
>> meter2.close()

Operation

The operation of the power meter is fairly straightforward, but there is a couple of points to keep in mind:

	Bluetooth communication tends to go to a sleep mode after about a second of inactivity (i.e., lack of communication with the PC). When in this mode, it takes about a second for the device to reply to the first command, after which it switches in the active mode and replies significantly fast (about 20ms per command) until it goes back into the sleep mode. Hence, to keep the device responsive, it is important to poll it at least 2-3 times a second (e.g., using method PM160.get_reading() with measure=False, which immediately returns the currently displayed value).

Note

Basic sensors communication concepts are described on the corresponding page

Lakeshore temperature sensors

Lakeshore manufactures a range of temperature sensor controllers and resistance bridges, which are also used for temperature sensing. There is some overlap between different products, but they still use fairly distinct interfaces and interaction patterns. The code has been tested with Lakeshore 218 temperature controller.

The main device class is pylablib.devices.Lakeshore.Lakeshore218.

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Lakeshore
>> sensor = Lakeshore.Lakeshore218("COM5")
>> sensor.close()

Note that the connection uses the standard which is fairly different from most RS232 controllers: 7 data bits, 1 parity bit, and 1 stop bit (as opposed to 8 data bits and no parity bit for most controllers). Hence, it is possible that not all RS232 controllers can communicate with it. In addition, they might need a null-modem (crossed Rx and Tx lines) RS232 cable.

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

	Like most similar devices, querying temperature using Lakeshore218.get_temperature() immediately returns the most recently measured value. Re-measurement is periodically initiated by the devices itself.

	It is possible to specify custom response curves by using Lakeshore218.set_curve_header() and Lakeshore218.set_curve(). However, you need to be careful, as it overwrites the stored user curves.

Note

Basic sensors communication concepts are described on the corresponding page

CryoCon temperature sensors

CryoCon manufactures a range of temperature sensor controllers and resistance bridges, which are also used for temperature sensing. The code has been tested with CryoCon 14C temperature controller.

The main device class is pylablib.devices.Cryocon.Cryocon1x.

Software requirements

The device provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Cryocon
>> sensor = Cryocon.Cryocon1x("COM5")
>> sensor.close()

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

	Like most similar devices, querying temperature using Cryocon1x.get_temperature() immediately returns the most recently measured value. Re-measurement is periodically initiated by the devices itself.

Note

Basic sensors communication concepts are described on the corresponding page

Cryomagnetics level monitor

Cryomagnetics manufactures cryogenic liquid level monitors, which are used for monitoring liquid nitrogen or helium levels inside cryostats. The two level meters supported in the package are LM-500 and LM-510; despite difference in appearance, their functionalities are very similar, so their interfaces are nearly identical.

The main device classes are pylablib.devices.Cryomagnetics.LM500 and pylablib.devices.Cryomagnetics.LM500.

Software requirements

LM-500 provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work. LM-510 has a USB interface with a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port, so no additional software is required.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Cryomagnetics
>> sensor = Cryomagnetics.LM510("COM5")
>> sensor.close()

Operation

The operation of this temperature sensor is fairly straightforward, but there is a couple of points to keep in mind:

	Upon connection the devices are automatically switched into the remote mode, which disables manual controls. If this mode is manually switched off (e.g., using Local button in LM-510), the device will no longer obey the remote commands, even though the readout would still work.

	There are no specific commands for stopping a refill or resetting the timeout state after a timed-out refill. However, both can be achieved using LM500.reset() method.

	Only LM-510 supports switching the automated refill option on and off using LM510.set_control_mode() method.

	Like most similar devices, querying the level using LM500.get_level() immediately returns the most recently measured value. Re-measurement is periodically initiated by the devices itself, or can be initiated manually using LM500.start_measurement() or LM500.measure_level().

Note

Basic sensors communication concepts are described on the corresponding page

Pfeiffer pressure gauges

Pfeiffer manufactures a range of pressure gauges and controllers with several different standards and communication protocols. The code has been tested with Pfeiffer TPG260 series controller (specifically, TPG261) and Pfeiffer DPG202 controller.

The main device classes are pylablib.devices.Pfeiffer.TPG260 and pylablib.devices.Pfeiffer.DPG202.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Pfeiffer
>> gauge = Pfeiffer.TPG260("COM5")
>> gauge.close()

Operation

TPG260 series

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

	On measurement error TPG260.get_pressure() returns None. To get the underlying issue, you can use TPG260.get_channel_status()

	By default, the pressure is always returned in Pa regardless of the display units. This behavior can be overridden by setting display_units=True in TPG260.get_pressure().

	In case an error occurs, you can use TPG260.get_current_errors() to get the list of currently active errors and TPG260.reset_error() to reset them.

	This communication protocol for 350-series gauges (361, 362 and 366) is similar, so the device class should also be able to work with them. However, it has not been tested.

DPG202/TPG202 controller

There is a variety of different controllers which implement a similar protocol: DPG202 and TPG202, as well as a variety of RS485-controlled gauges (e.g., CPT200). It is based on requesting parameters with certain 3-digit numbers. These are fairly consistent between the devices, for example, 312 stands for the software version, 740 for pressure, and 349 for the device name. However, different devices implement different subsets of these parameters. The supplied class provides a generic interface through DPG202.get_value() and DPG202.comm() methods, which, correspondingly, request or set a value of a given parameter given its number (e.g., 740) and datatype (e.g., "string", "u_expo_new", or "u_short_int"). Both of these pieces of information are usually provided in the controller or gauge manual in the Parameter overview (or similar-named) section. Currently the device class provides only the most basic functionality:

>> from pylablib.devices import Pfeiffer
>> gauge = Pfeiffer.DPG202("COM5")
>> gauge.get_pressure() # pressure in Pa
9.78E4
>> gauge.get_value(740,"u_expo_new") # request the parameter directly, yields pressure in mBar
9.78E2
>> gauge.close()

Note

Basic sensors communication concepts are described on the corresponding page

Leybold pressure gauges

Leybold manufactures a range of pressure gauges and controllers with several different standards and communication protocols. The code has been tested with Leybold ITR90 pressure gauge using its built-in RS232 connection.

The main device classes are pylablib.devices.Leybold.ITR90.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Leybold
>> gauge = Leybold.ITR90("COM5")
>> gauge.close()

Operation

ITR90

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

	Device operates by constantly streaming its status updates. To get the most recent and most consistent data, you can use ITR90.get_update(). This is also how you access the gauge status and error states.

	By default, the pressure is always returned in Pa regardless of the display units. This behavior can be overridden by setting display_units=True in ITR90.get_pressure().

Note

Basic sensors communication concepts are described on the corresponding page

Kurt J. Lesker pressure gauges

KJL manufactures a range of pressure gauges and controllers with several different standards and communication protocols. The code has been tested with KJL300 pressure gauge using its built-in RS232 connection.

The main device classes are pylablib.devices.KJL.KJL300.

Software requirements

The devices provide a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import KJL
>> gauge = KJL.KJL300("COM5")
>> gauge.close()

Operation

KJL300

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

	Even standard RS232 operation requires specifying the device RS485 address. IT can be specified using addr parameter on creation. By default, the class assumes the factory default of 1, but if it is ever changed on the device, it needs to be specified correctly.

	By default, the pressure is always returned and set in Pa regardless of the display units.

Note

General device communication concepts are described on the corresponding page.

Basic lasers

Basic example

Basic lasers (such as pump lasers) usually only have very basic power-related functionality: turning it on and off, setting power, and controlling and/or requesting the shutter state:

>> laser = LaserQuantum.Finesse("COM1") # connect to the laser
>> laser.set_output_power(10.) # set 10W output power
>> laser.enable() # enable the laser
>> laser.get_output_power() # laser hasn't ramped up up yet
0.1
>> time.sleep(30.) # wait until the ramp up is done
>> laser.get_output_power()
10.0
>> laser.enable(False)
>> laser.close()

Lighthouse Photonics Sprout

Lighthouse Photonics Sprout laser implements the same basic functionality, with some small additions like reading the interlock status, output mode, temperatures, etc.

The device class is pylablib.devices.LighthousePhotonics.SproutG.

Since the device shows up as a COM port, it uses the standard connection method, and all you need to know to connect is its COM-port address:

from pylablib.devices import LighthousePhotonics
laser = LighthousePhotonics.SproutG("COM1")
laser.close()

Laser Quantum Finesse

Laser Quantum Finesse laser implements the same basic functionality, with some small additions like controlling the shutter, reading the driving current, temperatures, etc.

The device class is pylablib.devices.LaserQuantum.Finesse.

Since the device shows up as a COM port, it uses the standard connection method, and all you need to know to connect is its COM-port address:

from pylablib.devices import LaserQuantum
laser = LaserQuantum.Finesse("COM1")
laser.close()

Note

General device communication concepts are described on the corresponding page.

M2 Solstis laser

Solstis is a Ti:Saph laser produces by M2. It is controlled via IceBloc controller unit, which communicates with the PC via a network connection.

The main laser class is pylablib.devices.M2.Solstis.

Software requirements

The device provides a bare network interface, so no additional software is required. However, the device and the local network need to be appropriately configured, such that the PC and the laser are in the same local network and have static IPs.

In order to access some advanced features, you will need a websocket-client package, which is not installed with pylablib by default. You can obtain it from PyPi either separately as

pip install websocket-client

or with the expanded pylablib version

pip install pylablib[devio-full]

Connection

The laser is identified by its IP address (typically starting with 192.168.1, if it is on the local network) and the port:

>> from pylablib.devices import M2
>> laser = M2.Solstis("192.168.1.2", 34567)
>> laser.close()

The port is set up in the Remote interface row of the Network Settings menu of the laser web interface. There you also need to provide the correct IP address of the controlling PC and enable the remote interface; otherwise the connection will be rejected by the laser.

In addition, you can enable websocket interface option, which is used to send request directly though the device web interface. It is used for some options which are unavailable otherwise, such as enabling or disable the wavemeter connection, receiving some additional status information, and performing more robust control. Note that for proper operation the web interfaces should be opened in the browser and logged in.

Operation

The method names are pretty self-explanatory, and mostly correspond directly to the operations in the web interface. Note that, due to the remote interface organization, terascan requires two methods to start: first Solstis.setup_terascan() to specify parameters, and then Solstis.start_terascan() to start it.

One should note, that the device operation is not very stable, and occasionally some errors and crashes arise. These can range from failed wavelength tuning and terascan, to terascans failing in exotic ways (e.g., the remote interface suggests that the scan is in progress while the web interface reports a crash), to complete device failure requiring Ice Bloc power cycling.

The device class attempts to somewhat mitigate it by providing relatively a robust stopping method Solstis.stop_all_operation(), which tries to set the devices to the default idle state. It uses web interface to get a better information about the laser crashing and send additional stopping commands. It also performs additional steps to stop scans and put the laser in an operation state after a failure, such as starting quick small fine and terascans, and tuning to a nearby frequency.

M2 external mixing module (EMM)

M2 EMM allows for mixing Solstis lasers with an additional IR laser to produce higher frequency radiation. Its control principles are fairly similar to Solstis, and it is accessed through the same kind of Ice Bloc controller.

The main device class is pylablib.devices.M2.EMM.

Software requirements

Same as Solstis, the device provides a bare network interface, so no additional software is required. However, the device and the local network need to be appropriately configured, such that the PC, the EMM, and the corresponding Solstis laser are in the same local network and have static IPs.

Connection

The EMM is identified by its IP address (typically starting with 192.168.1, if it is on the local network) and the port:

>> from pylablib.devices import M2
>> emm = M2.EMM("192.168.1.2", 34567)
>> emm.close()

The port is set up in the Remote interface row of the Network Settings menu of the controller web interface. There you also need to provide the correct IP address of the controlling PC and enable the remote interface; otherwise the connection will be rejected by the controller.

Operation

The methods are organized in the same way as for the Solstis laser. Overall, the remote interface implements fewer commands, so the class provides fewer methods. Most of the commonly used methods are related to fine frequency tuning, terascan control, and status checking.

Note

General device communication concepts are described on the corresponding page.

Toptica iBeam Smart laser

Toptica iBeam Smart is a series of CW diode lasers from Toptica. The software has been tested with the standard 633nm laser.

The main device class is pylablib.devices.Toptica.TopticaIBeam.

Software requirements

The device is connected to the PC via RS232 or USB. RS232 simply requires a COM-port controller on the PC, which in most cases is a USB-to-Serial adapter. Such adapters normally come with their standard drivers. The USB version simply involves a built-in USB-to-Serial converter (e.g., a standard FTDI chip), so it also shows up as a virtual COM port. Hence, it requires relatively standard drivers, which are either included with the laser, or can be download from the manufacturer’s website [https://www.toptica.com/products/single-mode-diode-lasers/ibeam-smart/], for example, together with the TOPAS control software.

Connection

Since the devices are identified as virtual COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5) and, possibly, baud rate, if it is different from the standard 115200 baud:

>> from pylablib.devices import Toptica
>> laser1 = Toptica.TopticaIBeam("COM5")
>> laser2 = Toptica.TopticaIBeam(("COM10",38400)) # in case of 38400 baud connection
>> laser1.close()
>> laser2.close()

Operation

Power and output control

Usually the laser has the main power control and one or several (up to 5) output channels, which can be controlled separately. To turn the whole laser on or off, you can use TopticaIBeam.enable(), while each channel is controlled using TopticaIBeam.enable_channel(). The power is set independently for each channel via TopticaIBeam.set_channel_power(). The actual output power can be queried using TopticaIBeam.get_output_power().

Detailed info

The most detailed information about the laser can be obtained using TopticaIBeam.get_full_data() method. It outputs a detailed report generated by the laser, which contains most of the adjustable parameters.

Notes and issues

Occasionally the laser communication falls into an error state, where replies are lagging behind the requests (i.e., instead of replying to the issued command, the devices replies to the previous one). This is especially likely if several commands are issued in a rapid succession. If this happens, the laser should be rebooted using TopticaIBeam.reboot() method.

Note

General device communication concepts are described on the corresponding page.

Sirah Matisse laser

Matisse is a family of Ti:Saph and dye ring lasers produces by Sirah.

The main laser class is pylablib.devices.Sirah.SirahMatisse.

Software requirements

The device requires Matisse Commander software supplied by the manufacturer. When it is installed, it shows up as a VISA resource and can be accessed without further requirements.

Connection

The laser is identified by its VISA address, typically looking like "USB0::0x17E7::0x0102::01-01-10::INSTR":

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x17E7::0x0102::01-01-10::INSTR',)
>> from pylablib.devices import Sirah
>> laser = Sirah.SirahMatisse("")
>> laser.close()

Operation

The method names are pretty self-explanatory, and mostly correspond directly to the operations in the Matisse Commander. However, only the basic tuning and scanning functions supplied by the interface are provided, and the more advanced once like scanning BRF/etalon or interfacing with a wavemeter need to be implemented by the user based on the defined methods.

Note that depending on the specific model not all methods are available, e.g., reference cell locking is not available in TR/DR configuration.

Note

General device communication concepts are described on the corresponding page.

NKT lasers

NKT Photonics produces a variety of light sources (predominantly fiber-coupled lasers), which are frequently arranges as multi-stage modular systems. These systems consist of individual modules, which can be controlled via the main module using the common Interbus connection. The main laser class is pylablib.devices.NKT.GenericInterbusDevice for a generic Interbus-connected system. The code has been tested with SuperK EXTREME white light laser equipped with SuperK SELECT tunable filter.

Software requirements

The controllers have a built-in USB-to-RS232 adapter, which is automatically recognized as a serial port by the OS, so no additional software is required. If the device is not recognized, the drivers can be obtained from the manufacturer website [https://www.nktphotonics.com/support/].

Connection

The whole Interbus system is identified as a COM port, so it uses the standard connection method, and all you need to know is its COM-port address (e.g., COM5):

>> from pylablib.devices import NKT
>> laser = NKT.GenericInterbusDevice("COM3")
>> laser.close()

Within each Interbus system, there is a set of modules which can be accessed individually using their address (a number between 1 and 48). To automatically detect all available modules, you can use GenericInterbusDevice.ib_scan_devices(). Note that it typically takes relatively long time (about 25s for the full scan), so you should generally only do it when you change the Interbus arrangement by connecting or disconnecting devices or changing their addresses.

To identify, which address corresponds to which device, there are several methods. First, you can use the returned device type (also an integer between 0 and 255). You can look up the types in the SDK manual, which is freely available on the manufacturer website [https://www.nktphotonics.com/support/] (you need to download SDK zip file, inside which SDK Instruction manual.pdf provides the necessary information). In addition, some devices either have standard addresses (e.g., Koheras BasiK K80-1 has address 10 and type 33, while SuperK EXTREME has address 15 and type 96), or allow for setting their address using switches (e.g., SuperK SELECT).

Operation

All of the device control is done by querying and setting values of internal registers. Similar to modules themselves, registers within each module are also identified by their numerical addresses. The list of the device registers and their meaning is provided in the same SDK file as mentioned above. To access the registers, you can use GenericInterbusDevice.ib_get_reg() and GenericInterbusDevice.ib_set_reg() methods. By default these methods work with raw binary values, but you can provide the register kind (e.g., "i16" or "u8") to these methods. You can learn the kind of the registers and their precise meaning from the register files, which are available after installing the SDK. These files are located in the Register Files folder within the SDK, and their names correspond to the device kind in hex (e.g., the file corresponding to Koheras BasiK K80-1 will be name 21.txt). Given this information, you can control your system. For example, the following code connects to the SuperK EXTREME module, queries its inlet temperature, sets the power setpoint and turns on the emission:

from pylablib.devices import NKT
laser = NKT.GenericInterbusDevice("COM3")
print(laser.ib_get_reg(15,0x11,"i16")/10) # the register is temperature in 0.1C
laser.ib_set_reg(15,0x37,600,"u16") # set power to 60% (the register is power level in 0.1%)
laser.ib_set_reg(15,0x30,3,"u8") # turn on the output (3 for on, 0 for off)

Note

General device communication concepts are described on the corresponding page.

Tektronix oscilloscopes

Tektronix produces a large number of very widespread oscilloscopes. They have strongly overlapping, though not entirely identical, interfaces. The library has been tested with TDS2002B, TDS2004B, and DBO2014B.

The generic oscilloscope class is pylablib.devices.Tektronix.ITektronixScope, and the derived classes for specific devices are pylablib.devices.Tektronix.TDS2000 of TDS2000 series and pylablib.devices.Tektronix.DPO2000 for DPO2000/MSO2000 series.

Software requirements

These oscilloscopes use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x0699, e.g., "USB0::0x0699::0x0364::C000001::INSTR". To get a list of all connected VISA-enabled devices, you can run pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x0699::0x0364::C000001::INSTR',)
>> from pylablib.devices import Tektronix
>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR")
>> osc.close()

Operation

The method names are usually pretty self-explanatory. A typical operation involves setting up channels, scales, and trigger options, acquiring a waveform, and reading the result:

from pylablib.devices import Tektronix
osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR") # connect to the oscilloscope
osc.enable_channel([1,2]) # enable channels
osc.set_horizontal_span(0.1) # set up horizontal and vertical spans
osc.set_vertical_span("CH1", 1)
osc.set_vertical_span("CH2", 0.1)
osc.setup_edge_trigger("CH1", 0., "dc", "rise") # set up edge trigger on channel 1 at 0V threshold
osc.grab_single(wait_timeout=10.) # grab a single waveform and wait for up to 10s to finish acquisition
sweeps = osc.read_multiple_sweeps([1,2]) # read out the waveforms
osc.close()

However, there is a couple of points to keep in mind:

	The acquisition is controlled using grab_ methods. Generally, the most convenient way is to use ITektronixScope.grab_single() to acquire a single waveform (analogous to pressing a Single button on the oscilloscope panel). By default, this method waits until the acquisition is complete (i.e., the oscilloscope is triggered and the waveform is completely acquired) before continuing. You can also set wait=False to perform other operations in the meantime. The acquisition status can be queried via ITektronixScope.is_grabbing(), which returns True while the trigger is armed or while the data is recording, and False after the acquisition is done.

	It appears that the software trigger does not work some time (~500 ms) after the acquisition is set up. If it is invoked in ITektronixScope.grab_single() method by supplying software_trigger=True, a 300ms delay is added automatically. However, if you invoke it manually using ITektronixScope.force_trigger(), you should keep it in mind.

	The waveform transfer is usually performed via ITektronixScope.read_sweep() or ITektronixScope.read_multiple_sweeps() methods. Since the waveform is transferred in raw form, it requires a preamble data (vertical and horizontal scales and offsets, data format, etc.) to translate into physical units. By default, it is acquired every time before the waveform transfer, which takes some time (up to ~200ms). Alternatively, one can acquire a preamble once and use it in subsequent reading. This method is faster, but will result in an incorrect scaling if the parameters are changed in the meantime (either remotely, or directly on the oscilloscope):

>> wfmpres = osc.osc.get_wfmpre([1,2])
>> %time sweeps = osc.read_multiple_sweeps([1,2])
Wall time: 2.2 s
>> %time sweeps = osc.read_multiple_sweeps([1,2], wfmpres=wfmpres)
Wall time: 450 ms

	The device class attempts to determine the number of channels automatically on connection, based on which requests raise device errors. However, this process takes some time, and sometimes can raise errors on not fully SCPI-compliant devices. If that is the case, it is always possible to supply the number of channels on construction:

>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR") # use autodetection
>> osc.get_channels_number()
2
>> osc.close()
>> osc = Tektronix.TDS2000("USB0::0x0699::0x0364::C000001::INSTR", nchannels=2) # specify manually

 Keithley (currently absorbed by Tektronix) manufactures a large variety of precision electrical test and measurement equipment.

Keithley multimeters

Note

Basic sensors communication concepts are described on the corresponding page

There are different series of multimeters with somewhat different capabilities. The code has been tested with Keithley 2110 multimeter, but it should also be able to work with 2100 and 2010 series.

The main device class is pylablib.devices.Keithley.Keithley2110.

Software requirements

These multimeters use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x05E6, e.g., "USB0::0x05E6::0x2110::0000001::INSTR". To get a list of all connected VISA-enabled devices, you can run pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x05E6::0x2110::0000001::INSTR',)
>> from pylablib.devices import Keithley
>> meter = Keithley.Keithley2110("USB0::0x05E6::0x2110::0000001::INSTR")
>> meter.close()

Operation

The operation of this multimeter is fairly straightforward, but there is a couple of points to keep in mind:

	While all measurement modes are, in principle, supported, only some of them have implemented specific parameter changing (e.g., range or resolution): voltage and current (AC and DC), resistance (2-wire and 4-wire), capacitance, frequency and period (voltage and current). These methods allow for changing of specific parameters using methods like Keithley2110.get_vcr_function_parameters() (get voltage, current, or resistance measurement parameters) or Keithley2110.set_cap_function_parameters() (set capacitance measurement parameters).

	At the same time, more universal Keithley2110.get_configuration() and Keithley2110.set_configuration() methods allow for changing basic parameters (range and resolution) for all of the applicable measurement functions (excluded are continuity, diode, and temperature modes).

 Rigol manufactures a large variety of electrical test and measurement equipment, including signal generators, oscilloscopes, multimeters, power supplies, etc.

Rigol laboratory power supplies

There are different kinds of power supplies with somewhat different capabilities. The code has been tested with Rigol DP1116A.

The main device class is pylablib.devices.Rigol.DP1116A.

Software requirements

These power supplies use NI VISA communication interface. Hence, it requires NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]

Connection

The devices are identified by their VISA connection strings, which typically start with USB0::0x1AB1, e.g., "USB0::0x1AB1::0x0E10::DP1A000000000::INSTR". To get a list of all connected VISA-enabled devices, you can run pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x1AB1::0x0E10::DP1A000000000::INSTR',)
>> from pylablib.devices import Rigol
>> supply = Rigol.DP1116A("USB0::0x1AB1::0x0E10::DP1A000000000::INSTR")
>> supply.close()

Operation

The operation of this multimeter is fairly straightforward, but there is are some points to keep in mind:

	Note that the supply supports different output ranges (for DP1116A it’s "16V" or "32V"), which trike different balance between output voltage and current. Other power supplies might support different output ranges, in which case the related method will raise an error or lead to communication timeout.

Note

General device communication concepts are described on the corresponding page.

NI DAQmx interface

National Instruments produces lots of different data acquisition devices, which support digital and analog input and output, both immediate and clocked (depending on the exact device). They are controlled via a very universal NI DAQmx [https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8baSAC] interface. This interface is implemented in python-nidaqmx [https://nidaqmx-python.readthedocs.io/en/latest/] package, which provides a fairly close to original functionality, but with much more convenient Python wrappers. Pylablib implements a relatively thin wrapper around this package to present it in a way similar to the other device classes, and to simplify common tasks such as setting up voltage and counter input channels.

The main daq class is pylablib.devices.NI.NIDAQ. It has been tested with NI PCIe-6323, NI USB-6008, and NI USB-6363.

Software requirements

This interface uses NI DAQmx library, which is freely available on the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-daqmx.html]. Additionally, it needs python-nidaqmx [https://nidaqmx-python.readthedocs.io/en/latest/] package (not to be confused with pydaqmx). It is not automatically installed with the base version of pylablib, and can be obtained from PyPi either separately as

pip install nidaqmx

or with the expanded pylablib version

pip install pylablib[devio-full]

Connection

The devices are identified by their name, such as "Dev1". To list all of the connected devices together with their basic information, you can run NI.list_nidaqmx_devices:

>> from pylablib.devices import NI
>> NI.list_nidaqmx_devices()
[TDeviceInfo(name='Dev1', model='USB-6008', serial_number='01234567')]
>> daq = NI.NIDAQ("Dev1")
>> daq.close()

Operation

The typical use case involves setting up different input and output channels, starting acquisition, and acquiring some number of samples:

from pylablib.devices import NI
daq = NI.NIDAQ("Dev1")
daq.add_voltage_input("vin", "ai0") # add voltage input named "vin" on the terminal "ai0"
daq.add_voltage_input("vin2", "ai1", rng=(-1,1)) # add second channel with a smaller range of +/- 1V
daq.add_digital_input("din", "port0/line0")
daq.setup_clock(100) # setup 100Hz sampling clock
trace = daq.read(100) # start acquisition, read finite number of samples, and stop it again
now do continuous acquisition + processing loop
nsamples = 0
daq.start() # start continuous acquisition
while nsamples<1000:
 sample = daq.read()
 ... process sample
 nsamples+=1
daq.stop()

The class provide basic methods to set up analog, digital, and counter inputs, and analog and digital outputs. All the analog and digital inputs are synchronized to the same clock, which is the default analog input sample clock (ai/SampleClock) by default. It is also possible to set up the external clock via NIDAQ.setup_clock() and export the sampling clock via NIDAQ.export_clock(). Not that not all devices support clocked digital inputs, which means that setting up digital inputs there would raise an error.

By default, the counter inputs are synchronized to the same clock, although it is possible to change that. The counter inputs have 3 modes for output values: bare counter (accumulates the number of counts), differential (number of new counts between the two sampling points), and rate (same as differential, but normalized by the sampling rate). In case of external clock, when the sampling rate is a priori unknown, it might be useful to setup a clock rate counter input to determine this clock rate via NIDAQ.add_clock_period_input().

Acquisition is controlled with NIDAQ.start() and NIDAQ.stop() methods, and the readout is performed via NIDAQ.read(). The result of this is always a 2D numpy array, where the first index corresponds to samples and the second to channels. The order of channels can be obtained from NIDAQ.get_input_channels().

The outputs can be either analog or digital. The digital outputs are always immediate, i.e., they immediately produce and hold the latest output value. The analog outputs can work in two modes: either immediate, or clocked. The mode is set up via NIDAQ.setup_voltage_output_clock(). In this case, it is possible to output a list of values, which produces a waveform clocked according to the specified clock: either a separate clock source (default), or the analog input clock, which makes voltage input and output synchronized.

Note

General device communication concepts are described on the corresponding page.

Generic AWGs

There is a large variety of Arbitrary Waveform Generators, which have very similar characteristics and communication interface.

The generic AWG class is pylablib.devices.AWG.GenericAWG, and the derived classes for specific devices are pylablib.devices.AWG.Agilent33500 and pylablib.devices.AWG.Agilent33220A for two different Agilent AWGs, pylablib.devices.AWG.RigolDG1000 for Rigol DG1000 series, pylablib.devices.AWG.TektronixAFG1000 for Tektronix AFG1000 series, pylablib.devices.AWG.InstekAFG2000 for Instek GW 2000 series, pylablib.devices.AWG.RSInstekAFG21000 for Iso-Tech 21000 series (a clone of Instek AFG2000, but with a couple of bugs which needs to be worked around), and pylablib.devices.AWG.InstekAFG2225 for Instek GW 2225 (slightly advanced two-channel version of Instek AFG2000).

Software requirements

Most of these AWGs use NI VISA communication interface. Hence, they require NI VISA Runtime, which is freely available from the National Instruments website [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]. However, Instek and Iso-Tech AWGs show up as virtual COM ports, so they require no additional software.

Connection

The devices are identified by their VISA connection strings, (e.g., "USB0::0x0699::0x0364::C000001::INSTR") or COM-port (e.g., "COM5"). To get a list of all connected VISA-enabled devices, you can run pylablib.list_backend_resources("visa"):

>> import pylablib as pll
>> pll.list_backend_resources("visa")
('USB0::0x09C4::0x0400::DG1D150200000::INSTR',)
>> from pylablib.devices import AWG
>> dev = AWG.RigolDG1000("USB0::0x09C4::0x0400::DG1D150200000::INSTR")
>> dev.close()

Operation

The method names are usually pretty self-explanatory. A typical operation involves setting up the function, its parameters, and controlling output:

from pylablib.devices import AWG
dev = AWG.RigolDG1000("USB0::0x09C4::0x0400::DG1D150200000::INSTR") # connect to the device
dev.set_function("square", 2) # set up square waveform on the second channel
dev.set_duty_cycle(20, 2)
dev.set_output_range((-1, 1), 2) # set output span from -1V to 1V
dev.enable_output(channel=2) # enable output
dev.close()

However, there is a couple of points to keep in mind:

	Since the same general class architecture supports both single-channel and multichannel devices, the channel argument is usually close to the end of the argument list and is not mandatory. If it is not supplied, it is chosen to be the current default channel (1 upon creation), which can be set using GenericAWG.select_current_channel(). Hence, int the example above we can write:

dev.select_current_channel(2) # now all methods assume channel 2
dev.set_function("square")
dev.set_duty_cycle(20)
dev.set_output_range((-1, 1))
dev.enable_output()

	Similarly, some methods can be present but not applicable to the particular AWG (e.g., burst trigger related methods, phase synchronization methods, etc.) If this is the case, they will cause an error when called.

Note

General device communication concepts are described on the corresponding page.

Andor Shamrock spectrometers

In addition to cameras, Andor has a set of spectrometers primarily designed to work with and communicate through those cameras. Among these Kymera and Shamrock spectrographs have a common configuration and API.

The code is located in pylablib.devices.Andor, and the main device class is pylablib.devices.Andor.ShamrockSpectrograph.
It has been tested with Kymera 328i spectrograph connected via an Andor Newton camera through I2C interface.

Software requirements

Unfortunately, there is a large variety of different hardware setups and DLL combinations, which relate to each other in very non-obvious way. The possible adjustable parameters are

	Spectrograph connection: either via camera’s I2C interface, or directly to the PC via a USB interface

	Camera AndorSDK2 DLL: on 64-bit systems it can be named atmcd64d.dll or atmcd64d_legacy.dll, and it can come from Andor Solis or Andor SDK2.

	Spectrometer DLL; on 64-bit systems it can be named atspectrograph.dll, ShamrockCIF.dll, or ShamrockCIF64.dll, and it might require Andor SDK2 DLLs (atmcd64d.dll, atmcd64d_legacy.dll, atshamrock.dll, atshamrock64.dll) to be located in the same folder. it can come from Andor Solis, Andor SDK2 or MicroManager plugin available on Andor/Oxford website.

As mentioned above, there are three main sources of these libraries:

	Andor Solis, which can be obtained either with the camera, or from the website [https://andor.oxinst.com/products/solis-software/] upon registration.

	Andor SDK2, similarly obtained from the website [https://andor.oxinst.com/products/software-development-kit/] (the most recent version is 2.104.30084 [https://andor.oxinst.com/downloads/view/andor-sdk-2.104.30084.0])

	MicroManager plugin, also obtained from the website [https://andor.oxinst.com/products/spectrographs-solutions] (Software section; here is the direct link [https://andor.oxinst.com/assets/uploads/downloads/mm-microspectroscopyplugin-1.0.0.zip]).

In general, it makes sense to try different combinations of DLLs and connection methods and see what works. To specify the exact DLL sources, you use the corresponding library parameters devices/dlls/andor_sdk2 and devices/dlls/andor_shamrock:

import pylablib as pll
pll.par["devices/dlls/andor_shamrock"] = "path/to/shamrock/dlls"
pll.par["devices/dlls/andor_sdk2"] = "path/to/sdk2/dlls"
from pylablib.devices import Andor
cam = Andor.AndorSDK2Camera()
spec = Andor.ShamrockSpectrograph()

Possible issues might include

	Not being able to find camera, spectrograph, or both. You can check for this by examining the outputs of Andor.get_cameras_number_SDK2() and Andor.list_shamrock_spectrographs()

	Not being able to connect both to the camera and the spectrograph simultaneously. It might be possible to connect to one of them individually, but once one connection is opened, the other one gets blocked. You can check for this directly by trying to open both the camera and the spectrograph and making sure that it works (if it does not, it will look the same as if the camera/spectrograph disappear as soon as spectrograph/camera is connected). It might be less of an issue if the spectrograph is connected directly via USB rather than via I2C through the camera.

	In some cases (especially when using libraries from the MicroManager plugin), spectrograph is identified correctly and can be connected to, but the connection is corrupted, and queries return nonsense values.

	Rarely, the spectrometer state might get corrupted, and it would stop being identified even in Andor Solis. In this case, you can try power cycling the spectrometer, camera and PC, as well as temporarily changing the spectrometer connection method (USB generally seems more stable). Just as a precaution, it is recommended to store a backup of the spectrograph EEPROM configuration, which can be done through Andor Solis. To do that, you need to go to the Hardware -> Spectrograph Setup window in the top menu, there click on the System Configuration button, and there export the EEPROM state via Save to File... button.

Connection

The spectrographs are identified by their index, starting from zero. To list the connected spectrographs, you can run Andor.list_shamrock_spectrographs:

>> from pylablib.devices import Andor
>> Andor.list_shamrock_spectrographs()
["KY-1234"]
>> spec = Andor.ShamrockSpectrograph(idx=0)
>> spec.close()

In addition, in order to acquire the spectra you need to establish the connection to the corresponding camera using Andor cameras interface. It is generally recommended to open the camera connection before the spectrograph to avoid software conflicts.

Operation

The operation of these spectrographs is relatively straightforward. Note that they only allow for control of the spectrometer part of the setup (e.g., gratings, slits, filters) and for calculation of the wavelength calibration, i.e., the wavelength corresponding to each camera pixel column. In order to actually acquire and image, you would need to establish a separate camera connection and acquire images from it independently (typically in the full vertical binning, FVB, mode):

>> from pylablib.devices import Andor
>> cam = Andor.AndorSDK2Camera() # camera should be connected first
>> spec = Andor.ShamrockSpectrograph()
>> spec.set_wavelength(600E-9) # set 600nm center wavelength
>> spec.setup_pixels_from_camera(cam) # setup camera sensor parameters (number and size of pixels) for wavelength calibration
>> wavelengths = spec.get_calibration() # return array of wavelength corresponding to each pixel
>> cam.set_image_mode("fvb")
>> spectrum = cam.snap()[0] # 1D array of the corresponding spectrum intensities
>> cam.close()
>> spec.close()

Note

General device communication concepts are described on the corresponding page.

Miscellaneous Thorlabs devices

Thorlabs has a variety of devices implementing different serial communication protocols, mostly related to optomechanics. Their requirements and general approach are still fairly similar, so they are all collected here.

Software requirements

Most devices provide either a bare RS232 interface, or a USB connection with a built-in USB-to-RS232 chip. In either case, they are automatically recognized as serial ports, and no additional software is required. The only exception on this page is MFF101/102 motorized flip mount, which belongs to the Kinesis devices and requires APT software.

Connection

Most of the devices are identified as COM ports, so they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Thorlabs
>> wheel = Thorlabs.FW102("COM5")
>> wheel.close()

The only exception is MFF101/102, which is identified by its serial number (more details are given at the Kinesis devices page).

Operation

MFF101/102 flip mount

The class is provided as pylablib.devices.Thorlabs.MFF. It allows for control of the flip mirror position, as well as changing its motion parameters and designations of its digital input and output.

FW102/212 filter wheel

The class is proved as pylablib.devices.Thorlabs.FW.

In addition to setting the position, it allows to adjust speed settings and turn the indicator LED off to minimize light contamination. By default, the wheel also “respects bound” between the first and the last position. Usually, when one orders a move from, e.g., position 2 to 6 on a 6-position wheel, it would go along the shortest route, i.e., position 1. If this is an ND filter wheel (e.g., FW102CNEB), this leads to momentary increase of the transmitted power by ND0.5 (about factor of 3) compared to start and stop positions. To avoid that, the class breaks this move into several shorter (no longer than 1/3 of the wheel) moves, which never cross the boundary between the first and the last position. This takes a bit longer (as it requires several consecutive moves), but is generally safer. This behavior can be turned off by setting respect_bound=False on class creation.

Note that older version (1.0) of the filter wheel do not support the full range of options and operate on a slightly different protocol. This leads to crashes on at least some of the methods, e.g., FW.get_position(). If this is the case, you can try pylablib.devices.Thorlabs.FWv1 instead.

MDT693/694 high-voltage source

The class is proved as pylablib.devices.Thorlabs.MDT69xA.

The class provides the ability to set and query the voltage on the three channels, as well as to query the total voltage range (it is set by a physical switch on the back panel, and can not be altered remotely).

Note

General device communication concepts are described on the corresponding page.

OZ Optics devices

OZ Optics provides a variety of mostly fiber-optics related devices. Pylablib covers some of its fiber optomechanics solutions: polarization controller, tunable filter and variable attenuator. Their requirements and general approach are fairly similar, so they are all collected here.

Software requirements

All the devices provide either a bare RS232 interface, or a USB connection with built-in USB-to-RS232 chip. In either case, they are automatically recognized as serial ports, and no additional software is required.

Connection

The devices are identified as COM ports, so they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import OZOptics
>> ctl = OZOptics.EPC04("COM5")
>> ctl.close()

Operation

EPC04 fiber polarization controller

The class is proved as pylablib.devices.OZOptics.EPC04. It lets the user change the 4 control voltages, switch between DC and AC (scrambling) modes, and change the AC frequency.

DD100 fiber attenuator

The class is proved as pylablib.devices.OZOptics.DD100. It simply lets the user query and change the attenuation, as well as home the device. Note that homing is required once after the device power up, and it might in general sweep over the whole range of attenuations.

TF100 fiber filter

The class is proved as pylablib.devices.OZOptics.TF100. It simply lets the user query and change the central wavelength, as well as home the device. Note that homing is required once after the device power up, and it might in general sweep over the whole range of wavelengths.

Note

Basic sensors communication concepts are described on the corresponding page

Elektro Automatik sources

Elektro Automatik manufactures a range of lab power supplies. The code has been tested with PS-2000B series controller (specifically, PS 2042-06B).

The main device class is pylablib.devices.ElektroAutomatik.PS2000B.

Software requirements

The devices provide a USB connection with a built-in USB-to-RS232 chip. They are automatically recognized as serial ports by the operating system, and no additional software is required.

Connection

Since the devices are identified as COM ports, they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import ElektroAutomatik
>> src = ElektroAutomatik.PS2000B("COM3")
>> src.close()

Operation

The operation of this gauge is fairly straightforward, but there is a couple of points to keep in mind:

	The source can operate in the manual or in the remote mode. In the manual mode the device is controlled using the front panel, but the values can still be read out. In the remote mode the outputs are controlled from the PC, and the front panel controls are disabled. Upon creation one can specify the remote mode handling for the device: either "manual" (it has to be enabled or disabled explicitly, and disabled by default) or "force" (remote mode is enabled upon connection and disabled upon disconnection).

 Voltcraft produces different basic measurement and electronic devices including multimeters, oscilloscopes, signal generators, power supplies, and environment sensors.

Voltcraft multimeters

Note

Basic sensors communication concepts are described on the corresponding page

There are different series of multimeters with somewhat different capabilities and fairly different communication methods and protocols. There are currently two different supported protocols. The firs has been designed with Voltcraft VC-7055BT multimeter, but it might also be able to work with other 7000 series multimeters such as 7060 and 7200. The second was designed with VC880, but might also work with VC650T.

The main device classes are pylablib.devices.Voltcraft.VC7055 and pylablib.devices.Voltcraft.VC880.

Software requirements

VC7055 multimeters provides a bare RS232 interface, so any appropriate USB-to-RS232 adapter should work. VC880 multimeters show up as a standard HID device and are automatically supported by Windows.

Connection

VC7055 devices are identified as COM ports, so use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Voltcraft
>> meter = Voltcraft.VC7055("COM1")
>> meter.close()

VC880 devices are identified either via their HID path (a fairly long and complicated string of symbols such as \\?\hid#vid_10c4&pid_ea80#7&0000000&1&0000#{4d1e55b2-f16f-11cf-88cb-001111000030}), and they can be identified either using this string, or an integer index (Starting from 0) which selects one of the potentially suitable devices in the system:

>> from pylablib.devices import Voltcraft
>> meter1 = Voltcraft.VC880() # try to connect to the first available multimeter
>> meter2 = Voltcraft.VC880(idx=1) # try to connect to the second available multimeter
>> meter1.close()
>> meter2.close()

Operation

The operation of this multimeter is fairly straightforward, but there is a couple of points to keep in mind:

	The documentation from VC7055 multimeter does not always correctly reflect the communication protocol, and the device behavior is sometimes strange (e.g., it return non-ASCII symbols or strange replies to commands). The communication protocol is implemented as observed in reality, not as documented. Therefore, it is not guaranteed, that the provided code will work with related models, such as other 7000-series multimeters, or even with different revisions of the same model.

	Keep in mind that VC880 should be manually activated for PC communication by pressing PC button on the front panel, and this needs to be done every time the device is turned on. Otherwise it is detected by the OS and can be connected to, but it will not send updates or react to commands.

Note

Basic Modbus protocol concepts are described on the corresponding page

Lumel automation electronics

Lumel manufactures a range of automation electronics (sensors, relays, etc.), which frequently can be remotely controlled using Modbus protocol. In addition to the generic Modbus control, pylablib implements RE72 temperature controller in a bit more detail. The code has been tested with RE72-122200E0 controller and generic USB to RS485 converter.

The main device classes are pylablib.devices.Lumel.LumelRE72Controller.

Software requirements

Basic Lumel devices implement Modbus protocol over RS485 physical layer. If one uses a dedicated USB to RS485 controller or a USB to RS232 controller with RS232 to RS485 adapter, then it shows up as a serial port in the OS, and no additional software is required.

Connection

Generally, you would need to know a serial port of the RS485 controller, the serial connection parameters (by default it’s 9600 baud, 8 data bits, no parity bit, one stop bit) and the controller Modbus address (1 by default). For details, see Modbus protocol description.

Operation

RE72

There are two sets of methods implemented. The first are the generic methods for getting and setting values of internal registers: LumelRE72Controller.get_reg() and LumelRE72Controller.set_reg(). These allow full control over the device. The description of the registers is given in the user’s manual (RS-485 INTERFACE section).

The second set of methods provides the basic temperature readout, as well as the setpoint control. These are implemented in two varieties, floating point and integer, according to the two kinds of registers on the device. The integer methods (ending with i, e.g., LumelRE72Controller.get_measurementi()) return integer value, whose interpretation depends on the measurement units and other parameters (e.g., for temperature this is the value in 1/10th of the current degree unit, C or F). The floating point methods return value in a more straightforward way (e.g., directly in degrees), but they do not allow for setting of the temperature setpoint.

Note

General device communication concepts are described on the corresponding page.

Miscellaneous devices

There are several miscellaneous device classes, which are collected in this page. All of them implement straightforward serial communication protocol, so the software requirements and the connection approach is the same for all of them.

Software requirements

All the devices provide either a bare RS232 interface, or a USB connection with a built-in USB-to-RS232 chip. In either way, they are automatically recognized as serial ports, and no additional software is required.

Connection

The devices are identified as COM ports, so they use the standard connection method, and all you need to know is their COM-port address (e.g., COM5):

>> from pylablib.devices import Conrad
>> dev = Conrad.RelayBoard("COM5")
>> dev.close()

Operation

Conrad relay board

This is a board, which has several externally-controlled relays.

The class is proved as pylablib.devices.Conrad.RelayBoard. It simply lets the user query and set the relay states. It also in principle supports communication with several daisy-chained boards, but it has never been tested.

Generic Arduino class

The class is proved as pylablib.devices.Arduino.IArduinoDevice. It implements basic serial communication; the exact command protocol depends on the particular Arduino software written and uploaded by the user.

The main difference from directly using a serial backend is in handling of DTR line, which signal reset to the Arduino board. Unlike the standard backend, connection will not restart the board; instead, there is an explicit IArduinoDevice.reset_board() which pulses the DTR line to reset the board.

Note

General device communication concepts are described on the corresponding page.

Generic protocols

There exist generic mid-level communication protocols built on top of the existing communication channels. These are not specific to any particular device, but simply provide a level of abstraction to implement specific devices later.

Modbus

This is one of the standard industrial communication protocols. It has several different implementations depending on the underlying protocol (UART, TCP). Currently only Modbus RTU (binary protocol over UART) is supported.

The code is located in pylablib.devices.Modbus, and the main camera class is pylablib.devices.Modbus.GenericModbusRTUDevice.

Software requirements

The requirements depend on the underlying transfer layer. Most common is the RS485 physical layer, where one normally uses either a dedicated USB to RS485 controller, or a USB to RS232 controller with RS232 to RS485 adapter. In this case, the RS485 controller shows up as a serial port in the OS, and no additional software is required.

Connection

To successfully communicate with a device, several pieces of information are needed. First, one needs to know the serial port of the RS485 controller (e.g., "COM1" or "dev/ttyUSB0"). Next are the serial port parameters, such as the baud rate, number of data bits, parity bits, and stop bits (the most common is 9600 baud with 8N1 format, i.e., 8 data bits, one parity bit, 1 stop bit). Finally, since several Modbus devices can be connected to the same controller, one needs to know the specific device address, which is an integer between 1 and 247. Both the serial port parameters and the device address are set at the device or specified in its documentation:

>> from pylablib.devices import modbus
>> dev = modbus.GenericModbusRTUDevice(("COM3", 19200), daddr=5) # 19200 baud serial interface, default device address 5
>> dev.close()

Note

Serial ports are exclusive OS resources, which means that only one instance of modbus.GenericModbusRTUDevice can be opened at the same port, even if several devices are connected to the same RS485 controller. One can choose which device is addressed either by using daddr parameter in the methods, or by using GenericModbusRTUDevice.mb_set_default_address() method.

Operation

The code implements the most basic Modbus methods for setting and reading coils, discrete inputs, and registers. All relevant methods are prefixed with mb_, e.g., GenericModbusRTUDevice.mb_read_holding_registers() or GenericModbusRTUDevice.mb_write_single_coil(). In addition, it implements a basic device scanning method, which sends the same command to all possible addresses and notes which of them reply.

Data processing

Fitting

Class fitting.Fitter is a user-friendly wrapper around scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares] routine. Dealing with fitting is made more convenient in a couple of ways:

	It is easy to specify the x-parameter name (in the case it is not the first parameter), or specify multiple x-parameters;

	All of the fit and fixed parameters are specified by name; it is easy to switch between any parameter being fit or fixed;

	The wrapper automatically handles complex parameters (split into real and imaginary parts), numpy arrays, lists, or tuples (including nested structures);

	The final parameters (fit and fixed) are returned in a single dictionary indexed by their names;

	The wrapper also returns the fit function with all of the parameters bound to the final fit and fixed values;

	The fit function result is flattened during fitting, so it works for functions returning multi-dimensional (for example, 2D) arrays.

Examples

Fitting a Lorentzian:

def lorentzian(frequency, position=0., width=1., height=1.):
 return height/(1.+4.*(frequency-position)**2/width**2)

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"position":0.5, "height":1.}
fitter = pll.Fitter(lorentzian, xarg_name="frequency", fit_parameters=fit_par)
additional fit parameter is supplied during the call
fit_par, fit_func = fitter.fit(xdata, ydata, fit_parameters={"width":1.0})
plot(xdata, ydata) # plot the experimental data
plot(xdata, fit_func(xdata)) # plot fit result

Fitting a sum of complex Lorentzians with the same width:

def lorentzian_sum(frequency, positions, width, amplitudes):
 # list of complex lorentzians
 # positions and amplitudes are lists, one per peak
 lorentzians = [a/(1.+2j*(frequency-p)/width) for (a,p) in zip (amplitudes,positions)]
 return np.sum(lorentzians, axis=0)

creating the fitter
fit_parameters dictionary specifies the initial guess
(complex initial guess for the "amplitude" parameter hints that this parameter is complex)
fit_par = {"positions":[0.,0.5,1.], "amplitudes":[1.+0.j]*3}
fitter = pll.Fitter(lorentzian_sum, xarg_name="frequency", fit_parameters=fit_par)
fixed parameter is supplied during the call (could have also been supplied on Fitter initialization)
fit_par, fit_func = fitter.fit(xdata, ydata, fixed_parameters = {"width":0.3})
plot(xdata, ydata.real) # plot the experimental data
plot(xdata, fit_func(xdata).real) # plot fit result

Fitting 2D Gaussian and getting the parameter estimation errors:

def gaussian(x, y, pos, width, height):
 return np.exp(-((x-pos[0])**2+(y-pos[1])**2)/(2*width**2))*height

creating the fitter
fit_parameters dictionary specifies the initial guess
fit_par = {"pos":(100,100), "width":10., "height":5.}
fitter = pll.Fitter(gaussian, xarg_name=["x","y"], fit_parameters=fit_par)
xs, ys = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing="ij") # building x and y coordinates for the image
fit_stderr is a dictionary containing the fit error for the corresponding parameters
fit_par, fit_func, fit_stderr = fitter.fit([xs,ys], img, return_stderr=True)
imshow(fit_func(xs, ys)) # plot fit result

The full module documentation is given at pylablib.core.dataproc.fitting.

Filtering and decimation

There are several functions present for filtering the data to smooth it or reduce its size. Most of them are thin wrapper around standard numpy or scipy method, but they provide more universal interface which work both with numpy arrays and pandas DataFrames:

	First are the decimation functions: filters.decimate() (and its special case filters.binning_average()), filters.decimate_full() and filters.decimate_datasets(). The first one splits the supplied trace into consecutive segments of n points and compresses them into a single value using the supplied method (e.g., "mean" will average them together, which is used for filters.binning_average()). The second one completely decimates the dataset along the given axis (which is essentially identical to using the standard numpy methods such as np.mean or np.max). The last one decimates several datasets together, which is similar to combining them into a large (n+1)D array and fully decimating along the given axis:

>> trace = np.arange(10)
>> pll.binning_average(trace, 3) # average every block of 3 points to a single value
array([1., 4., 7.])
>> pll.decimate(trace, 3, dec="max")
array([2, 5, 8])
>> pll.decimate_full(trace, "mean") # same as np.mean(trace)
4.5
>> trace2 = np.arange(10)**2
>> pll.decimate_datasets([trace, trace2], "sum") # same as np.sum([trace, trace2],axis=0)
array([0, 2, 6, 12, 20, 30, 42, 56, 72, 90])

	Sliding decimation methods filters.sliding_average(), filters.median_filter() and filters.sliding_filter() are related, but use a sliding window of n points instead of complete decimation of n points together. They only work for 1D traces or 2D multi-column datasets. Note that filters.sliding_filter() is implemented through a simple Python loop, so it is fairly inefficient:

>> trace = np.arange(10)
>> pll.sliding_average(trace, 4) # average points in 4-point window (by default use "reflect" boundary conditions)
array([0.75, 1.5 , 2.5 , 3.5 , 4.5 , 5.5 , 6.5 , 7.5 , 8.25, 8.5])
>> pll.sliding_filter(trace, 4, "max") # find maximum of points in 4-point window
array([2, 3, 4, 5, 6, 7, 8, 9, 9, 9])

	Next are convolution filters which operate by convolving the trace with a given kernel function. These involve filters.gaussian_filter() (and filters.gaussian_filter_nd(), which is simply a wrapper around scipy.ndimage.gaussian_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter]), and a more generic filters.convolution_filter(). Related are infinite impulse response (IIR) filter filters.low_pass_filter() and filters.high_pass_filter(), which mimic standard single-pole low-pass and high-pass filters. In principle, they can be modeled as a convolution with an exponential decay, but the implementation using the recursive filters is more efficient for large widths.

	Finally, there are Fourier filters, which Fourier-transform the trace, scale the transform values, and transform it back to the real domain. These involve the main function filters.fourier_filter(), which takes a generic frequency response function, as well as two specific response function generators filters.fourier_filter_bandpass() and filters.fourier_filter_bandstop(), both generating hard frequency cutoff filters.

	In addition to “post-processing” filters described above, there are also “real-time” filters which serve to filter data as it is acquired, e.g., to filter out temporary noise or spikes. There are two filters of this kind: filters.RunningDecimationFilter and filters.RunningDebounceFilter. They are implemented as classes, and both have methods to add a new datapoint, to get the current filter value, and to reset the filter.

Fourier transform

There is a couple of methods to work with Fourier transform. They are built around numpy.fft.fft() [https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft], but allow more convenient normalization (e.g., in units of power spectral density), and work better with pandas DataFrames. They also have an option to automatically trim the trace length to the nearest “good” size, which is a product of small primes. This can have fairly strong (up to a factor of several) effect on the transform runtime, while typically trimming off less than 1% of the data.

The main methods are fourier.fourier_transform() for the direct transform, fourier.inverse_fourier_transform() for the inverse transform, and fourier.power_spectral_density() for the power spectral density:

>> x = np.random.normal(size=10**5) # normal distribution centered at 0 with a width of 1
>> PSD = pll.power_spectral_density(x, dt=1E-3) # by default, use density normalization; assume time step of 1ms
>> df = PSD[1,0] - PSD[0,0]
>> df # total span is 1kHz with 10**5 points, resulting in 0.01Hz step
0.01
>> np.sum(PSD[:,1]) * df # integrated PSD is equal to the original trace RMS squared, which is about 1 for the normal distribution
1.005262206692361
>> np.mean(x**2)
1.005262206692361

Feature detection

There are several methods for simple feature detection:

	The peak detection, which is usually achieved by the combination of feature.multi_scale_peakdet() and feature.find_peaks_cutoff(). The first applies difference-of-Lorentzians or difference-of-Gaussians filter, which detects peaks of a particular width. The second finds peaks using a cutoff.

	Another way to find peaks is using feature.find_local_extrema(), which finds local minima or maxima in a sliding window of a given width.

	Switching between two states with a noisy trace can be detected using feature.latching_trigger(). It implements a more robust approach to find when the trace is above/below threshold by considering two thresholds: a higher “on” thresholds and a lower “off” threshold. It makes the on/off state “latch” to its current value and is robust to small trace fluctuations around the threshold, which would lead to rapid on/off switches in a single-threshold scheme.

Miscellaneous utilities

Additionally, there is a variety of small functions to simplify some data analyses and transforms:

	Checking trace properties: dataproc.utils.is_ascending(), dataproc.utils.is_descending(), dataproc.utils.is_ordered(), dataproc.utils.is_linear().

	Sorting by a given column: dataproc.utils.sort_by(); work both on pandas and numpy arrays

	Filtering: dataproc.utils.filter_by() and dataproc.utils.unique_slices() (a simple analog of pandas pandas.DataFrame.groupby() [https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby], which works on numpy arrays)

	Binary search (both in ordered and unordered 1D arrays): dataproc.utils.find_closest_arg(), dataproc.utils.find_closest_value(), and dataproc.utils.get_range_indices().

	Traces step analysis and unwrapping: dataproc.utils.find_discrete_step() tries to find a single number which divides all values within a reasonable precision, and dataproc.utils.unwrap_mod_data() “unwraps” modulo data (e.g., phase, which is defined mod 2pi) provided that the steps between two consecutive points are less than 1/2 of the module.

	Cutting the trace to the given range, or cutting out a given range: dataproc.utils.cut_to_range() and dataproc.utils.cut_out_regions().

	Converting between 2-column “XY” and complex representations: dataproc.utils.xy2c() and dataproc.utils.c2xy()

	Scalar numerical utilities: utils.numerical.limit_to_range() (limit a value to lie in a given range, including option for no limits in one or both directions), utils.numerical.gcd() and utils.numerical.gcd_approx() (greatest common divisor or its approximate version for non-integer values)

Data storage

Complex data storage in pylablib centers around 2 main components: the multi-level dictionary for representing hierarchical data within the code, and file IO to (among other things) load and store it in a human-readable format.

Multi-level dictionary

dictionary.Dictionary is an expansion of the standard dict class which supports tree structures (nested dictionaries). The extensions include:

	handling multi-level paths and nested dictionaries, with several different indexing methods

	iteration over the immediate branches, or over the whole tree structure

	some additional methods: mapping, filtering, finding difference between two dictionaries

	combined with pylablib.core.fileio allows to save and load the content in a human-readable format.

Creating and indexing:

>>> d = pll.Dictionary()
>>> d['d/0/x'] = 5
>>> d
Dictionary('d/0/x': 5)
>>> d['d/0/x'] # string path indexing
5
>>> d['d']['0']['x'] # nested indexing
5
>>> d['d','0','x'] # multi-level path indexing
5
>>> d['d',0,'x'] # all path elements are converted into strings
5
>>> d['d/0']['x'] # indexing styles can be freely mixed
5
>>> d['d','0/x']
5
>>> b = d['d'] # indexing a branch yields another Dictionary object
>>> b
Dictionary('0/x': 5)
>>> b['0/x'] = 10 # the branch shares the data with the main dictionary
>>> d
Dictionary('d/0/x': 10)

A dictionary can be build from a Python dict, which automatically normalizes paths and nested dictionaries:

>>> d = pll.Dictionary({ 'a':1, 'b/i':2, 'c':{'i':3, 'ii':4}, 'd/0/x':5 })
>>> d
Dictionary('b/i': 2
'c/i': 3
'c/ii': 4
'd/0/x': 5
'a': 1)

Note

There are several limitations on the dictionary structure (mostly they involve possible paths and keys):

	As mentioned above, the keys are converted into strings to get the path; therefore, different Python object can merge together (e.g., number 0 and string literal '0'). This also discourages use of some of the objects with “underdefined” (implementation dependent) representations, for example, floating point numbers.

	Since the '/' symbol is used to split different path entries, it can’t be used inside a single-level key. It is possible to re-define this symbol on dictionary creation; however, it might lead to compatibility issues.

	Empty keys are not allowed. When building a path, they are automatically dropped, so 'a/b', 'a/b/', 'a///b//' all correspond to the same path.

	One path can either correspond to a branch node, or a leaf node. In other words, one path can’t be a prefix of other paths and also contain data: structures like pll.Dictionary({ 'a':1, 'a/b':2}) are not allowed. To get around this, one can define a specific “data key” not used anywhere else, and store data in a node under that key (e.g., with the data key '#' the example before turns into a valid structure pll.Dictionary({ 'a/#':1, 'a/b/#':2})).

Thus, it is generally recommended to only use strings or non-negative integers as keys, and apply the same restrictions to them as to the Python variable names (with the addition of names starting with a digit).

File IO

pylablib.core.fileio contains several function for saving and loading data into different kinds of files: binary (loadfile.load_bin() and savefile.save_bin()), CSV (loadfile.load_csv() and savefile.save_csv()), or dictionary (loadfile.load_dict() and savefile.save_dict()).

Binary files

The first (binary files) closely corresponds to numpy fromfile. In addition, it also allows automatic conversion into pandas arrays, setting column names, and skipping some number of bytes from the start:

>> table = np.arange(6).reshape((3,2))
>> pll.save_bin(table, "table.dat", dtype="<f8)
>> pll.load_bin("table.dat", columns=["Column1", "Column2"], dtype="<f8)
 Column1 Column2
0 0.0 1.0
1 2.0 3.0
2 4.0 5.0

Furthermore, there is an option to save the binary data with a preamble dictionary file, which describes its structure (columns, dtype, etc.) This way, one does not have specify these parameter in the loading code:

>> table = pd.DataFrame({"C1":arange(3),"C2":arange(3)**2/3})
>> table
 C1 C2
0 0 0.000000
1 1 0.333333
2 2 1.333333
>> pll.save_bin_desc(table, "table.dat")
>> pll.load_bin_desc("table.dat")
 C1 C2
0 0.0 0.000000
1 1.0 0.333333
2 2.0 1.333333
>> np.fromfile("table_data.bin", "<f8").reshape((3, 2)) # the data is still stored in the regular binary format
array([[0. , 0.],
 [1. , 0.33333333],
 [2. , 1.33333333]])

Note that only homogeneous data (i.e., all columns having the same type) is currently supported. That’s why the first column got converted from integers into reals.

CSV files

The functionality of the second one mimics pandas read_csv, but offers a bit more flexibility with more complicated values in columns, such as tuples or binary strings:

>> table = pd.DataFrame({ "C1":np.arange(3), "C2":[(i**2,i**3) for i in range(3)] })
>> table # the second columns contains tuples
 C1 C2
0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)
>> pll.save_csv(table, "table.csv")
>> pll.load_csv("table.csv", dtype="generic") # need to specify generic values type, which handle complicated cases, but is somewhat slower
 C1 C2
0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)

In addition, its default settings are a bit different: the column separator is a whitespace, the column names are contained in the comment string (which removes occasional ambiguity), and the creation date string is appended by default. Hence, the content of the file created above is

C1 C2
0 (0, 0)
1 (1, 1)
2 (4, 8)

Saved on 2021/01/01 12:00:00

Note that currently it operates only with simple flat tables and does not support advanced pandas features such as index or multi-index. If these are required, you can use savefile.save_csv_desc() and loadfile.load_csv_desc(). Similarly to savefile.save_bin_desc() and loadfile.load_bin_desc(), it saves a dictionary containing additional description; however, the table is inlined by default, so only one file is generated:

>> table = pd.DataFrame({ "C1":np.arange(3), "C2":[(i**2,i**3) for i in range(3)] }, index=np.arange(3)+10)
>> table # non-trivial index colum
 C1 C2
10 0 (0, 0)
11 1 (1, 1)
12 2 (4, 8)
>> pll.save_csv(table, "table.csv")
>> pll.load_csv("table.csv", dtype="generic") # index is lost
 C1 C2
0 0 (0, 0)
1 1 (1, 1)
2 2 (4, 8)
>> pll.save_csv_desc(table, "table.dat")
>> pll.load_csv_desc("table.dat") # index is preserved (also note that here dtype is "generic" by default)
 C1 C2
10 0 (0, 0)
11 1 (1, 1)
12 2 (4, 8)

Dictionary files

Finally, dictionary saving and loading operates with dictionary objects. It is generally useful to load or save various heterogeneous settings or parameters, such as device parameters, data processing parameters, and GUI or device state. It supports most basic Python data types as values: standard scalar types (integers, reals, complex numbers, strings, booleans, None), containers (tuples, lists, dictionaries, sets, including nested ones), binary and raw string representation (e.g., b"\x00" or r"m\n\o"), short numpy arrays (represented as, e.g., "array([1, 2, 3])"), and inline tables (which are interpreted as pandas table by default). The only common data type not included is named tuples; they get automatically converted to regular tuples on saving.

The dictionary files have the key value line formats and typically use full paths (as opposed to, say, XML hierarchy), which makes them easier to inspect and parse without pylablib. For example, the dictionary from the previous section will be saved as

b/i 2
c/i 3
c/ii 4
d/0/x 5
a 1

With more complicated data types, it might look more like

process/points array([1., 2., 3.])
process/default/frequency 10+2.j
Lines starting with # are treated as comments
plot/position [(0,0), (1,1), (2,3)]
plot/label r"ν_0"
Keys do not have to be in any particular order
process/default/amplitude 5.

which results in a dictionary

Dictionary('plot/label': ν_0
'plot/position': [(0, 0), (1, 1), (2, 3)]
'process/default/amplitude': 5.0
'process/default/frequency': (10+2j)
'process/points': [1. 2. 3.])

The format also supports hierarchy using //branch to mark a start of sub-branch and /// to mark its end. For example, the dictionary above can be also saved as

//process
 # indentation is not required, but helps to see the structure
 points array([1., 2., 3.])
 default/frequency 10+2.j
 default/amplitude 5.
///

//plot
 position [(0,0), (1,1), (2,3)]
 label r"ν_0"
///

Finally, it is possible to specify inline tables using special comment lines. For example,

The key without the value marks the path to the table within the dictionary
data/table
Begin table
1 1.j
2 4.j
3 9.j
End table

produces a dictionary containing pandas DataFrame:

Dictionary('data/table':
 0 1
0 1 0.000000+1.000000j
1 2 0.000000+4.000000j
2 3 0.000000+9.000000j)

Various utilities

File system

There is a number of methods which are minor expansions of the built-in file utilities:

	Accessing and changing file times: utils.files.get_file_creation_time(), utils.files.get_file_modification_time(), utils.files.touch() (update the modification date).

	Generating new file names (e.g., for storing a new dataset): utils.files.generate_indexed_filename() and utils.files.generate_prefixed_filename().

	Some path analysis methods: utils.files.fullsplit(), utils.files.normalize_path(), utils.files.paths_equal(), utils.files.relative_path(); a lot of these have also been implemented in pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib] module, and are kept for backwards compatibility.

	Checking if a string is a valid path: utils.files.is_path_valid().

	File copying and moving, which also creates containing folders if necessary: utils.files.copy_file(), utils.files.move_file().

	Folder creation and cleaning: utils.files.ensure_dir(), utils.files.remove_dir(), utils.files.remove_dir_if_empty(), utils.files.clean_dir().

	Analyzing folder content: utils.files.list_dir(), utils.files.list_dir_recursive(), utils.files.dir_empty(), utils.files.walk_dir(). Compared to the built-in methods, allows for more complicated (e.g., regex) filters for listed files and folders, as well as for visited folders.

	Copying, moving, and comparing folders: utils.files.copy_dir(), utils.files.move_dir(), utils.files.cmp_dirs(); like methods above, allows for regex filters for files and folders.

	Retrying versions of most of the above methods: e.g., utils.files.retry_move() or utils.files.retry_clean_dir(). These functions try to copy/move/remove files or folders several times if errors arise, in case the files or folders are only temporarily blocked. Useful when, e.g., using network shares or some software which makes files or folders unavailable for a short period of time.

	Wrapping methods for working with zip files: utils.files.zip_folder(), utils.files.zip_file(), utils.files.zip_multiple_files(), utils.files.unzip_folder(), utils.files.unzip_file().

Network

There is a simple wrapper class utils.net.ClientSocket, which simplifies some operations with the built-in socket [https://docs.python.org/3/library/socket.html#module-socket] module. In addition, it also implements a couple of higher-level ways to send the data: either fixed length (as in the usual socket), with the length prepended (in case the total length is initially unknown at the receiving end), or using a delimiter to mark the end of the message.

In addition, there are several methods for gaining local or remote host information (utils.net.get_local_addr(), utils.net.get_all_local_addr(), utils.net.get_local_hostname(), utils.net.get_all_remote_addr(), utils.net.get_remote_hostname()), receiving JSON-formatted values (utils.net.recv_JSON()), and listening on a given port (utils.net.listen()).

Strings

There are several string manipulation functions present:

	Powerful to/from string conversion. The main function are utils.string.to_string() and utils.string.from_string(), which can convert a large variety of values: simple scalar values (numbers, strings, booleans, None), containers (lists, tuples, sets, dictionaries), escaped and byte strings (e.g., b"\x00"), complex types such as numpy arrays (represented as, e.g., "array([0, 1, 2, 3, 4])"). The latter version requires setting use_classes=True in utils.string.to_string(), which is not enabled by default to make the results more compatible with other parsers:

>> pll.to_string(np.arange(5)) # by default, use the standard str method, which makes array look like a list
'[0, 1, 2, 3, 4]'
>> pll.from_string('[0, 1, 2, 3, 4]') # gets converted back into a list
[0, 1, 2, 3, 4]
>> pll.to_string(np.arange(5), use_classes=True) # use representation class
'array([0, 1, 2, 3, 4])'
>> pll.from_string('array([0, 1, 2, 3, 4])') # get converted back into an array
array([0, 1, 2, 3, 4])

More complex data classes can be added using utils.string.add_conversion_class() and utils.string.add_namedtuple_class():

>> NamedTuple = collections.namedtuple("NamedTuple", ["field1", "field2"])
>> nt = NamedTuple(1,2)
>> nt
NamedTuple(field1=1, field2=2)
>> pll.to_string(nt, use_classes=True) # class is not registered, so use the default tuple representation
'(1, 2)'
>> pll.add_namedtuple_class(NamedTuple)
>> pll.to_string(nt, use_classes=True) # now the name marker is added
'NamedTuple(1, 2)'
>> pll.from_string('NamedTuple(1, 2)')
NamedTuple(field1=1, field2=2)
>> DifferentNamedTuple = collections.namedtuple("DifferentNamedTuple", ["field1", "field2"])
>> pll.from_string('DifferentNamedTuple(1, 2)') # note that if the class is not registered, it can't be parsed, so the string is returned back
'DifferentNamedTuple(1, 2)'

Furthermore, there is a couple of auxiliary string functions to parse more complicated situations: utils.string.escape_string() and utils.string.unescape_string() for escaping and unescaping string with potentially confusing or unprintable characters (e.g., quotation marks, spaces, new lines); utils.string.from_string_partial(), utils.string.from_row_string(), utils.string.extract_escaped_string() to determine and extract the first value in a string which potentially has several values.

	Comparing and searching string: utils.string.string_equal() (compare string using different rules such as case sensitivity), utils.string.find_list_string(), utils.string.find_dict_string() (find string in a list or a dictionary using different comparison rules).

	Filtering strings: utils.string.get_string_filter(), utils.string.sfglob(), and utils.string.sfregex(). Creates filter functions which may include or exclude certain string patterns; these filter functions can be later used in, e.g., file-related methods such as utils.files.list_dir().

Misc utilities

A variety of small useful methods and classes:

	Dictionary manipulation functions: utils.general.any_item() (get a random dict key-value pair), utils.general.merge_dicts() (merge several dictionaries together), utils.general.filter_dict() (filter dictionary according to key or value), utils.general.map_dict_keys(), utils.general.map_dict_values(), utils.general.to_dict() (convert a dict or a list of pairs into a dictionary, using a default value for a non-pair list elements), utils.general.invert_dict() (turn keys into values and vice versa).

	List manipulation functions: utils.general.flatten_list() (flatten a nested list structure), utils.general.partition_list() (split a list into two lists according to a predicate), utils.general.split_in_groups() (split list into several groups according to a key function), utils.general.sort_set_by_list() (convert set into a list, whose values are sorted according to a second supplied list), utils.general.compare_lists() (compare two lists and return their intersection and differences).

	utils.general.DummyResource: a “dummy” resource class, which can be used in a with block but does nothing; can be used to, e.g., replace multi-threading resources such as locks to turn them off.

	Unique ID generators: utils.general.UIDGenerator and utils.general.NamedUIDGenerator, which generate unique names (based on a counter), with a thread-safe option (useful to create, e.g., unique data markers).

	Timekeeping: utils.general.Countdown for single shot and utils.general.Timer for repeating tasks. Simplifies dealing with operation timeouts: checking how much time is left (including options for infinite timeout), checking if timeout is passed, resetting, etc.

	Script restarting via utils.general.restart() (thread-controller style applications can also use thread.controller.restart_app() for a more managed restart).

	utils.general.StreamFileLogger, which can be set up to log all outputs into a stream (e.g., stdout):

from pylablib import StreamFileLogger
import sys
sys.stderr = StreamLogger("logerr.txt", sys.stderr) # replace stderr stream with a logged version
perform some tasks ...
sys.stderr = sys.stderr.stream # revert back, if necessary

With the code above, all output to stderr will be logged into logerr.txt to be analyzed later. It can also be set with autoflush=True to automatically flush the printed text, which helps with identifying crushing bugs, and it can be supplied with a lock to help separate printouts from different threads.

Change log

This is a list of changes between each version.

Version 1.x

Transitioning from version 0.x to version 1.x saw lots of interface changes which break backward compatibility. The previous version of the library can be either obtained on PyPi using pip install "pylablib<1", or by using legacy module. Hence, instead of

import pylablib as pll
from pylablib.aux_libs.devices import Lakeshore

you can write

import pylablib.legacy as pll
from pylablib.legacy.aux_libs.devices import Lakeshore

1.4.2

	Devices

	Added multiple devices:

	Andor Shamrock spectrographs

	ElektorAutomatick PS2000B power supply

	Keithley 2110 multimeter

	Lumel RE72 temperature controller (via Modbus RTU protocol)

	M2 Solstis EMM (external mixing module)

	Mightex S-Series cameras

	Generic NKT lasers Interbus protocol support (tested with NKT SuperK with Select spectral filter)

	Generic Modbus RTU protocol

	PhysikInstrumente E-515 piezo controller

	Rigol DP1116A power supply

	SmarAct MCS2 stage controller

	Standa 8SMC5 motion controller

	Thorlabs PM160 power meter

	Voltcraft VC-7055BT multimeter

	Extended device support:

	Thorlabs Scientific Cameras (Zelux, Kiralux) color mode

	Thorlabs APT/Kinesis motor controllers

	Trinamic TMCM1110 homing

	Added HID device communication backend

	Switched some camera code to Cython to support higher frame rates.

	Multiple bug fixes and improved support of specific models:

	Selection of RTS cycling for Arduino boards (better support for newer boards such as Leonardo)

	Support for SiliconSoftware microEnable 5 (Basler microEnable 5 marathon)

	Improved Sirah Matisse tuning support for frequency tuning and stitched scans based on HighFinesse wavemeters feedback.

	Switched to Cython code in several places for minor plotting speedups.

	
	Minor additional functions
	
	Added time tracker class for simple profiling

	Added CRC calculation methods

1.4.1

	Devices

	Added Basler pylon-compatible cameras, BitFlow frame grabbers, AlliedVision Bonito cameras, Thorlabs Elliptec stages, PI-E516 piezo controller, and Sirah Matisse laser.

	Minor additions to Cryocon temperature controller, Cryomagnetics LM510 level meters, and NI DAQmx DAQs. Improved performance of PCO cameras at high frame rates.

	Multiple minor bug fixes and improved support of specific models.

	Added encoding argument to file loading.

	Improved color images support in image plotter, minor additions to trace plotter.

	Added real-time binning and debounce filters.

1.4.0

	Added Photometrics cameras and Cryocon temperature controllers.

	More consistent cameras interface: attributes properties, fast chunks (former fastbuff) readout, frame info formats.

	Added new simple GUI elements: multiline edits, enum labels.

	Expanded image and trace plotting widgets.

	Added linear transforms to data processing.

	Minor bugfixes in threading, GUI, devices.

1.3.3

	Numpy loads bugfix (fixes compatibility with numpy>=1.22).

1.3.2

	Added Leybold ITR90 and KJL300 pressure gauges.

	Minor bugfixes in threading and devices.

1.3.1

	Added expandable edit boxes and dialog containers.

	Improved Thorlabs devices compliance.

	Additional minor bugfixes in threading, GUI, devices.

1.3.0

	General

	Minor speedups through calls caching.

	Changed muxcall signature to allow multiple special argument values.

	Devices

	Added Princeton Instruments cameras, IDS uEye cameras (as an option in uc480 cameras backend), Thorlabs Kinesis piezo motor controllers (e.g., KIM101) and quadrature photo-detector controllers (e.g., KPA101).

	Added RS485 Arcus connection and a simple single-motor stage (DMX-J-SA).

	Improved reliability if errors are encountered upon connection.

	Multiple minor bug fixes and improved support of specific models.

	GUI

	Added widgets: menu dropdown button, scroll area container, area highlighter.

	Added querying element position and layout shape in layout widgets.

	Added more utilities methods: querying containing layout, querying top-level parent, deleting widget.

	Threading

	Added simple profiling through yappi.

1.2.1

	General

	Added restarting methods for regular and threaded applications.

	Threading

	Bugfixes in cameras and camera threads.

	Bugfixes in streaming.

1.2.0

	General

	Added timing context manager for simple code timing checks.

	Improved RPyC wrapper logging and reliability.

	Added Anaconda support.

	Added minor network and file functions.

	Devices

	Added Newport Picomotor 8742 motor controller, Toptica iBeam Smart laser, older version of Thorlabs FW motorized filter wheel.

	Added camera frame output format (list or array).

	Added use_cavity option to M2 Solstis laser.

	Added method for auto-detecting associations between PhotonFocus cameras and frame grabbers.

	Updated some generic classes (DCAM cameras, Thorlabs TLCamera cameras).

	Updated SCPI failsafe operation, improved Thorlabs FW reliability.

	Fixed several minor bugs.

	GUI

	Rewritten GUI values handling to pass calls in a hierarchical manner. This makes the operation more predictable and overloading the behavior a bit easier.

	Added out-of-range value action for combo boxes.

	Fixed ImagePlotter incompatibility with the newer pyqtgraph versions, added separate x and y axis line cuts selection.

	Minor layout handling bugfixes.

	Threading

	Released advanced threading functionality: table/frame streaming, device threads, basic frame processing.

	Task thread additions: delayed batch job stopping, context manager for task loop pausing.

	Added argument-dependent call queue limit.

	Improved threading speed and stability.

1.1.0

	General

	Reorganized the core modules import structure: now __init__.py modules are mostly empty, and all the necessary imports are either exposed directly in pylablib (e.g., pylablib.Fitter), or should be accessed directly by the module (e.g. pll.core.dataproc.fitting.Fitter). Intermediate access (e.g., pll.core.dataproc.Fitter) is no longer supported.

	File IO functions (e.g., read_csv) can now take file-like objects in addition to paths.

	Devices

	Added Silicon Software frame grabbers interface and rearranged PhotonFocus code to include both IMAQ and SiliconSoftware frame grabbers.

	Fixed various compatibility bugs arising for specific versions of Python or dependency modules: Kinesis error with specific pyft232 versions, some DLL-dependent devices errors with Python 3.8+, DLL types in 32-bit Python.

	Addressed issue with occasional uc480 acquisition restarts, fixed M2 communication report errors.

	GUI and threading

	Added container and layout management classes in addition to parameter tables for more consistent GUI structure organization.

	Added pylablib.widgets module which combines all custom widgets for the ease of using in layout managers or custom applications.

	Fixed support for PySide2 Qt5 backed.

	Renamed setupUi -> setup for all widgets, and changed the GUI setup organization for many of them (the functioning stayed the same).

	Reorganized scheduling in QTaskThread to treat jobs, commands, and subscriptions more consistently.

	Added basic data stream management.

1.0.0

There have been too many alterations to list here comprehensively. Below is the list of the largest changes.

	General

	Removed built-in DataTable class (together with core.datatable subpackage) in favor of pandas.

	Renamed file IO functions: instead of generic load and save methods there are now more specific loadfile.load_csv(), loadfile.load_dict(), etc.

	Removed some legacy modules which are not used in the rest of the library.

	Renamed or moved certain modules: core.utils.rpyc -> core.utils.rpyc_utils, core.fileio.logfile -> core.fileio.table_stream, core.fileio.binio -> core.utils.binio , core.devio.backend -> core.devio.backencd_comm, core.devio.untis -> core.utils.units, core.dataproc.waveforms -> core.dataproc.utils

	Devices

	Some legacy devices have been removed, since without access to the hardware it is hard to maintain and expand them. These include most of Agilent devices (33502A amplifier, N9310A microwave generator, HP 8712B and HP 8722D network analyzers, HP 8168F laser), Rigol DSA1030A spectrum analyzer, Tektronix MDO3000 oscilloscope, Vaunix LabBrick generators, Zurich Instruments HF2 and UHF, Andor Shamrock spectrographs (should be restored in future releases), NuPhoton NP2000 EDFA, PurePhotonics PPCL200 laser, Sirah Matisse laser (should be restored in future releases), Thorlabs PM100 power meter (should be restored in future releases), Lakeshore 370 resistance bridge (should be restored in future releases), MKS 900-series pressure gauges, and some custom devices (Arduino and Olimex AVR boards and Janis-related hardware).

	The main devices package has been moved from pylablib.aux_libs.devices (which now refers to the legacy code) to pylablib.devices. Module organization has also changed slightly. To find the required modules and device class names, see the devices list.

	Lots of devices’ interface has varied slightly, to make the interface more uniform and compatible between different kinds of devices. The changes are usually fairly straightforward (e.g., move_to instead of move). In many cases the interface was also expanded to include additional available methods.

	Several devices have been added, generalized, or restructured:

	Combined Thorlabs KDC101 and K10CR1 into a single class pylablib.devices.Thorlabs.BasicKinesisDevice, which also accommodates similar kinds of devices.

	Added Arcus Performax2EXStage device for 2-axis controller with a slightly different interface (pylablib.devices.Arcus.Performax2EXStage)

	Added several more AWGs with similar interfaces

	Simplified the way external DLLs are handled

	Unified the error handling

	GUI and threading

	Changed module structure

	threading and GUI are now separate sub-packages core.thread and core.gui

	all widgets are available simply through pylablib.widgets (simplifies integration with Qt Designer)

	moved parameter tables widgets to the core library

	Renamed some widgets to remove the LV prefix.

	Interfaces changes in some of the classes: thread controllers, parameter tables, value tables. The changes are mostly cosmetics and involve names and parameters order. Most important changes:

	thread controller methods: subscribe -> subscribe_sync, sync_exec -> sync_exec_point,

	thread controller command/query shortcut: .c -> .ca, .q -> .cs, .qi -> .csi, .qs -> .css

	thread controller variable access uses .v shortcut, i.e., instead of ctl[name] it is now ctl.v[name]

	GUI value storage ValuesTable/IndicatorValuesTable are now combined and named as GUIValues

	ParamTable and GUIValues uses .h shortcut to access value handlers, i.e., instead of table[name] it is now table.h[name]

	ParamTable, ImagePlotterCtl, TracePlotterCtl constructor arguments: display_table -> gui_values, display_table_root -> gui_values_root

	value-changed signal names in ParamTable and GUIValues: changed_event -> get_value_changed_signal

	value-changed signal names in value handlers: value_changed_signal -> get_value_changed_signal

	ParamTable methods: lock -> set_enabled, add_button(checkable=True) -> add_toggle_button

	NumEdit and NumLabel methods: set_number_format -> set_formatter, set_number_limit -> set_limiter (the call signature also changed)

	renamed signals to multicasts to avoid confusion with built-in Qt signals. Leads to ThreadController.send_signal -> send_multicast, ThreadController.process_signal -> process_multicast, ThreadController constructor argument signal_pool -> multicast_pool, class SignalPool -> MulticastPool, QSignalThreadCallScheduler -> QMulticastThreadCallScheduler.

Version 0.x

0.4.1

Interface changes

	Slightly changed representations of complex number in to-string conversions depending on the conversion rules ("python" vs "text").

Additions

	Devices

	Added Thorlabs K10CR1 rotational stage (legacy.aux_libs.devices.Thorlabs.K10CR1)

	Added Andor Shamrock spectrographs (legacy.aux_libs.devices.AndorShamrock)

	Expanded Agilent AWG class

	Added more 32bit dlls

	Added list_resources method to every backend class, which lists available connections for this backend (not available for every backend; so far only works in legacy.core.devio.backed.VisaDeviceBackend, legacy.core.devio.backed.SerialDeviceBackend, and legacy.core.devio.backed.FT232BackendOpenError.

	GUI and threading

	Added legacy.aux_libs.gui.helpers.TableAccumulatorThread.preprocess_data method to pre-process incoming data before adding it to the table

	Added update_only_on_visible argument to legacy.aux_libs.gui.widgets.trace_plotter.TracePlotter.setupUi method, and legacy.aux_libs.gui.widgets.trace_plotter.TracePlotter.get_required_channels method.

0.4.0

Interface changes

	Dictionary entries (legacy.core.fileio.dict_entry) system has been slightly redesigned: building entries from stored objects has been moved from legacy.core.fileio.dict_entry.IDictionaryEntry.build_entry class method to a dedicated function legacy.core.fileio.dict_entry.build_entry, and entry classes have been added.

	legacy.aux_libs.gui.helpers.StreamFormerThread architecture changes, so that it can accumulates several rows before adding them into the storage; this lead to replacement of legacy.aux_libs.gui.helpers.StreamFormerThread.prepare_new_row method by legacy.aux_libs.gui.helpers.StreamFormerThread.prepare_new_data.

Additions

	General

	Added pandas support in a bunch of places: loading/saving tables and dictionaries; data processing routines in legacy.core.dataproc; conversion of legacy.core.dataproc.datatable.DataTable and legacy.core.utils.dictionary.Dictionary object to/from pandas dataframes.

	Expanded string conversion to support more explicit variable classes. For example, a numpy array np.array([1,2,3]) can be converted into a string 'array([1, 2, 3])' instead of a more ambiguous string '[1, 2, 3]' (which can also be a list). This behavior is controlled by a new argument use_classes in string conversion functions (such as legacy.core.utils.string.to_string and legacy.core.utils.string.from_string) and an argument use_rep_classes in file saving (legacy.core.fileio.savefile.save)

	Added general library parameters, which can be accessed via pylablib.par (works as a dictionary object). So far there’s only one supported parameter: the default return type of the CSV file reading (can be "pandas" for pandas dataframe, "table" for legacy.core.dataproc.datatable.DataTable object, or "array" for raw numpy array).

	Devices

	Added LaserQuantum Finesse device class (legacy.aux_libs.devices.devices.LaserQuantum)

	NI DAQ now supports output of waveforms

	Added legacy.aux_libs.devices.PCO_SC2.reset_api and legacy.aux_libs.devices.PCO_SC2.PCOSC2Camera.reboot methods for resetting API and cameras

	Added legacy.aux_libs.devices.Thorlabs.list_kinesis_devices function to list connected Kinesis devices

	Added serial communication methods for IMAQ cameras (legacy.aux_libs.devices.IMAQ.IMAQCamera)

	GUI and threading

	Added line plotter (legacy.aux_libs.gui.widgets.line_plotter) and trace plotter (legacy.aux_libs.gui.widgets.trace_plotter) widgets

	Added virtual elements to value tables and parameter tables

	Added gui_thread_safe parameter to value tables and parameter tables. Enabling it make most common methods thread-safe (i.e., transparently called from the GUI thread)

	Added a corresponding legacy.core.gui.qt.thread.controller.gui_thread_method wrapper to implement the change above

	Added functional thread variables (legacy.core.gui.qt.thread.controller.QThreadController.set_func_variable)

	File saving / loading

	Added notation for dictionary files to include nested structures (‘prefix blocks’). This lets one avoid common path prefix in stored dictionary files. For example, a file

some/long/prefix/x 1
some/long/prefix/y 2
some/long/prefix/y 3

can be represented as

//some/long/prefix
 x 1
 y 2
 z 3
///

The meaningful elements are //some/long/prefix line denoting that following elements have the given prefix, and /// line denoting that the prefix block is done (indentation is only added for clarity).

	New dictionary entries: dict_entry.ExternalNumpyDictionaryEntry (external numpy array, can have arbitrary number of dimensions) and dict_entry.ExpandedContainerDictionaryEntry (turns lists, tuples and dicts into dictionary branches, so that their content can benefit from the automatic table inlining, dictionary entry classes, etc.).

	Data processing

	legacy.core.dataproc.fitting.Fitter now takes default scale and limit as constructor arguments.

	legacy.core.dataproc.feature.multi_scale_peakdet has new norm_ratio argument.

	legacy.core.dataproc.image.get_region and legacy.core.dataproc.image.get_region_sum take axis argument.

	Miscellaneous

	Functions introspection module now supports Python 3 - style functions, and added a new function legacy.core.utils.functions.funcsig

	legacy.core.utils.general.StreamFileLogger supports multiple destination paths

	New network function legacy.core.utils.net.get_all_local_addr (return list of all local addresses on all interfaces) and legacy.core.utils.net.get_local_hostname

pylablib

	pylablib package
	Subpackages
	pylablib.core package
	Subpackages

	Module contents

	pylablib.devices package
	Subpackages

	Module contents

	Submodules

	pylablib.widgets module

	Module contents
	setbp()

	reload_all()

	unload_all()

	load_par()

pylablib package

Subpackages

	pylablib.core package
	Subpackages
	pylablib.core.dataproc package
	Submodules

	pylablib.core.dataproc.callable module

	pylablib.core.dataproc.ctransform_fallback module

	pylablib.core.dataproc.feature module

	pylablib.core.dataproc.filters module

	pylablib.core.dataproc.fitting module

	pylablib.core.dataproc.fourier module

	pylablib.core.dataproc.iir_transform module

	pylablib.core.dataproc.image module

	pylablib.core.dataproc.interpolate module

	pylablib.core.dataproc.specfunc module

	pylablib.core.dataproc.table_wrap module

	pylablib.core.dataproc.transform module

	pylablib.core.dataproc.utils module

	Module contents

	pylablib.core.devio package
	Submodules

	pylablib.core.devio.SCPI module

	pylablib.core.devio.backend_logger module

	pylablib.core.devio.base module

	pylablib.core.devio.comm_backend module

	pylablib.core.devio.data_format module

	pylablib.core.devio.hid module

	pylablib.core.devio.hid_base module

	pylablib.core.devio.interface module

	Module contents

	pylablib.core.fileio package
	Submodules

	pylablib.core.fileio.datafile module

	pylablib.core.fileio.dict_entry module

	pylablib.core.fileio.loadfile module

	pylablib.core.fileio.loadfile_utils module

	pylablib.core.fileio.location module

	pylablib.core.fileio.parse_csv module

	pylablib.core.fileio.savefile module

	pylablib.core.fileio.table_stream module

	Module contents

	pylablib.core.gui package
	Subpackages

	Submodules

	pylablib.core.gui.formatter module

	pylablib.core.gui.limiter module

	pylablib.core.gui.utils module

	pylablib.core.gui.value_handling module

	Module contents

	pylablib.core.thread package
	Submodules

	pylablib.core.thread.callsync module

	pylablib.core.thread.controller module

	pylablib.core.thread.multicast_pool module

	pylablib.core.thread.notifier module

	pylablib.core.thread.profile module

	pylablib.core.thread.synchronizing module

	pylablib.core.thread.threadprop module

	pylablib.core.thread.utils module

	Module contents

	pylablib.core.utils package
	Submodules

	pylablib.core.utils.array_utils module

	pylablib.core.utils.cext_tools module

	pylablib.core.utils.crc module

	pylablib.core.utils.ctypes_wrap module

	pylablib.core.utils.dictionary module

	pylablib.core.utils.files module

	pylablib.core.utils.funcargparse module

	pylablib.core.utils.functions module

	pylablib.core.utils.general module

	pylablib.core.utils.indexing module

	pylablib.core.utils.ipc module

	pylablib.core.utils.library_parameters module

	pylablib.core.utils.module module

	pylablib.core.utils.nbtools module

	pylablib.core.utils.net module

	pylablib.core.utils.numerical module

	pylablib.core.utils.observer_pool module

	pylablib.core.utils.py3 module

	pylablib.core.utils.rpyc_utils module

	pylablib.core.utils.strdump module

	pylablib.core.utils.string module

	pylablib.core.utils.strpack module

	pylablib.core.utils.units module

	Module contents

	Module contents

	pylablib.devices package
	Subpackages
	pylablib.devices.AWG package
	Submodules

	pylablib.devices.AWG.generic module

	pylablib.devices.AWG.specific module

	Module contents

	pylablib.devices.AlliedVision package
	Submodules

	pylablib.devices.AlliedVision.Bonito module

	Module contents

	pylablib.devices.Andor package
	Submodules

	pylablib.devices.Andor.AndorSDK2 module

	pylablib.devices.Andor.AndorSDK3 module

	pylablib.devices.Andor.Shamrock module

	pylablib.devices.Andor.atcore_features module

	pylablib.devices.Andor.base module

	Module contents

	pylablib.devices.Arcus package
	Submodules

	pylablib.devices.Arcus.base module

	pylablib.devices.Arcus.performax module

	Module contents

	pylablib.devices.Arduino package
	Submodules

	pylablib.devices.Arduino.base module

	Module contents

	pylablib.devices.Attocube package
	Submodules

	pylablib.devices.Attocube.anc300 module

	pylablib.devices.Attocube.anc350 module

	pylablib.devices.Attocube.base module

	Module contents

	pylablib.devices.Basler package
	Submodules

	pylablib.devices.Basler.pylon module

	Module contents

	pylablib.devices.BitFlow package
	Submodules

	pylablib.devices.BitFlow.BitFlow module

	Module contents

	pylablib.devices.Conrad package
	Submodules

	pylablib.devices.Conrad.base module

	Module contents

	pylablib.devices.Cryocon package
	Submodules

	pylablib.devices.Cryocon.base module

	Module contents

	pylablib.devices.Cryomagnetics package
	Submodules

	pylablib.devices.Cryomagnetics.base module

	Module contents

	pylablib.devices.DCAM package
	Submodules

	pylablib.devices.DCAM.DCAM module

	Module contents

	pylablib.devices.ElektroAutomatik package
	Submodules

	pylablib.devices.ElektroAutomatik.base module

	Module contents

	pylablib.devices.HighFinesse package
	Submodules

	pylablib.devices.HighFinesse.wlm module

	Module contents

	pylablib.devices.IMAQ package
	Submodules

	pylablib.devices.IMAQ.IMAQ module

	pylablib.devices.IMAQ.niimaq_attrtypes module

	Module contents

	pylablib.devices.IMAQdx package
	Submodules

	pylablib.devices.IMAQdx.IMAQdx module

	Module contents

	pylablib.devices.KJL package
	Submodules

	pylablib.devices.KJL.base module

	Module contents

	pylablib.devices.Keithley package
	Submodules

	pylablib.devices.Keithley.base module

	pylablib.devices.Keithley.multimeter module

	Module contents

	pylablib.devices.Lakeshore package
	Submodules

	pylablib.devices.Lakeshore.base module

	Module contents

	pylablib.devices.LaserQuantum package
	Submodules

	pylablib.devices.LaserQuantum.base module

	Module contents

	pylablib.devices.Leybold package
	Submodules

	pylablib.devices.Leybold.base module

	Module contents

	pylablib.devices.LighthousePhotonics package
	Submodules

	pylablib.devices.LighthousePhotonics.base module

	Module contents

	pylablib.devices.Lumel package
	Submodules

	pylablib.devices.Lumel.base module

	Module contents

	pylablib.devices.M2 package
	Submodules

	pylablib.devices.M2.base module

	pylablib.devices.M2.emm module

	pylablib.devices.M2.solstis module

	Module contents

	pylablib.devices.Mightex package
	Submodules

	pylablib.devices.Mightex.MightexSSeries module

	pylablib.devices.Mightex.base module

	Module contents

	pylablib.devices.Modbus package
	Submodules

	pylablib.devices.Modbus.modbus module

	Module contents

	pylablib.devices.NI package
	Submodules

	pylablib.devices.NI.daq module

	Module contents

	pylablib.devices.NKT package
	Submodules

	pylablib.devices.NKT.interbus module

	Module contents

	pylablib.devices.Newport package
	Submodules

	pylablib.devices.Newport.base module

	pylablib.devices.Newport.picomotor module

	Module contents

	pylablib.devices.OZOptics package
	Submodules

	pylablib.devices.OZOptics.base module

	Module contents

	pylablib.devices.Ophir package
	Submodules

	pylablib.devices.Ophir.base module

	Module contents

	pylablib.devices.PCO package
	Submodules

	pylablib.devices.PCO.SC2 module

	Module contents

	pylablib.devices.Pfeiffer package
	Submodules

	pylablib.devices.Pfeiffer.base module

	Module contents

	pylablib.devices.Photometrics package
	Submodules

	pylablib.devices.Photometrics.pvcam module

	Module contents

	pylablib.devices.PhotonFocus package
	Submodules

	pylablib.devices.PhotonFocus.PhotonFocus module

	Module contents

	pylablib.devices.PhysikInstrumente package
	Submodules

	pylablib.devices.PhysikInstrumente.base module

	Module contents

	pylablib.devices.PrincetonInstruments package
	Submodules

	pylablib.devices.PrincetonInstruments.picam module

	Module contents

	pylablib.devices.Rigol package
	Submodules

	pylablib.devices.Rigol.base module

	pylablib.devices.Rigol.power_supply module

	Module contents

	pylablib.devices.SiliconSoftware package
	Submodules

	pylablib.devices.SiliconSoftware.fgrab module

	Module contents

	pylablib.devices.Sirah package
	Submodules

	pylablib.devices.Sirah.Matisse module

	pylablib.devices.Sirah.base module

	pylablib.devices.Sirah.tuner module

	Module contents

	pylablib.devices.SmarAct package
	Submodules

	pylablib.devices.SmarAct.MCS2 module

	pylablib.devices.SmarAct.base module

	pylablib.devices.SmarAct.scu3d module

	Module contents

	pylablib.devices.Standa package
	Submodules

	pylablib.devices.Standa.base module

	Module contents

	pylablib.devices.Tektronix package
	Submodules

	pylablib.devices.Tektronix.base module

	Module contents

	pylablib.devices.Thorlabs package
	Submodules

	pylablib.devices.Thorlabs.TLCamera module

	pylablib.devices.Thorlabs.base module

	pylablib.devices.Thorlabs.elliptec module

	pylablib.devices.Thorlabs.kinesis module

	pylablib.devices.Thorlabs.misc module

	pylablib.devices.Thorlabs.serial module

	Module contents

	pylablib.devices.Toptica package
	Submodules

	pylablib.devices.Toptica.base module

	pylablib.devices.Toptica.ibeam module

	Module contents

	pylablib.devices.Trinamic package
	Submodules

	pylablib.devices.Trinamic.base module

	Module contents

	pylablib.devices.Voltcraft package
	Submodules

	pylablib.devices.Voltcraft.base module

	pylablib.devices.Voltcraft.multimeter module

	Module contents

	pylablib.devices.interface package
	Submodules

	pylablib.devices.interface.camera module

	pylablib.devices.interface.stage module

	Module contents

	pylablib.devices.uc480 package
	Submodules

	pylablib.devices.uc480.uc480 module

	Module contents

	pylablib.devices.utils package
	Submodules

	pylablib.devices.utils.color module

	pylablib.devices.utils.load_lib module

	Module contents

	Module contents

Submodules

pylablib.widgets module

Module contents

	
pylablib.setbp()

	

	
pylablib.reload_all(from_load_path=True, keep_parameters=True)

	Reload all loaded modules.

If keep_parameters==True, keep the current library parameters (pylablib.par); otherwise, reset them to default.

	
pylablib.unload_all()

	Reload all loaded modules.

	
pylablib.load_par(path)

	Load library parameters from a file

pylablib.core package

Subpackages

	pylablib.core.dataproc package
	Submodules

	pylablib.core.dataproc.callable module
	ICallable
	ICallable.has_arg()

	ICallable.filter_args_dict()

	ICallable.get_mandatory_args()

	ICallable.is_mandatory_arg()

	ICallable.get_arg_default()

	ICallable.bind()

	ICallable.NamesBoundCall

	ICallable.bind_namelist()

	MultiplexedCallable
	MultiplexedCallable.has_arg()

	MultiplexedCallable.get_mandatory_args()

	MultiplexedCallable.get_arg_default()

	MultiplexedCallable.NamesBoundCall

	MultiplexedCallable.bind()

	MultiplexedCallable.bind_namelist()

	MultiplexedCallable.filter_args_dict()

	MultiplexedCallable.is_mandatory_arg()

	JoinedCallable
	JoinedCallable.has_arg()

	JoinedCallable.get_mandatory_args()

	JoinedCallable.get_arg_default()

	JoinedCallable.NamesBoundCall

	JoinedCallable.bind()

	JoinedCallable.bind_namelist()

	JoinedCallable.filter_args_dict()

	JoinedCallable.is_mandatory_arg()

	FunctionCallable
	FunctionCallable.has_arg()

	FunctionCallable.get_mandatory_args()

	FunctionCallable.get_arg_default()

	FunctionCallable.NamesBoundCall

	FunctionCallable.bind()

	FunctionCallable.bind_namelist()

	FunctionCallable.filter_args_dict()

	FunctionCallable.is_mandatory_arg()

	MethodCallable
	MethodCallable.has_arg()

	MethodCallable.get_arg_default()

	MethodCallable.NamesBoundCall

	MethodCallable.bind()

	MethodCallable.bind_namelist()

	MethodCallable.filter_args_dict()

	MethodCallable.get_mandatory_args()

	MethodCallable.is_mandatory_arg()

	to_callable()

	pylablib.core.dataproc.ctransform_fallback module
	CLinear2DTransform
	CLinear2DTransform.copy()

	CLinear2DTransform.tmatr

	CLinear2DTransform.svec

	CLinear2DTransform.invert()

	CLinear2DTransform.precede()

	CLinear2DTransform.follow()

	CLinear2DTransform.i()

	CLinear2DTransform.shift()

	CLinear2DTransform.multiply()

	CLinear2DTransform.scale()

	CLinear2DTransform.transpose()

	CLinear2DTransform.from_matr_shift()

	pylablib.core.dataproc.feature module
	Baseline
	Baseline.position

	Baseline.width

	get_baseline_simple()

	subtract_baseline()

	Peak
	Peak.height

	Peak.kernel

	Peak.position

	Peak.width

	find_peaks_cutoff()

	rescale_peak()

	peaks_sum_func()

	get_kernel()

	get_peakdet_kernel()

	multi_scale_peakdet()

	find_local_extrema()

	latching_trigger()

	pylablib.core.dataproc.filters module
	convolve1d()

	convolution_filter()

	gaussian_filter()

	gaussian_filter_nd()

	low_pass_filter()

	high_pass_filter()

	integrate()

	differentiate()

	sliding_average()

	median_filter()

	sliding_filter()

	decimate()

	binning_average()

	decimate_full()

	decimate_datasets()

	collect_into_bins()

	split_into_bins()

	fourier_filter()

	fourier_make_response_real()

	fourier_filter_bandpass()

	fourier_filter_bandstop()

	RunningDecimationFilter
	RunningDecimationFilter.get()

	RunningDecimationFilter.add()

	RunningDecimationFilter.reset()

	RunningDebounceFilter
	RunningDebounceFilter.get()

	RunningDebounceFilter.add()

	RunningDebounceFilter.reset()

	pylablib.core.dataproc.fitting module
	Fitter
	Fitter.set_xarg_name()

	Fitter.use_xarg()

	Fitter.set_fixed_parameters()

	Fitter.update_fixed_parameters()

	Fitter.del_fixed_parameters()

	Fitter.set_fit_parameters()

	Fitter.update_fit_parameters()

	Fitter.del_fit_parameters()

	Fitter.fit()

	Fitter.initial_guess()

	huge_error()

	get_best_fit()

	pylablib.core.dataproc.fourier module
	get_prev_len()

	truncate_trace()

	normalize_fourier_transform()

	apply_window()

	fourier_transform()

	flip_fourier_transform()

	inverse_fourier_transform()

	power_spectral_density()

	get_real_part_ft()

	get_imag_part_ft()

	get_correlations_ft()

	pylablib.core.dataproc.iir_transform module
	iir_apply_complex()

	pylablib.core.dataproc.image module
	convert_shape_indexing()

	convert_image_indexing()

	ROI
	ROI.copy()

	ROI.center()

	ROI.size()

	ROI.area()

	ROI.tup()

	ROI.ispan()

	ROI.jspan()

	ROI.from_centersize()

	ROI.intersect()

	ROI.limit()

	get_region()

	get_region_sum()

	pylablib.core.dataproc.interpolate module
	interpolate1D_func()

	interpolate1D()

	interpolate2D()

	interpolateND()

	regular_grid_from_scatter()

	interpolate_trace()

	average_interpolate_1D()

	pylablib.core.dataproc.specfunc module
	gaussian_k()

	rectangle_k()

	lorentzian_k()

	complex_lorentzian_k()

	exp_decay_k()

	get_kernel_func()

	rectangle_w()

	gen_hamming_w()

	hann_w()

	hamming_w()

	get_window_func()

	gen_hamming_w_ft()

	rectangle_w_ft()

	hann_w_ft()

	hamming_w_ft()

	get_window_ft_func()

	pylablib.core.dataproc.table_wrap module
	IGenWrapper
	IGenWrapper.get_type()

	IGenWrapper.copy()

	IGenWrapper.ndim()

	IGenWrapper.shape()

	I1DWrapper
	I1DWrapper.Accessor

	I1DWrapper.subcolumn()

	I1DWrapper.from_array()

	I1DWrapper.from_columns()

	I1DWrapper.array_replaced()

	I1DWrapper.get_index()

	I1DWrapper.get_type()

	I1DWrapper.copy()

	I1DWrapper.ndim()

	I1DWrapper.shape()

	Array1DWrapper
	Array1DWrapper.get_deleted()

	Array1DWrapper.get_inserted()

	Array1DWrapper.insert()

	Array1DWrapper.get_appended()

	Array1DWrapper.append()

	Array1DWrapper.subcolumn()

	Array1DWrapper.from_array()

	Array1DWrapper.get_type()

	Array1DWrapper.copy()

	Array1DWrapper.Accessor

	Array1DWrapper.array_replaced()

	Array1DWrapper.from_columns()

	Array1DWrapper.get_index()

	Array1DWrapper.ndim()

	Array1DWrapper.shape()

	Series1DWrapper
	Series1DWrapper.get_deleted()

	Series1DWrapper.get_inserted()

	Series1DWrapper.get_appended()

	Series1DWrapper.subcolumn()

	Series1DWrapper.from_array()

	Series1DWrapper.get_index()

	Series1DWrapper.get_type()

	Series1DWrapper.copy()

	Series1DWrapper.Accessor

	Series1DWrapper.array_replaced()

	Series1DWrapper.from_columns()

	Series1DWrapper.ndim()

	Series1DWrapper.shape()

	I2DWrapper
	I2DWrapper.from_columns()

	I2DWrapper.columns_replaced()

	I2DWrapper.from_array()

	I2DWrapper.array_replaced()

	I2DWrapper.get_index()

	I2DWrapper.get_type()

	I2DWrapper.copy()

	I2DWrapper.column()

	I2DWrapper.subtable()

	I2DWrapper.ndim()

	I2DWrapper.shape()

	Array2DWrapper
	Array2DWrapper.set_container()

	Array2DWrapper.RowAccessor

	Array2DWrapper.ColumnAccessor

	Array2DWrapper.TableAccessor

	Array2DWrapper.subtable()

	Array2DWrapper.column()

	Array2DWrapper.from_columns()

	Array2DWrapper.from_array()

	Array2DWrapper.get_type()

	Array2DWrapper.copy()

	Array2DWrapper.array_replaced()

	Array2DWrapper.columns_replaced()

	Array2DWrapper.get_index()

	Array2DWrapper.ndim()

	Array2DWrapper.shape()

	DataFrame2DWrapper
	DataFrame2DWrapper.RowAccessor

	DataFrame2DWrapper.ColumnAccessor

	DataFrame2DWrapper.TableAccessor

	DataFrame2DWrapper.subtable()

	DataFrame2DWrapper.column()

	DataFrame2DWrapper.from_columns()

	DataFrame2DWrapper.from_array()

	DataFrame2DWrapper.get_index()

	DataFrame2DWrapper.get_type()

	DataFrame2DWrapper.copy()

	DataFrame2DWrapper.array_replaced()

	DataFrame2DWrapper.columns_replaced()

	DataFrame2DWrapper.ndim()

	DataFrame2DWrapper.shape()

	wrap1d()

	wrap2d()

	wrap()

	pylablib.core.dataproc.transform module
	LinearTransform
	LinearTransform.i()

	LinearTransform.inverted()

	LinearTransform.preceded()

	LinearTransform.followed()

	LinearTransform.shifted()

	LinearTransform.multiplied()

	LinearTransform.rotated2d()

	Indexed2DTransform
	Indexed2DTransform.rotated2d()

	Indexed2DTransform.followed()

	Indexed2DTransform.i()

	Indexed2DTransform.inverted()

	Indexed2DTransform.multiplied()

	Indexed2DTransform.preceded()

	Indexed2DTransform.shifted()

	pylablib.core.dataproc.utils module
	is_ascending()

	is_descending()

	is_ordered()

	is_linear()

	get_x_column()

	get_y_column()

	sort_by()

	filter_by()

	unique_slices()

	merge()

	Range
	Range.start

	Range.stop

	Range.contains()

	Range.intersect()

	Range.rescale()

	Range.tup()

	find_closest_arg()

	find_closest_value()

	get_range_indices()

	cut_to_range()

	cut_out_regions()

	find_discrete_step()

	unwrap_mod_data()

	pad_trace()

	xy2c()

	c2xy()

	Module contents

	pylablib.core.devio package
	Submodules

	pylablib.core.devio.SCPI module
	SCPIDevice
	SCPIDevice.Error

	SCPIDevice.ReraiseError

	SCPIDevice.BackendError

	SCPIDevice.reconnect()

	SCPIDevice.sleep()

	SCPIDevice.using_write_buffer()

	SCPIDevice.get_id()

	SCPIDevice.reset()

	SCPIDevice.get_esr()

	SCPIDevice.wait_sync()

	SCPIDevice.wait_dev()

	SCPIDevice.wait()

	SCPIDevice.get_arg_type()

	SCPIDevice.write()

	SCPIDevice.read()

	SCPIDevice.NoParameterCaller

	SCPIDevice.ask()

	SCPIDevice.close()

	SCPIDevice.get_device_variable()

	SCPIDevice.get_full_info()

	SCPIDevice.get_full_status()

	SCPIDevice.get_settings()

	SCPIDevice.is_opened()

	SCPIDevice.lock()

	SCPIDevice.locking()

	SCPIDevice.open()

	SCPIDevice.set_device_variable()

	SCPIDevice.unlock()

	SCPIDevice.flush()

	SCPIDevice.read_binary_array_data()

	SCPIDevice.parse_array_data()

	SCPIDevice.apply_settings()

	pylablib.core.devio.backend_logger module
	BackendLogger
	BackendLogger.start()

	BackendLogger.stop()

	BackendLogger.section()

	BackendLogger.log()

	load_logfile()

	pylablib.core.devio.base module
	DeviceError
	DeviceError.add_note()

	DeviceError.args

	DeviceError.with_traceback()

	pylablib.core.devio.comm_backend module
	DeviceBackendError
	DeviceBackendError.add_note()

	DeviceBackendError.args

	DeviceBackendError.with_traceback()

	reraise()

	logerror()

	IDeviceCommBackend
	IDeviceCommBackend.BackendError

	IDeviceCommBackend.Error

	IDeviceCommBackend.combine_conn()

	IDeviceCommBackend.get_backend_name()

	IDeviceCommBackend.open()

	IDeviceCommBackend.close()

	IDeviceCommBackend.is_opened()

	IDeviceCommBackend.lock()

	IDeviceCommBackend.unlock()

	IDeviceCommBackend.locking()

	IDeviceCommBackend.setup_cooldown()

	IDeviceCommBackend.cooldown()

	IDeviceCommBackend.set_timeout()

	IDeviceCommBackend.get_timeout()

	IDeviceCommBackend.using_timeout()

	IDeviceCommBackend.readline()

	IDeviceCommBackend.readlines()

	IDeviceCommBackend.read()

	IDeviceCommBackend.flush_read()

	IDeviceCommBackend.write()

	IDeviceCommBackend.ask()

	IDeviceCommBackend.list_resources()

	remove_longest_term()

	DeviceVisaError
	DeviceVisaError.add_note()

	DeviceVisaError.args

	DeviceVisaError.with_traceback()

	VisaDeviceBackend
	VisaDeviceBackend.BackendError

	VisaDeviceBackend.Error

	VisaDeviceBackend.list_resources()

	VisaDeviceBackend.open()

	VisaDeviceBackend.close()

	VisaDeviceBackend.is_opened()

	VisaDeviceBackend.lock()

	VisaDeviceBackend.unlock()

	VisaDeviceBackend.locking()

	VisaDeviceBackend.set_timeout()

	VisaDeviceBackend.get_timeout()

	VisaDeviceBackend.readline()

	VisaDeviceBackend.read()

	VisaDeviceBackend.write()

	VisaDeviceBackend.ask()

	VisaDeviceBackend.combine_conn()

	VisaDeviceBackend.cooldown()

	VisaDeviceBackend.flush_read()

	VisaDeviceBackend.get_backend_name()

	VisaDeviceBackend.readlines()

	VisaDeviceBackend.setup_cooldown()

	VisaDeviceBackend.using_timeout()

	DeviceSerialError
	DeviceSerialError.add_note()

	DeviceSerialError.args

	DeviceSerialError.with_traceback()

	SerialDeviceBackend
	SerialDeviceBackend.BackendError

	SerialDeviceBackend.Error

	SerialDeviceBackend.open()

	SerialDeviceBackend.close()

	SerialDeviceBackend.is_opened()

	SerialDeviceBackend.single_op()

	SerialDeviceBackend.set_timeout()

	SerialDeviceBackend.get_timeout()

	SerialDeviceBackend.readline()

	SerialDeviceBackend.read()

	SerialDeviceBackend.read_multichar_term()

	SerialDeviceBackend.write()

	SerialDeviceBackend.list_resources()

	SerialDeviceBackend.ask()

	SerialDeviceBackend.combine_conn()

	SerialDeviceBackend.cooldown()

	SerialDeviceBackend.flush_read()

	SerialDeviceBackend.get_backend_name()

	SerialDeviceBackend.lock()

	SerialDeviceBackend.locking()

	SerialDeviceBackend.readlines()

	SerialDeviceBackend.setup_cooldown()

	SerialDeviceBackend.unlock()

	SerialDeviceBackend.using_timeout()

	DeviceFT232Error
	DeviceFT232Error.add_note()

	DeviceFT232Error.args

	DeviceFT232Error.with_traceback()

	FT232DeviceBackend
	FT232DeviceBackend.BackendError

	FT232DeviceBackend.Error

	FT232DeviceBackend.open()

	FT232DeviceBackend.close()

	FT232DeviceBackend.is_opened()

	FT232DeviceBackend.single_op()

	FT232DeviceBackend.set_timeout()

	FT232DeviceBackend.get_timeout()

	FT232DeviceBackend.readline()

	FT232DeviceBackend.read()

	FT232DeviceBackend.read_multichar_term()

	FT232DeviceBackend.write()

	FT232DeviceBackend.list_resources()

	FT232DeviceBackend.ask()

	FT232DeviceBackend.combine_conn()

	FT232DeviceBackend.cooldown()

	FT232DeviceBackend.flush_read()

	FT232DeviceBackend.get_backend_name()

	FT232DeviceBackend.lock()

	FT232DeviceBackend.locking()

	FT232DeviceBackend.readlines()

	FT232DeviceBackend.setup_cooldown()

	FT232DeviceBackend.unlock()

	FT232DeviceBackend.using_timeout()

	DeviceNetworkError
	DeviceNetworkError.add_note()

	DeviceNetworkError.args

	DeviceNetworkError.with_traceback()

	NetworkDeviceBackend
	NetworkDeviceBackend.BackendError

	NetworkDeviceBackend.Error

	NetworkDeviceBackend.open()

	NetworkDeviceBackend.close()

	NetworkDeviceBackend.is_opened()

	NetworkDeviceBackend.set_timeout()

	NetworkDeviceBackend.get_timeout()

	NetworkDeviceBackend.readline()

	NetworkDeviceBackend.read()

	NetworkDeviceBackend.read_multichar_term()

	NetworkDeviceBackend.write()

	NetworkDeviceBackend.ask()

	NetworkDeviceBackend.combine_conn()

	NetworkDeviceBackend.cooldown()

	NetworkDeviceBackend.flush_read()

	NetworkDeviceBackend.get_backend_name()

	NetworkDeviceBackend.list_resources()

	NetworkDeviceBackend.lock()

	NetworkDeviceBackend.locking()

	NetworkDeviceBackend.readlines()

	NetworkDeviceBackend.setup_cooldown()

	NetworkDeviceBackend.unlock()

	NetworkDeviceBackend.using_timeout()

	DeviceUSBError
	DeviceUSBError.add_note()

	DeviceUSBError.args

	DeviceUSBError.with_traceback()

	PyUSBDeviceBackend
	PyUSBDeviceBackend.BackendError

	PyUSBDeviceBackend.Error

	PyUSBDeviceBackend.open()

	PyUSBDeviceBackend.close()

	PyUSBDeviceBackend.is_opened()

	PyUSBDeviceBackend.set_timeout()

	PyUSBDeviceBackend.get_timeout()

	PyUSBDeviceBackend.readline()

	PyUSBDeviceBackend.read()

	PyUSBDeviceBackend.read_multichar_term()

	PyUSBDeviceBackend.write()

	PyUSBDeviceBackend.list_resources()

	PyUSBDeviceBackend.ask()

	PyUSBDeviceBackend.combine_conn()

	PyUSBDeviceBackend.cooldown()

	PyUSBDeviceBackend.flush_read()

	PyUSBDeviceBackend.get_backend_name()

	PyUSBDeviceBackend.lock()

	PyUSBDeviceBackend.locking()

	PyUSBDeviceBackend.readlines()

	PyUSBDeviceBackend.setup_cooldown()

	PyUSBDeviceBackend.unlock()

	PyUSBDeviceBackend.using_timeout()

	DeviceHIDError
	DeviceHIDError.add_note()

	DeviceHIDError.args

	DeviceHIDError.with_traceback()

	HIDeviceBackend
	HIDeviceBackend.BackendError

	HIDeviceBackend.Error

	HIDeviceBackend.open()

	HIDeviceBackend.close()

	HIDeviceBackend.is_opened()

	HIDeviceBackend.set_timeout()

	HIDeviceBackend.get_timeout()

	HIDeviceBackend.readline()

	HIDeviceBackend.read()

	HIDeviceBackend.read_multichar_term()

	HIDeviceBackend.get_pending()

	HIDeviceBackend.write()

	HIDeviceBackend.list_resources()

	HIDeviceBackend.ask()

	HIDeviceBackend.combine_conn()

	HIDeviceBackend.cooldown()

	HIDeviceBackend.flush_read()

	HIDeviceBackend.get_backend_name()

	HIDeviceBackend.lock()

	HIDeviceBackend.locking()

	HIDeviceBackend.readlines()

	HIDeviceBackend.setup_cooldown()

	HIDeviceBackend.unlock()

	HIDeviceBackend.using_timeout()

	DeviceRecordedError
	DeviceRecordedError.add_note()

	DeviceRecordedError.args

	DeviceRecordedError.with_traceback()

	RecordedDeviceBackend
	RecordedDeviceBackend.BackendError

	RecordedDeviceBackend.Error

	RecordedDeviceBackend.open()

	RecordedDeviceBackend.close()

	RecordedDeviceBackend.is_opened()

	RecordedDeviceBackend.start()

	RecordedDeviceBackend.stop()

	RecordedDeviceBackend.section()

	RecordedDeviceBackend.readline()

	RecordedDeviceBackend.read()

	RecordedDeviceBackend.write()

	RecordedDeviceBackend.ask()

	RecordedDeviceBackend.combine_conn()

	RecordedDeviceBackend.cooldown()

	RecordedDeviceBackend.flush_read()

	RecordedDeviceBackend.get_backend_name()

	RecordedDeviceBackend.get_timeout()

	RecordedDeviceBackend.list_resources()

	RecordedDeviceBackend.lock()

	RecordedDeviceBackend.locking()

	RecordedDeviceBackend.readlines()

	RecordedDeviceBackend.set_timeout()

	RecordedDeviceBackend.setup_cooldown()

	RecordedDeviceBackend.unlock()

	RecordedDeviceBackend.using_timeout()

	autodetect_backend()

	new_backend()

	backend_error()

	list_backend_resources()

	ICommBackendWrapper
	ICommBackendWrapper.apply_settings()

	ICommBackendWrapper.get_device_variable()

	ICommBackendWrapper.get_full_info()

	ICommBackendWrapper.get_full_status()

	ICommBackendWrapper.get_settings()

	ICommBackendWrapper.set_device_variable()

	ICommBackendWrapper.open()

	ICommBackendWrapper.close()

	ICommBackendWrapper.is_opened()

	ICommBackendWrapper.lock()

	ICommBackendWrapper.unlock()

	ICommBackendWrapper.locking()

	pylablib.core.devio.data_format module
	DataFormat
	DataFormat.flip_byteorder()

	DataFormat.is_ascii()

	DataFormat.from_desc()

	DataFormat.from_desc_SCPI()

	DataFormat.to_desc()

	DataFormat.convert_from_str()

	DataFormat.convert_to_str()

	pylablib.core.devio.hid module
	TDeviceDescription
	TDeviceDescription.manufacturer

	TDeviceDescription.path

	TDeviceDescription.product

	TDeviceDescription.product_id

	TDeviceDescription.serial

	TDeviceDescription.vendor_id

	TDeviceDescription.version

	list_devices()

	HIDevice
	HIDevice.open()

	HIDevice.close()

	HIDevice.is_opened()

	HIDevice.get_description()

	HIDevice.get_timeout()

	HIDevice.set_timeout()

	HIDevice.Reader

	HIDevice.get_pending()

	HIDevice.read()

	HIDevice.write()

	pylablib.core.devio.hid_base module
	HIDError
	HIDError.add_note()

	HIDError.args

	HIDError.with_traceback()

	HIDLibError
	HIDLibError.add_note()

	HIDLibError.args

	HIDLibError.with_traceback()

	HIDTimeoutError
	HIDTimeoutError.add_note()

	HIDTimeoutError.args

	HIDTimeoutError.with_traceback()

	pylablib.core.devio.interface module
	IDevice
	IDevice.open()

	IDevice.close()

	IDevice.is_opened()

	IDevice.get_settings()

	IDevice.get_full_status()

	IDevice.get_full_info()

	IDevice.apply_settings()

	IDevice.get_device_variable()

	IDevice.set_device_variable()

	IParameterClass
	IParameterClass.using_device()

	IParameterClass.docstring()

	IParameterClass.i()

	ICheckingParameterClass
	ICheckingParameterClass.check_alias()

	ICheckingParameterClass.check_value()

	ICheckingParameterClass.to_value()

	ICheckingParameterClass.to_alias()

	ICheckingParameterClass.i()

	ICheckingParameterClass.docstring()

	ICheckingParameterClass.using_device()

	RangeParameterClass
	RangeParameterClass.check_value()

	RangeParameterClass.check_alias()

	RangeParameterClass.to_value()

	RangeParameterClass.docstring()

	RangeParameterClass.i()

	RangeParameterClass.to_alias()

	RangeParameterClass.using_device()

	IEnumParameterClass
	IEnumParameterClass.check_value()

	IEnumParameterClass.check_alias()

	IEnumParameterClass.to_value()

	IEnumParameterClass.to_alias()

	IEnumParameterClass.docstring()

	IEnumParameterClass.i()

	IEnumParameterClass.using_device()

	EnumParameterClass
	EnumParameterClass.check_alias()

	EnumParameterClass.check_value()

	EnumParameterClass.docstring()

	EnumParameterClass.i()

	EnumParameterClass.to_alias()

	EnumParameterClass.to_value()

	EnumParameterClass.using_device()

	FunctionParameterClass
	FunctionParameterClass.check_value()

	FunctionParameterClass.check_alias()

	FunctionParameterClass.to_alias()

	FunctionParameterClass.to_value()

	FunctionParameterClass.docstring()

	FunctionParameterClass.i()

	FunctionParameterClass.using_device()

	CombinedParameterClass
	CombinedParameterClass.docstring()

	CombinedParameterClass.i()

	CombinedParameterClass.using_device()

	TRawParameterValue
	TRawParameterValue.value

	pval()

	use_parameters()

	Module contents

	pylablib.core.fileio package
	Submodules

	pylablib.core.fileio.datafile module
	DataFile
	DataFile.get()

	pylablib.core.fileio.dict_entry module
	is_dict_entry_branch()

	DictEntryBuilder
	DictEntryBuilder.is_data_valid()

	DictEntryBuilder.from_data()

	DictEntryParser
	DictEntryParser.is_branch_valid()

	DictEntryParser.from_dict()

	add_dict_entry_builder()

	add_dict_entry_parser()

	add_dict_entry_class()

	from_data()

	from_dict()

	IDictionaryEntry
	IDictionaryEntry.is_data_valid()

	IDictionaryEntry.is_branch_valid()

	IDictionaryEntry.from_dict()

	IDictionaryEntry.to_dict()

	parse_stored_table_data()

	ITableDictionaryEntry
	ITableDictionaryEntry.is_data_valid()

	ITableDictionaryEntry.from_dict()

	ITableDictionaryEntry.is_branch_valid()

	ITableDictionaryEntry.to_dict()

	InlineTableDictionaryEntry
	InlineTableDictionaryEntry.to_dict()

	InlineTableDictionaryEntry.from_dict()

	InlineTableDictionaryEntry.is_branch_valid()

	InlineTableDictionaryEntry.is_data_valid()

	IExternalTableDictionaryEntry
	IExternalTableDictionaryEntry.from_dict()

	IExternalTableDictionaryEntry.is_branch_valid()

	IExternalTableDictionaryEntry.is_data_valid()

	IExternalTableDictionaryEntry.to_dict()

	ExternalTextTableDictionaryEntry
	ExternalTextTableDictionaryEntry.to_dict()

	ExternalTextTableDictionaryEntry.from_dict()

	ExternalTextTableDictionaryEntry.is_branch_valid()

	ExternalTextTableDictionaryEntry.is_data_valid()

	ExternalBinTableDictionaryEntry
	ExternalBinTableDictionaryEntry.to_dict()

	ExternalBinTableDictionaryEntry.from_dict()

	ExternalBinTableDictionaryEntry.is_branch_valid()

	ExternalBinTableDictionaryEntry.is_data_valid()

	table_entry_builder()

	IExternalFileDictionaryEntry
	IExternalFileDictionaryEntry.file_format

	IExternalFileDictionaryEntry.add_file_format()

	IExternalFileDictionaryEntry.to_dict()

	IExternalFileDictionaryEntry.from_dict()

	IExternalFileDictionaryEntry.get_preamble()

	IExternalFileDictionaryEntry.save_file()

	IExternalFileDictionaryEntry.load_file()

	IExternalFileDictionaryEntry.is_branch_valid()

	IExternalFileDictionaryEntry.is_data_valid()

	ExternalNumpyDictionaryEntry
	ExternalNumpyDictionaryEntry.file_format

	ExternalNumpyDictionaryEntry.get_preamble()

	ExternalNumpyDictionaryEntry.save_file()

	ExternalNumpyDictionaryEntry.load_file()

	ExternalNumpyDictionaryEntry.add_file_format()

	ExternalNumpyDictionaryEntry.from_dict()

	ExternalNumpyDictionaryEntry.is_branch_valid()

	ExternalNumpyDictionaryEntry.is_data_valid()

	ExternalNumpyDictionaryEntry.to_dict()

	ExpandedContainerDictionaryEntry
	ExpandedContainerDictionaryEntry.to_dict()

	ExpandedContainerDictionaryEntry.from_dict()

	ExpandedContainerDictionaryEntry.is_branch_valid()

	ExpandedContainerDictionaryEntry.is_data_valid()

	pylablib.core.fileio.loadfile module
	IInputFileFormat
	IInputFileFormat.detect_file_format()

	IInputFileFormat.read()

	ITextInputFileFormat
	ITextInputFileFormat.detect_file_format()

	ITextInputFileFormat.read()

	CSVTableInputFileFormat
	CSVTableInputFileFormat.read()

	CSVTableInputFileFormat.detect_file_format()

	DictionaryInputFileFormat
	DictionaryInputFileFormat.read()

	DictionaryInputFileFormat.detect_file_format()

	BinaryTableInputFileFormatter
	BinaryTableInputFileFormatter.read()

	BinaryTableInputFileFormatter.detect_file_format()

	build_file_format()

	load_csv()

	load_csv_desc()

	load_bin()

	load_bin_desc()

	load_dict()

	load_generic()

	pylablib.core.fileio.loadfile_utils module
	is_unprintable_character()

	detect_binary_file()

	test_row_type()

	detect_textfile_type()

	test_savetime_comment()

	find_savetime_comment()

	test_columns_line()

	find_columns_lines()

	InlineTable

	parse_dict_line()

	read_dict_and_comments()

	pylablib.core.fileio.location module
	LocationName
	LocationName.get_path()

	LocationName.get_ext()

	LocationName.to_string()

	LocationName.to_path()

	LocationName.from_string()

	LocationName.from_object()

	LocationName.copy()

	LocationFile
	LocationFile.loc

	LocationFile.name

	LocationFile.opened

	LocationFile.open()

	LocationFile.close()

	IDataLocation
	IDataLocation.is_free()

	IDataLocation.generate_new_name()

	IDataLocation.open()

	IDataLocation.close()

	IDataLocation.list_opened_files()

	OpenedFileLocation
	OpenedFileLocation.is_free()

	OpenedFileLocation.generate_new_name()

	OpenedFileLocation.open()

	OpenedFileLocation.close()

	OpenedFileLocation.list_opened_files()

	IFileSystemDataLocation
	IFileSystemDataLocation.get_filesystem_path()

	IFileSystemDataLocation.is_free()

	IFileSystemDataLocation.open()

	IFileSystemDataLocation.close()

	IFileSystemDataLocation.list_opened_files()

	IFileSystemDataLocation.generate_new_name()

	SingleFileSystemDataLocation
	SingleFileSystemDataLocation.get_filesystem_path()

	SingleFileSystemDataLocation.close()

	SingleFileSystemDataLocation.generate_new_name()

	SingleFileSystemDataLocation.is_free()

	SingleFileSystemDataLocation.list_opened_files()

	SingleFileSystemDataLocation.open()

	PrefixedFileSystemDataLocation
	PrefixedFileSystemDataLocation.get_filesystem_path()

	PrefixedFileSystemDataLocation.close()

	PrefixedFileSystemDataLocation.generate_new_name()

	PrefixedFileSystemDataLocation.is_free()

	PrefixedFileSystemDataLocation.list_opened_files()

	PrefixedFileSystemDataLocation.open()

	FolderFileSystemDataLocation
	FolderFileSystemDataLocation.get_filesystem_path()

	FolderFileSystemDataLocation.close()

	FolderFileSystemDataLocation.generate_new_name()

	FolderFileSystemDataLocation.is_free()

	FolderFileSystemDataLocation.list_opened_files()

	FolderFileSystemDataLocation.open()

	get_location()

	pylablib.core.fileio.parse_csv module
	ChunksAccumulator
	ChunksAccumulator.corrupted_number()

	ChunksAccumulator.convert_columns()

	ChunksAccumulator.add_columns()

	ChunksAccumulator.add_chunk()

	read_columns()

	columns_to_table()

	read_table()

	pylablib.core.fileio.savefile module
	IOutputFileFormat
	IOutputFileFormat.write_file()

	IOutputFileFormat.write_data()

	IOutputFileFormat.write()

	ITextOutputFileFormat
	ITextOutputFileFormat.make_comment_line()

	ITextOutputFileFormat.make_prop_line()

	ITextOutputFileFormat.make_savetime_line()

	ITextOutputFileFormat.write_line()

	ITextOutputFileFormat.write_comments()

	ITextOutputFileFormat.write_props()

	ITextOutputFileFormat.write_savetime()

	ITextOutputFileFormat.write_file()

	ITextOutputFileFormat.write()

	ITextOutputFileFormat.write_data()

	CSVTableOutputFileFormat
	CSVTableOutputFileFormat.get_table_line()

	CSVTableOutputFileFormat.get_columns_line()

	CSVTableOutputFileFormat.write_data()

	CSVTableOutputFileFormat.make_comment_line()

	CSVTableOutputFileFormat.make_prop_line()

	CSVTableOutputFileFormat.make_savetime_line()

	CSVTableOutputFileFormat.write()

	CSVTableOutputFileFormat.write_comments()

	CSVTableOutputFileFormat.write_file()

	CSVTableOutputFileFormat.write_line()

	CSVTableOutputFileFormat.write_props()

	CSVTableOutputFileFormat.write_savetime()

	DictionaryOutputFileFormat
	DictionaryOutputFileFormat.get_dictionary_line()

	DictionaryOutputFileFormat.write_data()

	DictionaryOutputFileFormat.make_comment_line()

	DictionaryOutputFileFormat.make_prop_line()

	DictionaryOutputFileFormat.make_savetime_line()

	DictionaryOutputFileFormat.write()

	DictionaryOutputFileFormat.write_comments()

	DictionaryOutputFileFormat.write_file()

	DictionaryOutputFileFormat.write_line()

	DictionaryOutputFileFormat.write_props()

	DictionaryOutputFileFormat.write_savetime()

	IBinaryOutputFileFormat
	IBinaryOutputFileFormat.get_preamble()

	IBinaryOutputFileFormat.write()

	IBinaryOutputFileFormat.write_data()

	IBinaryOutputFileFormat.write_file()

	TableBinaryOutputFileFormat
	TableBinaryOutputFileFormat.get_dtype()

	TableBinaryOutputFileFormat.get_preamble()

	TableBinaryOutputFileFormat.write_data()

	TableBinaryOutputFileFormat.write_file()

	TableBinaryOutputFileFormat.write()

	get_output_format()

	save_csv()

	save_csv_desc()

	save_bin()

	save_bin_desc()

	save_dict()

	save_generic()

	pylablib.core.fileio.table_stream module
	TableStreamFile
	TableStreamFile.write_text_lines()

	TableStreamFile.write_row()

	TableStreamFile.write_multiple_rows()

	Module contents

	pylablib.core.gui package
	Subpackages
	pylablib.core.gui.widgets package
	Submodules

	pylablib.core.gui.widgets.button module

	pylablib.core.gui.widgets.combo_box module

	pylablib.core.gui.widgets.container module

	pylablib.core.gui.widgets.edit module

	pylablib.core.gui.widgets.label module

	pylablib.core.gui.widgets.layout_manager module

	pylablib.core.gui.widgets.param_table module

	Module contents

	Submodules

	pylablib.core.gui.formatter module
	parse_float()

	pos_to_order()

	order_to_pos()

	str_to_float()

	is_integer()

	float_to_str_SI()

	FloatFormatter

	IntegerFormatter

	FmtStringFormatter

	as_formatter()

	pylablib.core.gui.limiter module
	LimitError
	LimitError.add_note()

	LimitError.args

	LimitError.with_traceback()

	NumberLimit
	NumberLimit.cast()

	filter_limiter()

	as_limiter()

	pylablib.core.gui.utils module
	get_top_parent()

	find_layout_element()

	delete_layout_item()

	clean_layout()

	get_layout_container()

	get_all_layout_containers()

	delete_widget()

	TWidgetLocation
	TWidgetLocation.layout

	TWidgetLocation.position

	get_widget_location()

	place_widget_at_location()

	is_layout_row_empty()

	get_last_filled_row()

	get_first_empty_row()

	insert_layout_row()

	is_layout_column_empty()

	get_last_filled_column()

	get_first_empty_column()

	insert_layout_column()

	compress_grid_layout()

	get_relative_position()

	get_relative_rectangle()

	get_screenshot()

	pylablib.core.gui.value_handling module
	build_children_tree()

	has_methods()

	get_method_kind()

	NoParameterError
	NoParameterError.add_note()

	NoParameterError.args

	NoParameterError.with_traceback()

	IValueHandler
	IValueHandler.get_value()

	IValueHandler.set_value()

	IValueHandler.repr_value()

	IValueHandler.get_handler()

	IValueHandler.get_value_changed_signal()

	IValueHandler.connect_value_changed_handler()

	IValueHandler.can_set_value()

	VirtualValueHandler
	VirtualValueHandler.get_value()

	VirtualValueHandler.set_value()

	VirtualValueHandler.can_set_value()

	VirtualValueHandler.connect_value_changed_handler()

	VirtualValueHandler.get_handler()

	VirtualValueHandler.get_value_changed_signal()

	VirtualValueHandler.repr_value()

	PropertyValueHandler
	PropertyValueHandler.get_value()

	PropertyValueHandler.set_value()

	PropertyValueHandler.can_set_value()

	PropertyValueHandler.connect_value_changed_handler()

	PropertyValueHandler.get_handler()

	PropertyValueHandler.get_value_changed_signal()

	PropertyValueHandler.repr_value()

	StandardValueHandler
	StandardValueHandler.get_value()

	StandardValueHandler.set_value()

	StandardValueHandler.repr_value()

	StandardValueHandler.get_handler()

	StandardValueHandler.can_set_value()

	StandardValueHandler.connect_value_changed_handler()

	StandardValueHandler.get_value_changed_signal()

	ISingleValueHandler
	ISingleValueHandler.get_single_value()

	ISingleValueHandler.get_value()

	ISingleValueHandler.set_single_value()

	ISingleValueHandler.set_value()

	ISingleValueHandler.repr_single_value()

	ISingleValueHandler.repr_value()

	ISingleValueHandler.can_set_value()

	ISingleValueHandler.connect_value_changed_handler()

	ISingleValueHandler.get_handler()

	ISingleValueHandler.get_value_changed_signal()

	LineEditValueHandler
	LineEditValueHandler.get_single_value()

	LineEditValueHandler.set_single_value()

	LineEditValueHandler.get_value_changed_signal()

	LineEditValueHandler.can_set_value()

	LineEditValueHandler.connect_value_changed_handler()

	LineEditValueHandler.get_handler()

	LineEditValueHandler.get_value()

	LineEditValueHandler.repr_single_value()

	LineEditValueHandler.repr_value()

	LineEditValueHandler.set_value()

	LabelValueHandler
	LabelValueHandler.get_single_value()

	LabelValueHandler.set_single_value()

	LabelValueHandler.can_set_value()

	LabelValueHandler.connect_value_changed_handler()

	LabelValueHandler.get_handler()

	LabelValueHandler.get_value()

	LabelValueHandler.get_value_changed_signal()

	LabelValueHandler.repr_single_value()

	LabelValueHandler.repr_value()

	LabelValueHandler.set_value()

	IBoolValueHandler
	IBoolValueHandler.repr_single_value()

	IBoolValueHandler.can_set_value()

	IBoolValueHandler.connect_value_changed_handler()

	IBoolValueHandler.get_handler()

	IBoolValueHandler.get_single_value()

	IBoolValueHandler.get_value()

	IBoolValueHandler.get_value_changed_signal()

	IBoolValueHandler.repr_value()

	IBoolValueHandler.set_single_value()

	IBoolValueHandler.set_value()

	CheckboxValueHandler
	CheckboxValueHandler.get_single_value()

	CheckboxValueHandler.set_single_value()

	CheckboxValueHandler.repr_single_value()

	CheckboxValueHandler.get_value_changed_signal()

	CheckboxValueHandler.can_set_value()

	CheckboxValueHandler.connect_value_changed_handler()

	CheckboxValueHandler.get_handler()

	CheckboxValueHandler.get_value()

	CheckboxValueHandler.repr_value()

	CheckboxValueHandler.set_value()

	PushButtonValueHandler
	PushButtonValueHandler.get_single_value()

	PushButtonValueHandler.set_single_value()

	PushButtonValueHandler.get_value_changed_signal()

	PushButtonValueHandler.repr_single_value()

	PushButtonValueHandler.can_set_value()

	PushButtonValueHandler.connect_value_changed_handler()

	PushButtonValueHandler.get_handler()

	PushButtonValueHandler.get_value()

	PushButtonValueHandler.repr_value()

	PushButtonValueHandler.set_value()

	ToolButtonValueHandler
	ToolButtonValueHandler.get_single_value()

	ToolButtonValueHandler.set_single_value()

	ToolButtonValueHandler.get_value_changed_signal()

	ToolButtonValueHandler.repr_single_value()

	ToolButtonValueHandler.can_set_value()

	ToolButtonValueHandler.connect_value_changed_handler()

	ToolButtonValueHandler.get_handler()

	ToolButtonValueHandler.get_value()

	ToolButtonValueHandler.repr_value()

	ToolButtonValueHandler.set_value()

	ComboBoxValueHandler
	ComboBoxValueHandler.get_single_value()

	ComboBoxValueHandler.set_single_value()

	ComboBoxValueHandler.get_value_changed_signal()

	ComboBoxValueHandler.repr_single_value()

	ComboBoxValueHandler.can_set_value()

	ComboBoxValueHandler.connect_value_changed_handler()

	ComboBoxValueHandler.get_handler()

	ComboBoxValueHandler.get_value()

	ComboBoxValueHandler.repr_value()

	ComboBoxValueHandler.set_value()

	ProgressBarValueHandler
	ProgressBarValueHandler.get_single_value()

	ProgressBarValueHandler.set_single_value()

	ProgressBarValueHandler.can_set_value()

	ProgressBarValueHandler.connect_value_changed_handler()

	ProgressBarValueHandler.get_handler()

	ProgressBarValueHandler.get_value()

	ProgressBarValueHandler.get_value_changed_signal()

	ProgressBarValueHandler.repr_single_value()

	ProgressBarValueHandler.repr_value()

	ProgressBarValueHandler.set_value()

	is_handled_widget()

	create_value_handler()

	IIndicatorHandler
	IIndicatorHandler.get_value()

	IIndicatorHandler.set_value()

	VirtualIndicatorHandler

	StandardIndicatorHandler
	StandardIndicatorHandler.get_value()

	StandardIndicatorHandler.set_value()

	LabelIndicatorHandler
	LabelIndicatorHandler.get_value()

	LabelIndicatorHandler.repr_value()

	LabelIndicatorHandler.set_value()

	create_indicator_handler()

	MissingGUIHandlerError
	MissingGUIHandlerError.add_note()

	MissingGUIHandlerError.args

	MissingGUIHandlerError.with_traceback()

	GUIValues
	GUIValues.add_handler()

	GUIValues.remove_handler()

	GUIValues.get_handler()

	GUIValues.add_widget()

	GUIValues.get_widget()

	GUIValues.add_nested()

	GUIValues.add_virtual_element()

	GUIValues.add_property_element()

	GUIValues.add_all_children()

	GUIValues.IndicatorsSet

	GUIValues.add_indicator_handler()

	GUIValues.remove_indicator_handler()

	GUIValues.add_widget_indicator()

	GUIValues.add_label_indicator()

	GUIValues.get_value()

	GUIValues.get_all_values()

	GUIValues.set_value()

	GUIValues.set_all_values()

	GUIValues.get_indicator()

	GUIValues.get_all_indicators()

	GUIValues.set_indicator()

	GUIValues.set_all_indicators()

	GUIValues.update_indicators()

	GUIValues.repr_value()

	GUIValues.get_value_changed_signal()

	GUIValues.update_value()

	get_gui_values()

	virtual_gui_values()

	Module contents

	pylablib.core.thread package
	Submodules

	pylablib.core.thread.callsync module
	QCallResultSynchronizer
	QCallResultSynchronizer.get_progress()

	QCallResultSynchronizer.is_call_done()

	QCallResultSynchronizer.skipped()

	QCallResultSynchronizer.failed()

	QCallResultSynchronizer.get_value_sync()

	QCallResultSynchronizer.done_notify()

	QCallResultSynchronizer.done_wait()

	QCallResultSynchronizer.get_value()

	QCallResultSynchronizer.notify()

	QCallResultSynchronizer.notifying_state()

	QCallResultSynchronizer.success_wait()

	QCallResultSynchronizer.wait()

	QCallResultSynchronizer.waiting()

	QCallResultSynchronizer.waiting_state()

	QDummyResultSynchronizer
	QDummyResultSynchronizer.notify()

	QDirectResultSynchronizer
	QDirectResultSynchronizer.get_progress()

	QDirectResultSynchronizer.is_call_done()

	QDirectResultSynchronizer.skipped()

	QDirectResultSynchronizer.failed()

	QDirectResultSynchronizer.get_value()

	QDirectResultSynchronizer.get_value_sync()

	QDirectResultSynchronizer.wait()

	QDirectResultSynchronizer.notify()

	QDirectResultSynchronizer.waiting()

	QDirectResultSynchronizer.done_wait()

	QDirectResultSynchronizer.success_wait()

	QDirectResultSynchronizer.done_notify()

	QDirectResultSynchronizer.waiting_state()

	QDirectResultSynchronizer.notifying_state()

	QScheduledCall
	QScheduledCall.Callback

	QScheduledCall.execute()

	QScheduledCall.add_callback()

	QScheduledCall.fail()

	QScheduledCall.skip()

	TDefaultCallInfo
	TDefaultCallInfo.call_time

	QScheduler
	QScheduler.build_call_info()

	QScheduler.build_call()

	QScheduler.schedule()

	QScheduler.clear()

	QDirectCallScheduler
	QDirectCallScheduler.build_call()

	QDirectCallScheduler.schedule()

	QDirectCallScheduler.build_call_info()

	QDirectCallScheduler.clear()

	QQueueScheduler
	QQueueScheduler.can_schedule()

	QQueueScheduler.call_added()

	QQueueScheduler.call_popped()

	QQueueScheduler.schedule()

	QQueueScheduler.pop_call()

	QQueueScheduler.unschedule()

	QQueueScheduler.has_calls()

	QQueueScheduler.clear()

	QQueueScheduler.build_call()

	QQueueScheduler.build_call_info()

	QQueueLengthLimitScheduler
	QQueueLengthLimitScheduler.change_max_len()

	QQueueLengthLimitScheduler.get_current_len()

	QQueueLengthLimitScheduler.call_added()

	QQueueLengthLimitScheduler.call_popped()

	QQueueLengthLimitScheduler.can_schedule()

	QQueueLengthLimitScheduler.build_call()

	QQueueLengthLimitScheduler.build_call_info()

	QQueueLengthLimitScheduler.clear()

	QQueueLengthLimitScheduler.has_calls()

	QQueueLengthLimitScheduler.pop_call()

	QQueueLengthLimitScheduler.schedule()

	QQueueLengthLimitScheduler.unschedule()

	QQueueSizeLimitScheduler
	QQueueSizeLimitScheduler.change_max_size()

	QQueueSizeLimitScheduler.get_current_size()

	QQueueSizeLimitScheduler.call_added()

	QQueueSizeLimitScheduler.call_popped()

	QQueueSizeLimitScheduler.can_schedule()

	QQueueSizeLimitScheduler.build_call()

	QQueueSizeLimitScheduler.build_call_info()

	QQueueSizeLimitScheduler.clear()

	QQueueSizeLimitScheduler.has_calls()

	QQueueSizeLimitScheduler.pop_call()

	QQueueSizeLimitScheduler.schedule()

	QQueueSizeLimitScheduler.unschedule()

	schedule_multiple_queues()

	QMultiQueueScheduler
	QMultiQueueScheduler.build_call()

	QMultiQueueScheduler.schedule()

	QThreadCallScheduler
	QThreadCallScheduler.schedule()

	QThreadCallScheduler.build_call()

	QThreadCallScheduler.build_call_info()

	QThreadCallScheduler.clear()

	QMulticastThreadCallScheduler
	QMulticastThreadCallScheduler.schedule()

	QMulticastThreadCallScheduler.build_call()

	QMulticastThreadCallScheduler.build_call_info()

	QMulticastThreadCallScheduler.clear()

	pylablib.core.thread.controller module
	exint()

	add_exception_hook()

	remove_exception_hook()

	exsafe()

	exsafeSlot()

	toploopSlot()

	QThreadControllerThread
	QThreadControllerThread.finalized

	QThreadControllerThread.run()

	QThreadControllerThread.quit_sync()

	remote_call()

	call_in_thread()

	call_in_gui_thread()

	gui_thread_method()

	QThreadController
	QThreadController.started

	QThreadController.finished

	QThreadController.allowing_toploop()

	QThreadController.blocking_control_signals()

	QThreadController.wait_for_message()

	QThreadController.new_messages_number()

	QThreadController.pop_message()

	QThreadController.wait_for_sync()

	QThreadController.wait_for_any_message()

	QThreadController.wait_until()

	QThreadController.check_messages()

	QThreadController.sleep()

	QThreadController.no_stopping()

	QThreadController.process_interrupt()

	QThreadController.process_message()

	QThreadController.on_start()

	QThreadController.on_finish()

	QThreadController.run()

	QThreadController.subscribe_sync()

	QThreadController.subscribe_direct()

	QThreadController.unsubscribe()

	QThreadController.send_multicast()

	QThreadController.send_multicast_sync()

	QThreadController.set_variable()

	QThreadController.delete_variable()

	QThreadController.set_func_variable()

	QThreadController.add_thread_method()

	QThreadController.delete_thread_method()

	QThreadController.call_thread_method()

	QThreadController.send_message()

	QThreadController.send_interrupt()

	QThreadController.send_sync()

	QThreadController.get_variable()

	QThreadController.sync_variable()

	QThreadController.start()

	QThreadController.request_stop()

	QThreadController.stop()

	QThreadController.sync_stop()

	QThreadController.poke()

	QThreadController.running()

	QThreadController.finishing()

	QThreadController.notify_exec_point()

	QThreadController.fail_exec_point()

	QThreadController.get_exec_counter()

	QThreadController.sync_exec_point()

	QThreadController.add_stop_notifier()

	QThreadController.remove_stop_notifier()

	QThreadController.is_in_controlled()

	QThreadController.call_in_thread_callback()

	QThreadController.call_in_thread_sync()

	QTaskThread
	QTaskThread.ca

	QTaskThread.cai

	QTaskThread.cad

	QTaskThread.cs

	QTaskThread.css

	QTaskThread.csi

	QTaskThread.m

	QTaskThread.TBatchJob

	QTaskThread.TCommand

	QTaskThread.Job

	QTaskThread.add_job()

	QTaskThread.change_job_period()

	QTaskThread.remove_job()

	QTaskThread.add_batch_job()

	QTaskThread.change_batch_job_parameters()

	QTaskThread.remove_batch_job()

	QTaskThread.start_batch_job()

	QTaskThread.is_batch_job_running()

	QTaskThread.stop_batch_job()

	QTaskThread.restart_batch_job()

	QTaskThread.run_as_batch_job()

	QTaskThread.run()

	QTaskThread.on_start()

	QTaskThread.on_finish()

	QTaskThread.setup_task()

	QTaskThread.finalize_task()

	QTaskThread.update_status()

	QTaskThread.add_command()

	QTaskThread.add_direct_call_command()

	QTaskThread.subscribe_commsync()

	QTaskThread.call_command_direct()

	QTaskThread.call_command()

	QTaskThread.call_in_thread_commsync()

	QTaskThread.comm_paused()

	QTaskThread.CommandAccess

	QTaskThread.add_stop_notifier()

	QTaskThread.add_thread_method()

	QTaskThread.allowing_toploop()

	QTaskThread.blocking_control_signals()

	QTaskThread.call_in_thread_callback()

	QTaskThread.call_in_thread_sync()

	QTaskThread.call_thread_method()

	QTaskThread.check_messages()

	QTaskThread.delete_thread_method()

	QTaskThread.delete_variable()

	QTaskThread.fail_exec_point()

	QTaskThread.finished

	QTaskThread.finishing()

	QTaskThread.get_exec_counter()

	QTaskThread.get_variable()

	QTaskThread.is_in_controlled()

	QTaskThread.new_messages_number()

	QTaskThread.no_stopping()

	QTaskThread.notify_exec_point()

	QTaskThread.poke()

	QTaskThread.pop_message()

	QTaskThread.process_interrupt()

	QTaskThread.process_message()

	QTaskThread.remove_stop_notifier()

	QTaskThread.request_stop()

	QTaskThread.running()

	QTaskThread.send_interrupt()

	QTaskThread.send_message()

	QTaskThread.send_multicast()

	QTaskThread.send_multicast_sync()

	QTaskThread.send_sync()

	QTaskThread.set_func_variable()

	QTaskThread.set_variable()

	QTaskThread.sleep()

	QTaskThread.start()

	QTaskThread.started

	QTaskThread.stop()

	QTaskThread.subscribe_direct()

	QTaskThread.subscribe_sync()

	QTaskThread.sync_exec_point()

	QTaskThread.sync_stop()

	QTaskThread.sync_variable()

	QTaskThread.unsubscribe()

	QTaskThread.wait_for_any_message()

	QTaskThread.wait_for_message()

	QTaskThread.wait_for_sync()

	QTaskThread.wait_until()

	get_controller()

	sync_controller()

	get_gui_controller()

	stop_controller()

	stop_all_controllers()

	stop_app()

	restart_app()

	pylablib.core.thread.multicast_pool module
	TMulticast
	TMulticast.src

	TMulticast.tag

	TMulticast.value

	MulticastPool
	MulticastPool.subscribe_direct()

	MulticastPool.unsubscribe()

	MulticastPool.send()

	pylablib.core.thread.notifier module
	ISkippableNotifier
	ISkippableNotifier.wait()

	ISkippableNotifier.notify()

	ISkippableNotifier.waiting()

	ISkippableNotifier.done_wait()

	ISkippableNotifier.success_wait()

	ISkippableNotifier.done_notify()

	ISkippableNotifier.waiting_state()

	ISkippableNotifier.notifying_state()

	pylablib.core.thread.profile module
	start()

	reset()

	stop()

	get_stats()

	print_stats()

	pylablib.core.thread.synchronizing module
	QThreadNotifier
	QThreadNotifier.get_value()

	QThreadNotifier.get_value_sync()

	QThreadNotifier.done_notify()

	QThreadNotifier.done_wait()

	QThreadNotifier.notify()

	QThreadNotifier.notifying_state()

	QThreadNotifier.success_wait()

	QThreadNotifier.wait()

	QThreadNotifier.waiting()

	QThreadNotifier.waiting_state()

	QMultiThreadNotifier
	QMultiThreadNotifier.wait()

	QMultiThreadNotifier.wait_until()

	QMultiThreadNotifier.notify()

	QMultiThreadNotifier.fail()

	QLockNotifier
	QLockNotifier.acquire()

	QLockNotifier.release()

	pylablib.core.thread.threadprop module
	ThreadError
	ThreadError.add_note()

	ThreadError.args

	ThreadError.with_traceback()

	NoControllerThreadError
	NoControllerThreadError.add_note()

	NoControllerThreadError.args

	NoControllerThreadError.with_traceback()

	DuplicateControllerThreadError
	DuplicateControllerThreadError.add_note()

	DuplicateControllerThreadError.args

	DuplicateControllerThreadError.with_traceback()

	TimeoutThreadError
	TimeoutThreadError.add_note()

	TimeoutThreadError.args

	TimeoutThreadError.characters_written

	TimeoutThreadError.errno

	TimeoutThreadError.filename

	TimeoutThreadError.filename2

	TimeoutThreadError.strerror

	TimeoutThreadError.with_traceback()

	NoMessageThreadError
	NoMessageThreadError.add_note()

	NoMessageThreadError.args

	NoMessageThreadError.with_traceback()

	SkippedCallError
	SkippedCallError.add_note()

	SkippedCallError.args

	SkippedCallError.with_traceback()

	InterruptException
	InterruptException.add_note()

	InterruptException.args

	InterruptException.with_traceback()

	InterruptExceptionStop
	InterruptExceptionStop.add_note()

	InterruptExceptionStop.args

	InterruptExceptionStop.with_traceback()

	get_app()

	get_gui_thread()

	is_gui_running()

	is_gui_thread()

	current_controller()

	pylablib.core.thread.utils module
	ReadChangeLock
	ReadChangeLock.can_read()

	ReadChangeLock.can_change()

	ReadChangeLock.reading()

	ReadChangeLock.changing()

	Module contents

	pylablib.core.utils package
	Submodules

	pylablib.core.utils.array_utils module
	as_array()

	get_shape()

	pylablib.core.utils.cext_tools module
	try_import_cext()

	pylablib.core.utils.crc module
	binv()

	calc_table()

	crc()

	pylablib.core.utils.ctypes_wrap module
	get_value()

	setup_func()

	CFunctionWrapper
	CFunctionWrapper.byref()

	CFunctionWrapper.wrap_bare()

	CFunctionWrapper.wrap_annotated()

	strprep()

	strconv()

	buffprep()

	buffconv()

	CStructWrapper
	CStructWrapper.to_struct()

	CStructWrapper.prep()

	CStructWrapper.conv()

	CStructWrapper.tup()

	CStructWrapper.prep_struct()

	CStructWrapper.prep_struct_args()

	CStructWrapper.tup_struct()

	class_tuple_to_dict()

	pylablib.core.utils.dictionary module
	split_path()

	normalize_path_entry()

	normalize_path()

	is_dictionary()

	as_dictionary()

	as_dict()

	Dictionary
	Dictionary.is_dictionary()

	Dictionary.as_dictionary()

	Dictionary.add_entry()

	Dictionary.get_entry()

	Dictionary.has_entry()

	Dictionary.is_leaf_path()

	Dictionary.is_branch_path()

	Dictionary.get_max_prefix()

	Dictionary.del_entry()

	Dictionary.size()

	Dictionary.get()

	Dictionary.pop()

	Dictionary.setdefault()

	Dictionary.items()

	Dictionary.iteritems()

	Dictionary.viewitems()

	Dictionary.values()

	Dictionary.viewvalues()

	Dictionary.itervalues()

	Dictionary.keys()

	Dictionary.viewkeys()

	Dictionary.iterkeys()

	Dictionary.paths()

	Dictionary.iternodes()

	Dictionary.nodes()

	Dictionary.merge()

	Dictionary.update()

	Dictionary.detach()

	Dictionary.collect()

	Dictionary.branch_copy()

	Dictionary.copy()

	Dictionary.updated()

	Dictionary.as_dict()

	Dictionary.asdict()

	Dictionary.as_json()

	Dictionary.from_json()

	Dictionary.as_pandas()

	Dictionary.get_path()

	Dictionary.branch_pointer()

	Dictionary.map_self()

	Dictionary.filter_self()

	Dictionary.diff()

	Dictionary.diff_flatdict()

	Dictionary.find_intersection()

	Dictionary.get_matching_paths()

	Dictionary.get_matching_subtree()

	DictionaryDiff
	DictionaryDiff.same

	DictionaryDiff.changed_from

	DictionaryDiff.changed_to

	DictionaryDiff.removed

	DictionaryDiff.added

	DictionaryDiff.added

	DictionaryDiff.changed_from

	DictionaryDiff.changed_to

	DictionaryDiff.removed

	DictionaryDiff.same

	DictionaryIntersection
	DictionaryIntersection.common

	DictionaryIntersection.individual

	DictionaryIntersection.common

	DictionaryIntersection.individual

	DictionaryPointer
	DictionaryPointer.get_path()

	DictionaryPointer.move_to()

	DictionaryPointer.move_up()

	DictionaryPointer.branch_pointer()

	DictionaryPointer.add_entry()

	DictionaryPointer.as_dict()

	DictionaryPointer.as_dictionary()

	DictionaryPointer.as_json()

	DictionaryPointer.as_pandas()

	DictionaryPointer.asdict()

	DictionaryPointer.branch_copy()

	DictionaryPointer.collect()

	DictionaryPointer.copy()

	DictionaryPointer.del_entry()

	DictionaryPointer.detach()

	DictionaryPointer.diff()

	DictionaryPointer.diff_flatdict()

	DictionaryPointer.filter_self()

	DictionaryPointer.find_intersection()

	DictionaryPointer.from_json()

	DictionaryPointer.get()

	DictionaryPointer.get_entry()

	DictionaryPointer.get_matching_paths()

	DictionaryPointer.get_matching_subtree()

	DictionaryPointer.get_max_prefix()

	DictionaryPointer.has_entry()

	DictionaryPointer.is_branch_path()

	DictionaryPointer.is_dictionary()

	DictionaryPointer.is_leaf_path()

	DictionaryPointer.items()

	DictionaryPointer.iteritems()

	DictionaryPointer.iterkeys()

	DictionaryPointer.iternodes()

	DictionaryPointer.itervalues()

	DictionaryPointer.keys()

	DictionaryPointer.map_self()

	DictionaryPointer.merge()

	DictionaryPointer.nodes()

	DictionaryPointer.paths()

	DictionaryPointer.pop()

	DictionaryPointer.setdefault()

	DictionaryPointer.size()

	DictionaryPointer.update()

	DictionaryPointer.updated()

	DictionaryPointer.values()

	DictionaryPointer.viewitems()

	DictionaryPointer.viewkeys()

	DictionaryPointer.viewvalues()

	combine_dictionaries()

	PrefixTree
	PrefixTree.copy()

	PrefixTree.find_largest_prefix()

	PrefixTree.find_all_prefixes()

	PrefixTree.add_entry()

	PrefixTree.as_dict()

	PrefixTree.as_dictionary()

	PrefixTree.as_json()

	PrefixTree.as_pandas()

	PrefixTree.asdict()

	PrefixTree.branch_copy()

	PrefixTree.branch_pointer()

	PrefixTree.collect()

	PrefixTree.del_entry()

	PrefixTree.detach()

	PrefixTree.diff()

	PrefixTree.diff_flatdict()

	PrefixTree.filter_self()

	PrefixTree.find_intersection()

	PrefixTree.from_json()

	PrefixTree.get()

	PrefixTree.get_entry()

	PrefixTree.get_matching_paths()

	PrefixTree.get_matching_subtree()

	PrefixTree.get_max_prefix()

	PrefixTree.get_path()

	PrefixTree.has_entry()

	PrefixTree.is_branch_path()

	PrefixTree.is_dictionary()

	PrefixTree.is_leaf_path()

	PrefixTree.items()

	PrefixTree.iteritems()

	PrefixTree.iterkeys()

	PrefixTree.iternodes()

	PrefixTree.itervalues()

	PrefixTree.keys()

	PrefixTree.map_self()

	PrefixTree.merge()

	PrefixTree.nodes()

	PrefixTree.paths()

	PrefixTree.pop()

	PrefixTree.setdefault()

	PrefixTree.size()

	PrefixTree.update()

	PrefixTree.updated()

	PrefixTree.values()

	PrefixTree.viewitems()

	PrefixTree.viewkeys()

	PrefixTree.viewvalues()

	FilterTree
	FilterTree.copy()

	FilterTree.match()

	FilterTree.add_entry()

	FilterTree.as_dict()

	FilterTree.as_dictionary()

	FilterTree.as_json()

	FilterTree.as_pandas()

	FilterTree.asdict()

	FilterTree.branch_copy()

	FilterTree.branch_pointer()

	FilterTree.collect()

	FilterTree.del_entry()

	FilterTree.detach()

	FilterTree.diff()

	FilterTree.diff_flatdict()

	FilterTree.filter_self()

	FilterTree.find_intersection()

	FilterTree.from_json()

	FilterTree.get()

	FilterTree.get_entry()

	FilterTree.get_matching_paths()

	FilterTree.get_matching_subtree()

	FilterTree.get_max_prefix()

	FilterTree.get_path()

	FilterTree.has_entry()

	FilterTree.is_branch_path()

	FilterTree.is_dictionary()

	FilterTree.is_leaf_path()

	FilterTree.items()

	FilterTree.iteritems()

	FilterTree.iterkeys()

	FilterTree.iternodes()

	FilterTree.itervalues()

	FilterTree.keys()

	FilterTree.map_self()

	FilterTree.merge()

	FilterTree.nodes()

	FilterTree.paths()

	FilterTree.pop()

	FilterTree.setdefault()

	FilterTree.size()

	FilterTree.update()

	FilterTree.updated()

	FilterTree.values()

	FilterTree.viewitems()

	FilterTree.viewkeys()

	FilterTree.viewvalues()

	PrefixShortcutTree
	PrefixShortcutTree.copy()

	PrefixShortcutTree.add_shortcut()

	PrefixShortcutTree.add_shortcuts()

	PrefixShortcutTree.remove_shortcut()

	PrefixShortcutTree.updated()

	DictionaryNode

	dict_to_object_local()

	ItemAccessor
	ItemAccessor.get()

	ItemAccessor.setdefault()

	pylablib.core.utils.files module
	eof()

	get_file_creation_time()

	get_file_modification_time()

	touch()

	generate_indexed_filename()

	generate_prefixed_filename()

	generate_temp_filename()

	fullsplit()

	normalize_path()

	case_sensitive_path()

	paths_equal()

	relative_path()

	is_path_valid()

	TempFile
	TempFile.f

	TempFile.name

	TempFile.full_name

	copy_file()

	move_file()

	ensure_dir_singlelevel()

	ensure_dir()

	remove_dir()

	remove_dir_if_empty()

	clean_dir()

	FolderList
	FolderList.files

	FolderList.folders

	list_dir()

	dir_empty()

	walk_dir()

	list_dir_recursive()

	copy_dir()

	move_dir()

	combine_diff()

	cmp_dirs()

	retry_copy()

	retry_move()

	retry_remove()

	retry_ensure_dir()

	retry_copy_dir()

	retry_move_dir()

	retry_remove_dir()

	retry_remove_dir_if_empty()

	retry_clean_dir()

	zip_folder()

	zip_file()

	zip_multiple_files()

	unzip_folder()

	unzip_file()

	pylablib.core.utils.funcargparse module
	parameter_value_error()

	parameter_range_error()

	check_parameter_range()

	getdefault()

	is_sequence()

	make_sequence()

	as_sequence()

	pylablib.core.utils.functions module
	FunctionSignature
	FunctionSignature.get_defaults_list()

	FunctionSignature.signature()

	FunctionSignature.wrap_function()

	FunctionSignature.as_kwargs()

	FunctionSignature.arg_value()

	FunctionSignature.mandatory_args_num()

	FunctionSignature.max_args_num()

	FunctionSignature.from_function()

	FunctionSignature.copy()

	FunctionSignature.as_simple_func()

	FunctionSignature.merge()

	funcsig()

	getargsfrom()

	call_cut_args()

	getattr_call()

	setattr_call()

	delattr_call()

	IObjectCall

	MethodObjectCall

	AttrObjectCall

	IObjectProperty
	IObjectProperty.get()

	IObjectProperty.set()

	IObjectProperty.rem()

	MethodObjectProperty
	MethodObjectProperty.get()

	MethodObjectProperty.set()

	MethodObjectProperty.rem()

	AttrObjectProperty
	AttrObjectProperty.get()

	AttrObjectProperty.set()

	AttrObjectProperty.rem()

	empty_object_property()

	obj_prop()

	as_obj_prop()

	delaydef()

	pylablib.core.utils.general module
	set_props()

	get_props()

	getattr_multivar()

	using_method()

	to_predicate()

	map_container()

	as_container()

	recursive_map()

	make_flat_namedtuple()

	any_item()

	merge_dicts()

	filter_dict()

	map_dict_keys()

	map_dict_values()

	to_dict()

	to_pairs_list()

	invert_dict()

	flatten_list()

	partition_list()

	split_in_groups()

	sort_set_by_list()

	compare_lists()

	topological_order()

	DummyResource

	RetryOnException
	RetryOnException.ExceptionCatcher

	retry_wait()

	SilenceException

	full_exit()

	UIDGenerator
	UIDGenerator.reset()

	NamedUIDGenerator

	call_limit()

	doc_inherit()

	Countdown
	Countdown.reset()

	Countdown.trigger()

	Countdown.running()

	Countdown.stop()

	Countdown.time_left()

	Countdown.add_time()

	Countdown.set_timeout()

	Countdown.time_passed()

	Countdown.passed()

	Timer
	Timer.change_period()

	Timer.reset()

	Timer.time_left()

	Timer.passed()

	Timer.acknowledge()

	TimeTracker
	TimeTracker.reset()

	TimeTracker.summary()

	StreamFileLogger
	StreamFileLogger.write_header()

	StreamFileLogger.add_path()

	StreamFileLogger.add_stream()

	StreamFileLogger.remove_path()

	StreamFileLogger.write()

	StreamFileLogger.flush()

	setbp()

	timing()

	AccessIterator
	AccessIterator.next()

	muxcall()

	wait_for_keypress()

	restart()

	pylablib.core.utils.indexing module
	string_list_idx()

	is_slice()

	is_range()

	is_bool_array()

	to_range()

	covers_all()

	IIndex
	IIndex.tup()

	NumpyIndex
	NumpyIndex.tup()

	ListIndex
	ListIndex.tup()

	ListIndexNoSlice
	ListIndexNoSlice.tup()

	to_double_index()

	pylablib.core.utils.ipc module
	IIPCChannel
	IIPCChannel.send()

	IIPCChannel.recv()

	IIPCChannel.send_numpy()

	IIPCChannel.recv_numpy()

	IIPCChannel.get_peer_args()

	IIPCChannel.from_args()

	TPipeMsg
	TPipeMsg.data

	TPipeMsg.id

	PipeIPCChannel
	PipeIPCChannel.get_peer_args()

	PipeIPCChannel.send()

	PipeIPCChannel.recv()

	PipeIPCChannel.from_args()

	PipeIPCChannel.recv_numpy()

	PipeIPCChannel.send_numpy()

	SharedMemIPCChannel
	SharedMemIPCChannel.get_peer_args()

	SharedMemIPCChannel.send_numpy()

	SharedMemIPCChannel.recv_numpy()

	SharedMemIPCChannel.from_args()

	SharedMemIPCChannel.recv()

	SharedMemIPCChannel.send()

	TShmemVarDesc
	TShmemVarDesc.fixed_size

	TShmemVarDesc.kind

	TShmemVarDesc.offset

	TShmemVarDesc.size

	SharedMemIPCTable
	SharedMemIPCTable.add_variable()

	SharedMemIPCTable.set_variable()

	SharedMemIPCTable.get_variable()

	SharedMemIPCTable.is_peer_connected()

	SharedMemIPCTable.close_connection()

	SharedMemIPCTable.is_peer_closed()

	SharedMemIPCTable.get_peer_args()

	SharedMemIPCTable.from_args()

	pylablib.core.utils.library_parameters module
	temp_library_parameters()

	pylablib.core.utils.module module
	get_package_version()

	cmp_versions()

	cmp_package_version()

	expand_relative_path()

	get_loaded_package_modules()

	get_imported_modules()

	get_reload_order()

	reload_package_modules()

	unload_package_modules()

	get_library_path()

	get_library_name()

	get_executable()

	get_python_folder()

	pip_install()

	install_if_older()

	pylablib.core.utils.nbtools module
	c_array()

	au1()

	au2()

	au4()

	au8()

	ai1()

	ai2()

	ai4()

	ai8()

	copy_array_chunks()

	copy_array_strided()

	pylablib.core.utils.net module
	SocketError
	SocketError.add_note()

	SocketError.args

	SocketError.characters_written

	SocketError.errno

	SocketError.filename

	SocketError.filename2

	SocketError.strerror

	SocketError.with_traceback()

	SocketTimeout
	SocketTimeout.add_note()

	SocketTimeout.args

	SocketTimeout.characters_written

	SocketTimeout.errno

	SocketTimeout.filename

	SocketTimeout.filename2

	SocketTimeout.strerror

	SocketTimeout.with_traceback()

	get_local_addr()

	get_all_local_addr()

	get_local_hostname()

	get_all_remote_addr()

	get_remote_hostname()

	as_addr_port()

	ClientSocket
	ClientSocket.sock

	ClientSocket.decllen_bo

	ClientSocket.decllen_ll

	ClientSocket.set_wait_callback()

	ClientSocket.set_timeout()

	ClientSocket.get_timeout()

	ClientSocket.using_timeout()

	ClientSocket.connect()

	ClientSocket.close()

	ClientSocket.is_connected()

	ClientSocket.get_local_name()

	ClientSocket.get_peer_name()

	ClientSocket.recv_fixedlen()

	ClientSocket.recv_delimiter()

	ClientSocket.recv_decllen()

	ClientSocket.recv()

	ClientSocket.recv_all()

	ClientSocket.recv_ack()

	ClientSocket.send_fixedlen()

	ClientSocket.send_decllen()

	ClientSocket.send_delimiter()

	ClientSocket.send()

	ClientSocket.send_ack()

	recv_JSON()

	listen()

	pylablib.core.utils.numerical module
	gcd()

	integer_distance()

	gcd_approx()

	round_significant()

	limit_to_range()

	infinite_list
	infinite_list.counter

	unity()

	constant()

	polynomial()

	pylablib.core.utils.observer_pool module
	ObserverPool
	ObserverPool.Observer

	ObserverPool.add_observer()

	ObserverPool.remove_observer()

	ObserverPool.find_observers()

	ObserverPool.notify()

	pylablib.core.utils.py3 module
	as_str()

	as_bytes()

	as_builtin_bytes()

	as_datatype()

	pylablib.core.utils.rpyc_utils module
	obtain()

	transfer()

	SocketTunnelService
	SocketTunnelService.tunnel_send()

	SocketTunnelService.tunnel_recv()

	SocketTunnelService.obtain()

	SocketTunnelService.transfer()

	SocketTunnelService.on_connect()

	SocketTunnelService.on_disconnect()

	DeviceService
	DeviceService.on_connect()

	DeviceService.on_disconnect()

	DeviceService.get_device_class()

	DeviceService.get_device()

	DeviceService.obtain()

	DeviceService.transfer()

	DeviceService.tunnel_recv()

	DeviceService.tunnel_send()

	run_device_service()

	connect_device_service()

	pylablib.core.utils.strdump module
	StrDumper
	StrDumper.add_class()

	StrDumper.dump()

	StrDumper.load()

	StrDumper.loads()

	StrDumper.dumps()

	dumper

	dump()

	load()

	dumps()

	loads()

	pylablib.core.utils.string module
	string_equal()

	find_list_string()

	find_dict_string()

	find_first_entry()

	find_all_first_locations()

	translate_string_filter()

	StringFilter

	get_string_filter()

	sfglob()

	sfregex()

	filter_string_list()

	escape_string()

	TConversionClass
	TConversionClass.cls

	TConversionClass.conv

	TConversionClass.label

	TConversionClass.rep

	add_conversion_class()

	add_namedtuple_class()

	to_string()

	is_convertible()

	extract_escaped_string()

	unescape_string()

	to_range()

	from_string()

	from_string_partial()

	from_row_string()

	pylablib.core.utils.strpack module
	int2bytes()

	bytes2int()

	int2bits()

	bits2int()

	pack_uint()

	pack_int()

	unpack_uint()

	unpack_int()

	unpack_numpy_u12bit()

	pylablib.core.utils.units module
	split_units()

	convert_length_units()

	convert_time_units()

	convert_frequency_units()

	convert_power_units()

	Module contents

Module contents

pylablib.core.dataproc package

Submodules

pylablib.core.dataproc.callable module

	
class pylablib.core.dataproc.callable.ICallable

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Fit function generalization.

Has a set of mandatory argument with no default values and
a set of parameters with default values (there may or may not be an explicit list of them).

All the arguments are passed explicitly by name. Passed value supersede default values.
Extra arguments (not used in the calculations) are ignored.

Assumed (but not enforced) to be immutable: changes after creation can break the behavior.

Implements (possibly; depends on subclasses) call namelist binding boosting:
if the function is to be called many times with the same parameter names list,
one can first bind parameters list, and then call bound function with the corresponding arguments.
This way, callable(**p) should be equivalent to callable.bind(p.keys())(*p.values()).

	
has_arg(arg_name)

	Determine if the function has an argument arg_name (of all 3 categories)

	
filter_args_dict(args)

	Filter argument names dictionary to leave only the arguments that are used

	
get_mandatory_args()

	Return list of mandatory arguments (these are the ones without default values)

	
is_mandatory_arg(arg_name)

	Check if the argument arg_name is mandatory

	
get_arg_default(arg_name)

	Return default value of the argument arg_name.

Raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if the argument is not defined or ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it has no default value.

	
bind(arg_names, **bound_params)

	Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

	
class NamesBoundCall(func, names, bound_params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bind_namelist(arg_names, **bound_params)

	Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

	
class pylablib.core.dataproc.callable.MultiplexedCallable(func, multiplex_by, join_method='stack')

	Bases: ICallable

Multiplex a single callable based on a single parameter.

If the function is called with this parameter as an iterable,
then the underlying callable will be called for each value of the parameter separately,
and the results will be joined into a single array
(if return the values are scalar, they’re joined in 1D array; otherwise, they’re joined using join_method).

	Parameters:

	
	func (callable) – Function to be parallelized.

	multiplex_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the argument to be multiplexed by.

	join_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method for combining individual results together if they’re non-scalars.
Can be either 'list' (combine the results in a single list),
'stack' (combine using numpy.column_stack() [https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack], i.e., add dimension to the result),
or 'concatenate' (concatenate the return values; the dimension of the result stays the same).

Multiplexing also makes use of call signatures for underlying function even if __call__ is used.

Note that this operation is slow, and should be used only for high-dimensional multiplexing;
for 1D case it’s much better to just use numpy arrays as arguments and rely on numpy parallelizing.

	
has_arg(arg_name)

	Determine if the function has an argument arg_name (of all 3 categories)

	
get_mandatory_args()

	Return list of mandatory arguments (these are the ones without default values)

	
get_arg_default(arg_name)

	Return default value of the argument arg_name.

Raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if the argument is not defined or ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it has no default value.

	
class NamesBoundCall(func, names, bound_params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bind(arg_names, **bound_params)

	Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

	
bind_namelist(arg_names, **bound_params)

	Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

	
filter_args_dict(args)

	Filter argument names dictionary to leave only the arguments that are used

	
is_mandatory_arg(arg_name)

	Check if the argument arg_name is mandatory

	
class pylablib.core.dataproc.callable.JoinedCallable(funcs, join_method='stack')

	Bases: ICallable

Join several callables sharing the same arguments list.

The results will be joined into a single array
(if return the values are scalar, they’re joined in 1D array; otherwise, they’re joined using join_method).

	Parameters:

	
	funcs ([callable]) – List of functions to be joined together.

	join_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method for combining individual results together if they’re non-scalars.
Can be either 'list' (combine the results in a single list),
'stack' (combine using numpy.column_stack() [https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack], i.e., add dimension to the result),
or 'concatenate' (concatenate the return values; the dimension of the result stays the same).

	
has_arg(arg_name)

	Determine if the function has an argument arg_name (of all 3 categories)

	
get_mandatory_args()

	Return list of mandatory arguments (these are the ones without default values)

	
get_arg_default(arg_name)

	Return default value of the argument arg_name.

Raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if the argument is not defined or ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it has no default value.

	
class NamesBoundCall(func, names, bound_params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bind(arg_names, **bound_params)

	Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

	
bind_namelist(arg_names, **bound_params)

	Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

	
filter_args_dict(args)

	Filter argument names dictionary to leave only the arguments that are used

	
is_mandatory_arg(arg_name)

	Check if the argument arg_name is mandatory

	
class pylablib.core.dataproc.callable.FunctionCallable(func, function_signature=None, defaults=None, alias=None)

	Bases: ICallable

Callable based on a function or a method.

	Parameters:

	
	func – Function to be wrapped.

	function_signature – A functions.FunctionSignature object supplying information
about function’s argument names and default values, if they’re different from what’s extracted from its signature.

	defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary {name: value} of additional default parameters values. Override the defaults from the signature.
All default values must be pass-able to the function as a parameter

	alias (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary {alias: original} for renaming some of the original arguments.
Original argument names can’t be used if aliased (though, multi-aliasing can be used explicitly, e.g., alias={'alias':'arg','arg':'arg'}).
A name can be blocked (its usage causes error) if it’s aliased to None (alias={'blocked_name':None}).

Optional non-named arguments in the form *args are not supported, since all the arguments are passed to the function by keywords.

Optional named arguments in the form **kwargs are supported only if their default values are explicitly provided in defaults
(otherwise it would be unclear whether argument should be added into **kwargs or ignored altogether).

	
has_arg(arg_name)

	Determine if the function has an argument arg_name (of all 3 categories)

	
get_mandatory_args()

	Return list of mandatory arguments (these are the ones without default values)

	
get_arg_default(arg_name)

	Return default value of the argument arg_name.

Raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if the argument is not defined or ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it has no default value.

	
class NamesBoundCall(func, names, bound_params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bind(arg_names, **bound_params)

	Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

	
bind_namelist(arg_names, **bound_params)

	Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

	
filter_args_dict(args)

	Filter argument names dictionary to leave only the arguments that are used

	
is_mandatory_arg(arg_name)

	Check if the argument arg_name is mandatory

	
class pylablib.core.dataproc.callable.MethodCallable(method, function_signature=None, defaults=None, alias=None)

	Bases: FunctionCallable

Similar to FunctionCallable, but accepts class method instead of a function.

The only addition is that now object’s attributes can also parameters to the function:
all the parameters which are not explicitly mentioned in the method signature are assumed to be object’s attributes.

The parameters are affected by alias, but NOT affected by defaults
(since it’s impossible to ensure that all object’s attributes are kept constant,
and it’s impractical to reset them all to default values at every function call).

	Parameters:

	
	method – Method to be wrapped.

	function_signature – A functions.FunctionSignature object supplying information
about function’s argument names and default values, if they’re different from what’s extracted from its signature.
If it’s assumed that the first self argument is already excluded.

	defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary {name: value} of additional default parameters values. Override the defaults from the signature.
All default values must be pass-able to the function as a parameter

	alias (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary {alias: original} for renaming some of the original arguments.
Original argument names can’t be used if aliased (though, multi-aliasing can be used explicitly, e.g., alias={'alias':'arg','arg':'arg'}).
A name can be blocked (its usage causes error) if it’s aliased to None (alias={'blocked_name':None}).

This callable is implemented largely to be used with TheoryCalculator class (currently deprecated).

	
has_arg(arg_name)

	Determine if the function has an argument arg_name (of all 3 categories)

	
get_arg_default(arg_name)

	Return default value of the argument arg_name.

Raise KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if the argument is not defined or ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it has no default value.

	
class NamesBoundCall(func, names, bound_params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bind(arg_names, **bound_params)

	Bind function to a given parameters set, leaving arg_names as free parameters (in the given order)

	
bind_namelist(arg_names, **bound_params)

	Bind namelist to boost subsequent calls.

Similar to bind(arg_names), but bound function doesn’t accept additional parameters and can be boosted.

	
filter_args_dict(args)

	Filter argument names dictionary to leave only the arguments that are used

	
get_mandatory_args()

	Return list of mandatory arguments (these are the ones without default values)

	
is_mandatory_arg(arg_name)

	Check if the argument arg_name is mandatory

	
pylablib.core.dataproc.callable.to_callable(func)

	Convert a function to an ICallable instance.

If it’s already ICallable, return unchanged.
Otherwise, return FunctionCallable or MethodCallable depending on whether it’s a function or a bound method.

pylablib.core.dataproc.ctransform_fallback module

	
class pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform(m=None, s=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Pure Python implementation of Cython-based linear 2D transform

	
copy()

	Copy the transform

	
property tmatr

	Transform matrix as a 2x2 numpy array

	
property svec

	Transform vector as a numpy array

	
invert()

	Invert the transform

	
precede(trans)

	Precede the transform with a different transform

	
follow(trans)

	Follow the transform with a different transform

	
i(x, y)

	Apply the inverse transform to the given point

	
shift(s1, s2, preceded=False)

	Apply a shift transform before or after (default) the given transform

	
multiply(m11, m12, m21, m22, preceded=False)

	Apply a matrix multiplication transform before or after (default) the given transform

	
scale(s1, s2, preceded=False)

	Apply a scale transform before or after (default) the given transform

	
transpose(preceded=False)

	Apply a transpose transform before or after (default) the given transform

	
classmethod from_matr_shift(matr, shift)

	Build a transform from a 2x2 transform matrix and a shift vector

pylablib.core.dataproc.feature module

Traces feature detection: peaks, baseline, local extrema.

	
class pylablib.core.dataproc.feature.Baseline(position=0.0, width=1.0)

	Bases: Baseline

Baseline (background) for a trace.

position is the background level, and width is its noise width.

	
position

	

	
width

	

	
pylablib.core.dataproc.feature.get_baseline_simple(trace, find_width=True)

	Get the baseline of the 1D trace.

If find_width==True, calculate its width as well.

	
pylablib.core.dataproc.feature.subtract_baseline(trace)

	Subtract baseline from the trace (make its background zero).

	
class pylablib.core.dataproc.feature.Peak(position=0.0, height=1.0, width=1.0, kernel='generic')

	Bases: Peak

A trace peak.

kernel defines its shape (for, e.g., generation purposes).

	
height

	

	
kernel

	

	
position

	

	
width

	

	
pylablib.core.dataproc.feature.find_peaks_cutoff(trace, cutoff, min_width=0, kind='peak', subtract_bl=True)

	Find peaks in the data using cutoff.

	Parameters:

	
	trace – 1D data array.

	cutoff (float [https://docs.python.org/3/library/functions.html#float]) – Cutoff value for the peak finding.

	min_width (int [https://docs.python.org/3/library/functions.html#int]) – Minimal uninterrupted width (in datapoints) of a peak. Any peaks this width are ignored.

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Peak kind. Can be 'peak' (positive direction), 'dip' (negative direction) or 'both' (both directions).

	subtract_bl (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, subtract baseline of the trace before checking cutoff.

	Returns:

	List of Peak objects.

	
pylablib.core.dataproc.feature.rescale_peak(peak, xoff=0.0, xscale=1.0, yoff=0, yscale=1.0)

	Rescale peak’s position, width and height.

xscale rescales position and width, xoff shifts position, yscale and yoff affect peak height.

	
pylablib.core.dataproc.feature.peaks_sum_func(peaks, peak_func='lorentzian')

	Create a function representing sum of peaks.

peak_func determines default peak kernel (used if peak.kernel=="generic").
Kernel is either a name string or a function taking 3 arguments (x, width, height).

	
pylablib.core.dataproc.feature.get_kernel(width, kernel_width=None, kernel='lorentzian')

	Get a finite-sized kernel.

Return 1D array of length 2*kernel_width+1 containing the given kernel.
By default, kernel_width=int(width*3).

	
pylablib.core.dataproc.feature.get_peakdet_kernel(peak_width, background_width, kernel_width=None, kernel='lorentzian')

	Get a peak detection kernel.

Return 1D array of length 2*kernel_width+1 containing the kernel.
The kernel is a sum of narrow positive peak (with the width peak_width) and a broad negative peak (with the width background_width);
both widths are specified in datapoints (index).
Each peak is normalized to have unit sum, i.e., the kernel has zero total sum.
By default, kernel_width=int(background_width*3).

	
pylablib.core.dataproc.feature.multi_scale_peakdet(trace, widths, background_ratio, kind='peak', norm_ratio=None, kernel='lorentzian')

	Detect multiple peak widths using get_peakdet_kernel() kernel.

	Parameters:

	
	trace – 1D data array.

	widths ([float [https://docs.python.org/3/library/functions.html#float]]) – Array of possible peak widths.

	background_ratio (float [https://docs.python.org/3/library/functions.html#float]) – ratio of the background_width to the peak_width in get_peakdet_kernel().

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Peak kind. Can be 'peak' (positive direction) or 'dip' (negative direction).

	norm_ratio (float [https://docs.python.org/3/library/functions.html#float]) – if not None, defines the width of the “normalization region” (in units of the kernel width, same as for the background kernel);
it is then used to calculate a local trace variance to normalize the peaks magnitude.

	kernel – Peak matching kernel.

	Returns:

	Filtered trace which shows peak ‘affinity’ at each point.

	
pylablib.core.dataproc.feature.find_local_extrema(wf, region_width=3, kind='max', min_distance=None)

	Find local extrema (minima or maxima) of 1D trace.

kind can be "min" or "max" and determines the kind of the extrema.
Local minima (maxima) are defined as points which are smaller (greater) than all other points in the region of width region_width around it.
region_width is always round up to an odd integer.
min_distance defines the minimal distance between the extrema (region_width//2 by default).
If there are several extrema within min_distance, their positions are averaged together.

	
pylablib.core.dataproc.feature.latching_trigger(wf, threshold_on, threshold_off, init_state='undef', result_kind='separate')

	Determine indices of rise and fall trigger events with hysteresis (latching) thresholds.

Return either two arrays (rise_trig, fall_trig) containing trigger indices (if result_kind=="separate"),
or a single array of tuples [(dir,pos)], where dir is the trigger direction (+1 or -1) and pos is its index (if result_kind=="joined").
Triggers happen when a state switch from ‘high’ to ‘low’ (rising) or vice versa (falling).
The state switches from ‘low’ to ‘high’ when the trace value goes above threshold_on, and from ‘high’ to ‘low’ when the trace value goes below threshold_off.
For a stable hysteresis effect, threshold_on should be larger than threshold_off, which means that the trace values between these two thresholds can not change the state.
init_state specifies the initial state: "low", "high", or "undef" (undefined state).

pylablib.core.dataproc.filters module

Routines for filtering arrays (mostly 1D data).

	
pylablib.core.dataproc.filters.convolve1d(trace, kernel, mode='reflect', cval=0.0)

	Convolution filter.

Convolves trace with the given kernel (1D array). mode and cval determine how the endpoints are handled.
Simply a wrapper around the standard scipy.ndimage.convolve1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d] that handles complex arguments.

	
pylablib.core.dataproc.filters.convolution_filter(a, width, kernel='gaussian', kernel_span='auto', mode='reflect', cval=0.0, kernel_height=None)

	Convolution filter.

	Parameters:

	
	a – array for filtering.

	width (float [https://docs.python.org/3/library/functions.html#float]) – kernel width (second parameter to the kernel function).

	kernel – either a string defining the kernel function (see specfunc.get_kernel_func() for possible kernels),
or a function taking 3 arguments (pos, width, height), where height can be None (assumes normalization by area).

	kernel_span – the cutoff for the kernel function. Either an integer (number of points)
or 'auto' (autodetect for "gaussian", "rectangle" and "exp_decay", full trace width for all other kernels).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – convolution mode (see scipy.ndimage.convolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve]).

	cval (float [https://docs.python.org/3/library/functions.html#float]) – convolution fill value (see scipy.ndimage.convolve() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve]).

	kernel_height – height parameter to be passed to the kernel function. None means normalization by area.

	
pylablib.core.dataproc.filters.gaussian_filter(a, width, mode='reflect', cval=0.0)

	Simple gaussian filter. Can handle complex data.

Equivalent to a convolution with a gaussian. Equivalent to scipy.ndimage.gaussian_filter1d() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d], uses convolution_filter().

	
pylablib.core.dataproc.filters.gaussian_filter_nd(a, width, mode='reflect', cval=0.0)

	Simple gaussian filter. Can’t handle complex data.

Equivalent to a convolution with a gaussian. Wrapper around scipy.ndimage.gaussian_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter].

	
pylablib.core.dataproc.filters.low_pass_filter(trace, t, mode='reflect', cval=0.0)

	Simple single-pole low-pass filter.

t is the filter time constant, mode and cval are the trace expansion parameters (only from the left).
Implemented as a recursive digital filter, so its performance doesn’t depend strongly on t.
Works only for 1D arrays.

	
pylablib.core.dataproc.filters.high_pass_filter(trace, t, mode='reflect', cval=0.0)

	Simple single-pole high-pass filter (equivalent to subtracting a low-pass filter).

t is the filter time constant, mode and cval are the trace expansion parameters (only from the left).
Implemented as a recursive digital filter, so its performance doesn’t depend strongly on t.
Works only for 1D arrays.

	
pylablib.core.dataproc.filters.integrate(trace)

	Calculate the integral of the trace.

Alias for numpy.cumsum() [https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum].

	
pylablib.core.dataproc.filters.differentiate(trace)

	Calculate the differential of the trace.

Note that since the data dimensions are changed (length is reduced by 1), the index is not preserved for pandas DataFrames.

	
pylablib.core.dataproc.filters.sliding_average(a, width, mode='reflect', cval=0.0)

	Simple sliding average filter

Equivalent to convolution with a rectangle peak function.

	
pylablib.core.dataproc.filters.median_filter(a, width, mode='reflect', cval=0.0)

	Median filter.

Wrapper around scipy.ndimage.median_filter() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter].

	
pylablib.core.dataproc.filters.sliding_filter(trace, n, dec='bin', mode='reflect', cval=0.0)

	Perform sliding filtering on the data.

	Parameters:

	
	trace – 1D array-like object.

	n (int [https://docs.python.org/3/library/functions.html#int]) – bin width.

	dec (str [https://docs.python.org/3/library/stdtypes.html#str]) – decimation method. Can be
- 'bin' or 'mean' - do a binning average;
- 'sum' - sum points;
- 'min' - leave min point;
- 'max' - leave max point;
- 'median' - leave median point (works as a median filter).
- a function which takes a single 1D array and compresses it into a number

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Expansion mode. Can be 'constant' (added values are determined by cval), 'nearest' (added values are end values of the trace),
'reflect' (reflect trace with respect to its endpoint) or 'wrap' (wrap the values from the other size).

	cval (float [https://docs.python.org/3/library/functions.html#float]) – If mode=='constant', determines the expanded values.

	
pylablib.core.dataproc.filters.decimate(a, n, dec='skip', axis=0, mode='drop')

	Decimate the data.

Note that since the data dimensions are changed, the index is not preserved for pandas DataFrames.

	Parameters:

	
	a – data array.

	n (int [https://docs.python.org/3/library/functions.html#int]) – decimation factor.

	dec (str [https://docs.python.org/3/library/stdtypes.html#str]) – decimation method. Can be
- 'skip' - just leave every n’th point while completely omitting everything else;
- 'bin' or 'mean' - do a binning average;
- 'sum' - sum points;
- 'min' - leave min point;
- 'max' - leave max point;
- 'median' - leave median point (works as a median filter).
- a function which takes two arguments (nD numpy array and an axis) and compresses the array along the given axis

	axis (int [https://docs.python.org/3/library/functions.html#int]) – axis along which to perform the decimation; can also be a tuple, in which case the same decimation is performed sequentially along several axes.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines what to do with the last bin if it’s incomplete. Can be either 'drop' (omit the last bin) or 'leave' (keep it).

	
pylablib.core.dataproc.filters.binning_average(a, width, axis=0, mode='drop')

	Binning average filter.

Equivalent to decimate() with dec=='bin'.

	
pylablib.core.dataproc.filters.decimate_full(a, dec='skip', axis=0)

	Completely decimate the data along a given axis.

	Parameters:

	
	a – data array.

	dec (str [https://docs.python.org/3/library/stdtypes.html#str]) – decimation method. Can be
- 'skip' - just leave every n’th point while completely omitting everything else;
- 'bin' or 'mean' - do a binning average;
- 'sum' - sum points;
- 'min' - leave min point;
- 'max' - leave max point;
- 'median' - leave median point (works as a median filter).
- a function which takes two arguments (nD numpy array and an axis) and compresses the array along the given axis

	axis (int [https://docs.python.org/3/library/functions.html#int]) – axis along which to perform the decimation; can also be a tuple, in which case the same decimation is performed along several axes.

	
pylablib.core.dataproc.filters.decimate_datasets(arrs, dec='mean')

	Decimate datasets with the same shape element-wise (works only for 1D or 2D arrays).

Note that the index data is taken from the first array in the list.

dec has the same values and meaning as in decimate().
The format of the output (numpy or pandas, and the name of columns in pandas DataFrame) is determined by the first array in the list.

	
pylablib.core.dataproc.filters.collect_into_bins(values, distance, preserve_order=False, to_return='value')

	Collect all values into bins separated at least by distance.

Return the extent of each bin.
If preserve_order==False, values are sorted before splitting.
If to_return="value", the extent is given in values;
if to_return="index", it is given in indices (only useful if preserve_order=True, as otherwise the indices correspond to a sorted array).
If distance is a tuple, then it denotes the minimal and the maximal separation between consecutive elements;
otherwise, it is a single number denoting maximal absolute distance (i.e., it corresponds to a tuple (-distance,distance)).

	
pylablib.core.dataproc.filters.split_into_bins(values, max_span, max_size=None)

	Split values into bins of the span at most max_span and number of elements at most max_size.

If max_size is None, it’s assumed to be infinite.
Return array of indices for each bin. Values are sorted before splitting.

	
pylablib.core.dataproc.filters.fourier_filter(trace, response, dt=1, preserve_real=True)

	Apply filter to a trace in the frequency domain.

response is a (possibly) complex function with single 1D real numpy array as a frequency argument.
dt specifies time step between consecutive points.
Note that in case of a multi-column data the filter is applied column-wise;
this is in contrast with the Fourier transform methods, which would assume the first column to be times.

If preserve_real==True, then the response for negative frequencies is automatically taken to be
complex conjugate of the response for positive frequencies (so that the real trace stays real).

	
pylablib.core.dataproc.filters.fourier_make_response_real(response)

	Turn a frequency filter function into a real one (in the time domain).

Done by reflecting and complex conjugating positive frequency part to negative frequencies.
response is a function with a single argument (frequency), return value is a modified function.

	
pylablib.core.dataproc.filters.fourier_filter_bandpass(pass_range_min, pass_range_max)

	Generate a bandpass filter function (hard cutoff).

The function is symmetric, so that it corresponds to a real response in time domain.

	
pylablib.core.dataproc.filters.fourier_filter_bandstop(stop_range_min, stop_range_max)

	Generate a bandstop filter function (hard cutoff).

The function is symmetric, so that it corresponds to a real response in time domain.

	
class pylablib.core.dataproc.filters.RunningDecimationFilter(n, mode='mean', on_incomplete='none')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Running decimation filter.

Remembers last n samples and returns their averages, median, etc.

	Parameters:

	
	n – decimation length

	mode – decimation mode ("mean", "median", "min", or "max")

	on_incomplete – determines what to return while the filter window is not yet full;
can be "none" (default, return None), or "partial" (operate on the partial accumulated data)

	
get()

	Get the filtered result

	
add(x)

	Add a new sample

	
reset()

	Reset the filter

	
class pylablib.core.dataproc.filters.RunningDebounceFilter(n, precision=None, initial=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Running debounce filter.

“Sticks” to the current value and only switches when a new value remains constant (withing a given precision) for a given number of samples.
Filters out temporary spikes and short changes, conceptually similar to a running median filter.

	Parameters:

	
	n – length of the required constant period

	precision – comparison precision (None means that the values should be exactly equal)

	initial – initial value; None means that the first sample sets this value

	
get()

	Get the filtered result

	
add(x)

	Add a new sample

	
reset()

	Reset the filter

pylablib.core.dataproc.fitting module

Universal function fitting interface.

	
class pylablib.core.dataproc.fitting.Fitter(func, xarg_name=None, fit_parameters=None, fixed_parameters=None, scale=None, limits=None, weights=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Fitter object.

Can handle variety of different functions, complex arguments or return values, array arguments.

	Parameters:

	
	func (callable) – Fit function. Can be anything callable (function, method, object with __call__ method, etc.).

	xarg_name (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – Name (or multiple names) for x arguments. These arguments are passed to func (as named arguments) when calling for fitting.
Can be a string (single argument) or a list (arbitrary number of arguments, including zero).

	fit_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary {name: value} of parameters to be fitted (value is the starting value for the fitting procedure).
If value is None, try and get the default value from the func.

	fixed_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary {name: value} of parameters to be fixed during the fitting procedure.
If value is None, try and get the default value from the func.

	scale (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Defines typical scale of fit parameters (used to normalize fit parameters supplied of scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares]).
Note: for complex parameters scale must also be a complex number, with re and im parts of the scale variable corresponding to the scale of the re and im part.

	limits (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Boundaries for the fit parameters (missing entries are assumed to be unbound). Each boundary parameter is a tuple (lower, upper).
lower or upper can be None, numpy.nan or numpy.inf (with the appropriate sign), which implies no bounds in the given direction.
Note: for compound data types (such as lists) the entries are still tuples of 2 elements,
each of which is either None (no bound for any sub-element) or has the same structure as the full parameter.
Note: for complex parameters limits must also be complex numbers (or None), with re and im parts of the limits variable corresponding to the limits of the re and im part.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Determines the weights of y-points.
Can be either an array broadcastable to y (e.g., a scalar or an array with the same shape as y),
in which case it’s interpreted as list of individual point weights (which multiply residuals before they are squared).
Or it can be an array with number of elements which is square of the number of elements in y,
in which case it’s interpreted as a weights matrix (which matrix-multiplies residuals before they are squared).

	
set_xarg_name(xarg_name)

	Set names of x arguments.

Can be a string (single argument) or a list (arbitrary number of arguments, including zero).

	
use_xarg()

	Return True if the function requires x arguments

	
set_fixed_parameters(fixed_parameters)

	Change fixed parameters

	
update_fixed_parameters(fixed_parameters)

	Update the dictionary of fixed parameters

	
del_fixed_parameters(fixed_parameters)

	Remove fixed parameters

	
set_fit_parameters(fit_parameters)

	Change fit parameters

	
update_fit_parameters(fit_parameters)

	Update the dictionary of fit parameters

	
del_fit_parameters(fit_parameters)

	Remove fit parameters

	
fit(x=None, y=0, fit_parameters=None, fixed_parameters=None, scale='default', limits='default', weights=1.0, parscore=None, return_stderr=False, return_residual=False, **kwargs)

	Fit the data.

	Parameters:

	
	x – x arguments. If the function has single x argument, x is an array-like object;
otherwise, x is a list of array-like objects (can be None if there are no x parameters).

	y – Target function values.

	fit_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Adds to the default fit_parameters of the fitter (has priority on duplicate entries).

	fixed_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Adds to the default fixed_parameters of the fitter (has priority on duplicate entries).

	scale (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Defines typical scale of fit parameters (used to normalize fit parameters supplied of scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares]).
Note: for complex parameters scale must also be a complex number, with re and im parts of the scale variable corresponding to the scale of the re and im part.
If value is "default", use the value supplied on the fitter creation (by default, no specific scales).

	limits (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Boundaries for the fit parameters (missing entries are assumed to be unbound). Each boundary parameter is a tuple (lower, upper).
lower or upper can be None, numpy.nan or numpy.inf (with the appropriate sign), which implies no bounds in the given direction.
Note: for compound data types (such as lists) the entries are still tuples of 2 elements,
each of which is either None (no bound for any sub-element) or has the same structure as the full parameter.
Note: for complex parameters limits must also be complex numbers (or None), with re and im parts of the limits variable corresponding to the limits of the re and im part.
If value is "default", use the value supplied on the fitter creation (by default, no limits).

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Determines the weights of y-points.
Can be either an array broadcastable to y (e.g., a scalar or an array with the same shape as y),
in which case it’s interpreted as list of individual point weights (which multiply residuals before they are squared).
Or it can be an array with number of elements which is square of the number of elements in y,
in which case it’s interpreted as a weights matrix (which matrix-multiplies residuals before they are squared).
If value is "default", use the value supplied on the fitter creation (by default, no weights)

	parscore (callable) – parameter score function, whose value is added to the mean-square error (sum of all residuals squared) after applying weights.
Takes the same parameters as the fit function, only without the x-arguments, and return an array-like value. Can be used for, e.g., ‘soft’ fit parameter constraining.

	return_stderr (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append stderr to the output.

	return_residual – If not False, append residual to the output.

	**kwargs – arguments passed to scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares] function.

	Returns:

	
	(params, bound_func[, stderr][, residual]):
	
	params: a dictionary {name: value} of the parameters supplied to the function (both fit and fixed).

	bound_func: the fit function with all the parameters bound (i.e., it only requires x parameters).

	
	stderr: a dictionary {name: error} of standard deviation for fit parameters to the return parameters.
	If the fitting routine returns no residuals (usually for a bad or an under-constrained fit), all residuals are set to NaN.

	
	residual: either a full array of residuals func(x,**params)-y (if return_residual=='full'),
	a mean magnitude of the residuals mean(abs(func(x,**params)-y)**2) (if return_residual==True or return_residual=='mean'),
or the total residuals including weights mean(abs((func(x,**params)-y)*weights)**2) (if return_residual=='weighted').

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
initial_guess(fit_parameters=None, fixed_parameters=None, return_stderr=False, return_residual=False)

	Return the initial guess for the fitting.

	Parameters:

	
	fit_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Overrides the default fit_parameters of the fitter.

	fixed_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Overrides the default fixed_parameters of the fitter.

	return_stderr (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append stderr to the output.

	return_residual – If not False, append residual to the output.

	Returns:

	(params, bound_func).

	params: a dictionary {name: value} of the parameters supplied to the function (both fit and fixed).

	bound_func: the fit function with all the parameters bound (i.e., it only requires x parameters).

	
	stderr: a dictionary {name: error} of standard deviation for fit parameters to the return parameters.
	Always zero, added for better compatibility with fit().

	
	residual: either a full array of residuals func(x,**params)-y (if return_residual=='full') or
	a mean magnitude of the residuals mean(abs(func(x,**params)-y)**2) (if return_residual==True or return_residual=='mean').
Always zero, added for better compatibility with fit().

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pylablib.core.dataproc.fitting.huge_error(x, factor=100.0)

	

	
pylablib.core.dataproc.fitting.get_best_fit(x, y, fits)

	Select the best (lowest residual) fit result.

x and y are the argument and the value of the bound fit function. fits is the list of fit results (tuples returned by Fitter.fit()).

pylablib.core.dataproc.fourier module

Routines for Fourier transform.

	
pylablib.core.dataproc.fourier.get_prev_len(l, maxprime=7)

	Get the largest number less or equal to l, which is composed of prime factors up to maxprime.

So far, only maxprime of 2, 3, 5, 7 and 11 are supported.
maxprime of 5 gives less than 15% length reduction (and less than 6% for lengths above 400).
maxprime of 11 gives less than 8% length reduction (and less than 4% for lengths above 300).

	
pylablib.core.dataproc.fourier.truncate_trace(trace, maxprime=7)

	Truncate trace length to the nearest smaller length which is composed of prime factors up to maxprime.

So far, only maxprime of 2, 3, 5, 7 and 11 are supported.
maxprime of 5 gives less than 15% length reduction (and less than 6% for lengths above 400).
maxprime of 11 gives less than 8% length reduction (and less than 4% for lengths above 300).

	
pylablib.core.dataproc.fourier.normalize_fourier_transform(ft, normalization='none', df=None, copy=False)

	Normalize the Fourier transform data.

ft is a 1D trace or a 2D array with 2 columns: frequency and complex amplitude.
normalization can be 'none' (standard numpy normalization), 'sum' (the power sum is preserved: sum(abs(ft)**2)==sum(abs(trace)**2)),
'rms' (the power sum is equal to the trace RMS power: sum(abs(ft)**2)==mean(abs(trace)**2)),
'density' (power spectral density normalization, sum(abs(ft[:,1])**2)*df==mean(abs(trace[:,1])**2)),
or 'dBc' (same as 'density', but normalized by the mean of the trace)
If normalization=='density', then df can specify the frequency step between two consecutive bins;
if df is None, it is extracted from the first two points of the frequency axis (or set to 1, if ft is a 1D trace)

	
pylablib.core.dataproc.fourier.apply_window(trace_values, window='rectangle', window_power_compensate=True)

	Apply FT window to the trace.

If window_power_compensate==True, multiply the data is multiplied by a compensating factor to preserve power in the spectrum.

	
pylablib.core.dataproc.fourier.fourier_transform(trace, dt=None, truncate=False, normalization='none', single_sided=False, window='rectangle', window_power_compensate=True, raw=False)

	Calculate a fourier transform of the trace.

	Parameters:

	
	trace – Time trace to be transformed. It can be a 1D trace of values, a 2-column trace, or a 3-column trace.
If dt is None, then the first column is assumed to be time (only support uniform time step),
and the other columns are either the trace values (for a single data column) or real and imaginary parts of the trace (for two data columns).
If dt is not None, then the time column is assumed to be missing, so the two columns are assumed to be the real and the imaginary parts.

	dt – if not None, can specify the time step between the consecutive samples, in which case it is assumed that the time column is missing from the trace;
otherwise, try to get it from the time column of the trace if it exists, or set to 1 otherwise.

	truncate (bool [https://docs.python.org/3/library/functions.html#bool] or int [https://docs.python.org/3/library/functions.html#int]) – Determines whether to truncate the trace to the nearest product of small primes (speeds up FFT algorithm);
can be False (no truncation), an integer 2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number),
or True (default prime factorization, currently set to 7)

	normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fourier transform normalization:
- 'none': no (i.e., default numpy) normalization;
- 'sum': the norm of the data is conserved (sum(abs(ft[:,1])**2)==sum(abs(trace[:,1])**2));
- 'rms': sum of the PSD is equal to the RMS trace amplitude squared (sum(abs(ft[:,1])**2)==mean(abs(trace[:,1])**2));
- 'density': power spectral density normalization, in x/rtHz (sum(abs(ft[:,1])**2)*df==mean(abs(trace[:,1])**2));
- 'dBc': like 'density', but normalized to the mean trace value.

	single_sided (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only leave positive frequency side of the transform.

	window (str [https://docs.python.org/3/library/stdtypes.html#str]) – FT window. Can be 'rectangle' (essentially, no window), 'hann' or 'hamming'.

	window_power_compensate (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the data is multiplied by a compensating factor to preserve power in the spectrum.

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return a simple 1D trace with the result.

	Returns:

	a two-column array of the same kind as the input, where the first column is frequency, and the second is complex FT data.

	
pylablib.core.dataproc.fourier.flip_fourier_transform(ft)

	Flip the fourier transform (analogous to making frequencies negative and flipping the order).

	
pylablib.core.dataproc.fourier.inverse_fourier_transform(ft, df=None, truncate=False, zero_loc=None, symmetric_time=False, raw=False)

	Calculate an inverse fourier transform of the trace.

	Parameters:

	
	ft – Fourier transform data to be inverted. It can be a 1D trace of values, a 2-column trace, or a 3-column trace.
If df is None, then the first column is assumed to be frequency (only support uniform frequency step),
and the other columns are either the trace values (for a single data column) or real and imaginary parts of the trace (for two data columns).
If df is not None, then the frequency column is assumed to be missing, so the two columns are assumed to be the real and the imaginary parts.

	df – if not None, can specify the frequency step between the consecutive samples; otherwise, try to get it from the frequency column of the trace
if it exists, or set to 1 otherwise.

	truncate (bool [https://docs.python.org/3/library/functions.html#bool] or int [https://docs.python.org/3/library/functions.html#int]) – Determines whether to truncate the trace to the nearest product of small primes (speeds up FFT algorithm);
can be False (no truncation), an integer 2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number),
or True (default prime factorization, currently set to 7)

	zero_loc (bool [https://docs.python.org/3/library/functions.html#bool]) – Location of the zero frequency point.
Can be None (the one with the value of f-axis closest to zero, or the first point if the frequency column is missing),
'center' (mid-point), or an integer index.

	symmetric_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make time axis go from (-0.5/df, 0.5/df) rather than (0, 1./df).

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return a simple 1D trace with the result.

	Returns:

	a two-column array, where the first column is frequency, and the second is the complex-valued trace data.

	
pylablib.core.dataproc.fourier.power_spectral_density(trace, dt=None, truncate=False, normalization='density', single_sided=False, window='rectangle', window_power_compensate=True, raw=False)

	Calculate a power spectral density of the trace.

	Parameters:

	
	trace – Time trace to be transformed. It can be a 1D trace of values, a 2-column trace, or a 3-column trace.
If dt is None, then the first column is assumed to be time (only support uniform time step),
and the other columns are either the trace values (for a single data column) or real and imaginary parts of the trace (for two data columns).
If dt is not None, then the time column is assumed to be missing, so the two columns are assumed to be the real and the imaginary parts.

	dt – if not None, can specify the time step between the consecutive samples; otherwise, try to get it from the time column of the trace
if it exists, or set to 1 otherwise.

	truncate (bool [https://docs.python.org/3/library/functions.html#bool] or int [https://docs.python.org/3/library/functions.html#int]) – Determines whether to truncate the trace to the nearest product of small primes (speeds up FFT algorithm);
can be False (no truncation), an integer 2, 3, 5, 7, or 11 (truncate to a product of primes up to and including this number),
or True (default prime factorization, currently set to 7)

	normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fourier transform normalization:
- 'none': no (i.e., default numpy) normalization;
- 'sum': the norm of the data is conserved (sum(PSD[:,1])==sum(abs(trace[:,1])**2));
- 'rms': sum of the PSD is equal to the RMS trace amplitude squared (sum(PSD[:,1])==mean(abs(trace[:,1])**2));
- 'density': power spectral density normalization, in x/rtHz (sum(PSD[:,1])*df==mean(abs(trace[:,1])**2));
- 'dBc': like 'density', but normalized to the mean trace value.

	single_sided (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only leave positive frequency side of the PSD.

	window (str [https://docs.python.org/3/library/stdtypes.html#str]) – FT window. Can be 'rectangle' (essentially, no window), 'hann' or 'hamming'.

	window_power_compensate (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the data is multiplied by a compensating factor to preserve power in the spectrum.

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return a simple 1D trace with the result.

	Returns:

	a two-column array, where the first column is frequency, and the second is positive PSD.

	
pylablib.core.dataproc.fourier.get_real_part_ft(ft)

	Get the fourier transform of the real part only from the fourier transform of a complex variable.

	
pylablib.core.dataproc.fourier.get_imag_part_ft(ft)

	Get the fourier transform of the imaginary part only from the fourier transform of a complex variable.

	
pylablib.core.dataproc.fourier.get_correlations_ft(ft_a, ft_b, zero_mean=True, normalization='none')

	Calculate the correlation function of the two variables given their fourier transforms.

	Parameters:

	
	ft_a – first variable fourier transform

	ft_b – second variable fourier transform

	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the value corresponding to the zero frequency is set to zero (only fluctuations around means of a and b are calculated).

	normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'whole' (correlations are normalized by product of PSDs derived from ft_a and ft_b)
or 'individual' (normalization is done for each frequency individually, so that the absolute value is always 1).

pylablib.core.dataproc.iir_transform module

Digital recursive infinite impulse response filter.

Implemented using Numba library (JIT high-performance compilation) if possible.

	
pylablib.core.dataproc.iir_transform.iir_apply_complex(trace, xcoeff, ycoeff)

	Apply digital, (possibly) recursive filter with coefficients xcoeff and ycoeff along the first axis.

Result is filtered signal y with y[n]=sum_j x[n-j]*xcoeff[j] + sum_k y[n-k-1]*ycoeff[k].

pylablib.core.dataproc.image module

	
pylablib.core.dataproc.image.convert_shape_indexing(shape, src, dst, axes=(0, 1))

	Convert image indexing style.

shape is the source image shape (2-tuple), src and dst are current format and desired format.
Formats can be "rcb" (first index is row, second is column, rows count from the bottom), "rct" (same, but rows count from the top).
"xyb" (first index is column, second is row, rows count from the bottom), or "xyt" (same but rows count form the top).
"rc" is interpreted as "rct", "xy" as "xyt"

	
pylablib.core.dataproc.image.convert_image_indexing(img, src, dst, axes=(0, 1))

	Convert image indexing style.

img is the source image (ND numpy array with N>=2),
src and dst are current format and desired format,
axes specify correspondingly the row and the column axes (by default, the first two array axes).
Formats can be "rcb" (first index is row, second is column, rows count from the bottom), "rct" (same, but rows count from the top).
"xyb" (first index is column, second is row, rows count from the bottom), or "xyt" (same but rows count form the top).
"rc" is interpreted as "rct", "xy" as "xyt"

	
class pylablib.core.dataproc.image.ROI(imin=0, imax=None, jmin=0, jmax=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
copy()

	

	
center(shape=None)

	

	
size(shape=None)

	

	
area(shape=None)

	

	
tup(shape=None)

	

	
ispan(shape=None)

	

	
jspan(shape=None)

	

	
classmethod from_centersize(center, size, shape=None)

	

	
classmethod intersect(*args)

	

	
limit(shape)

	

	
pylablib.core.dataproc.image.get_region(image, center, size, axis=(-2, -1))

	Get part of the image with the given center and size (both are tuples (i, j)).

The region is automatically reduced if a part of it is outside of the image.

	
pylablib.core.dataproc.image.get_region_sum(image, center, size, axis=(-2, -1))

	Sum part of the image with the given center and size (both are tuples (i, j)).

The region is automatically reduced if a part of it is outside of the image.
Return tuple (sum, area), where area is the actual summer region are (in pixels).

pylablib.core.dataproc.interpolate module

	
pylablib.core.dataproc.interpolate.interpolate1D_func(x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_values=nan, assume_sorted=False)

	1D interpolation.

Simply a wrapper around scipy.interpolate.interp1d [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d].

	Parameters:

	
	x – 1D arrays of x coordinates for the points at which to find the values.

	y – array of values corresponding to x points (can have more than 1 dimension, in which case the output values are (N-1)-dimensional)

	kind – Interpolation method.

	axis – axis in y-data over which to interpolate.

	copy – if True, make internal copies of x and y.

	bounds_error – if True, raise error if interpolation function arguments are outside of x bounds.

	fill_values – values to fill the outside-bounds regions if bounds_error==False.

	assume_sorted – if True, assume that data is sorted.

	Returns:

	A 1D array with interpolated data.

	
pylablib.core.dataproc.interpolate.interpolate1D(data, x, kind='linear', bounds_error=True, fill_values=nan, assume_sorted=False)

	1D interpolation.

	Parameters:

	
	data – 2-column array [(x,y)], where y is a function of x.

	x – Arrays of x coordinates for the points at which to find the values.

	kind – Interpolation method.

	bounds_error – if True, raise error if x values are outside of data bounds.

	fill_values – values to fill the outside-bounds regions if bounds_error==False

	assume_sorted – if True, assume that data is sorted.

	Returns:

	A 1D array with interpolated data.

	
pylablib.core.dataproc.interpolate.interpolate2D(data, x, y, method='linear', fill_value=nan)

	Interpolate data in 2D.

Simply a wrapper around scipy.interpolate.griddata() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata].

	Parameters:

	
	data – 3-column array [(x,y,z)], where z is a function of x and y.

	x/y – Arrays of x and y coordinates for the points at which to find the values.

	method – Interpolation method.

	Returns:

	A 2D array with interpolated data.

	
pylablib.core.dataproc.interpolate.interpolateND(data, xs, method='linear')

	Interpolate data in N dimensions.

Simply a wrapper around scipy.interpolate.griddata() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata].

	Parameters:

	
	data – (N+1)-column array [(x_1,..,x_N,y)], where y is a function of x_1, ... ,x_N.

	xs – N-tuple of arrays of coordinates for the points at which to find the values.

	method – Interpolation method.

	Returns:

	An ND array with interpolated data.

	
pylablib.core.dataproc.interpolate.regular_grid_from_scatter(data, x_points, y_points, x_range=None, y_range=None, method='nearest')

	Turn irregular scatter-points data into a regular 2D grid function.

	Parameters:

	
	data – 3-column array [(x,y,z)], where z is a function of x and y.

	x_points/y_points – Number of points along x/y axes.

	x_range/y_range – If not None, a tuple specifying the desired range of the data (all points in data outside the range are excluded).

	method – Interpolation method (see scipy.interpolate.griddata() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata] for options).

	Returns:

	A nested tuple (data, (x_grid, y_grid)), where all entries are 2D arrays (either with data or with gridpoint locations).

	
pylablib.core.dataproc.interpolate.interpolate_trace(trace, step, rng=None, x_column=0, select_columns=None, kind='linear', assume_sorted=False)

	Interpolate trace data over a regular grid with the given step.

rng specifies interpolation range (by default, whole data range).
x_column specifies column index for x-data.
select_column specifies which columns to interpolate and keep at the output (by default, all data).
If assume_sorted==True, assume that x-data is sorted.
kind specifies interpolation method.

	
pylablib.core.dataproc.interpolate.average_interpolate_1D(data, step, rng=None, avg_kernel=1, min_weight=0, kind='linear')

	1D interpolation combined with pre-averaging.

	Parameters:

	
	data – 2-column array [(x,y)], where y is a function of x.

	step – distance between the points in the interpolated data (all resulting x-coordinates are multiples of step).

	rng – if not None, specifies interpolation range (by default, whole data range).

	avg_kernel – kernel used for initial averaging. Can be either a 1D array, where each point corresponds to the relative bin weight,
or an integer, which specifies simple rectangular kernel of the given width.

	min_weight – minimal accumulated weight in the bin to consider it ‘valid’
(if the bin is invalid, its accumulated value is ignored, and its value is obtained by the interpolation step).
min_weight of 0 implies any non-zero weight; otherwise, weight >=min_weight.

	kind – Interpolation method.

	Returns:

	A 2-column array with the interpolated data.

pylablib.core.dataproc.specfunc module

Specific useful functions.

	
pylablib.core.dataproc.specfunc.gaussian_k(x, sigma=1.0, height=None)

	Gaussian kernel function.

Normalized by the area if height is None, otherwise height is the value at 0.

	
pylablib.core.dataproc.specfunc.rectangle_k(x, width=1.0, height=None)

	”
Symmetric rectangle kernel function.

Normalized by the area if height is None, otherwise height is the value at 0.

	
pylablib.core.dataproc.specfunc.lorentzian_k(x, gamma=1.0, height=None)

	Lorentzian kernel function

Normalized by the area if height is None, otherwise height is the value at 0.

	
pylablib.core.dataproc.specfunc.complex_lorentzian_k(x, gamma=1.0, amplitude=1j)

	Complex Lorentzian kernel function.

	
pylablib.core.dataproc.specfunc.exp_decay_k(x, width=1.0, height=None, mode='causal')

	Exponential decay kernel function

Normalized by area if height=None (if possible), otherwise height is the value at 0.

	Mode determines value for x<0:
	
	'causal' - it’s 0 for x<0;

	'step' - it’s constant for x<=0;

	'continue' - it’s a continuous decaying exponent;

	'mirror' - function is symmetric: exp(-|x|/width).

	
pylablib.core.dataproc.specfunc.get_kernel_func(kernel)

	Get a kernel function by its name.

Available functions are: 'gaussian', 'rectangle', 'lorentzian', 'exp_decay', 'complex_lorentzian'.

	
pylablib.core.dataproc.specfunc.rectangle_w(x, N, ft_compensated=False)

	Rectangle FT window function

	
pylablib.core.dataproc.specfunc.gen_hamming_w(x, N, alpha, beta, ft_compensated=False)

	Generalized Hamming FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the spectrum.

	
pylablib.core.dataproc.specfunc.hann_w(x, N, ft_compensated=False)

	Hann FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the spectrum.

	
pylablib.core.dataproc.specfunc.hamming_w(x, N, ft_compensated=False)

	Specific Hamming FT window function.

If ft_compensated==True, multiply the window function by a compensating factor to preserve power in the spectrum.

	
pylablib.core.dataproc.specfunc.get_window_func(window)

	Get a window function by its name.

Available functions are: 'hamming', 'rectangle', 'hann'.

	
pylablib.core.dataproc.specfunc.gen_hamming_w_ft(f, t, alpha, beta)

	Get Fourier Transform of a generalized Hamming FT window function.

f is the argument, t is the total window size.

	
pylablib.core.dataproc.specfunc.rectangle_w_ft(f, t)

	Get Fourier Transform of the rectangle FT window function.

f is the argument, t is the total window size.

	
pylablib.core.dataproc.specfunc.hann_w_ft(f, t)

	Get Fourier Transform of the Hann FT window function.

f is the argument, t is the total window size.

	
pylablib.core.dataproc.specfunc.hamming_w_ft(f, t)

	Get Fourier Transform of the specific Hamming FT window function.

f is the argument, t is the total window size.

	
pylablib.core.dataproc.specfunc.get_window_ft_func(window)

	Get a Fourier Transform of a window function by its name.

Available functions are: 'hamming', 'rectangle', 'hann'.

pylablib.core.dataproc.table_wrap module

Utilities for uniform treatment of pandas tables and numpy arrays for functions which can deal with them both.

	
class pylablib.core.dataproc.table_wrap.IGenWrapper(container)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The interface for a wrapper that gives a uniform access to basic methods of wrapped objects’.

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.I1DWrapper(container)

	Bases: IGenWrapper

A wrapper containing a 1D object (a 1D numpy array or a pandas Series object).

Provides a uniform access to basic methods of a wrapped object.

	
class Accessor(wrapper)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
subcolumn(idx, wrapped=False)

	Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
static from_array(array, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array or a list).

If force_copy==True, make a copy of supplied array.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns; only length-1 lists is supported).

column_names parameter is ignored.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
get_index()

	Get index of the given 1D trace, or None if none is available

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.Array1DWrapper(container)

	Bases: I1DWrapper

A wrapper for a 1D numpy array.

Provides a uniform access to basic methods of a wrapped object.

	
get_deleted(idx, wrapped=False)

	Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_inserted(idx, val, wrapped=False)

	Return a copy of the column with the data val added at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
insert(idx, val)

	Add data val to index idx

	
get_appended(val, wrapped=False)

	Return a copy of the column with the data val appended at the end.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
append(val)

	Append data val to the end

	
subcolumn(idx, wrapped=False)

	Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
static from_array(array, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array or a list).

If force_copy==True, make a copy of supplied array.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

	
class Accessor(wrapper)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns; only length-1 lists is supported).

column_names parameter is ignored.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_index()

	Get index of the given 1D trace, or None if none is available

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.Series1DWrapper(container)

	Bases: I1DWrapper

A wrapper for a pandas Series object.

Provides a uniform access to basic methods of a wrapped object.

	
get_deleted(idx, wrapped=False)

	Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_inserted(idx, val, wrapped=False)

	Return a copy of the column with the data val added at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_appended(val, wrapped=False)

	Return a copy of the column with the data val appended at the end.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
subcolumn(idx, wrapped=False)

	Return a subcolumn at index idx.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
static from_array(array, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a 1D numpy array or a list).

If force_copy==True, make a copy of supplied array.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_index()

	Get index of the given 1D trace, or None if none is available

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the object copy; otherwise, just return the copy.

	
class Accessor(wrapper)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An accessor: creates a simple uniform interface to treat the wrapped object element-wise (get/set/iterate over elements).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
array_replaced(array, force_copy=False, preserve_index=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns; only length-1 lists is supported).

column_names parameter is ignored.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.I2DWrapper(container, r=None, c=None, t=None)

	Bases: IGenWrapper

A wrapper containing a 2D object (a 2D numpy array or a pandas DataFrame object).

Provides a uniform access to basic methods of a wrapped object.

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper).
If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
columns_replaced(columns, preserve_index=False, wrapped=False)

	Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a 2D numpy array).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper).
If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
get_index()

	Get index of the given 2D table, or None if none is available

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
column(idx, wrapped=False)

	Get a column at index idx.

Return a 1D numpy array for a 2D numpy array object, and an Series object for a pandas DataFrame.
If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
subtable(idx, wrapped=False)

	Return a subtable at index idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.Array2DWrapper(container)

	Bases: I2DWrapper

A wrapper for a 2D numpy array.

Provides a uniform access to basic methods of a wrapped object.

	
set_container(cont)

	

	
class RowAccessor(wrapper, storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A row accessor: creates a simple uniform interface to treat the wrapped object row-wise (append/insert/delete/iterate over rows).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
get_deleted(idx, wrapped=False)

	Return a new table with the rows at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
get_inserted(idx, val, wrapped=False)

	Return a new table with new rows given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
insert(idx, val)

	Insert new rows given by val at index idx.

	
get_appended(val, wrapped=False)

	Return a new table with new rows given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
append(val)

	Insert new rows given by val to the end of the table

	
class ColumnAccessor(wrapper, storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A column accessor: creates a simple uniform interface to treat the wrapped object column-wise (append/insert/delete/iterate over columns).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
get_deleted(idx, wrapped=False)

	Return a new table with the columns at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
get_inserted(idx, val, wrapped=False)

	Return a new table with new columns given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
insert(idx, val)

	Insert new columns given by val at index idx.

	
get_appended(val, wrapped=False)

	Return a new table with new columns given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
append(val)

	Insert new columns given by val to the end of the table

	
set_names(names)

	Set column names (does nothing)

	
get_names()

	Get column names (all names are None)

	
get_column_index(idx)

	Get number index for a given column index

	
class TableAccessor(storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A table accessor: accessing the table data through this interface returns an object of the appropriate type
(numpy array for numpy wrapped object, and a DataFrame for a pandas DataFrame wrapped object).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
subtable(idx, wrapped=False)

	Return a subtable at index idx of the appropriate type (2D numpy array).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
column(idx, wrapped=False)

	Get a column at index idx as a 1D numpy array.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.
column_names parameter is ignored.

	
static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a 2D numpy array).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.
column_names parameter is ignored.

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
columns_replaced(columns, preserve_index=False, wrapped=False)

	Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
get_index()

	Get index of the given 2D table, or None if none is available

	
ndim()

	

	
shape()

	

	
class pylablib.core.dataproc.table_wrap.DataFrame2DWrapper(container)

	Bases: I2DWrapper

A wrapper for a pandas DataFrame object.

Provides a uniform access to basic methods of a wrapped object.

	
class RowAccessor(wrapper, storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A row accessor: creates a simple uniform interface to treat the wrapped object row-wise (append/insert/delete/iterate over rows).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
get_deleted(idx, wrapped=False)

	Return a copy of the column with the data at index idx deleted.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
get_inserted(idx, val, wrapped=False)

	Return a new table with new rows given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
insert(idx, val)

	Insert new rows given by val at index idx.

	
get_appended(val, wrapped=False)

	Return a new table with new rows given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
append(val)

	Insert new rows given by val to the end of the table

	
class ColumnAccessor(wrapper, storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A column accessor: creates a simple uniform interface to treat the wrapped object column-wise (append/insert/delete/iterate over columns).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
get_deleted(idx, wrapped=False)

	Return a new table with the columns at idx deleted.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
get_inserted(idx, val, column_name=None, wrapped=False)

	Return a new table with new columns given by val inserted at idx.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
insert(idx, val, column_name=None)

	Insert new columns given by val at index idx

	
get_appended(val, column_name=None, wrapped=False)

	Return a new table with new columns given by val appended to the end of the table.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
append(val, column_name=None)

	Insert new columns given by val to the end of the table

	
set_names(names)

	Set column names

	
get_names()

	Get column names

	
get_column_index(idx)

	Get number index for a given column index

	
class TableAccessor(storage)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A table accessor: accessing the table data through this interface returns an object of the appropriate type
(numpy array for numpy wrapped object, and a DataFrame for a pandas DataFrame wrapped object).

Generated automatically for each table on creation, doesn’t need to be created explicitly.

	
subtable(idx, wrapped=False)

	Return a subtable at index idx of the appropriate type (pandas DataFrame).

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
column(idx, wrapped=False)

	Get a column at index idx as a pandas Series object.

If wrapped==True, return a new wrapper containing the column; otherwise, just return the column.

	
classmethod from_columns(columns, column_names=None, index=None, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied columns (a list of columns).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper).
If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
static from_array(array, column_names=None, index=None, force_copy=False, wrapped=False)

	Build a new object of the type corresponding to the wrapper from the supplied array (a list of rows or a 2D numpy array).

column_names supplies names of the columns (only relevant for DataFrame2DWrapper).
If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
get_index()

	Get index of the given 2D table, or None if none is available

	
get_type()

	Get a string representing the wrapped object type

	
copy(wrapped=False)

	Copy the object. If wrapped==True, return a new wrapper containing the table; otherwise, just return the table

	
array_replaced(array, preserve_index=None, force_copy=False, wrapped=False)

	Return a copy of the column with the data replaced by array.

All of the parameters are the same as in from_array().

	
columns_replaced(columns, preserve_index=False, wrapped=False)

	Return copy of the object with the data replaced by columns.

If wrapped==True, return a new wrapper containing the table; otherwise, just return the table.

	
ndim()

	

	
shape()

	

	
pylablib.core.dataproc.table_wrap.wrap1d(container)

	Wrap a 1D container (a 1D numpy array or or a pandas Series) into an appropriate wrapper

	
pylablib.core.dataproc.table_wrap.wrap2d(container)

	Wrap a 2D container (a 2D numpy array or a pandas DataFrame) into an appropriate wrapper

	
pylablib.core.dataproc.table_wrap.wrap(container)

	Wrap container (a numpy array, a pandas Series or a pandas DataFrame) into an appropriate wrapper

pylablib.core.dataproc.transform module

	
class pylablib.core.dataproc.transform.LinearTransform(tmatr=None, shift=None, ndim=2)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic linear transform which combines an affine transform with a given matrix and an additional shift.

	Parameters:

	
	tmatr – translational matrix (if None, use a unity matrix)

	shift – added shift (if None, use a zero shift)

	ndim – if both tmatr and shift are None, specifies the dimensionality of the transform; otherwise, ignored

	
i(coord, shift=True)

	

	
inverted()

	Return inverted transformation

	
preceded(trans)

	Return a combined transformation which result from applying this transformation followed by trans

	
followed(trans)

	Return a combined transformation which result from applying trans followed by this transformation

	
shifted(shift, preceded=False)

	Return a transform with an added shift before or after (depending of preceded) the current one

	
multiplied(mult, preceded=False)

	Return a transform with an added scaling before or after (depending of preceded) the current one.

mult can be a single number (scale), a 1D vector (scaling for each axis independently), or a matrix.

	
rotated2d(deg, preceded=False)

	Return a transform with an added rotation before or after (depending of preceded) the current one.

Only applies to 2D transforms.

	
class pylablib.core.dataproc.transform.Indexed2DTransform(tmatr=None, shift=None, rigid=False)

	Bases: LinearTransform

A restriction of LinearTransform which only applies to 2D and only allows rotations by multiples of 90 degrees.

	Parameters:

	
	tmatr – translational matrix (if None, use a unity matrix)

	shift – added shift (if None, use a zero shift)

	rigid – if True, only allow orthogonal transforms, i.e., no scaling

	
rotated2d(deg, preceded=False)

	Return a transform with an added rotation before or after (depending of preceded) the current one.

Only applies to 2D transforms.

	
followed(trans)

	Return a combined transformation which result from applying trans followed by this transformation

	
i(coord, shift=True)

	

	
inverted()

	Return inverted transformation

	
multiplied(mult, preceded=False)

	Return a transform with an added scaling before or after (depending of preceded) the current one.

mult can be a single number (scale), a 1D vector (scaling for each axis independently), or a matrix.

	
preceded(trans)

	Return a combined transformation which result from applying this transformation followed by trans

	
shifted(shift, preceded=False)

	Return a transform with an added shift before or after (depending of preceded) the current one

pylablib.core.dataproc.utils module

Generic utilities for dealing with numerical arrays.

	
pylablib.core.dataproc.utils.is_ascending(trace)

	Check the if the trace is ascending.

If it has more than 1 dimension, check all lines along 0’th axis.

	
pylablib.core.dataproc.utils.is_descending(trace)

	Check if the trace is descending.

If it has more than 1 dimension, check all lines along 0’th axis.

	
pylablib.core.dataproc.utils.is_ordered(trace)

	Check if the trace is ordered (ascending or descending).

If it has more than 1 dimension, check all lines along 0’th axis.

	
pylablib.core.dataproc.utils.is_linear(trace)

	Check if the trace is linear (values go with a constant step).

If it has more than 1 dimension, check all lines along 0’th axis (with the same step for all).

	
pylablib.core.dataproc.utils.get_x_column(t, x_column=None, idx_default=False)

	Get x column of the table.

	x_column can be
	
	an array: return as is;

	'#': return index array;

	None: equivalent to ‘#’ for 1D data if idx_default==False, or to 0 otherwise;

	integer: return the column with this index.

	
pylablib.core.dataproc.utils.get_y_column(t, y_column=None)

	Get y column of the table.

	y_column can be
	
	an array: return as is;

	'#': return index array;

	None: return t for 1D data, or the column 1 otherwise;

	integer: return the column with this index.

	
pylablib.core.dataproc.utils.sort_by(t, x_column=None, reverse=False, stable=False)

	Sort a table using selected column as a key and preserving rows.

If reverse==True, sort in descending order. x_column values are described in get_x_column().
If stable==True, use stable sort (could be slower and uses more memory, but preserves the order of elements for the same key)

	
pylablib.core.dataproc.utils.filter_by(t, columns=None, pred=None, exclude=False)

	Filter 1D or 2D array using a predicate.

If the data is 2D, columns contains indices of columns to be passed to the pred function.
If exclude==False, drop all of the rows satisfying pred rather than keep them.

	
pylablib.core.dataproc.utils.unique_slices(t, u_column)

	Split a table into subtables with different values in a given column.

Return a list of t subtables, each of which has a different (and equal among all rows in the subtable) value in u_column.

	
pylablib.core.dataproc.utils.merge(ts, idx=None, as_array=True)

	Merge several tables column-wise.

If idx is not None, then it is a list of index columns (one column per table) used for merging.
The rows that have the same value in the index columns are merged; if some values aren’t contained in all the ts, the corresponding rows are omitted.
If idx is None, just join the tables together (they must have the same number of rows).

If as_array==True, return a simple numpy array as a result; otherwise, return a pandas DataFrame if applicable
(note that in this case all column names in all tables must be different to avoid conflicts)

	
class pylablib.core.dataproc.utils.Range(start=None, stop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Single data range.

If start or stop are None, it’s implied that they’re at infinity (i.e., Range(None,None) is infinite).
If the range object is None, it’s implied that the range is empty

	
property start

	

	
property stop

	

	
contains(x)

	Check if x is in the range

	
intersect(*rngs)

	Find an intersection of multiple ranges.

If the intersection is empty, return None.

	
rescale(mult=1.0, shift=0.0)

	

	
tup()

	

	
pylablib.core.dataproc.utils.find_closest_arg(xs, x, approach='both', ordered=False)

	Find the index of a value in xs that is closest to x.

approach can take values 'top', 'bottom' or 'both' and denotes from which side should array elements approach x
(meaning that the found array element should be >x, <x or just the closest one).
If there are no elements lying on the desired side of x (e.g. approach=='top' and all elements of xs are less than x), the function returns None.
if ordered==True, then xs is assumed to be in ascending or descending order, and binary search is implemented (works only for 1D arrays).
if there are recurring elements, return any of them.

	
pylablib.core.dataproc.utils.find_closest_value(xs, x, approach='both', ordered=False)

	

	
pylablib.core.dataproc.utils.get_range_indices(xs, xs_range, ordered=False)

	Find trace indices corresponding to the given range.

The range is defined as xs_range[0]:xs_range[1], or infinite if xs_range=None (so the data is returned unchanged in that case).
If ordered==True, then the function assumes that xs in ascending or descending order.

	
pylablib.core.dataproc.utils.cut_to_range(t, xs_range, x_column=None, ordered=False)

	Cut the table to the given range based on x_column.

The range is defined as xs_range[0]:xs_range[1], or infinite if xs_range=None.
x_column is used to determine which column’s values to use to check if the point is in range (see get_x_column()).
If ordered_x==True, then the function assumes that x_column in ascending order.

	
pylablib.core.dataproc.utils.cut_out_regions(t, regions, x_column=None, ordered=False, multi_pass=True)

	Cut the regions out of the t based on x_column.

x_column is used to determine which column’s values to use to check if the point is in range (see get_x_column()).
If ordered_x==True, then the function assumes that x_column in ascending order.
If multi_pass==False, combine all indices before deleting the data in a single operation (works faster, but only for non-intersecting regions).

	
pylablib.core.dataproc.utils.find_discrete_step(trace, min_fraction=1e-08, tolerance=1e-05)

	Try to find a minimal divisor of all steps in a 1D trace.

min_fraction is the minimal possible size of the divisor (relative to the minimal non-zero step size).
tolerance is the tolerance of the division.
Raise an ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError] if no such value was found.

	
pylablib.core.dataproc.utils.unwrap_mod_data(trace, wrap_range)

	Unwrap data given wrap_range.

Assume that every jump greater than 0.5*wrap_range is not real and is due to value being restricted.
Can be used to, e.g., unwrap the phase data.

	
pylablib.core.dataproc.utils.pad_trace(trace, pad, mode='constant', cval=0.0)

	Expand 1D trace or a multi-column table for different convolution techniques.

Wrapper around numpy.pad() [https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad], but can handle pandas dataframes or multi-column arrays.
Note that the index data is not preserved.

	Parameters:

	
	trace – 1D array-like object.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Expansion size. Can be an integer, if pad on both sides is equal, or a 2-tuple (left, right) for pads on opposite sides.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Expansion mode. Takes the same values as numpy.pad() [https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad].
Common values are 'constant' (added values are determined by cval), 'edge' (added values are end values of the trace),
'reflect' (reflect trace with respect to its endpoint) or 'wrap' (wrap the values from the other size).

	cval (float [https://docs.python.org/3/library/functions.html#float]) – If mode=='constant', determines the expanded values.

	
pylablib.core.dataproc.utils.xy2c(t)

	Convert a trace or a table from xy representation to a single complex data.

t is a 2D array with either 2 columns (x and y) or 3 columns (index, x and y).
Return 2D array with either 1 column (c) or 2 columns (index and c).

	
pylablib.core.dataproc.utils.c2xy(t)

	Convert the a trace or a table from complex representation to a split x and y data.

t is either 1D array (c data) or a 2D array with either 1 column (c) or 2 columns (index and c).
Return 2D array with either 2 column (x and y) or 3 columns (index, x and y).

Module contents

pylablib.core.devio package

Submodules

pylablib.core.devio.SCPI module

	
class pylablib.core.devio.SCPI.SCPIDevice(conn, term_write=None, term_read=None, wait_callback=None, backend='auto', backend_defaults=None, failsafe=None, timeout=None, backend_params=None)

	Bases: ICommBackendWrapper

A base class for a device controlled with the usual SCPI syntax.

	Implements two functions:
	
	deals with composing and parsing of standard SCPI commands and simplifying repetitive property access routines

	implements automatic re-sending and reconnecting on communication failures (fail-safe mode)

	Parameters:

	
	conn – Connection parameters (depend on the backend). Can also be an opened comm_backend.IDeviceCommBackend class for a custom backend.

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations.

	wait_callback (callable) – A function to be called periodically (every 300ms by default) while waiting for operations to complete.

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection backend (e.g., 'serial' or 'visa').

	backend_defaults – if not None, specifies a dictionary {backend: params} with default connection parameters (depending on the backend),
which are added to conn

	failsafe (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the device is working in a fail-safe mode:
if an operation times out, attempt to repeat it several times before raising error.
If None, use the class value _default_failsafe (False by default).

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	
Error

	alias of DeviceError

	
ReraiseError = None

	

	
BackendError

	alias of DeviceBackendError

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
sleep(delay)

	Wait for delay seconds

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
reset()

	Reset the device (by default, "*RST" command)

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
static get_arg_type(arg)

	Autodetect argument type

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
class NoParameterCaller(device, kind)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to simplify calling functions without a parameter

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

pylablib.core.devio.backend_logger module

	
class pylablib.core.devio.backend_logger.BackendLogger(path)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Backend logger.

Receives log requests from backends and stores them in a predefined file.

	Parameters:

	path – path to save the log

	
start(header)

	Start logging section

	
stop()

	Stop logging section

	
section(header)

	Context manager for operations within a header

	
log(operation, value)

	Log the operation

	
pylablib.core.devio.backend_logger.load_logfile(path)

	Load backend log file.

Return a list of tuples [(header, section)], where header is the header name,
and section is the list [(op, value)] with operations ("r", "w", or "e")
nd corresponding values.

pylablib.core.devio.base module

	
exception pylablib.core.devio.base.DeviceError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Generic device communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.core.devio.comm_backend module

Routines for defining a unified interface across multiple backends.

	
exception pylablib.core.devio.comm_backend.DeviceBackendError(exc)

	Bases: DeviceError

Generic exception relaying a backend error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
pylablib.core.devio.comm_backend.reraise(func)

	Wrapper for a backend method which intercepts backend exceptions and re-emits them as a subclass of DeviceBackendError defined in the class

	
pylablib.core.devio.comm_backend.logerror(func)

	Wrapper for a backend method which logs if any errors escaped

	
class pylablib.core.devio.comm_backend.IDeviceCommBackend(conn, timeout=None, term_write=None, term_read=None, datatype='auto', reraise_error=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An abstract class for a device communication backend.

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters (depend on the backend).

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations.

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for reading operations.

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError = None

	Base class for the errors raised by the backend operations

	
Error

	alias of DeviceBackendError

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
readline(remove_term=True, timeout=None, skip_empty=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (the standard timeout applies); otherwise, read all available data (return immediately).

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If flush==True, flush the write buffer.
If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
pylablib.core.devio.comm_backend.remove_longest_term(msg, terms)

	Remove the longest terminator among terms from the end of the message.

	
exception pylablib.core.devio.comm_backend.DeviceVisaError(exc)

	Bases: DeviceBackendError

Visa backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.VisaDeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, do_lock=None, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

NIVisa backend (via pyVISA).

Connection is automatically opened on creation.

	Parameters:

	
	conn (str [https://docs.python.org/3/library/stdtypes.html#str]) – Connection string.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for reading operations (specifies when readline() stops).

	do_lock (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, employ locking operations; otherwise, locking function does nothing.

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	Base class for the errors raised by the backend operations

alias of object [https://docs.python.org/3/library/functions.html#object]

	
Error

	alias of DeviceVisaError

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes

	
unlock()

	Unlock the access to the device from other threads/processes

	
locking(timeout=None)

	Context manager for lock & unlock

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (the standard timeout applies); otherwise, read all available data (return immediately).

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).
flush parameter is ignored.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceSerialError(exc)

	Bases: DeviceBackendError

Serial backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.SerialDeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, connect_on_operation=False, open_retry_times=3, no_dtrrts=False, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

Serial backend (via pySerial).

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters. Can be either a string (for a port),
or a list/tuple (port, baudrate, bytesize, parity, stopbits, xonxoff, rtscts, dsrdtr) supplied to the serial connection
(default is ('COM1',19200,8,'N',1,0,0,0)),
or a dict with the same parameters.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of possible single-char terminator for reading operations (specifies when readline() stops).

	connect_on_operation (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the connection is normally closed, and is opened only on the operations
(normally two processes can’t be simultaneously connected to the same device).

	open_retry_times (int [https://docs.python.org/3/library/functions.html#int]) – Number of times the connection is attempted before giving up.

	no_dtrrts (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, turn off DTR and RTS status lines before opening (e.g., turns off reset-on-connection for Arduino controllers).

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	Base class for the errors raised by the backend operations

alias of object [https://docs.python.org/3/library/functions.html#object]

	
Error

	alias of DeviceSerialError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
single_op()

	Context manager for a single operation.

If connect_on_operation==True during creation, wrapping several command in single_op
prevents the connection from being closed and reopened between the operations (only opened in the beginning and closed in the end).

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)

	Read a single line with multiple possible terminators.

	Parameters:

	
	term – Either a string (single multi-char terminator) or a list of strings (multiple terminators).

	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If flush==True, flush the write buffer.
If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceFT232Error(exc)

	Bases: DeviceBackendError

FT232 backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.FT232DeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, open_retry_times=3, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

FT232 backend (via pyft232).

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters. Can be either a string (for a port),
or a list/tuple (port, baudrate, bytesize, parity, stopbits, xonxoff, rtscts) supplied to the serial connection
(default is ('COM1',19200,8,'N',1,0,0,0)),
or a dict with the same parameters.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of possible single-char terminator for reading operations (specifies when readline() stops).

	open_retry_times (int [https://docs.python.org/3/library/functions.html#int]) – Number of times the connection is attempted before giving up.

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	Base class for the errors raised by the backend operations

alias of object [https://docs.python.org/3/library/functions.html#object]

	
Error

	alias of DeviceFT232Error

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
single_op()

	Context manager for a single operation.

Does nothing.

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)

	Read a single line with multiple possible terminators.

	Parameters:

	
	term – Either a string (single multi-char terminator) or a list of strings (multiple terminators).

	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If flush==True, flush the write buffer.
If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceNetworkError(exc)

	Bases: DeviceBackendError

Network backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.NetworkDeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

Serial backend (via pySerial).

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters. Can be either a string "IP:port" (e.g., "127.0.0.1:80"), or a tuple (IP,port), where IP is a string and port is a number.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of possible single-char terminator for reading operations (specifies when readline() stops).

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

Note

If term_read is a string, its behavior is different from the VISA backend:
instead of being a multi-char terminator it is assumed to be a set of single-char terminators.
If multi-char terminator is required, term_read should be a single-element list instead of a string.

	
BackendError

	Base class for the errors raised by the backend operations

alias of OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	
Error

	alias of DeviceNetworkError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
read_multichar_term(term, remove_term=True, timeout=None)

	Read a single line with multiple possible terminators.

	Parameters:

	
	term – Either a string (single multi-char terminator) or a list of strings (multiple terminators).

	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).
flush parameter is ignored.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceUSBError(exc)

	Bases: DeviceBackendError

USB backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.PyUSBDeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, check_read_size=True, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

USB backend (via PyUSB package).

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters. Can be either a string (for a port),
or a list/tuple (vendorID, productID, index, endpoint_read, endpoint_write, backend) supplied to the connection
(default is (0x0000,0x0000,0,0x00,0x01,'libusb1'), which is invalid for most devices),
or a dict with the same parameters.
vendorID and productID specify device kind, index is an integer index (starting from zero) of the device
among several identical (i.e., with the same ids) ones, and endpoint_read and endpoint_write specify connection endpoints for the specific device.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of possible single-char terminator for reading operations (specifies when readline() stops).

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	Base class for the errors raised by the backend operations

alias of USBError

	
Error

	alias of DeviceUSBError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
read(size=None, max_read_size=65536)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)

	Read a single line with multiple possible terminators.

	Parameters:

	
	term – Either a string (single multi-char terminator) or a list of strings (multiple terminators).

	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).
flush parameter is ignored.

	
static list_resources(desc=False, **kwargs)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceHIDError(exc)

	Bases: DeviceBackendError

HID backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.HIDeviceBackend(conn, timeout=10.0, term_write=None, term_read=None, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

HID backend (via Windows DLLs).

Connection is automatically opened on creation.

	Parameters:

	
	conn – Connection parameters. Can be either a string (for a port),
or a list/tuple (vendorID, productID, index, endpoint_read, endpoint_write, backend) supplied to the connection
(default is (0x0000,0x0000,0,0x00,0x01,'libusb1'), which is invalid for most devices),
or a dict with the same parameters.
vendorID and productID specify device kind, index is an integer index (starting from zero) of the device
among several identical (i.e., with the same ids) ones, and endpoint_read and endpoint_write specify connection endpoints for the specific device.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default timeout (in seconds).

	term_write (str [https://docs.python.org/3/library/stdtypes.html#str]) – Line terminator for writing operations; appended to the data

	term_read (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of possible single-char terminator for reading operations (specifies when readline() stops).

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	Base class for the errors raised by the backend operations

alias of HIDError

	
Error

	alias of DeviceHIDError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
get_timeout()

	Get operations timeout (in seconds)

	
readline(remove_term=True, timeout=None, skip_empty=True, error_on_timeout=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
read_multichar_term(term, remove_term=True, timeout=None, error_on_timeout=True)

	Read a single line with multiple possible terminators.

	Parameters:

	
	term – Either a string (single multi-char terminator) or a list of strings (multiple terminators).

	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	error_on_timeout (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, return an incomplete line instead of raising the error on timeout.

	
get_pending()

	Get the number of bytes in the read buffer

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).
flush parameter is ignored.

	
static list_resources(desc=False, **kwargs)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
exception pylablib.core.devio.comm_backend.DeviceRecordedError(exc)

	Bases: DeviceBackendError

Recorded backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.devio.comm_backend.RecordedDeviceBackend(conn, datatype='auto', reraise_error=None)

	Bases: IDeviceCommBackend

Recorded backend.

Connection is automatically opened on creation.

	Parameters:

	
	conn – connection parameters (recorded log path)

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	reraise_error – if not None, specifies an error to be re-raised on any backend exception (by default, use backend-specific error);
should be a subclass of DeviceBackendError.

	
BackendError

	alias of OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	
Error

	alias of DeviceRecordedError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
start(header)

	Start recorded section

	
stop()

	Stop logging section

	
section(header)

	

	
readline(remove_term=True, timeout=None, skip_empty=True)

	Read a single line from the device.

	Parameters:

	
	remove_term (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove terminal characters from the result.

	timeout – Operation timeout. If None, use the default device timeout.

	skip_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, ignore empty lines (works only for remove_term==True).

	
read(size=None)

	Read data from the device.

If size is not None, read size bytes (usual timeout applies); otherwise, read all available data (return immediately).

	
write(data, flush=True, read_echo=False, read_echo_delay=0, read_echo_lines=1)

	Write data to the device.

If flush==True, flush the write buffer.
If read_echo==True, wait for read_echo_delay seconds and then perform readline() (read_echo_lines times).

	
ask(query, delay=0.0, read_all=False)

	Perform a write followed by a read, with delay in between.

If read_all==True, read all the available data; otherwise, read a single line.

	
classmethod combine_conn(conn1, conn2)

	Combined two connection parameters into a single dictionary (conn1 overrides conn2)

	
cooldown(kind='default')

	Cooldown between the operations.

kind specifies the operation kind (common kinds are open, close, read, write, timeout, and flush);
"default" corresponds to the default cooldown (usually, specified as 0).
Called automatically by various backend operations, so usually there is no need to call explicitly.

	
flush_read()

	Flush the device output (read all the available data; return the number of bytes read)

	
classmethod get_backend_name()

	Get string representation of the backend (e.g., "serial", "visa", or "network")

	
get_timeout()

	Get operations timeout (in seconds)

	
static list_resources(desc=False)

	List all available resources for this backend.

If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

Might not be implemented (depending on the backend), in which case returns None.

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
readlines(lines_num, remove_term=True, timeout=None, skip_empty=True)

	Read multiple lines from the device.

Parameters are the same as in readline().

	
set_timeout(timeout)

	Set operations timeout (in seconds)

	
setup_cooldown(**kwargs)

	Setup cooldown times for various operations.

The arguments are of the form kind=value, where value is the cooldown time (in seconds),
and kind is the operation kind (common kinds are open, close, read, write, timeout, and flush).
kind can also be default (default value for all kind), or all (reset all cooldown values to this value).
The cooldowns of the given kinds are usually called after the corresponding operation (it is necessary for some devices, otherwise the communication can freeze or crush).
Default cooldown values are specified by _default_operation_cooldown class attribute dictionary.

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
pylablib.core.devio.comm_backend.autodetect_backend(conn, default='visa')

	Try to determine the backend by the connection.

default specifies the default backend which is returned if the backend is unclear.

	
pylablib.core.devio.comm_backend.new_backend(conn, backend='auto', defaults=None, **kwargs)

	Build new backend with the supplied parameters.

	Parameters:

	
	conn – Connection parameters (depend on the backend). Can be simply connection parameters (tuple or dict) for the given backend
(e.g., "192.168.0.1" or ("COM1",19200)), a tuple (backend, conn) which specifies both backend and connection
(in which case it overrides the supplied backend), or an already opened backend (in which case it is returned as is)

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Backend type. Available backends are 'auto' (try to autodetect based on the connection),
'visa', 'serial', 'ft232', 'network', and "pyusb". Can also be directly a backend class (more appropriate for custom backends),
or a tuple ('auto', backend), which is analogous to 'auto', but it returns the specified backend if the autodetection fails;
by default, the fallback backend is 'visa', so 'auto' is exactly the same as ('auto', 'visa').

	defaults – if not None, specifies a dictionary {backend: params} with default connection parameters (depending on the backend),
which are added to the connection parameters

	**kwargs – parameters sent to the backend.

	
pylablib.core.devio.comm_backend.backend_error(backend, conn=None)

	Return error class corresponding to the current backend.

Like new_backend(), allows setting backend="auto", in which case conn is used to try and autodetect the backend kind
(not completely reliable, should be avoided).

	
pylablib.core.devio.comm_backend.list_backend_resources(backend=None, desc=False)

	List all resources for the given backend.

If backend is None, return dictionary {backend: resources} for all available backends.
If desc==False, return list of connections (usually strings or tuples), which can be used to connect to the device.
Otherwise, return a list of descriptions, which have more info, but can be backend-dependent.

	
class pylablib.core.devio.comm_backend.ICommBackendWrapper(instr)

	Bases: IDevice

A base class for an instrument using a communication backend.

	Parameters:

	instr – Backend (assumed to be already opened).

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
open()

	Open the backend

	
close()

	Close the backend

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

pylablib.core.devio.data_format module

Library for binary data encoding/decoding for device communication
and dealing with different data format representations in different contexts (numpy, SCPI, etc.).

	
class pylablib.core.devio.data_format.DataFormat(size, kind, byteorder)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Describes data encoding for device communications.

	Parameters:

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of a single element (in bytes).

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Kind of the element. Can be
'i' (integer), 'u' (unsigned integer), 'f' (floating point) or 'ascii' (text representation).

	byteorder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
flip_byteorder()

	Flip byteorder of the description

	
is_ascii()

	Check of the format is textual

	
static from_desc(desc, str_type='numpy')

	Build the format from the string description.

str_type is the description format. Can be
'numpy' (numpy dtype description),
'struct' (struct [https://docs.python.org/3/library/struct.html#module-struct] description) or
'SCPI' (the standard SCPI description).

	
static from_desc_SCPI(desc, border='norm')

	Build the format from the string SCPI description.

border describes byte order (either 'norm' or 'swap').

	
to_desc(str_type='auto')

	Build a description string of this format.

str_type can be 'auto' (similar to 'numpy', but also accepts 'ascii'),
'numpy', 'struct' or 'SCPI' (return tuple (desc, border)).

	
convert_from_str(data)

	Convert the string data into an array

	
convert_to_str(data, ascii_format='.5f')

	Convert the array into a string data.

ascii_format is the str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] string for textual representation.

pylablib.core.devio.hid module

	
class pylablib.core.devio.hid.TDeviceDescription(path, manufacturer, product, serial, vendor_id, product_id, version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
manufacturer

	

	
path

	

	
product

	

	
product_id

	

	
serial

	

	
vendor_id

	

	
version

	

	
pylablib.core.devio.hid.list_devices()

	List HID devices.

Return list of tuples (path, manufacturer, product, serial, vendor_id, product_id, version), where path is the string path used for connection.

	
class pylablib.core.devio.hid.HIDevice(path, timeout=3.0, rep_fmt='lenpfx', pause_on_write=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic HID-based device interface.

	Parameters:

	
	path – HID path (usually obtained using hid.list_devices())

	timeout – communication timeout

	rep_fmt – HID report format; can be "raw" (read/write raw data from/to HID),
"lenpfx" (assume a format where the first byte for the report indicates the payload size),
or a tuple (parser, builder) of two functions, where the parser takes a single raw report data argument and returns a parsed value,
while builder takes 2 arguments (data to be written and the output report size) and return the bytes to be sent to HID.

	pause_on_write – if True, pause the reading loop when writing; makes some communications more stable

	
open()

	Open the device connection if it is not opened yet

	
close()

	Close the device connection

	
is_opened()

	Check if the device connection is opened

	
get_description()

	Get device description

Return tuple (path, manufacturer, product, serial, vendor_id, product_id, version), where path is the string path used for connection.

	
get_timeout()

	Get device communication timeout

	
set_timeout(timeout)

	Set device communication timeout

	
class Reader(f, caps, buffsize, parser)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
loop_read()

	

	
start_loop()

	Start the read loop

	
stop_loop()

	Stop the read loop

	
pausing(do_pause=True, timeout=None)

	

	
read(nbytes=None, timeout=None, peek=False)

	Read the given number of bytes from the read buffer.

If nbytes is None, return all read bytes.
If timeout is not None, it can define the read operation timeout; otherwise, use the default timeout specified on creation.
If peek==True, return the bytes but keep them in the buffer.

	
get_pending()

	Get the number of bytes in the read buffer

	
get_pending()

	Get the number of bytes in the read buffer

	
read(nbytes=None, timeout=None)

	Read the given number of bytes from the read buffer.

If nbytes is None, return all read bytes.
If timeout is not None, it can define the read operation timeout; otherwise, use the default timeout specified on creation.

	
write(data, timeout=None)

	Write the given data to the device.

If timeout is not None, it can define the write operation timeout; otherwise, use the default timeout specified on creation.

pylablib.core.devio.hid_base module

	
exception pylablib.core.devio.hid_base.HIDError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Generic HID error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.devio.hid_base.HIDLibError(func, code)

	Bases: HIDError

Generic HID library boolean function error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.devio.hid_base.HIDTimeoutError

	Bases: HIDError

HID read timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.core.devio.interface module

	
class pylablib.core.devio.interface.IDevice

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A base class for an instrument.

Contains some useful functions for dealing with device settings.

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
class pylablib.core.devio.interface.IParameterClass(name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic parameter class.

Deals with converting device interface representation and the ‘internal’ representation (e.g., names used in SCPI commands or integer indices).
Also responsible for validating the user-passed and device-returned parameters.

Needs to define to methods: __call__ for converting user parameters (‘alias’) into the device parameters (‘value’)
and i() for the opposite conversion.
In addition, it provides using_device() context manager to temporarily change the device attribute,
which can be used by some parameter classes for device-dependent conversions.

	Parameters:

	name – parameter class name; used to match method arguments with corresponding classes.

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
class pylablib.core.devio.interface.ICheckingParameterClass(name)

	Bases: IParameterClass

Parameter class which separately handles checking and conversion.

Specifies six methods: check_value(), to_alias() and _value_error_str for handling value-to-alias conversion,
and check_alias(), to_value() and _alias_error_str for handling alias-to-value conversion.

	
check_alias(alias)

	Check if the alias is valid

	
check_value(value)

	Check if the device value is valid

	
to_value(alias)

	Convert the alias into a device value

	
to_alias(value)

	Convert the device value into an alias

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
docstring()

	Get a parameter docstring

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.RangeParameterClass(name, minval=None, maxval=None, out_of_range='error')

	Bases: ICheckingParameterClass

Parameter class for numerical values constrained to a certain range.

	Parameters:

	
	name – parameter class name

	minval – minimal allowed value (inclusive); None means no lower limit

	maxval – maximal allowed value (inclusive); None means no upper limit

	out_of_range – action if an out-of-range value is supplied; can be either "error" (raise an error), or "truncate" (truncate to the nearest limit).

	
check_value(value)

	Check if the device value is valid

	
check_alias(alias)

	Check if the alias is valid

	
to_value(alias)

	Convert the alias into a device value

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
to_alias(value)

	Convert the device value into an alias

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.IEnumParameterClass(name, allowed_alias='device_values', allowed_value='exact', alias_case=None, value_case=None, match_prefix=False)

	Bases: ICheckingParameterClass

Parameter class for a generic enum (i.e., predefined values) parameter.

	Defines two methods for handling conversion:
	
	_get_value_map which returns a dictionary for converting device values into aliases,

	_get_alias_map which returns a dictionary for converting aliases into device values.

These methods need to be redefined in subclasses.

	Parameters:

	
	name – parameter class name

	allowed_alias – specifies a range of allowed aliases; can be "exact" (only exact map matches are allowed),
"device_value" (exact map matches and raw device values are allowed), or "all" (all values are allowed);
in the latter two cases the value not in the map are passed as is.

	allowed_value – specifies a range of allowed device values; can be "exact" (only exact map matches are allowed),
or "all" (all values are allowed); in the latter case the value not in the map is passed as is.

	alias_case – default alias parameter case for string values; can be None (no case normalization),
or "lower" or "upper" (any received or returned alias will be normalized into this case)

	value_case – default value parameter case for string values; can be None (no case normalization),
or "lower" or "upper" (any received or returned device value will be normalized into this case)

	match_prefix – if True, then the keys in the value map (returned by _get_value_map method) are interpreted as prefixes,
so in the value-to-alias conversion the converted value matches the map value if it just starts with it;
in the case of ambiguity (several map values are prefixes for the same converted value), the exact match takes priority;
useful for some SCPI devices, where the shorter version of the value can sometimes be returned.

	
check_value(value)

	Check if the device value is valid

	
check_alias(alias)

	Check if the alias is valid

	
to_value(alias)

	Convert the alias into a device value

	
to_alias(value)

	Convert the device value into an alias

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.EnumParameterClass(name, alias_map, value_map=None, allowed_alias='device_values', allowed_value='exact', alias_case=None, value_case=None, match_prefix=False)

	Bases: IEnumParameterClass

Parameter class for a enum (i.e., predefined values) parameter with the specified mapping.

	Parameters:

	
	name – parameter class name

	alias_map – mapping of aliases to device values; can be a dictionary, or a list of (alias,value) tuples
(in the latter case non-tuple values are also allowed, indicating that value is the same as the alias);
the list representation is useful in cases where the same alias maps to more than one value, so the map inversion is impossible

	value_map – mapping of device values to aliases; can only be a dictionary or None, which means that the alias map is automatically inverted

	allowed_alias – specifies a range of allowed aliases; can be "exact" (only exact map matches are allowed),
"device_value" (exact map matches and raw device values are allowed), or "all" (all values are allowed);
in the latter two cases the value not in the map are passed as is.

	allowed_value – specifies a range of allowed device values; can be "exact" (only exact map matches are allowed),
or "all" (all values are allowed); in the latter case the value not in the map is passed as is.

	alias_case – default alias parameter case for string values; can be None (no case normalization),
or "lower" or "upper" (any received or returned alias will be normalized into this case)

	value_case – default value parameter case for string values; can be None (no case normalization),
or "lower" or "upper" (any received or returned device value will be normalized into this case)

	match_prefix – if True, then the keys in the value map (or values in the alias map, if only it is provided) are assumed to br prefixes,
so in the value-to-alias conversion the converted value matches the map value if it just starts with it;
useful for some SCPI devices, where the shorter version of the value can sometimes be returned.

	
check_alias(alias)

	Check if the alias is valid

	
check_value(value)

	Check if the device value is valid

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
to_alias(value)

	Convert the device value into an alias

	
to_value(alias)

	Convert the alias into a device value

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.FunctionParameterClass(name, to_alias=None, to_value=None, check_value=None, check_alias=None, alias_err=None, value_err=None)

	Bases: ICheckingParameterClass

Parameter class which uses supplied methods for checking, conversion, and generating error messages.

The arguments correspond to the parameter methods with the same names.
When not supplied, checking methods always return True, conversion methods leave value intact, and error string methods generate the default error messages.

	
check_value(value)

	Check if the device value is valid

	
check_alias(alias)

	Check if the alias is valid

	
to_alias(value)

	Convert the device value into an alias

	
to_value(alias)

	Convert the alias into a device value

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.CombinedParameterClass(name, parameters)

	Bases: IParameterClass

A multi-stage combined parameter class, which performs several conversion/check stages.

	Parameters:

	
	name – parameter class name

	parameters – list of parameters classes which are combined;
the order is from the ‘most alias’ to the ‘most device parameter’,
i.e., when converting an alias to a device parameter, it is first passed to the first class, then the second, etc.
(the reverse is done when converting device values into aliases)

	
docstring()

	Get a parameter docstring

	
i(value, device=None)

	Convert device parameter value into a corresponding use parameter value

If not None, device specifies the corresponding device instance for device-dependent conversion.

	
using_device(device)

	Context manager for temporarily changing the device attribute to the given device instance

	
class pylablib.core.devio.interface.TRawParameterValue(value)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
value

	

	
pylablib.core.devio.interface.pval(value)

	Mark that the value has already been treated by the parameter class

	
pylablib.core.devio.interface.use_parameters(*args, **kwargs)

	Wrapper to indicate that a device class method uses device parameter classes.

The corresponding parameters classes are automatically determined if the argument name matches the parameter class name.
The parameters classes can also be defined explicitly using keywords arguments arg=parameter supplied to the wrapper,
where arg is the argument, and parameter is either a parameter class instance, or a parameter class name (the more preferable way).
In addition, an argument _returns can be used to define the parameter class for the return value;
it can also be a list or a tuple of parameter classes, indicating that the returned value is also a list or a tuple.

Module contents

pylablib.core.fileio package

Submodules

pylablib.core.fileio.datafile module

	
class pylablib.core.fileio.datafile.DataFile(data, filepath=None, filetype=None, creation_time=None, comments=None, props=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Describes a single datafile.

	Parameters:

	
	data – the main content of the file (usually a numpy array, a pandas DataFrame or a Dictionary).

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path from which the file was read

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – a source type (e.g., "csv" or "bin")

	creation_time (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – File creation time

	props (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – all the metainfo about the file (extracted from comments, filename etc.)

	comments (list [https://docs.python.org/3/library/stdtypes.html#list]) – all the comments excluding the ones containing props

	
get(name, default=None)

	Get a property from the dictionary. Use default value if it’s not found

pylablib.core.fileio.dict_entry module

Classes for dealing with the Dictionary entries with special conversion rules when saved or loaded.
Used to redefine how certain objects (e.g., tables) inside dictionaries are written into files and read from files.

	
pylablib.core.fileio.dict_entry.is_dict_entry_branch(branch)

	Check if the dictionary branch contains a dictionary entry which needs to be specially converted.

	
class pylablib.core.fileio.dict_entry.DictEntryBuilder(entry_cls, pred=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object for building dictionary entries from objects.

	Parameters:

	
	entry_cls – dictionary entry class

	pred – method used to check if an object can be turned into the corresponding entry;
if None, use the default entry class checker (entry_class.is_data_valid)

	kwargs – keyword arguments passed to the entry constructor along with the data

	
is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
from_data(data)

	Build a dictionary entry from the data

	
class pylablib.core.fileio.dict_entry.DictEntryParser(entry_cls, pred=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object for building dictionary entries from dictionary branches.

	Parameters:

	
	entry_cls – dictionary entry class

	pred – method used to check if a dictionary branch can be turned into the corresponding entry;
if None, use the default entry class checker (entry_class.is_branch_valid)

	kwargs – keyword arguments passed to the entry from_dict class method along with the branch

	
is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
from_dict(dict_ptr, loc)

	Build a dictionary entry from the branch and the file location

	
pylablib.core.fileio.dict_entry.add_dict_entry_builder(builder)

	Add an entry builder to the global list of builders

	
pylablib.core.fileio.dict_entry.add_dict_entry_parser(parser)

	Add an entry parser to the global list of parsers

	
pylablib.core.fileio.dict_entry.add_dict_entry_class(cls)

	Add an entry class.

Automatically registers builder and parser, which take no additional arguments and use default class method
to determine if an object/branch can be converted into an entry.

	
pylablib.core.fileio.dict_entry.from_data(data, builders=None)

	Build a dictionary entry from the data.

builders can contain an additional list of builder to try before using the default ones.

	
pylablib.core.fileio.dict_entry.from_dict(dict_ptr, loc, parsers=None)

	Build a dictionary entry from the dictionary branch and the file location.

parsers can contain an additional list of parsers to try before using the default ones.

	
class pylablib.core.fileio.dict_entry.IDictionaryEntry(data)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic Dictionary entry.

Contains data represented by the node, as well as the way to represent this data as a dictionary branch.

	Parameters:

	data – data to be wrapped

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod from_dict(dict_ptr, loc)

	Convert a dictionary branch to a specific IDictionaryEntry object.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	
to_dict(dict_ptr, loc)

	Convert data to a dictionary branch on saving.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – File location for the data to be saved.

	
pylablib.core.fileio.dict_entry.parse_stored_table_data(desc=None, data=None, out_type='pandas')

	Parse table data corresponding to the given description dictionary and data.

	Parameters:

	
	desc – description dictionary; can be None, if no description is given

	data – separately loaded data; can be None, if no data is given (in this case assume that it is stored in the description dictionary);
can be a tuple (column_data, column_names) (such as the one returned by parse_csv.read_table()),
or a an InlineTable object containing such tuple.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects).

	Returns:

	tuple (data, columns), where data is the data table in the specified format, and columns is the list of columns

	
class pylablib.core.fileio.dict_entry.ITableDictionaryEntry(data, columns=None)

	Bases: IDictionaryEntry

A generic table Dictionary entry.

	Parameters:

	
	data – Table data.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – If not None, list of column names (if None and data is a pandas DataFrame object, get column names from that).

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
classmethod from_dict(dict_ptr, loc, out_type='pandas')

	Convert a dictionary branch to a specific DictionaryEntry object.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects),
used only if the dictionary doesn’t provide the format.

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
to_dict(dict_ptr, loc)

	Convert data to a dictionary branch on saving.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – File location for the data to be saved.

	
class pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry(data, columns=None)

	Bases: ITableDictionaryEntry

An inlined table Dictionary entry.

	Parameters:

	
	data – Table data.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – If not None, a list of column names (if None and data is a pandas DataFrame object, get column names from that).

	
to_dict(dict_ptr, loc)

	Convert the data to a dictionary branch and write the table to the file.

	
classmethod from_dict(dict_ptr, loc, out_type='pandas')

	Build an InlineTableDictionaryEntry object from the dictionary and read the inlined data.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects).

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
class pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry(data, file_format, name, columns, force_name=True)

	Bases: ITableDictionaryEntry

	
classmethod from_dict(dict_ptr, loc, out_type='pandas')

	Convert a dictionary branch to a specific DictionaryEntry object.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects),
used only if the dictionary doesn’t provide the format.

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
to_dict(dict_ptr, loc)

	Convert data to a dictionary branch on saving.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – File location for the data to be saved.

	
class pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry(data=None, file_format='csv', name='', columns=None, force_name=True)

	Bases: IExternalTableDictionaryEntry

An external text table Dictionary entry.

	Parameters:

	
	data – Table data.

	file_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output file format.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name template for the external file (default is the full path connected with "_" symbol).

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – If not None, a list of column names (if None and data is a pandas DataFrame object, get column names from that).

	force_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and the target file already exists, generate a new unique name; otherwise, overwrite the file.

	
to_dict(dict_ptr, loc)

	Convert the data to a dictionary branch and save the table to an external file.

	
classmethod from_dict(dict_ptr, loc, out_type='pandas')

	Build an ExternalTextTableDictionaryEntry object from the dictionary and load the external data.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects).

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
class pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry(data=None, file_format='bin', name='', columns=None, force_name=True)

	Bases: IExternalTableDictionaryEntry

An external binary table Dictionary entry.

	Parameters:

	
	data – Table data.

	file_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output file format.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name template for the external file (default is the full path connected with "_" symbol).

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – If not None, a list of column names (if None and data is a pandas DataFrame object, get column names from that).

	force_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and the target file already exists, generate a new unique name; otherwise, overwrite the file.

	
to_dict(dict_ptr, loc)

	Convert the data to a dictionary branch and save the table to an external file.

	
classmethod from_dict(dict_ptr, loc, out_type='pandas')

	Build an ExternalBinTableDictionaryEntry object from the dictionary and load the external data.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format of the data ('array' for numpy arrays or 'pandas' for pandas DataFrame objects).

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
pylablib.core.fileio.dict_entry.table_entry_builder(table_format='inline')

	Make an entry builder for tables depending on the table format.

	Parameters:

	table_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default format for table (numpy arrays or pandas DataFrames) entries. Can be
'inline' (table is written inside the file),
'csv' (external CSV file) or
'bin' (external binary file).

	
class pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry(data, name='', force_name=True)

	Bases: IDictionaryEntry

Generic dictionary entry for data in an external file.

	Parameters:

	
	data – Stored data.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name template for the external file (default is the full path connected with "_" symbol).

	force_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and the target file already exists, generate a new unique name; otherwise, overwrite the file.

	
file_format = None

	

	
static add_file_format(subclass)

	Register an IExternalFileDictionaryEntry as a possible stored file format.

Used to automatically invoke a correct loader when loading the dictionary file.
Only needs to be done once after the subclass declaration.

	
to_dict(dict_ptr, loc)

	Convert the data to a dictionary branch and save the data to an external file

	
classmethod from_dict(dict_ptr, loc)

	Build an IExternalFileDictionaryEntry object from the dictionary and load the external data.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	
get_preamble()

	Generate preamble (dictionary with supplementary data which allows to load the data from the file)

	
save_file(location_file)

	Save stored data into the given location.

Virtual method, should be overloaded in subclasses

	
classmethod load_file(location_file, preamble)

	Load stored data from the given location, using the supplied preamble.

Virtual method, should be overloaded in subclasses

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
class pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry(data, name='', force_name=True, dtype=None)

	Bases: IExternalFileDictionaryEntry

A dictionary entry which stores the numpy array data into an external file in binary format.

	Parameters:

	
	data – Numpy array data.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name template for the external file (default is the full path connected with "_" symbol).

	force_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and the target file already exists, generate a new unique name; otherwise, overwrite the file.

	dtype – numpy dtype to load/save the data (by default, dtype of the supplied data).

	
file_format = 'numpy'

	

	
get_preamble()

	Generate preamble (dictionary with supplementary data which allows to load the data from the file)

	
save_file(location_file)

	Save stored data into the given location

	
classmethod load_file(location_file, preamble)

	Load stored data from the given location, using the supplied preamble

	
static add_file_format(subclass)

	Register an IExternalFileDictionaryEntry as a possible stored file format.

Used to automatically invoke a correct loader when loading the dictionary file.
Only needs to be done once after the subclass declaration.

	
classmethod from_dict(dict_ptr, loc)

	Build an IExternalFileDictionaryEntry object from the dictionary and load the external data.

	Parameters:

	
	dict_ptr (dictionary.DictionaryPointer) – Pointer to the dictionary location for the entry.

	loc – Location for the data to be loaded.

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

	
to_dict(dict_ptr, loc)

	Convert the data to a dictionary branch and save the data to an external file

	
class pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry(data)

	Bases: IDictionaryEntry

A dictionary entry which expands containers (lists, tuples, dictionaries) into subdictionaries.

Useful when the data in the containers is complex, so writing it into one line (as is default for lists and tuples) wouldn’t work.

	Parameters:

	data – Container data.

	
to_dict(dict_ptr, loc)

	Convert the stored container to a dictionary branch

	
classmethod from_dict(dict_ptr, loc)

	Build an ExpandedContainerDictionaryEntry object from the dictionary

	
classmethod is_branch_valid(branch)

	Check if a branch can be parsed by the current entry class

	
classmethod is_data_valid(data)

	Check if a data object can be wrapped by the current entry class

pylablib.core.fileio.loadfile module

Utilities for reading data files.

	
class pylablib.core.fileio.loadfile.IInputFileFormat

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic class for an input file format.

Based on file_format or autodetection, calls one of its subclasses to read the file.

Defines a single static method

	
static detect_file_format(location_file)

	

	
read(location_file)

	Read a file at a given location

	
class pylablib.core.fileio.loadfile.ITextInputFileFormat

	Bases: IInputFileFormat

Generic class for a text input file format.

Based on file_format or autodetection, calls one of its subclasses to read the file.

	
static detect_file_format(location_file)

	

	
read(location_file)

	Read a file at a given location

	
class pylablib.core.fileio.loadfile.CSVTableInputFileFormat(out_type='default', dtype='numeric', columns=None, delimiters=None, empty_entry_substitute=None, ignore_corrupted_lines=True, skip_lines=0)

	Bases: ITextInputFileFormat

Class for CSV input file format.

	Parameters:

	
	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result: 'array' for numpy array, 'pandas' for pandas DataFrame,
or 'default' (determined by the library default; 'pandas' by default)

	dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex',
'numeric' (tries to coerce to minimal possible numeric type, raises error if data can’t be converted to complex),
'generic' (accept arbitrary types, including lists, dictionaries, escaped strings, etc.),
'raw' (keep raw string).

	columns – either a number if columns, or a list of columns names.

	delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Regex string which recognizes entries delimiters (by default r"\s*,\s*|\s+", i.e., commas and whitespaces).

	empty_entry_substitute – Substitute for empty table entries. If None, all empty table entries are skipped.

	ignore_corrupted_lines (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, skip corrupted (e.g., non-numeric for numeric dtype, or with too few entries) lines;
otherwise, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	skip_lines (int [https://docs.python.org/3/library/functions.html#int]) – Number of lines to skip from the beginning of the file.

	
read(location_file)

	Read a file at a given location

	
static detect_file_format(location_file)

	

	
class pylablib.core.fileio.loadfile.DictionaryInputFileFormat(case_normalization=None, inline_dtype='generic', inline_out_type='default', entry_format='value', allow_duplicate_keys=False, skip_lines=0)

	Bases: ITextInputFileFormat

Class for Dictionary input file format.

	Parameters:

	
	location_file – Location of the data.

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – If None, the dictionary paths are case-sensitive;
otherwise, defines the way the entries are normalized ('lower' or 'upper').

	inline_dtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – dtype for inlined tables.

	inline_out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result of the inline table:
'array' for numpy array, 'pandas' for pandas DataFrame,
'raw' for raw InlineTable data containing tuple (column_data, column_names),
or 'default' (determined by the library default; 'pandas' by default).

	entry_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines the way for dealing with dict_entry.IDictionaryEntry objects
(objects transformed into dictionary branches with special recognition rules). Can be
'branch' (don’t attempt to recognize those object, leave dictionary as in the file),
'dict_entry' (recognize and leave as dict_entry.IDictionaryEntry objects) or
'value' (recognize and keep the value).

	allow_duplicate_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – if False and the same key is mentioned twice in the file, raise and error

	skip_lines (int [https://docs.python.org/3/library/functions.html#int]) – Number of lines to skip from the beginning of the file.

	
read(location_file)

	Read a file at a given location

	
static detect_file_format(location_file)

	

	
class pylablib.core.fileio.loadfile.BinaryTableInputFileFormatter(out_type='default', dtype='<f8', columns=None, packing='flatten', preamble=None, skip_bytes=0)

	Bases: IInputFileFormat

Class for binary input file format.

	Parameters:

	
	location_file – Location of the data.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result: 'array' for numpy array, 'pandas' for pandas DataFrame,
or 'default' (determined by the library default; 'pandas' by default)

	dtype – numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] describing the data.

	columns – either number if columns, or a list of columns names.

	packing (str [https://docs.python.org/3/library/stdtypes.html#str]) – The way the 2D array is packed. Can be either
'flatten' (data is stored row-wise) or
'transposed' (data is stored column-wise).

	preamble (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If not None, defines binary file parameters that supersede the parameters supplied to the function.
The defined parameters are 'dtype', 'packing', 'ncols' (number of columns) and 'nrows' (number of rows).

	skip_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Number of bytes to skip from the beginning of the file.

	
read(location_file)

	Read a file at a given location

	
static detect_file_format(location_file)

	

	
pylablib.core.fileio.loadfile.build_file_format(location_file, file_format='generic', **kwargs)

	Create file format (IInputFileFormat instance) for given parameters and file locations.

If file_format is already an instance of IInputFileFormat, return unchanged.
If file_format is generic (e.g., "generic" or "test"), attempt to autodetect it from the file.
**kwargs are passed to the file format constructor.

	
pylablib.core.fileio.loadfile.load_csv(path=None, out_type='default', dtype='numeric', columns=None, delimiters=None, empty_entry_substitute=None, ignore_corrupted_lines=True, skip_lines=0, loc='file', encoding=None, return_file=False)

	Load data table from a CSV/table file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result: 'array' for numpy array, 'pandas' for pandas DataFrame,
or 'default' (determined by the library default; 'pandas' by default)

	dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex',
'numeric' (tries to coerce to minimal possible numeric type, raises error if data can’t be converted to complex),
'generic' (accept arbitrary types, including lists, dictionaries, escaped strings, etc.),
'raw' (keep raw string).

	columns – either a number if columns, or a list of columns names

	delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – regex string which recognizes entries delimiters (by default r"\s*,\s*|\s+", i.e., commas and whitespaces)

	empty_entry_substitute – substitute for empty table entries. If None, all empty table entries are skipped

	ignore_corrupted_lines (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, skip corrupted (e.g., non-numeric for numeric dtype, or with too few entries) lines;
otherwise, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	skip_lines (int [https://docs.python.org/3/library/functions.html#int]) – number of lines to skip from the beginning of the file

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

	
pylablib.core.fileio.loadfile.load_csv_desc(path=None, loc='file', encoding=None, return_file=False)

	Load data from the extended CSV table file.

Analogous to load_dict(), but doesn’t allow any additional parameters (which don’t matter in this case).

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

	
pylablib.core.fileio.loadfile.load_bin(path=None, out_type='default', dtype='<f8', columns=None, packing='flatten', preamble=None, skip_bytes=0, loc='file', encoding=None, return_file=False)

	Load data from the binary file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result: 'array' for numpy array, 'pandas' for pandas DataFrame,
or 'default' (determined by the library default; 'pandas' by default)

	dtype – numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] describing the data.

	columns – either number if columns, or a list of columns names.

	packing (str [https://docs.python.org/3/library/stdtypes.html#str]) – The way the 2D array is packed. Can be either
'flatten' (data is stored row-wise) or
'transposed' (data is stored column-wise).

	preamble (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If not None, defines binary file parameters that supersede the parameters supplied to the function.
The defined parameters are 'dtype', 'packing', 'ncols' (number of columns) and 'nrows' (number of rows).

	skip_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Number of bytes to skip from the beginning of the file.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

	
pylablib.core.fileio.loadfile.load_bin_desc(path=None, loc='file', encoding=None, return_file=False)

	Load data from the binary file with a description.

Analogous to load_dict(), but doesn’t allow any additional parameters (which don’t matter in this case).

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

	
pylablib.core.fileio.loadfile.load_dict(path=None, case_normalization=None, inline_dtype='generic', entry_format='value', inline_out_type='default', skip_lines=0, allow_duplicate_keys=False, loc='file', encoding=None, return_file=False)

	Load data from the dictionary file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – If None, the dictionary paths are case-sensitive;
otherwise, defines the way the entries are normalized ('lower' or 'upper').

	inline_dtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – dtype for inlined tables.

	inline_out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result of the inline table:
'array' for numpy array, 'pandas' for pandas DataFrame,
'raw' for raw InlineTable data containing tuple (column_data, column_names),
or 'default' (determined by the library default; 'pandas' by default).

	entry_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines the way for dealing with dict_entry.IDictionaryEntry objects
(objects transformed into dictionary branches with special recognition rules). Can be
'branch' (don’t attempt to recognize those object, leave dictionary as in the file),
'dict_entry' (recognize and leave as dict_entry.IDictionaryEntry objects) or
'value' (recognize and keep the value).

	allow_duplicate_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – if False and the same key is mentioned twice in the file, raise and error

	skip_lines (int [https://docs.python.org/3/library/functions.html#int]) – Number of lines to skip from the beginning of the file.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

	
pylablib.core.fileio.loadfile.load_generic(path=None, file_format=None, loc='file', encoding=None, return_file=False, **kwargs)

	Load data from the file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file of a file-like object

	file_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – input file format; if None, attempt to auto-detect file format (same as 'generic');
can also be an IInputFileFormat instance for specific reading method

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – location type ("file" means the usual file location; see location.get_location() for details)

	encoding – if a new file location is opened, this specifies the encoding

	return_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return DataFile object (contains some metainfo); otherwise, return just the file data

**kwargs are passed to the file formatter used to read the data
(see CSVTableInputFileFormat, DictionaryInputFileFormat and BinaryTableInputFileFormatter for the possible arguments).
The default format names are:

	'generic': Generic file format. Attempt to autodetect, raise IOError [https://docs.python.org/3/library/exceptions.html#IOError] if unsuccessful;

	'txt': Generic text file. Attempt to autodetect, raise IOError [https://docs.python.org/3/library/exceptions.html#IOError] if unsuccessful

	'csv': CSV file, corresponds to CSVTableInputFileFormat;

	'dict': Dictionary file, corresponds to DictionaryInputFileFormat;

	'bin': Binary file, corresponds to BinaryTableInputFileFormatter

pylablib.core.fileio.loadfile_utils module

Miscellaneous utilities for reading data files.

	
pylablib.core.fileio.loadfile_utils.is_unprintable_character(chn)

	

	
pylablib.core.fileio.loadfile_utils.detect_binary_file(stream)

	Check if the opened file is binary

	
pylablib.core.fileio.loadfile_utils.test_row_type(line)

	Try to determine whether the line is a comment line, a numerical data row, a dictionary row or an unrecognized row.

Doesn’t distinguish with a great accuracy; useful only for trying to guess file format.

	
pylablib.core.fileio.loadfile_utils.detect_textfile_type(stream)

	Try to autodetect text file type: dictionary or table

	
pylablib.core.fileio.loadfile_utils.test_savetime_comment(line)

	Test if the comment resembles a savetime line

	
pylablib.core.fileio.loadfile_utils.find_savetime_comment(comments)

	Try to find savetime comment

	
pylablib.core.fileio.loadfile_utils.test_columns_line(line, cols_num)

	Test if the line looks like a list of columns for a given columns number

	
pylablib.core.fileio.loadfile_utils.find_columns_lines(corrupted, comments, cols_num)

	Try to find a column line (for a given columns number) among the comment and corrupted lines

	
class pylablib.core.fileio.loadfile_utils.InlineTable(table)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple marker class that denotes that the wrapped numpy 2D array should be written inline

	
pylablib.core.fileio.loadfile_utils.parse_dict_line(line)

	Parse stripped dictionary file line

	
pylablib.core.fileio.loadfile_utils.read_dict_and_comments(f, case_normalization=None, inline_dtype='generic', allow_duplicate_keys=False)

	Load dictionary entries and comments from the file stream.

	Parameters:

	
	f – file stream

	case_normalization – case normalization for the returned dictionary; None means that it’s case sensitive, "upper" and "lower" determine how they are normalized

	inline_dtype – dtype for inline tables; by default, use the most generic type (can include Python objects such as lists or strings)

	allow_duplicate_keys – if False and the same key is listed twice, raise and error

Return tuple (data, comment_lines), where data is a dictionary with parsed entries (tables are still represented as ‘raw’, i.e., as a tuple of columns list and column names list),
and comment_lines is a list of comment lines

pylablib.core.fileio.location module

Classes for describing a generic file location.

	
class pylablib.core.fileio.location.LocationName(path=None, ext=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

File name inside a location.

	Parameters:

	
	path – Path inside the location. Gets normalized according to the Dictionary rules (not case-sensitive; '/' and '\' are the delimiters).

	ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name extension (None is default).

	
get_path(default_path='', sep='/')

	Get the string path.

If the object’s path is None, use default_path instead.
If sep is not None, use it to join the path entries; otherwise, return the path in a list form.

	
get_ext(default_ext='')

	Get the extension.

If the object’s ext is None, use default_ext instead.

	
to_string(default_path='', default_ext='', path_sep='/', ext_sep='|', add_empty_ext=True)

	Convert the path to a string representation.

	Parameters:

	
	default_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it as path if the object’s path is None.

	default_ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it as path if the object’s ext is None.

	path_sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it to join the path entries.

	ext_sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it to join path and extension.

	add_empty_ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – If False and the extension is empty, don’t add ext_sep in the end.

	
to_path(default_path='', default_ext='', ext_sep='|', add_empty_ext=True)

	Convert the path to a list representation.

Extension is added with ext_sep to the last entry in the path.

	Parameters:

	
	default_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it as path if the object’s path is None.

	default_ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it as path if the object’s ext is None.

	ext_sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use it to join path and extension.

	add_empty_ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – If False and the extension is empty, don’t add ext_sep in the end.

	
static from_string(expr, ext_sep='|')

	Create a LocationName object from a string representation.

ext_sep defines extension separator; the path separators are '/' and '\'.
Empty path or extension translate into None.

	
static from_object(obj)

	Create a LocationName object from an object.

obj can be a LocationName (return unchanged), tuple or list (use as construct arguments),
string (treat as a string representation) or None (return empty name).

	
copy()

	

	
class pylablib.core.fileio.location.LocationFile(loc, name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A file at a location.

Combines information about the location and the name within this location.
Can be opened for reading or writing.

	Parameters:

	
	loc – File location.

	name – File’s name inside the location.

	
loc

	File location.

	
name

	File’s name inside the location.

	
opened

	Whether the file is currently opened.

	
open(mode='read', data_type='text')

	Open the file.

	Parameters:

	
	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
close()

	Close the file

	
class pylablib.core.fileio.location.IDataLocation

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic location.

	
is_free(name=None)

	Check if the name is unoccupied

	
generate_new_name(prefix_name, idx=0)

	Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

	
open(name=None, mode='read', data_type='text')

	Open a location file.

	Parameters:

	
	name – File name inside the location (None means ‘default’ location),

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
close(name)

	Close a location file.

	
list_opened_files()

	Get a dictionary {string_name: location_file} of all files opened in this location

	
class pylablib.core.fileio.location.OpenedFileLocation(f, open_error=False, check_mode=False, check_data_type=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

File location which corresponds to an already opened file.

	
is_free(name=None)

	

	
generate_new_name(prefix_name, idx=0)

	

	
open(name=None, mode='read', data_type='text')

	

	
close(name)

	

	
list_opened_files()

	

	
class pylablib.core.fileio.location.IFileSystemDataLocation(encoding=None)

	Bases: IDataLocation

A generic filesystem data location.

A single file name describes a single file in the filesystem.

	
get_filesystem_path(name=None, path_type='absolute')

	Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path),
'relative' (return relative path; level depends on the location) or
'name' (only return path inside the location).

	
is_free(name=None)

	Check if the name is unoccupied

	
open(name=None, mode='read', data_type='text')

	Open a location file.

	Parameters:

	
	name – File name inside the location (None means ‘default’ location),

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
close(name)

	Close a location file

	
list_opened_files()

	Get a dictionary {string_name: location_file} of all files opened in this location

	
generate_new_name(prefix_name, idx=0)

	Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

	
class pylablib.core.fileio.location.SingleFileSystemDataLocation(file_path, encoding=None)

	Bases: IFileSystemDataLocation

A location describing a single file.

Any use of a non-default name raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the file.

	
get_filesystem_path(name=None, path_type='absolute')

	Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path),
'relative' (return relative path; level depends on the location) or
'name' (only return path inside the location).

	
close(name)

	Close a location file

	
generate_new_name(prefix_name, idx=0)

	Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

	
is_free(name=None)

	Check if the name is unoccupied

	
list_opened_files()

	Get a dictionary {string_name: location_file} of all files opened in this location

	
open(name=None, mode='read', data_type='text')

	Open a location file.

	Parameters:

	
	name – File name inside the location (None means ‘default’ location),

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
class pylablib.core.fileio.location.PrefixedFileSystemDataLocation(file_path, prefix_template='{0}_{1}', encoding=None)

	Bases: IFileSystemDataLocation

A location describing a set of prefixed files.

	Parameters:

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A master path. Its name is used as a prefix, and its extension is used as a default.

	prefix_template (str [https://docs.python.org/3/library/stdtypes.html#str]) – A str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] string for generating prefixed files. Has two arguments:
the first is the master name, the second is the sub_location.

Multi-level paths translate into nested folders (the top level folder is combined from the file_path prefix and the first path entry).

	
get_filesystem_path(name=None, path_type='absolute')

	Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path),
'relative' (return relative path; level depends on the location) or
'name' (only return path inside the location).

	
close(name)

	Close a location file

	
generate_new_name(prefix_name, idx=0)

	Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

	
is_free(name=None)

	Check if the name is unoccupied

	
list_opened_files()

	Get a dictionary {string_name: location_file} of all files opened in this location

	
open(name=None, mode='read', data_type='text')

	Open a location file.

	Parameters:

	
	name – File name inside the location (None means ‘default’ location),

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
class pylablib.core.fileio.location.FolderFileSystemDataLocation(folder_path, default_name='content', default_ext='', encoding=None)

	Bases: IFileSystemDataLocation

A location describing a single folder.

	Parameters:

	
	folder_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to the folder. Can also have one or two '|' symbols in the end (e.g., 'folder|file|dat'), which separate default name and extension
(overrides default_name and default_ext parameters)

	default_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default file name.

	default_ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default file extension.

Multi-level paths translate into nested subfolders.

	
get_filesystem_path(name=None, path_type='absolute')

	Get the filesystem path corresponding to a given name.

path_type can be 'absolute' (return absolute path),
'relative' (return relative path; level depends on the location) or
'name' (only return path inside the location).

	
close(name)

	Close a location file

	
generate_new_name(prefix_name, idx=0)

	Generate a new name inside the location using the given prefix and starting index.

If idx is None, check just the prefix_name first before starting to append indices.

	
is_free(name=None)

	Check if the name is unoccupied

	
list_opened_files()

	Get a dictionary {string_name: location_file} of all files opened in this location

	
open(name=None, mode='read', data_type='text')

	Open a location file.

	Parameters:

	
	name – File name inside the location (None means ‘default’ location),

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Opening mode. Can be 'read', 'write' or 'append', as well as standard abbreviation (e.g., "r" or "wb").

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either 'text' or 'binary'; if mode is an abbreviation, this parameter is ignored (i.e., open("r","binary") still opens file as text).

	
pylablib.core.fileio.location.get_location(path, loc, *args, **kwargs)

	Build a location.

If path or loc are instances of IDataLocation, return them unchanged.
If loc is a string, it describes location kind:

	'single_file': SingleFileSystemDataLocation with the given path.

	'file' or 'prefixed_file': PrefixedFileSystemDataLocation with the given path as a master path.

	'folder': FolderFileSystemDataLocation with the given folder path.

Any additional arguments are relayed to the constructors.

pylablib.core.fileio.parse_csv module

Utilities for parsing CSV files.

	
class pylablib.core.fileio.parse_csv.ChunksAccumulator(dtype='numeric', ignore_corrupted_lines=True, trim_rows=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for accumulating data chunks into a single array.

	Parameters:

	
	dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex',
'numeric' (tries to coerce to minimal possible numeric type, raises error if data can’t be converted to complex),
'generic' (accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep raw string).

	ignore_corrupted_lines – if True, skip corrupted (e.g., non-numeric for numeric dtype, or with too few entries) lines;
otherwise, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	trim_rows – if True and the row length is larger than expected, drop extra entries; otherwise, treat the row as corrupted

	
corrupted_number()

	

	
convert_columns(raw_columns)

	Convert raw columns into appropriate data structure (numpy array for numeric dtypes, list for generic and raw).

	
add_columns(columns)

	Append columns (lists or numpy arrays) to the existing data.

	
add_chunk(chunk)

	Add a chunk (2D list) to the pre-existing data.

	
pylablib.core.fileio.parse_csv.read_columns(f, dtype, delimiters='\\s*,\\s*|\\s+', empty_entry_substitute=None, ignore_corrupted_lines=True, trim_rows=False, stop_comment=None)

	Load columns from the file stream f.

	Parameters:

	
	dtype – dtype of entries; can be either a single type, or a list of types (one per column).
Possible dtypes are: 'int', 'float', 'complex',
'numeric' (tries to coerce to minimal possible numeric type, raises error if data can’t be converted to complex),
'generic' (accept arbitrary types, including lists, dictionaries, escaped strings, etc.), 'raw' (keep raw string).

	delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Regex string which recognizes delimiters (by default r"\s*,\s*|\s+", i.e., commas and whitespaces).

	empty_entry_substitute – Substitute for empty table entries. If None, all empty table entries are skipped.

	ignore_corrupted_lines – If True, skip corrupted (e.g., non-numeric for numeric dtype, or with too few entries) lines;
otherwise, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	trim_rows – if True and the row length is larger than expected, drop extra entries; otherwise, treat the row as corrupted

	stop_comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Regex string for the stopping comment.
If not None. the function will stop if comment satisfying stop_comment regex is encountered.

	Returns:

	(columns, comments, corrupted_lines).

columns is a list of columns with data.

comments is a list of comment strings.

corrupted_lines is a dict {'size':list, 'type':list} of corrupted lines (already split into entries),
based on the corruption type ('size' means too small size, 'type' means it couldn’t be converted using provided dtype).

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pylablib.core.fileio.parse_csv.columns_to_table(data, columns=None, dtype='numeric', out_type='columns')

	Convert data (columns list) into a table.

	Parameters:

	
	columns – either number if columns, or a list of columns names.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – type of the result: 'array' for numpy array, 'pandas' for pandas DataFrame, 'columns' for tuple (data, columns)

	
pylablib.core.fileio.parse_csv.read_table(f, dtype='numeric', columns=None, out_type='columns', delimiters='\\s*,\\s*|\\s+', empty_entry_substitute=None, ignore_corrupted_lines=True, trim_rows=False, stop_comment=None)

	Load table from the file stream f.

Arguments are the same as in read_columns() and columns_to_table().

	Returns:

	(table, comments, corrupted_lines).

table is a table of the format out_type.

corrupted_lines is a dict {'size':list, 'type':list} of corrupted lines (already split into entries),
based on the corruption type ('size' means too small size, 'type' means it couldn’t be converted using provided dtype).

comments is a list of comment strings.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

pylablib.core.fileio.savefile module

Utilities for writing data files.

	
class pylablib.core.fileio.savefile.IOutputFileFormat(format_name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic class for an output file format.

	Parameters:

	format_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the format (to be defined in subclasses).

	
write_file(location_file, to_save)

	

	
write_data(location_file, data)

	

	
write(location_file, data)

	

	
class pylablib.core.fileio.savefile.ITextOutputFileFormat(format_name, save_props=True, save_comments=True, save_time=True, new_time=True)

	Bases: IOutputFileFormat

Generic class for a text output file format.

	Parameters:

	
	format_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the format (to be defined in subclasses).

	save_props (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its props metainfo.

	save_comments (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its comments metainfo.

	save_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append the file creation time in the end.

	new_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If saving datafile.DataFile object, determines if the time should be updated to the current time.

	
make_comment_line(comment)

	

	
make_prop_line(name, value)

	

	
make_savetime_line(time)

	

	
static write_line(stream, line)

	

	
write_comments(stream, comments)

	

	
write_props(stream, props)

	

	
write_savetime(stream, time)

	

	
write_file(location_file, to_save)

	

	
write(location_file, data)

	

	
write_data(location_file, data)

	

	
class pylablib.core.fileio.savefile.CSVTableOutputFileFormat(delimiters='\t', value_formats=None, use_rep_classes=False, save_columns=True, save_props=True, save_comments=True, save_time=True)

	Bases: ITextOutputFileFormat

Class for CSV output file format.

	Parameters:

	
	delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used to separate entries in a row.

	value_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function.

	use_rep_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use representation classes for Dictionary entries (e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1, 2, 3]");
This improves storage fidelity, but makes result harder to parse (e.g., by external string parsers).

	save_columns (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, save column names as a comment line in the beginning of the file.

	save_props (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its props metainfo.

	save_comments (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its comments metainfo.

	save_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append the file creation time in the end.

	
get_table_line(line)

	

	
get_columns_line(columns)

	

	
write_data(location_file, data)

	Write data to a CSV file.

	Parameters:

	
	location_file – Location of the destination.

	data – Data to be saved. Can be a pandas DataFrame or an arbitrary 2D array (numpy array, 2D list, etc.);
if the data is not DataFrame or numpy 2D array, it gets converted into a DataFrame using the standard constructor (i.e., 2D list is interpreted as a list of rows)

	
make_comment_line(comment)

	

	
make_prop_line(name, value)

	

	
make_savetime_line(time)

	

	
write(location_file, data)

	

	
write_comments(stream, comments)

	

	
write_file(location_file, to_save)

	

	
static write_line(stream, line)

	

	
write_props(stream, props)

	

	
write_savetime(stream, time)

	

	
class pylablib.core.fileio.savefile.DictionaryOutputFileFormat(param_formats=None, use_rep_classes=False, table_format='inline', inline_delimiters='\t', inline_formats=None, save_props=True, save_comments=True, save_time=True)

	Bases: ITextOutputFileFormat

Class for Dictionary output file format.

	Parameters:

	
	param_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function when writing Dictionary entries.

	use_rep_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use representation classes for Dictionary entries (e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1, 2, 3]");
This improves storage fidelity, but makes result harder to parse (e.g., by external string parsers).

	table_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default format for table (numpy arrays or pandas DataFrames) entries. Can be
'inline' (table is written inside the file),
'csv' (external CSV file) or
'bin' (external binary file).

	inline_delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used to separate entries in a row for inline tables.

	inline_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function when writing inline tables.

	save_props (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its props metainfo.

	save_comments (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its comments metainfo.

	save_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append the file creation time in the end.

	
get_dictionary_line(path, value)

	

	
write_data(location_file, data)

	Write data to a Dictionary file.

	Parameters:

	
	location_file – Location of the destination.

	data – Data to be saved. Should be object of class Dictionary.

	
make_comment_line(comment)

	

	
make_prop_line(name, value)

	

	
make_savetime_line(time)

	

	
write(location_file, data)

	

	
write_comments(stream, comments)

	

	
write_file(location_file, to_save)

	

	
static write_line(stream, line)

	

	
write_props(stream, props)

	

	
write_savetime(stream, time)

	

	
class pylablib.core.fileio.savefile.IBinaryOutputFileFormat(format_name)

	Bases: IOutputFileFormat

	
get_preamble(location_file, data)

	

	
write(location_file, data)

	

	
write_data(location_file, data)

	

	
write_file(location_file, to_save)

	

	
class pylablib.core.fileio.savefile.TableBinaryOutputFileFormat(dtype=None, transposed=False)

	Bases: IBinaryOutputFileFormat

Class for binary output file format.

	Parameters:

	
	dtype – a string with numpy dtype (e.g., "<f8") used to save the data. By default, use little-endian ("<") variant kind of the supplied data array dtype

	transposed (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, write the data row-wise; otherwise, write it column-wise.

	
get_dtype(table)

	

	
get_preamble(location_file, data)

	Generate a preamble (dictionary describing the file format).

The parameters are 'dtype', 'packing' ('transposed' or 'flatten', depending on the transposed attribute),
'ncol' (number of columns) and 'nrows' (number of rows).

	
write_data(location_file, data)

	Write data to a binary file.

	Parameters:

	
	location_file – Location of the destination.

	data – Data to be saved. Can be a pandas DataFrame or an arbitrary 2D array (numpy array, 2D list, etc.)
Converted to numpy array before saving.

	
write_file(location_file, to_save)

	

	
write(location_file, data)

	

	
pylablib.core.fileio.savefile.get_output_format(data, output_format, **kwargs)

	

	
pylablib.core.fileio.savefile.save_csv(data, path, delimiters='\t', value_formats=None, use_rep_classes=False, save_columns=True, save_props=True, save_comments=True, save_time=True, loc='file', encoding=None)

	Save data to a CSV file.

	Parameters:

	
	data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile object containing this data).

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used to separate entries in a row.

	value_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function.

	use_rep_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use representation classes for Dictionary entries (e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1, 2, 3]");
This improves storage fidelity, but makes result harder to parse (e.g., by external string parsers).

	save_columns (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, save column names as a comment line in the beginning of the file.

	save_props (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its props metainfo.

	save_comments (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its comments metainfo.

	save_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append the file creation time in the end.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

	
pylablib.core.fileio.savefile.save_csv_desc(data, path, loc='file', encoding=None)

	Save data table to a dictionary file with an inlined table.

Compared to save_csv(), supports more pandas features (index, column multi-index), but can only be directly read by pylablib.

	Parameters:

	
	data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile object containing this data).

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

	
pylablib.core.fileio.savefile.save_bin(data, path, dtype=None, transposed=False, loc='file', encoding=None)

	Save data to a binary file.

	Parameters:

	
	data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile object containing this data).

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	dtype – numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] describing the data. By default, use little-endian ("<") variant kind of the supplied data array dtype.

	transposed (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, write the data row-wise; otherwise, write it column-wise.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

	
pylablib.core.fileio.savefile.save_bin_desc(data, path, loc='file', encoding=None)

	Save data to a binary file with an additional description file, which contains all of the data related to loading (shape, dtype, columns, etc.)

	Parameters:

	
	data – Data to be saved (2D numpy array, pandas DataFrame, or a datafile.DataFile object containing this data).

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

	
pylablib.core.fileio.savefile.save_dict(data, path, param_formats=None, use_rep_classes=False, table_format='inline', inline_delimiters='\t', inline_formats=None, save_props=True, save_comments=True, save_time=True, loc='file', encoding=None)

	Save dictionary to a text file.

	Parameters:

	
	data – Data to be saved.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	param_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function when writing Dictionary entries.

	use_rep_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use representation classes for Dictionary entries (e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1, 2, 3]");
This improves storage fidelity, but makes result harder to parse (e.g., by external string parsers).

	table_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default format for table (numpy arrays or pandas DataFrames) entries. Can be
'inline' (table is written inside the file),
'csv' (external CSV file) or
'bin' (external binary file).

	inline_delimiters (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used to separate entries in a row for inline tables.

	inline_formats (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines value formats to be passed to utils.string.to_string() function when writing inline tables.

	save_props (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its props metainfo.

	save_comments (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and saving datafile.DataFile object, save its comments metainfo.

	save_time (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, append the file creation time in the end.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

	
pylablib.core.fileio.savefile.save_generic(data, path, output_format=None, loc='file', encoding=None, **kwargs)

	Save data to a file.

	Parameters:

	
	data – Data to be saved.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file or a file-like object.

	output_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output file format. Can be either
None (defaults to 'csv' for table data and 'dict' for Dictionary data),
a string with one of the default format names, or
an already prepared IOutputFileFormat object.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Location type.

	encoding – if a new file location is opened, this specifies the encoding.

**kwargs are passed to the file formatter constructor
(see CSVTableOutputFileFormat, DictionaryOutputFileFormat and TableBinaryOutputFileFormat for the possible arguments).
The default format names are:

	'csv': CSV file, corresponds to CSVTableOutputFileFormat and save_csv();

	'csv': CSV file with an additional dictionary containing format description, corresponds to DictionaryOutputFileFormat and save_csv_desc();

	'bin': Binary file, corresponds to TableBinaryOutputFileFormat and save_bin();

	'bin_desc': Binary file with an additional dictionary containing format description, corresponds to DictionaryOutputFileFormat and save_bin_desc();

	'dict': Dictionary file, corresponds to DictionaryOutputFileFormat and save_dict()

pylablib.core.fileio.table_stream module

	
class pylablib.core.fileio.table_stream.TableStreamFile(path, columns=None, delimiter='\t', fmt=None, add_timestamp=False, header_prepend='# ')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Expanding table file.

Can define column names and formats for different columns, and repeatedly write data into the same file.
Useful for, e.g., continuous log files.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the destination file.

	columns (list [https://docs.python.org/3/library/stdtypes.html#list]) – If not None, it’s a list of column names to be added as a header on creation.

	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) – Values delimiter.

	fmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, it’s a list of format strings for the line entries (e.g., ".3f");
instead of format string one can also be None, which means using the standard to_string() conversion function

	add_timestamp (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, add the UNIX timestamp in the beginning of each line (columns and format are expanded accordingly)

	header_prepend – the string to prepend to the header line; by default, a comment symbol, which is best compatibly with loadfile.load_csv() function

	
write_text_lines(lines)

	Write several text lines into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

	Parameters:

	lines ([str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of lines to write.

	
write_row(row)

	Write a single data row into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

	Parameters:

	data (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Data row to be added.

	
write_multiple_rows(rows)

	Write a multiple data lines into the file.

Create the file if it doesn’t exist (in which case the header is automatically added).

	Parameters:

	rows ([list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Data rows to be added.

Module contents

pylablib.core.gui package

Subpackages

	pylablib.core.gui.widgets package
	Submodules

	pylablib.core.gui.widgets.button module
	ToggleButton
	ToggleButton.set_value_labels()

	ToggleButton.value_changed

	ToggleButton.get_value()

	ToggleButton.set_value()

	ToggleButton.repr_value()

	pylablib.core.gui.widgets.combo_box module
	ComboBox
	ComboBox.wheelEvent()

	ComboBox.set_out_of_range()

	ComboBox.set_direct_index_action()

	ComboBox.index_to_value()

	ComboBox.value_to_index()

	ComboBox.set_index_values()

	ComboBox.get_index_values()

	ComboBox.get_options()

	ComboBox.get_options_dict()

	ComboBox.set_options()

	ComboBox.insert_option()

	ComboBox.value_changed

	ComboBox.get_value()

	ComboBox.set_value()

	ComboBox.repr_value()

	pylablib.core.gui.widgets.container module
	TTimer
	TTimer.name

	TTimer.period

	TTimer.timer

	TTimerEvent
	TTimerEvent.loop

	TTimerEvent.start

	TTimerEvent.stop

	TTimerEvent.timer

	TChild
	TChild.gui_values_path

	TChild.name

	TChild.widget

	IQContainer
	IQContainer.TimerUIDGenerator

	IQContainer.contained_value_changed

	IQContainer.setup_name()

	IQContainer.setup()

	IQContainer.add_timer()

	IQContainer.start_timer()

	IQContainer.stop_timer()

	IQContainer.is_timer_running()

	IQContainer.add_timer_event()

	IQContainer.add_child_values()

	IQContainer.add_child()

	IQContainer.get_child()

	IQContainer.remove_child()

	IQContainer.add_virtual_element()

	IQContainer.add_property_element()

	IQContainer.start()

	IQContainer.stop()

	IQContainer.is_running()

	IQContainer.is_stopping()

	IQContainer.clear()

	IQContainer.get_handler()

	IQContainer.get_widget()

	IQContainer.get_value()

	IQContainer.get_all_values()

	IQContainer.set_value()

	IQContainer.set_all_values()

	IQContainer.get_value_changed_signal()

	IQContainer.update_value()

	IQContainer.get_indicator()

	IQContainer.get_all_indicators()

	IQContainer.set_indicator()

	IQContainer.set_all_indicators()

	IQContainer.update_indicators()

	QContainer
	QContainer.TimerUIDGenerator

	QContainer.add_child()

	QContainer.add_child_values()

	QContainer.add_property_element()

	QContainer.add_timer()

	QContainer.add_timer_event()

	QContainer.add_virtual_element()

	QContainer.clear()

	QContainer.contained_value_changed

	QContainer.get_all_indicators()

	QContainer.get_all_values()

	QContainer.get_child()

	QContainer.get_handler()

	QContainer.get_indicator()

	QContainer.get_value()

	QContainer.get_value_changed_signal()

	QContainer.get_widget()

	QContainer.is_running()

	QContainer.is_stopping()

	QContainer.is_timer_running()

	QContainer.remove_child()

	QContainer.set_all_indicators()

	QContainer.set_all_values()

	QContainer.set_indicator()

	QContainer.set_value()

	QContainer.setup()

	QContainer.setup_name()

	QContainer.start()

	QContainer.start_timer()

	QContainer.stop()

	QContainer.stop_timer()

	QContainer.update_indicators()

	QContainer.update_value()

	IQWidgetContainer
	IQWidgetContainer.setup()

	IQWidgetContainer.add_child()

	IQWidgetContainer.remove_child()

	IQWidgetContainer.add_frame()

	IQWidgetContainer.add_group_box()

	IQWidgetContainer.clear()

	IQWidgetContainer.TimerUIDGenerator

	IQWidgetContainer.add_child_values()

	IQWidgetContainer.add_decoration_label()

	IQWidgetContainer.add_padding()

	IQWidgetContainer.add_property_element()

	IQWidgetContainer.add_spacer()

	IQWidgetContainer.add_sublayout()

	IQWidgetContainer.add_timer()

	IQWidgetContainer.add_timer_event()

	IQWidgetContainer.add_to_layout()

	IQWidgetContainer.add_virtual_element()

	IQWidgetContainer.contained_value_changed

	IQWidgetContainer.get_all_indicators()

	IQWidgetContainer.get_all_values()

	IQWidgetContainer.get_child()

	IQWidgetContainer.get_element_position()

	IQWidgetContainer.get_handler()

	IQWidgetContainer.get_indicator()

	IQWidgetContainer.get_layout_shape()

	IQWidgetContainer.get_sublayout()

	IQWidgetContainer.get_sublayout_kind()

	IQWidgetContainer.get_value()

	IQWidgetContainer.get_value_changed_signal()

	IQWidgetContainer.get_widget()

	IQWidgetContainer.insert_column()

	IQWidgetContainer.insert_row()

	IQWidgetContainer.is_running()

	IQWidgetContainer.is_stopping()

	IQWidgetContainer.is_timer_running()

	IQWidgetContainer.iter_sublayout_items()

	IQWidgetContainer.remove_layout_element()

	IQWidgetContainer.set_all_indicators()

	IQWidgetContainer.set_all_values()

	IQWidgetContainer.set_column_stretch()

	IQWidgetContainer.set_indicator()

	IQWidgetContainer.set_row_stretch()

	IQWidgetContainer.set_value()

	IQWidgetContainer.setup_name()

	IQWidgetContainer.start()

	IQWidgetContainer.start_timer()

	IQWidgetContainer.stop()

	IQWidgetContainer.stop_timer()

	IQWidgetContainer.update_indicators()

	IQWidgetContainer.update_value()

	IQWidgetContainer.using_layout()

	IQWidgetContainer.using_new_sublayout()

	QWidgetContainer
	QWidgetContainer.TimerUIDGenerator

	QWidgetContainer.add_child()

	QWidgetContainer.add_child_values()

	QWidgetContainer.add_decoration_label()

	QWidgetContainer.add_frame()

	QWidgetContainer.add_group_box()

	QWidgetContainer.add_padding()

	QWidgetContainer.add_property_element()

	QWidgetContainer.add_spacer()

	QWidgetContainer.add_sublayout()

	QWidgetContainer.add_timer()

	QWidgetContainer.add_timer_event()

	QWidgetContainer.add_to_layout()

	QWidgetContainer.add_virtual_element()

	QWidgetContainer.clear()

	QWidgetContainer.contained_value_changed

	QWidgetContainer.get_all_indicators()

	QWidgetContainer.get_all_values()

	QWidgetContainer.get_child()

	QWidgetContainer.get_element_position()

	QWidgetContainer.get_handler()

	QWidgetContainer.get_indicator()

	QWidgetContainer.get_layout_shape()

	QWidgetContainer.get_sublayout()

	QWidgetContainer.get_sublayout_kind()

	QWidgetContainer.get_value()

	QWidgetContainer.get_value_changed_signal()

	QWidgetContainer.get_widget()

	QWidgetContainer.insert_column()

	QWidgetContainer.insert_row()

	QWidgetContainer.is_running()

	QWidgetContainer.is_stopping()

	QWidgetContainer.is_timer_running()

	QWidgetContainer.iter_sublayout_items()

	QWidgetContainer.remove_child()

	QWidgetContainer.remove_layout_element()

	QWidgetContainer.set_all_indicators()

	QWidgetContainer.set_all_values()

	QWidgetContainer.set_column_stretch()

	QWidgetContainer.set_indicator()

	QWidgetContainer.set_row_stretch()

	QWidgetContainer.set_value()

	QWidgetContainer.setup()

	QWidgetContainer.setup_name()

	QWidgetContainer.start()

	QWidgetContainer.start_timer()

	QWidgetContainer.stop()

	QWidgetContainer.stop_timer()

	QWidgetContainer.update_indicators()

	QWidgetContainer.update_value()

	QWidgetContainer.using_layout()

	QWidgetContainer.using_new_sublayout()

	QFrameContainer
	QFrameContainer.TimerUIDGenerator

	QFrameContainer.add_child()

	QFrameContainer.add_child_values()

	QFrameContainer.add_decoration_label()

	QFrameContainer.add_frame()

	QFrameContainer.add_group_box()

	QFrameContainer.add_padding()

	QFrameContainer.add_property_element()

	QFrameContainer.add_spacer()

	QFrameContainer.add_sublayout()

	QFrameContainer.add_timer()

	QFrameContainer.add_timer_event()

	QFrameContainer.add_to_layout()

	QFrameContainer.add_virtual_element()

	QFrameContainer.clear()

	QFrameContainer.contained_value_changed

	QFrameContainer.get_all_indicators()

	QFrameContainer.get_all_values()

	QFrameContainer.get_child()

	QFrameContainer.get_element_position()

	QFrameContainer.get_handler()

	QFrameContainer.get_indicator()

	QFrameContainer.get_layout_shape()

	QFrameContainer.get_sublayout()

	QFrameContainer.get_sublayout_kind()

	QFrameContainer.get_value()

	QFrameContainer.get_value_changed_signal()

	QFrameContainer.get_widget()

	QFrameContainer.insert_column()

	QFrameContainer.insert_row()

	QFrameContainer.is_running()

	QFrameContainer.is_stopping()

	QFrameContainer.is_timer_running()

	QFrameContainer.iter_sublayout_items()

	QFrameContainer.remove_child()

	QFrameContainer.remove_layout_element()

	QFrameContainer.set_all_indicators()

	QFrameContainer.set_all_values()

	QFrameContainer.set_column_stretch()

	QFrameContainer.set_indicator()

	QFrameContainer.set_row_stretch()

	QFrameContainer.set_value()

	QFrameContainer.setup()

	QFrameContainer.setup_name()

	QFrameContainer.start()

	QFrameContainer.start_timer()

	QFrameContainer.stop()

	QFrameContainer.stop_timer()

	QFrameContainer.update_indicators()

	QFrameContainer.update_value()

	QFrameContainer.using_layout()

	QFrameContainer.using_new_sublayout()

	QDialogContainer
	QDialogContainer.TimerUIDGenerator

	QDialogContainer.add_child()

	QDialogContainer.add_child_values()

	QDialogContainer.add_decoration_label()

	QDialogContainer.add_frame()

	QDialogContainer.add_group_box()

	QDialogContainer.add_padding()

	QDialogContainer.add_property_element()

	QDialogContainer.add_spacer()

	QDialogContainer.add_sublayout()

	QDialogContainer.add_timer()

	QDialogContainer.add_timer_event()

	QDialogContainer.add_to_layout()

	QDialogContainer.add_virtual_element()

	QDialogContainer.clear()

	QDialogContainer.contained_value_changed

	QDialogContainer.get_all_indicators()

	QDialogContainer.get_all_values()

	QDialogContainer.get_child()

	QDialogContainer.get_element_position()

	QDialogContainer.get_handler()

	QDialogContainer.get_indicator()

	QDialogContainer.get_layout_shape()

	QDialogContainer.get_sublayout()

	QDialogContainer.get_sublayout_kind()

	QDialogContainer.get_value()

	QDialogContainer.get_value_changed_signal()

	QDialogContainer.get_widget()

	QDialogContainer.insert_column()

	QDialogContainer.insert_row()

	QDialogContainer.is_running()

	QDialogContainer.is_stopping()

	QDialogContainer.is_timer_running()

	QDialogContainer.iter_sublayout_items()

	QDialogContainer.remove_child()

	QDialogContainer.remove_layout_element()

	QDialogContainer.set_all_indicators()

	QDialogContainer.set_all_values()

	QDialogContainer.set_column_stretch()

	QDialogContainer.set_indicator()

	QDialogContainer.set_row_stretch()

	QDialogContainer.set_value()

	QDialogContainer.setup()

	QDialogContainer.setup_name()

	QDialogContainer.start()

	QDialogContainer.start_timer()

	QDialogContainer.stop()

	QDialogContainer.stop_timer()

	QDialogContainer.update_indicators()

	QDialogContainer.update_value()

	QDialogContainer.using_layout()

	QDialogContainer.using_new_sublayout()

	QGroupBoxContainer
	QGroupBoxContainer.setup()

	QGroupBoxContainer.TimerUIDGenerator

	QGroupBoxContainer.add_child()

	QGroupBoxContainer.add_child_values()

	QGroupBoxContainer.add_decoration_label()

	QGroupBoxContainer.add_frame()

	QGroupBoxContainer.add_group_box()

	QGroupBoxContainer.add_padding()

	QGroupBoxContainer.add_property_element()

	QGroupBoxContainer.add_spacer()

	QGroupBoxContainer.add_sublayout()

	QGroupBoxContainer.add_timer()

	QGroupBoxContainer.add_timer_event()

	QGroupBoxContainer.add_to_layout()

	QGroupBoxContainer.add_virtual_element()

	QGroupBoxContainer.clear()

	QGroupBoxContainer.contained_value_changed

	QGroupBoxContainer.get_all_indicators()

	QGroupBoxContainer.get_all_values()

	QGroupBoxContainer.get_child()

	QGroupBoxContainer.get_element_position()

	QGroupBoxContainer.get_handler()

	QGroupBoxContainer.get_indicator()

	QGroupBoxContainer.get_layout_shape()

	QGroupBoxContainer.get_sublayout()

	QGroupBoxContainer.get_sublayout_kind()

	QGroupBoxContainer.get_value()

	QGroupBoxContainer.get_value_changed_signal()

	QGroupBoxContainer.get_widget()

	QGroupBoxContainer.insert_column()

	QGroupBoxContainer.insert_row()

	QGroupBoxContainer.is_running()

	QGroupBoxContainer.is_stopping()

	QGroupBoxContainer.is_timer_running()

	QGroupBoxContainer.iter_sublayout_items()

	QGroupBoxContainer.remove_child()

	QGroupBoxContainer.remove_layout_element()

	QGroupBoxContainer.set_all_indicators()

	QGroupBoxContainer.set_all_values()

	QGroupBoxContainer.set_column_stretch()

	QGroupBoxContainer.set_indicator()

	QGroupBoxContainer.set_row_stretch()

	QGroupBoxContainer.set_value()

	QGroupBoxContainer.setup_name()

	QGroupBoxContainer.start()

	QGroupBoxContainer.start_timer()

	QGroupBoxContainer.stop()

	QGroupBoxContainer.stop_timer()

	QGroupBoxContainer.update_indicators()

	QGroupBoxContainer.update_value()

	QGroupBoxContainer.using_layout()

	QGroupBoxContainer.using_new_sublayout()

	QScrollAreaContainer
	QScrollAreaContainer.QContainedWidget

	QScrollAreaContainer.setup()

	QScrollAreaContainer.clear()

	QScrollAreaContainer.TimerUIDGenerator

	QScrollAreaContainer.add_child()

	QScrollAreaContainer.add_child_values()

	QScrollAreaContainer.add_property_element()

	QScrollAreaContainer.add_timer()

	QScrollAreaContainer.add_timer_event()

	QScrollAreaContainer.add_virtual_element()

	QScrollAreaContainer.contained_value_changed

	QScrollAreaContainer.get_all_indicators()

	QScrollAreaContainer.get_all_values()

	QScrollAreaContainer.get_child()

	QScrollAreaContainer.get_handler()

	QScrollAreaContainer.get_indicator()

	QScrollAreaContainer.get_value()

	QScrollAreaContainer.get_value_changed_signal()

	QScrollAreaContainer.get_widget()

	QScrollAreaContainer.is_running()

	QScrollAreaContainer.is_stopping()

	QScrollAreaContainer.is_timer_running()

	QScrollAreaContainer.remove_child()

	QScrollAreaContainer.set_all_indicators()

	QScrollAreaContainer.set_all_values()

	QScrollAreaContainer.set_indicator()

	QScrollAreaContainer.set_value()

	QScrollAreaContainer.setup_name()

	QScrollAreaContainer.start()

	QScrollAreaContainer.start_timer()

	QScrollAreaContainer.stop()

	QScrollAreaContainer.stop_timer()

	QScrollAreaContainer.update_indicators()

	QScrollAreaContainer.update_value()

	QTabContainer
	QTabContainer.add_tab()

	QTabContainer.remove_tab()

	QTabContainer.clear()

	QTabContainer.get_current_name()

	QTabContainer.set_by_name()

	QTabContainer.TimerUIDGenerator

	QTabContainer.add_child()

	QTabContainer.add_child_values()

	QTabContainer.add_property_element()

	QTabContainer.add_timer()

	QTabContainer.add_timer_event()

	QTabContainer.add_virtual_element()

	QTabContainer.contained_value_changed

	QTabContainer.get_all_indicators()

	QTabContainer.get_all_values()

	QTabContainer.get_child()

	QTabContainer.get_handler()

	QTabContainer.get_indicator()

	QTabContainer.get_value()

	QTabContainer.get_value_changed_signal()

	QTabContainer.get_widget()

	QTabContainer.is_running()

	QTabContainer.is_stopping()

	QTabContainer.is_timer_running()

	QTabContainer.remove_child()

	QTabContainer.set_all_indicators()

	QTabContainer.set_all_values()

	QTabContainer.set_indicator()

	QTabContainer.set_value()

	QTabContainer.setup()

	QTabContainer.setup_name()

	QTabContainer.start()

	QTabContainer.start_timer()

	QTabContainer.stop()

	QTabContainer.stop_timer()

	QTabContainer.update_indicators()

	QTabContainer.update_value()

	pylablib.core.gui.widgets.edit module
	TextEdit
	TextEdit.keyPressEvent()

	TextEdit.set_expandable()

	TextEdit.focusInEvent()

	TextEdit.focusOutEvent()

	TextEdit.value_entered

	TextEdit.value_changed

	TextEdit.get_value()

	TextEdit.show_value()

	TextEdit.set_value()

	NumEdit
	NumEdit.keyPressEvent()

	NumEdit.set_limiter()

	NumEdit.set_formatter()

	NumEdit.set_float_formatter()

	NumEdit.set_custom_steps()

	NumEdit.get_cursor_order()

	NumEdit.set_cursor_order()

	NumEdit.repr_value()

	NumEdit.value_entered

	NumEdit.value_changed

	NumEdit.get_value()

	NumEdit.show_value()

	NumEdit.set_value()

	pylablib.core.gui.widgets.label module
	TextLabel
	TextLabel.clicked

	TextLabel.mousePressEvent()

	TextLabel.value_changed

	TextLabel.get_value()

	TextLabel.set_value()

	EnumLabel
	EnumLabel.clicked

	EnumLabel.mousePressEvent()

	EnumLabel.set_out_of_range()

	EnumLabel.set_options()

	EnumLabel.value_changed

	EnumLabel.get_value()

	EnumLabel.set_value()

	EnumLabel.repr_value()

	NumLabel
	NumLabel.clicked

	NumLabel.mousePressEvent()

	NumLabel.set_limiter()

	NumLabel.set_formatter()

	NumLabel.set_float_formatter()

	NumLabel.repr_value()

	NumLabel.value_changed

	NumLabel.get_value()

	NumLabel.set_value()

	pylablib.core.gui.widgets.layout_manager module
	IQLayoutManagedWidget
	IQLayoutManagedWidget.setup()

	IQLayoutManagedWidget.using_layout()

	IQLayoutManagedWidget.add_to_layout()

	IQLayoutManagedWidget.remove_layout_element()

	IQLayoutManagedWidget.get_element_position()

	IQLayoutManagedWidget.add_sublayout()

	IQLayoutManagedWidget.using_new_sublayout()

	IQLayoutManagedWidget.get_sublayout()

	IQLayoutManagedWidget.iter_sublayout_items()

	IQLayoutManagedWidget.get_sublayout_kind()

	IQLayoutManagedWidget.get_layout_shape()

	IQLayoutManagedWidget.add_spacer()

	IQLayoutManagedWidget.add_padding()

	IQLayoutManagedWidget.set_row_stretch()

	IQLayoutManagedWidget.set_column_stretch()

	IQLayoutManagedWidget.add_decoration_label()

	IQLayoutManagedWidget.insert_row()

	IQLayoutManagedWidget.insert_column()

	IQLayoutManagedWidget.clear()

	QLayoutManagedWidget
	QLayoutManagedWidget.add_decoration_label()

	QLayoutManagedWidget.add_padding()

	QLayoutManagedWidget.add_spacer()

	QLayoutManagedWidget.add_sublayout()

	QLayoutManagedWidget.add_to_layout()

	QLayoutManagedWidget.clear()

	QLayoutManagedWidget.get_element_position()

	QLayoutManagedWidget.get_layout_shape()

	QLayoutManagedWidget.get_sublayout()

	QLayoutManagedWidget.get_sublayout_kind()

	QLayoutManagedWidget.insert_column()

	QLayoutManagedWidget.insert_row()

	QLayoutManagedWidget.iter_sublayout_items()

	QLayoutManagedWidget.remove_layout_element()

	QLayoutManagedWidget.set_column_stretch()

	QLayoutManagedWidget.set_row_stretch()

	QLayoutManagedWidget.setup()

	QLayoutManagedWidget.using_layout()

	QLayoutManagedWidget.using_new_sublayout()

	pylablib.core.gui.widgets.param_table module
	ParamTable
	ParamTable.setup()

	ParamTable.add_sublayout()

	ParamTable.using_new_sublayout()

	ParamTable.pad_borders()

	ParamTable.add_frame()

	ParamTable.add_group_box()

	ParamTable.ParamRow

	ParamTable.add_simple_widget()

	ParamTable.add_custom_widget()

	ParamTable.remove_widget()

	ParamTable.add_virtual_element()

	ParamTable.add_property_element()

	ParamTable.add_button()

	ParamTable.add_toggle_button()

	ParamTable.add_dropdown_button()

	ParamTable.add_check_box()

	ParamTable.add_text_label()

	ParamTable.add_enum_label()

	ParamTable.add_num_label()

	ParamTable.add_text_edit()

	ParamTable.add_num_edit()

	ParamTable.add_progress_bar()

	ParamTable.add_combo_box()

	ParamTable.set_enabled()

	ParamTable.set_visible()

	ParamTable.get_value()

	ParamTable.get_all_values()

	ParamTable.set_value()

	ParamTable.set_all_values()

	ParamTable.update_value()

	ParamTable.get_widget()

	ParamTable.get_indicator_widget()

	ParamTable.get_label_widget()

	ParamTable.get_child()

	ParamTable.remove_child()

	ParamTable.get_indicator()

	ParamTable.get_all_indicators()

	ParamTable.set_indicator()

	ParamTable.set_all_indicators()

	ParamTable.update_indicators()

	ParamTable.clear()

	ParamTable.TimerUIDGenerator

	ParamTable.add_child()

	ParamTable.add_child_values()

	ParamTable.add_decoration_label()

	ParamTable.add_padding()

	ParamTable.add_spacer()

	ParamTable.add_timer()

	ParamTable.add_timer_event()

	ParamTable.add_to_layout()

	ParamTable.contained_value_changed

	ParamTable.get_element_position()

	ParamTable.get_handler()

	ParamTable.get_layout_shape()

	ParamTable.get_sublayout()

	ParamTable.get_sublayout_kind()

	ParamTable.get_value_changed_signal()

	ParamTable.insert_column()

	ParamTable.insert_row()

	ParamTable.is_running()

	ParamTable.is_stopping()

	ParamTable.is_timer_running()

	ParamTable.iter_sublayout_items()

	ParamTable.remove_layout_element()

	ParamTable.set_column_stretch()

	ParamTable.set_row_stretch()

	ParamTable.setup_name()

	ParamTable.start()

	ParamTable.start_timer()

	ParamTable.stop()

	ParamTable.stop_timer()

	ParamTable.using_layout()

	StatusTable
	StatusTable.setup()

	StatusTable.add_status_line()

	StatusTable.update_status_line()

	StatusTable.TimerUIDGenerator

	StatusTable.add_button()

	StatusTable.add_check_box()

	StatusTable.add_child()

	StatusTable.add_child_values()

	StatusTable.add_combo_box()

	StatusTable.add_custom_widget()

	StatusTable.add_decoration_label()

	StatusTable.add_dropdown_button()

	StatusTable.add_enum_label()

	StatusTable.add_frame()

	StatusTable.add_group_box()

	StatusTable.add_num_edit()

	StatusTable.add_num_label()

	StatusTable.add_padding()

	StatusTable.add_progress_bar()

	StatusTable.add_property_element()

	StatusTable.add_simple_widget()

	StatusTable.add_spacer()

	StatusTable.add_sublayout()

	StatusTable.add_text_edit()

	StatusTable.add_text_label()

	StatusTable.add_timer()

	StatusTable.add_timer_event()

	StatusTable.add_to_layout()

	StatusTable.add_toggle_button()

	StatusTable.add_virtual_element()

	StatusTable.clear()

	StatusTable.contained_value_changed

	StatusTable.get_all_indicators()

	StatusTable.get_all_values()

	StatusTable.get_child()

	StatusTable.get_element_position()

	StatusTable.get_handler()

	StatusTable.get_indicator()

	StatusTable.get_indicator_widget()

	StatusTable.get_label_widget()

	StatusTable.get_layout_shape()

	StatusTable.get_sublayout()

	StatusTable.get_sublayout_kind()

	StatusTable.get_value()

	StatusTable.get_value_changed_signal()

	StatusTable.get_widget()

	StatusTable.insert_column()

	StatusTable.insert_row()

	StatusTable.is_running()

	StatusTable.is_stopping()

	StatusTable.is_timer_running()

	StatusTable.iter_sublayout_items()

	StatusTable.pad_borders()

	StatusTable.remove_child()

	StatusTable.remove_layout_element()

	StatusTable.remove_widget()

	StatusTable.set_all_indicators()

	StatusTable.set_all_values()

	StatusTable.set_column_stretch()

	StatusTable.set_enabled()

	StatusTable.set_indicator()

	StatusTable.set_row_stretch()

	StatusTable.set_value()

	StatusTable.set_visible()

	StatusTable.setup_name()

	StatusTable.start()

	StatusTable.start_timer()

	StatusTable.stop()

	StatusTable.stop_timer()

	StatusTable.update_indicators()

	StatusTable.update_value()

	StatusTable.using_layout()

	StatusTable.using_new_sublayout()

	Module contents

Submodules

pylablib.core.gui.formatter module

	
pylablib.core.gui.formatter.parse_float(s)

	Parse string as a float, with metric prefixes recognition.

Return tuple (sign, integer, dot, fractional, exponent, prefix), where each entry has structure (begin, end, text).
Return None if string is unrecognizable.

	
pylablib.core.gui.formatter.pos_to_order(s, pos)

	For a given string representation of a float and position in the string, get the decimal order for this position.

Return None if string is un-parsable or position is out of range (not in mantissa section of the number).

	
pylablib.core.gui.formatter.order_to_pos(s, order)

	For a given string representation of float and decimal order, get the position in the string corresponding to this order.

If order is out of range for a given representation, truncates to most/least significant digit position.
Return None if string is un-parsable.

	
pylablib.core.gui.formatter.str_to_float(s)

	Return float value of a string, with metric prefixes recognition.

Raise ValueError if string is unrecognizable.

	
pylablib.core.gui.formatter.is_integer(n, tolerance=0.0)

	Check if n is less than tolerance away from the nearest integer.

	
pylablib.core.gui.formatter.float_to_str_SI(n, digits=3, trailing_zeros=False)

	Represent float using SI metric prefixes.

For orders >=27 and <-24 use usual scientific notation with order being multiple of 3.
If trailing_zeros==True, then digits define precision, rather than number significant digits

	
class pylablib.core.gui.formatter.FloatFormatter(output_format='auto', digits=3, add_trailing_zeros=True, leading_zeros=0, explicit_sign=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Floating point number formatter.

Callable object with takes a number as an argument and returns is string representation.

	Parameters:

	
	output_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be "auto" (use standard Python conversion), "SI" (use SI prefixes if possible), or "sci" (scientific “E” notation).

	digits (int [https://docs.python.org/3/library/functions.html#int]) – if add_trailing_zeros==False, determines the number of significant digits; otherwise, determines precision (number of digits after decimal point).

	add_trailing_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always show fixed number of digits after the decimal point, with zero padding if necessary.

	leading_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the minimal size of the integer part (before the decimal point) of the number; pads with zeros if necessary.

	explicit_sign (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always add explicit plus sign.

	
class pylablib.core.gui.formatter.IntegerFormatter

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple integer number formatter.

Callable object with takes a number as an argument and returns is string representation.

For more flexibility (e.g., adding leading zeros) it is possible to use FloatFormatter with digits=0 and add_trailing_zeros=True.

	
class pylablib.core.gui.formatter.FmtStringFormatter(fmt)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Formatter based on format string.

Callable object with takes a number as an argument and returns is string representation.

	
pylablib.core.gui.formatter.as_formatter(formatter)

	Turn an object into a formatter.

Can be a callable object turning value into a string, a string ("float", "int", or a format string, e.g., ".5f"),
or a tuple starting with "float" which contains arguments to the FloatFormatter.

pylablib.core.gui.limiter module

	
exception pylablib.core.gui.limiter.LimitError(value, lower_limit=None, upper_limit=None)

	Bases: ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError]

Error raised when the value is out of limits and can’t be coerced

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.gui.limiter.NumberLimit(lower_limit=None, upper_limit=None, action='coerce', value_type=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Number limiter, which checks validity of user inputs.

Callable object with takes a number as an argument and either returns its coerced version (or the number itself, if it is within limits),
or raises LimitError if it should be ignored.

	Parameters:

	
	lower_limit – lower limit (inclusive), or None if there is no limit.

	upper_limit – upper limit (inclusive), or None if there is no limit.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – action taken if the number is out of limits; either "coerce" (return the closest valid value),
or "ignore" (raise LimitError).

	value_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines value type coercion; can be None (do nothing, only check limits), "float" (cast to float), or "int" (cast to integer).

	
cast(value)

	

	
pylablib.core.gui.limiter.filter_limiter(pred)

	Turn a predicate into a limiter.

Returns a function that raises LimitError if the predicate is false.

	
pylablib.core.gui.limiter.as_limiter(limiter)

	Turn an object into a limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or raises LimitError if it should be ignored;
or it can be a tuple (lower, upper, action, value_type), where lower and upper are the limits (None means no limits),
action defines out-of-limit action (either "ignore" to ignore entered value, or "coerce" to truncate to the nearest limit),
and value_type can be None (keep value as is), "float" (cast value to float), "int" (cast value to int).
If the tuple is shorter, the missing parts are filled by default values (None, None, "ignore", None).

pylablib.core.gui.utils module

	
pylablib.core.gui.utils.get_top_parent(widget)

	Find the top-level parent (parent which does not have further parents)

	
pylablib.core.gui.utils.find_layout_element(layout, element)

	Find a layout element.

Can be a widget, a sublayout, or a layout element
Return item index within the layout.
If layout is empty or item is not present, return None

	
pylablib.core.gui.utils.delete_layout_item(layout, idx)

	Remove and item with the given index (completely delete it)

	
pylablib.core.gui.utils.clean_layout(layout, delete_layout=False)

	Delete all items from the layout.

If delete_layout==True, delete the layout as well.

	
pylablib.core.gui.utils.get_layout_container(widget, top=None, kind='widget')

	Find a container widget or layout which contains the given widget.

Note that the container widget does not necessarily correspond to the element parent.
If no container could be found, return None.
If kind can be either "widget" (return the containing widget),
or "layout" (return the containing layout, which is a layout or sublayout of the containing widget).

This method works by traversing the whole layout tree, so it can be relatively slow.
top can specify the top container (widget or layout) which definitely contains the given widget;
if not specified, use the top-level parent found by get_top_parent().

	
pylablib.core.gui.utils.get_all_layout_containers(widget, top=None, kind='widget')

	Get a list of all widgets or layouts containing the current widget.

The list is arranged from the bottom of the hierarchy (starting from widget) to the top.
Note that the container widget does not necessarily correspond to the element parent.
If no containers could be found, return None.
If kind can be either "widget" (return the containing widgets),
or "layout" (return the containing layouts, which are layouts or sublayouts of the containing widgets.

This method works by traversing the whole layout tree, so it can be relatively slow.
top can specify the top container (widget or layout) which definitely contains the given widget;
if not specified, use the top-level parent found by get_top_parent().

	
pylablib.core.gui.utils.delete_widget(widget)

	Remove widget from its layout container and delete it

	
class pylablib.core.gui.utils.TWidgetLocation(layout, position)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
layout

	

	
position

	

	
pylablib.core.gui.utils.get_widget_location(widget, layout=None)

	Get location of a widget within the given layout.

Return tuple (layout, position), where layout is the layout object,
and position is either a single position number (for box layouts),
or a tuple (row, col, rowspan, colspan) for a grid layout.
If layout is not specified, autodetect it.

	
pylablib.core.gui.utils.place_widget_at_location(widget, location)

	Insert a widget within the given layout location.

location is a tuple tuple (layout, position), where layout is the layout object,
and position is either a single position number (for box layouts),
or a tuple (row, col, rowspan, colspan) for a grid layout.
The tuple has the same format as returned by get_widget_location().

	
pylablib.core.gui.utils.is_layout_row_empty(layout, row)

	Check if the given row in a grid layout is empty

	
pylablib.core.gui.utils.get_last_filled_row(layout, start_row=0)

	Find the last non-empty row in a grid layout after start_row (inclusive).

If all rows after (and including) start_row are empty, return None .

	
pylablib.core.gui.utils.get_first_empty_row(layout, start_row=0)

	Find the first completely empty row in a grid layout after start_row (inclusive)

	
pylablib.core.gui.utils.insert_layout_row(layout, row, stretch=0, compress=False)

	Insert row in a grid layout at a given index.

Any multi-column item spanning over the row (i.e., starting at least one row before row and ending at least one row after row) gets stretched.
Anything else either stays in place (if it’s above row), or gets moved one row down.
stretch determines the stretch factor of the new row.
If compress==True, try to find an empty row below the inserted position and shit it to the new row’s place;
otherwise, add a completely new row.

	
pylablib.core.gui.utils.is_layout_column_empty(layout, col)

	Check if the given column in a grid layout is empty

	
pylablib.core.gui.utils.get_last_filled_column(layout, start_col=0)

	Find the last non-empty column in a grid layout after start_col (inclusive).

If all rows after (and including) start_col are empty, return None .

	
pylablib.core.gui.utils.get_first_empty_column(layout, start_col=0)

	Find the first completely empty column in a grid layout after start_col (inclusive)

	
pylablib.core.gui.utils.insert_layout_column(layout, col, stretch=0, compress=False)

	Insert column in a grid layout at a given index.

Any multi-row item spanning over the column (i.e., starting at least one column before col and ending at least one column after col) gets stretched.
Anything else either stays in place (if it’s above col), or gets moved one column to the right.
stretch determines the stretch factor of the new column.
If compress==True, try to find an empty column below the inserted position and shit it to the new column’s place;
otherwise, add a completely new column.

	
pylablib.core.gui.utils.compress_grid_layout(layout)

	Find all empty rows in a grid layout and shift them to the bottom

	
pylablib.core.gui.utils.get_relative_position(widget, origin=None)

	Get widget’s position relative to the origin (top-level parent if None)

	
pylablib.core.gui.utils.get_relative_rectangle(widget, origin=None, border=0, trim_border=True)

	Get widget rectangle area relative to the origin (top-level parent if None).

If border is non-zero, it specifies a border (integer or 2-tuple) around the widget to add to the rectangle.
If trim_border==True, the resulting rectangle is trimmed to lie withing the origin area.
Return QRect object.

	
pylablib.core.gui.utils.get_screenshot(window=None, rect=None, widget=None, border=0, include_titlebar=True)

	Take a screenshot of a given window or a given widget.

Either window or widget must be defined.
If rect (type QRect) or widget are defined, they specify the area to include into screenshot;
in this case, border can define an additional border to add to the rectangle.
If rectangle is not defined, then include_titlebar specifies whether the window titlebar is included.

pylablib.core.gui.value_handling module

Uniform representation of values from different widgets: numerical and text edits and labels, combo and check boxes, buttons.

	
pylablib.core.gui.value_handling.build_children_tree(root, types_include, is_atomic=None, is_excluded=None, self_node='#')

	

	
pylablib.core.gui.value_handling.has_methods(widget, methods_sets)

	Chick if the widget has methods from given set.

methods_sets is a list of method sets. The function returns True if the widget has at least one method from each of the sets.

	
pylablib.core.gui.value_handling.get_method_kind(method, add_args=0)

	Determine whether the method takes name as its argument

add_args specifies number of additional required arguments.
Return "named" is the method has at least add_args+1 arguments, and the first one is called "name".
Otherwise, return "simple".

	
exception pylablib.core.gui.value_handling.NoParameterError

	Bases: KeyError [https://docs.python.org/3/library/exceptions.html#KeyError]

Error raised by some handlers to indicate that the parameter is missing

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.gui.value_handling.IValueHandler(widget)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic handler of a widget value.

Has method to get and set the value (or all values, if the widget has internal value structure), representing values as strings, and value changed signal.

	Parameters:

	widget – handled widget.

	
get_value(name=None)

	Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
class pylablib.core.gui.value_handling.VirtualValueHandler(value=None, multivalued=False)

	Bases: IValueHandler

Virtual value handler (to simulate controls which are not present in the GUI).

	Parameters:

	
	value – initial value

	multivalued (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.

	
get_value(name=None)

	Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
class pylablib.core.gui.value_handling.PropertyValueHandler(getter=None, setter=None, default_name=None)

	Bases: IValueHandler

Virtual value handler which uses custom getter/setter methods to simulate a value.

If getter or setter are not supplied but are called, they raise NoParameterError;
this means that they are ignored in GUIValues.get_all_values() and GUIValues.set_all_values() methods,
but raise an error when access directly (e.g., using GUIValues.get_value()).

	Parameters:

	
	getter – value getter method; takes 0 or 1 (name) arguments and returns the value

	setter – value setter method; takes 1 (value) or 2 (name and value) arguments and sets the value

	default_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – default name to be supplied to getter and setter methods if they require a name argument

	
get_value(name=None)

	Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
class pylablib.core.gui.value_handling.StandardValueHandler(widget, default_name=None)

	Bases: IValueHandler

Standard value handler, typically used for custom widgets.

To implement getting and setting values, looks for get/set_value and get/set_all_values methods for the widget and uses them accordingly.
To implement value representing, looks for repr_value method (if not defined, use simple string conversion).
To implement value change signal, looks for value_changed widget signal.

	Parameters:

	
	widget – handled widget

	default_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – default name to be supplied to get/set_value and get/set_all_values methods if they require a name argument.

	
get_value(name=None)

	Get widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set widget value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None, it specifies the name of the value parameter inside the widget (for complex widgets).

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
class pylablib.core.gui.value_handling.ISingleValueHandler(widget)

	Bases: IValueHandler

Base class for single-value widget handler, typically used for built-in Qt widgets.

Defines new functions get/set_single_value which don’t take a name argument; raises an error if the name is supplied to any of the standard functions.

	Parameters:

	widget – handled widget

	
get_single_value()

	Get the widget value

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
set_single_value(value)

	Set the widget value

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
repr_single_value(value)

	Represent the widget value as a string

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
class pylablib.core.gui.value_handling.LineEditValueHandler(widget)

	Bases: ISingleValueHandler

Value handler for QLineEdit widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
repr_single_value(value)

	Represent the widget value as a string

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.LabelValueHandler(widget)

	Bases: ISingleValueHandler

Value handler for QLabel widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_single_value(value)

	Represent the widget value as a string

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.IBoolValueHandler(widget, labels=('Off', 'On'))

	Bases: ISingleValueHandler

Generic value handler for widgets with boolean values

	
repr_single_value(value)

	Represent the widget value as a string

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_single_value()

	Get the widget value

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_single_value(value)

	Set the widget value

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.CheckboxValueHandler(widget, labels=('Off', 'On'))

	Bases: IBoolValueHandler

Value handler for QCheckBox widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
repr_single_value(value)

	Represent the widget value as a string

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.PushButtonValueHandler(widget, labels=('Off', 'On'))

	Bases: IBoolValueHandler

Value handler for QPushButton widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_single_value(value)

	Represent the widget value as a string

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.ToolButtonValueHandler(widget, labels=('Off', 'On'))

	Bases: IBoolValueHandler

Value handler for QToolButton widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_single_value(value)

	Represent the widget value as a string

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.ComboBoxValueHandler(widget)

	Bases: ISingleValueHandler

Value handler for QComboBox widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_single_value(value)

	Represent the widget value as a string

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
class pylablib.core.gui.value_handling.ProgressBarValueHandler(widget)

	Bases: ISingleValueHandler

Value handler for QProgressBar widget

	
get_single_value()

	Get the widget value

	
set_single_value(value)

	Set the widget value

	
can_set_value(allow_focus=True)

	Check if setting value from the code is allowed.

	Parameters:

	focus – if False, indicates that settings of focused widgets isn’t allowed, with some exceptions (buttons, check boxes, combo boxes)

	
connect_value_changed_handler(handler, only_signal=True)

	Connect value changed signal.

If only_signal==True, equivalent to connecting a handler function to get_value_changed_signal() signal;
however, if only_signal==False, it also works for some objects (e.g., QLabel) don’t have built-in on-changed signals
by calling the handler explicitly every time the value is changed.

Note that the connection is always direct (i.e., it doesn’t deal with message queues and different threads, but rather directly calls the handler function).
If you need to connect a handler to a signal using some other connection method, you can use get_value_changed_signal() directly.

	
get_handler(name=None)

	Get handler of a contained widget (or same widget, if name==None)

	
get_value(name=None)

	Get widget value.

If name is not None raise an error.

	
get_value_changed_signal()

	Get the Qt signal emitted when the value is changed

	
repr_single_value(value)

	Represent the widget value as a string

	
repr_value(value, name=None)

	Return textual representation of the value.

If name is not None raise an error.

	
set_value(value, name=None)

	Set widget value.

If name is not None raise an error.

	
pylablib.core.gui.value_handling.is_handled_widget(widget)

	Check if the widget can be handles by StandardValueHandler

	
pylablib.core.gui.value_handling.create_value_handler(widget)

	Autodetect value handler for the given widget

	
class pylablib.core.gui.value_handling.IIndicatorHandler

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic handler of an indicator.

Has methods to get and set the indicator value.

	
get_value(name=None)

	Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
pylablib.core.gui.value_handling.VirtualIndicatorHandler

	alias of VirtualValueHandler

	
class pylablib.core.gui.value_handling.StandardIndicatorHandler(widget, default_name=None)

	Bases: IIndicatorHandler

Default indicator handler, typically used for custom widgets.

To implement getting and setting values, looks for get/set_indicator and get/set_all_indicators methods for the widget and uses them accordingly.

	Parameters:

	
	widget – handled widget

	default_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – default name to be supplied to get/set_indicator methods if they require a name argument.

	
get_value(name=None)

	Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
set_value(value, name=None)

	Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
class pylablib.core.gui.value_handling.LabelIndicatorHandler(label, formatter=None, repr_value_name=None)

	Bases: IIndicatorHandler

Indicator handler which uses a label to show the value.

Can takes optional widget or widget handler which converts values into strings using its repr_value method
(by default, use the standard string conversion).

	Parameters:

	
	label – widget or value handler used to represent the value (takes string values)

	formatter – specifies a way to turn values into string representation;
can be a widget handler or a widget (its repr_func method is used to represent its value),
a function (it takes either a single value argument or two arguments name and value and returns string value),
or None (use simple string conversion)

	repr_value_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – default name to be supplied to repr_value if it requires a name argument and name is not supplied

	
get_value(name=None)

	Get indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
repr_value(value, name=None)

	Represent a value with a given name

	
set_value(value, name=None)

	Set indicator value.

If name is not None, it specifies the name of the indicator parameter inside the widget (for complex widgets).

	
pylablib.core.gui.value_handling.create_indicator_handler(widget, label=None, require_setter=False)

	Autodetect indicator handler for the given widget and optional indicator label

	
exception pylablib.core.gui.value_handling.MissingGUIHandlerError

	Bases: KeyError [https://docs.python.org/3/library/exceptions.html#KeyError]

Missing GUI handler

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.core.gui.value_handling.GUIValues(gui_thread_safe=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A collection of values which can be used to manipulate many value handlers at once and represent them as a hierarchical structure.

Has four container-like accessor:
.h for getting/adding/removing the value handler
(i.e., self.get_handler(name) is equivalent to self.h[name], and self.add_handler(name, handler) is equivalent to self.h[name]=handler,
and self.remove_handler(name) is equivalent to del self.h[name]),
.w for getting the underlying widget
(i.e., self.get_widget(name) is equivalent to self.w[name]),
.v for settings/getting values
(i.e., self.get_value(name) is equivalent to self.v[name], and self.set_value(name, value) is equivalent to self.v[name]=value),
.i for settings/getting indicator values
(i.e., self.get_indicator(name) is equivalent to self.i[name], and self.set_indicator(name, value) is equivalent to self.i[name]=value)
.vs for getting the value changed Qt signal
(i.e., self.get_value_changed_signal(name) is equivalent to self.s[name]),

	Parameters:

	gui_thread_safe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, all value-access and indicator-access calls
(get/set_value, get/set_all_values, get/set_indicator, get/set_all_indicators, and update_indicators)
are automatically called in the GUI thread.

	
add_handler(name, handler)

	Add a value handler under a given name

	
remove_handler(name, remove_indicator=True, disconnect=False)

	Remove the value handler with a given name.

If remove_indicator==True, also try to remove the indicator widget.
If disconnect==True, also disconnect all slots connected to the value_changed signal.
Unlike most methods (e.g., get_value() or get_handler()), does not recursively query the children,
so it only works if the handler is contained in this table.

	
get_handler(name)

	Get the value handler with the given name

	
add_widget(name, widget, add_indicator=True)

	Add a widget under a given name (value handler type is auto-detected)

	
get_widget(name)

	Get the widget corresponding to the handler under the given name

	
add_nested(name, gui_values, add_indicator=True)

	Add a nested GUIValues under a given name

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_all_children(root, root_name=None, types_include=None, types_exclude=(), names_exclude=None)

	Add a widget and all its children to the values set.

The result is organized as a tree using parent-child relations (note that it implies that only children widgets correspond to tree nodes,
i.e., only their values can be get/set).

	Parameters:

	
	root – root widget

	root_name – path to the sub-branch where the values will be placed

	types_include – if not None, specifies list of widget classes (e.g., QCheckBox) to include

	types_include – specifies list of widget classes to exclude

	names_exclude – if not None, specifies list of widget names to exclude

	
class IndicatorsSet(ind)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
ind

	

	
add_indicator_handler(name, handler, ind_name='__default__')

	Add indicator handler with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.

	
remove_indicator_handler(name, ind_name=None)

	Remove indicator handler with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.
By default, remove all indicators with this name

	
add_widget_indicator(name, widget, label=None, ind_name='__default__')

	Add widget-based indicator with a given name.

If label is None, use widget’s get/set_indicator or get/set_all_indicators functions to indicate the value.
Otherwise, use the given label to indicate the value (label is used to show the value, widget is used to represent it).
ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.

	
add_label_indicator(name, label, formatter=None, ind_name='__default__')

	Add label-based indicator with a given name.

formatter specifies a way to turn values into string representation;
can be a widget handler or a widget (its repr_func method is used to represent its value),
a function (it takes either a single value argument or two arguments name and value and returns string value),
or None (use simple string conversion)
ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.

	
get_value(name=None)

	Get a value or a set of values in a subtree under a given name (all values by default).

Automatically handles complex widgets and sub-names.
If name refers to a branch, return a Dictionary object containing tree structure of the names.
If supplied, include and exclude are containers specifying included and excluded names (relative to the root); by default, include everything and exclude nothing.

	
get_all_values(root=None)

	Get all values in the given sub-branch.

Same as get_value(), but returns an empty dictionary if the name is missing.

	
set_value(name, value)

	Set value under a given name.

Automatically handles complex widgets and sub-names

	
set_all_values(value, root=None)

	

	
get_indicator(name=None, ind_name='__default__')

	Get indicator value with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.
If supplied, include and exclude are containers specifying included and excluded names (relative to the root); by default, include everything and exclude nothing.

	
get_all_indicators(root=None, ind_name='__default__')

	Get all indicator values in the given sub-branch.

Same as get_indicator(), but returns an empty dictionary if the root is missing.

	
set_indicator(name, value, ind_name=None, ignore_missing=False)

	Set indicator value with a given name.

ind_name can distinguish different sub-indicators with the same name, if the same value has multiple indicators.
By default, set all sub-indicators to the given value.
If supplied, include and exclude are containers specifying included and excluded names (relative to the root); by default, include everything and exclude nothing.
If ignore_missing==True and the given indicator and sub-indicator names are missing, raise an error;
otherwise, do nothing.

	
set_all_indicators(value, root='', ind_name=None, ignore_missing=True)

	

	
update_indicators(root='')

	Update all indicators in a subtree with the given root (all values by default) to represent current values.

If supplied, include and exclude are containers specifying included and excluded names (relative to the root); by default, include everything and exclude nothing.

	
repr_value(name, value)

	Get a textual representation of a value under a given name.

Automatically handles complex widgets and sub-names.

	
get_value_changed_signal(name)

	Get changed events for a value under a given name

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
pylablib.core.gui.value_handling.get_gui_values(gui_values=None, gui_values_path='')

	Get new or existing GUIValues object and the sub-branch path inside it based on the supplied arguments.

If gui_values is None or "new", create a new object and set empty root path.
If gui_values itself has gui_values attribute, get this attribute, and prepend object’s gui_values_path attribute to the given path.
Otherwise, assume that gui_values is GUIValues object, and use the supplied root.

	
pylablib.core.gui.value_handling.virtual_gui_values(**kwargs)

	Create a gui values set with all virtual values.

kwargs define element names and default values.

Module contents

pylablib.core.gui.widgets package

Submodules

pylablib.core.gui.widgets.button module

	
class pylablib.core.gui.widgets.button.ToggleButton(parent=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Expanded toggle button.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads).
Allows setting different captions of pressed/unpressed, and uses those to represent values.

	
set_value_labels(labels)

	Set a list of values corresponding to combo box indices.

Can be either a list of values, whose length must be equal to the number of options, or None (don’t change the button label on toggle).

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current value

	
set_value(value, notify_value_change=True)

	Set current value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.

	
repr_value(value)

	Return representation of value as a caption text

pylablib.core.gui.widgets.combo_box module

	
class pylablib.core.gui.widgets.combo_box.ComboBox(parent)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Expanded combo box.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads).
Allows setting values which are reported via value_changed signal instead of simple indices.

	
wheelEvent(event)

	

	
set_out_of_range(action='error')

	Set behavior when out-of-range value is applied.

Can be "error" (raise error), "reset" (reset to no-value position), "reset_start" (reset to the first position) or "ignore" (keep current value).

	
set_direct_index_action(action='error')

	Set behavior when index values are specified, but direct indexing is used.

Can be "ignore" (do not allow direct indexing and treat any value as index value),
"value_default" (allow direct indexing, but prioritize index values with the same value),
or "index_default" (allow direct indexing and prioritize it if index value with the same value exists).

	
index_to_value(idx)

	Turn numerical index into value

	
value_to_index(value)

	Turn value into a numerical index

	
set_index_values(index_values, value=None, index=None)

	Set a list of values corresponding to combo box indices.

Can be either a list of values, whose length must be equal to the number of options, or None (simply use indices).
Note: if the number of combo box options changed (e.g., using addItem or insertItem methods),
the index values need to be manually updated; otherwise, the errors might arise if the index is larger than the number of values.
If value is specified, set as the new values.
If index is specified, use it as the index of a new value; if both value and index are specified, the value takes priority.

	
get_index_values()

	Return the list of values corresponding to combo box indices

	
get_options()

	Return the list of labels corresponding to combo box indices

	
get_options_dict()

	Return the dictionary {value: label} of the option labels

	
set_options(options, index_values=None, value=None, index=None)

	Set new set of options.

If index_values is not None, set these as the new index values; otherwise, index values are reset.
If options is a dictionary, interpret it as a mapping {option: index_value}.
If value is specified, set as the new values.
If index is specified, use it as the index of a new value; if both value and index are specified, the value takes priority.

	
insert_option(option, index_value=None, index=None)

	Insert or append a new option to the list

Insertion (i.e., index is not None) only works for index-valued combo boxes.

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current numerical value

	
set_value(value, notify_value_change=True)

	Set current value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.

	
repr_value(value)

	Return representation of value as a combo box text

pylablib.core.gui.widgets.container module

	
class pylablib.core.gui.widgets.container.TTimer(name, period, timer)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
name

	

	
period

	

	
timer

	

	
class pylablib.core.gui.widgets.container.TTimerEvent(start, loop, stop, timer)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
loop

	

	
start

	

	
stop

	

	
timer

	

	
class pylablib.core.gui.widgets.container.TChild(name, widget, gui_values_path)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
gui_values_path

	

	
name

	

	
widget

	

	
class pylablib.core.gui.widgets.container.IQContainer(*args, name=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Basic controller object which combines and controls several other widget.

Can either corresponds to a widget (e.g., a frame or a group box), or simply be an organizing entity.

	Parameters:

	name – entity name (used by default when adding this object to a values table)

Abstract mix-in class, which needs to be added to a class inheriting from QObject.
Alternatively, one can directly use QContainer, which already inherits from QObject.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
setup_name(name)

	Set the object’s name

	
setup(name=None)

	Setup the container by initializing its GUI values and setting the ctl attribute

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_child(name, widget, gui_values_path=True, add_change_event=True)

	Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
get_child(name)

	Get the child widget with the given name

	
remove_child(name, clear=True)

	Remove child from the container and (if clear==True) clear it

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
clear()

	Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets,
remove all widgets from the values table, remove all widgets from the table.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_all_values()

	Get values of all widget in the container

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
set_all_values(value)

	Set values of all widgets in the container

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_all_indicators()

	Get indicator values of all widget in the container

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_all_indicators(value, ignore_missing=True)

	

	
update_indicators()

	Update all indicators to represent current values

	
class pylablib.core.gui.widgets.container.QContainer(*args, name=None, **kwargs)

	Bases: IQContainer, object [https://docs.python.org/3/library/functions.html#object]

Basic controller object which combines and controls several other widget.

Can either corresponds to a widget (e.g., a frame or a group box), or simply be an organizing entity.

	Parameters:

	name – entity name (used by default when adding this object to a values table)

Simply a combination of IQContainer and QObject.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, gui_values_path=True, add_change_event=True)

	Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets,
remove all widgets from the values table, remove all widgets from the table.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
remove_child(name, clear=True)

	Remove child from the container and (if clear==True) clear it

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(name=None)

	Setup the container by initializing its GUI values and setting the ctl attribute

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
class pylablib.core.gui.widgets.container.IQWidgetContainer(*args, **kwargs)

	Bases: IQLayoutManagedWidget, IQContainer

Generic widget container.

Combines IQContainer management of GUI values and timers
with IQLayoutManagedWidget management of the contained widget’s layout.

Typically, adding widget adds them both to the container values and to the layout;
however, this can be skipped by either using QLayoutManagedWidget.add_to_layout()
(only add to the layout), or specifying location="skip" in add_child() (only add to the container).

Abstract mix-in class, which needs to be added to a class inheriting from QWidget.
Alternatively, one can directly use QWidgetContainer, which already inherits from QWidget.

	
setup(layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
class pylablib.core.gui.widgets.container.QWidgetContainer(*args, **kwargs)

	Bases: IQWidgetContainer, object [https://docs.python.org/3/library/functions.html#object]

Generic widget container.

Combines IQContainer management of GUI values and timers
with IQLayoutManagedWidget management of the contained widget’s layout.

Typically, adding widget adds them both to the container values and to the layout;
however, this can be skipped by either using QLayoutManagedWidget.add_to_layout()
(only add to the layout), or specifying location="skip" in add_child() (only add to the container).

Simply a combination of IQWidgetContainer and QWidget.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
class pylablib.core.gui.widgets.container.QFrameContainer(*args, **kwargs)

	Bases: IQWidgetContainer, object [https://docs.python.org/3/library/functions.html#object]

An extension of IQWidgetContainer for a QFrame Qt base class

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
class pylablib.core.gui.widgets.container.QDialogContainer(*args, **kwargs)

	Bases: IQWidgetContainer, object [https://docs.python.org/3/library/functions.html#object]

An extension of IQWidgetContainer for a QDialog Qt base class

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
class pylablib.core.gui.widgets.container.QGroupBoxContainer(*args, **kwargs)

	Bases: IQWidgetContainer, object [https://docs.python.org/3/library/functions.html#object]

An extension of IQWidgetContainer for a QGroupBox Qt base class

	
setup(caption=None, layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
class pylablib.core.gui.widgets.container.QScrollAreaContainer(*args, name=None, **kwargs)

	Bases: IQContainer, object [https://docs.python.org/3/library/functions.html#object]

An extension of IQWidgetContainer for a QScrollArea Qt base class.

Due to Qt organization, this container is “intermediate”: it contains only a single QWidgetContainer widget (named "widget"),
which in turn has all of the standard container traits: layout, multiple widgets, etc.
Hence, when dealing with any container methods (adding children, changing layout, etc.), this widget (accessible with .widget() method) should be used.

	
class QContainedWidget(*args, **kwargs)

	Bases: QWidgetContainer

	
resizeEvent(event)

	

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_frame(name, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=None, gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear()

	Clear the container.

All the timers are stopped, all the contained widgets are cleared and removed.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(layout='vbox', no_margins=False, name=None)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
setup(layout='vbox', no_margins=False, name=None, fix_width=True, fix_height=False)

	Setup the container.

layout specifies the container layout, no_margins determines whether margins within the container are removed,
name specifies the widget name (if not specified yet).
fix_width and fix_height determine whether the corresponding direction behaves as a scroll window (i.e., the size is fixed when the content changes),
or as a standard widget container (the size is determined by the content).

	
clear()

	Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets,
remove all widgets from the values table, remove all widgets from the table.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, gui_values_path=True, add_change_event=True)

	Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
remove_child(name, clear=True)

	Remove child from the container and (if clear==True) clear it

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
class pylablib.core.gui.widgets.container.QTabContainer(*args, **kwargs)

	Bases: IQContainer, object [https://docs.python.org/3/library/functions.html#object]

Container which manages tab widget.

Does not have its own layout, but can add or remove tabs, which are represented as QFrameContainer widgets.

	
add_tab(name, caption, index=None, widget=None, layout='vbox', gui_values_path=True, no_margins=True)

	Add a new tab container with the given caption to the widget.

index specifies the new tab’s index (None means adding to the end, negative values count from the end).
If widget is None, create a new frame widget using the given layout ("vbox", "hbox", or "grid")
and no_margins (specifies whether the frame has inner margins) arguments;
otherwise, use the supplied widget.
The other parameters are the same as in add_child() method.

	
remove_tab(name)

	Remove a tab with the given name.

Clear it, remove its GUI values, and delete it and all contained widgets.

	
clear()

	Clear the container.

Stop all timers and widgets, and call clear methods of all contained widgets,
remove all widgets from the values table, remove all widgets from the table.

	
get_current_name()

	Get current tab name

	
set_by_name(name)

	Set tab by name

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, gui_values_path=True, add_change_event=True)

	Add a contained child widget.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=True)

	Add a virtual value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
remove_child(name, clear=True)

	Remove child from the container and (if clear==True) clear it

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value)

	Set values of all widgets in the container

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_value(name, value)

	Set value of a widget with the given name (None means all values)

	
setup(name=None)

	Setup the container by initializing its GUI values and setting the ctl attribute

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

pylablib.core.gui.widgets.edit module

	
class pylablib.core.gui.widgets.edit.TextEdit(parent, value=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Expanded text edit.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads).

	
keyPressEvent(event)

	

	
set_expandable(left=0, right=0, top=0, bottom=0)

	Make text edit expandable.

If it is expandable, the edit size is expanded by the given size into the corresponding directions.
If all are zero, the widget behaves as normal.

	
focusInEvent(evt)

	

	
focusOutEvent(evt)

	

	
value_entered = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is entered (regardless of whether it stayed the same)

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current text value

	
show_value(interrupt_edit=False)

	Display currently stored text value

If interrupt_edit==True and the edit is currently being modified by the user, don’t update the display.

	
set_value(value, notify_value_change=True, interrupt_edit=False)

	Set current text value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.
If interrupt_edit==True and the edit is currently being modified by the user, don’t update the display (but still update the internally stored value).

	
class pylablib.core.gui.widgets.edit.NumEdit(parent, value=None, limiter=None, formatter=None, custom_steps=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Labview-style numerical edit.

Maintains internally stored consistent value (which can be, e.g., accessed from different threads).
Supports different number representations, metric prefixes (in input or output), keyboard shortcuts (up/down for changing number, escape for cancelling).

	Parameters:

	
	parent – parent widget

	value – initial value (None means no value is set)

	limiter – number limiter (for details, see set_limiter())

	formatter – number formatter (for details, see set_formatter())

	custom_steps – if not None, can specify custom fixed value steps when up/down keys are pressed with a modifier key (Control, Alt, or Shift)
specifies a dictionary {'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the corresponding steps (missing elements mean that the modifier key is ignored)

	
keyPressEvent(event)

	

	
set_limiter(limiter, new_value=None)

	Change current numerical limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or raises limiter.LimitError if it should be ignored;
or it can be a tuple (lower, upper, action, value_type), where lower and upper are the limits (None means no limits),
action defines out-of-limit action (either "ignore" to ignore entered value, or "coerce" to truncate to the nearest limit),
and value_type can be None (keep value as is), "float" (cast value to float), "int" (cast value to int).
If the tuple is shorter, the missing parts are filled by default values (None, None, "ignore", None).

	
set_formatter(formatter)

	Change current numerical formatter.

Formatter can be a callable object turning value into a string, a string ("float", "int", or a format string, e.g., ".5f"),
or a tuple starting with "float" which contains arguments to the formatter.FloatFormatter.

	
set_float_formatter(output_format='auto', digits=9, add_trailing_zeros=True, leading_zeros=0, explicit_sign=False)

	Set up float formatter.

Has the same functionality as set_formatter() (i.e., set_float_formatter(*args) is equivalent to set_formatter(("float",)+args)),
but explicitly lists the arguments.

	Parameters:

	
	output_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be "auto" (use standard Python conversion), "SI" (use SI prefixes if possible), or "sci" (scientific “E” notation).

	digits (int [https://docs.python.org/3/library/functions.html#int]) – if add_trailing_zeros==False, determines the number of significant digits; otherwise, determines precision (number of digits after decimal point).

	add_trailing_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always show fixed number of digits after the decimal point, with zero padding if necessary.

	leading_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the minimal size of the integer part (before the decimal point) of the number; pads with zeros if necessary.

	explicit_sign (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always add explicit plus sign.

	
set_custom_steps(custom_steps=None)

	Specify custom fixed value steps when up/down keys are pressed with a modifier key (Control, Alt, or Shift).

custom_steps is a dictionary {'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step}
with the corresponding steps (missing elements mean that the modifier key is ignored).

	
get_cursor_order()

	Get a decimal order of the text cursor

	
set_cursor_order(order)

	Move text cursor to a given decimal order

	
repr_value(value)

	Return representation of value according to the current numerical format

	
value_entered = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is entered (regardless of whether it stayed the same)

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current numerical value

	
show_value(interrupt_edit=False, preserve_cursor_order=True)

	Display currently stored numerical value

If interrupt_edit==False and the edit is currently being modified by the user, don’t update the display.
If preserve_cursor_order==True and the display value is being edited, keep the decimal order of the cursor position after change.

	
set_value(value, notify_value_change=True, interrupt_edit=False, preserve_cursor_order=True)

	Set and display current numerical value.

If notify_value_change==True, emit the value_changed signal; otherwise, change value silently.
If interrupt_edit==False and the edit is currently being modified by the user, don’t update the display (but still update the internally stored value).
If preserve_cursor_order==True and the display value is being edited, keep the decimal order of the cursor position after change.

pylablib.core.gui.widgets.label module

	
class pylablib.core.gui.widgets.label.TextLabel(parent, value=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Labview-style text label.

The main difference from the standard QLabel is the changed event.

	
clicked = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
mousePressEvent(ev)

	

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current numerical value

	
set_value(value)

	Set and display current text value

	
class pylablib.core.gui.widgets.label.EnumLabel(parent, options, value=None, prep=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Labview-style label for enumerated values.

Can automatically convert input enum values into corresponding text labels based on the options dictionary.
Can also specify a function which takes a single value argument and converts into a enum value before checking options;
useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

	
clicked = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
mousePressEvent(ev)

	

	
set_out_of_range(action='error')

	Set behavior when out-of-range value is applied.

Can be "error" (raise error), "text" (turn value into text and display it), or "ignore" (keep current value).

	
set_options(options, value=None, index=None)

	Set new set of options.

If index_values is not None, set these as the new index values; otherwise, index values are reset.
If options is a dictionary, interpret it as a mapping {option: index_value}.
If value is specified, set as the new values.
If index is specified, use it as the index of a new value; if both value and index are specified, the value takes priority.

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current numerical value

	
set_value(value)

	Set and display current text value

	
repr_value(value)

	Return representation of value as a combo box text

	
class pylablib.core.gui.widgets.label.NumLabel(parent, value=None, limiter=None, formatter=None, allow_text=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Labview-style numerical label.

Supports different number representations and metric prefixes.

	Parameters:

	
	parent – parent widget

	value – initial value (None means no value is set)

	limiter – number limiter (for details, see set_limiter())

	formatter – number formatter (for details, see set_formatter())

	allow_text – if True, can also take text values (which are displayed as is); otherwise, raise an error.

	
clicked = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
mousePressEvent(ev)

	

	
set_limiter(limiter, new_value=None)

	Change current numerical limiter.

Limiter can be a callable object which takes a single value and either returns a limited value, or raises limiter.LimitError if it should be ignored;
or it can be a tuple (lower, upper, action, value_type), where lower and upper are the limits (None means no limits),
action defines out-of-limit action (either "ignore" to ignore entered value, or "coerce" to truncate to the nearest limit),
and value_type can be None (keep value as is), "float" (cast value to float), "int" (cast value to int).
If the tuple is shorter, the missing parts are filled by default values (None, None, "ignore", None).

	
set_formatter(formatter)

	Change current numerical formatter.

Formatter can be a callable object turning value into a string, a string ("float", "int", or a format string, e.g., ".5f"),
or a tuple starting with "float" which contains arguments to the formatter.FloatFormatter.

	
set_float_formatter(output_format='auto', digits=9, add_trailing_zeros=True, leading_zeros=0, explicit_sign=False)

	Set up float formatter.

Has the same functionality as set_formatter() (i.e., set_float_formatter(*args) is equivalent to set_formatter(("float",)+args)),
but explicitly lists the arguments.

	Parameters:

	
	output_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be "auto" (use standard Python conversion), "SI" (use SI prefixes if possible), or "sci" (scientific “E” notation).

	digits (int [https://docs.python.org/3/library/functions.html#int]) – if add_trailing_zeros==False, determines the number of significant digits; otherwise, determines precision (number of digits after decimal point).

	add_trailing_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always show fixed number of digits after the decimal point, with zero padding if necessary.

	leading_zeros (bool [https://docs.python.org/3/library/functions.html#bool]) – determines the minimal size of the integer part (before the decimal point) of the number; pads with zeros if necessary.

	explicit_sign (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, always add explicit plus sign.

	
repr_value(value)

	Return representation of value according to the current numerical format

	
value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	Signal emitted when value is changed

	
get_value()

	Get current numerical value

	
set_value(value)

	Set and display current numerical value

pylablib.core.gui.widgets.layout_manager module

	
class pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget(*args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

GUI widget which can manage layouts.

Typically, first it is set up using setup() method to specify the master layout kind;
afterwards, widgets and sublayout can be added using add_to_layout().
In addition, it can directly add named sublayouts using add_sublayout() method.

Abstract mix-in class, which needs to be added to a class inheriting from QWidget.
Alternatively, one can directly use QLayoutManagedWidget, which already inherits from QWidget.

	
setup(layout='grid', no_margins=False)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
remove_layout_element(element)

	Remove a previously added layout element

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
get_sublayout(name=None)

	Get the previously added sublayout

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
clear()

	Clear the layout and remove all the added elements

	
class pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget(*args, **kwargs)

	Bases: IQLayoutManagedWidget, object [https://docs.python.org/3/library/functions.html#object]

GUI widget which can manage layouts.

Typically, first it is set up using setup() method to specify the master layout kind;
afterwards, widgets and sublayout can be added using add_to_layout().
In addition, it can directly add named sublayouts using add_sublayout() method.

Simply a combination of IQLayoutManagedWidget and QWidget.

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=None)

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
clear()

	Clear the layout and remove all the added elements

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
setup(layout='grid', no_margins=False)

	Setup the layout.

	Parameters:

	
	layout – layout kind; can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	no_margins – if True, set all layout margins to zero (useful when the widget is in the middle of layout hierarchy)

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=None)

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

pylablib.core.gui.widgets.param_table module

	
class pylablib.core.gui.widgets.param_table.ParamTable(parent=None, name=None)

	Bases: QWidgetContainer

GUI parameter table.

Simplifies creating code-generated controls and displays table layouts.

Has methods for adding various kinds of controls (labels, edit boxes, combo boxes, check boxes),
automatically creates values table for easy settings/getting.
By default supports 2-column (label-control) and 3-column (label-control-indicator) layout, depending on the parameters given to setup().

Similar to GUIValues, has three container-like accessor:
.h for getting the value handler
(i.e., self.get_handler(name) is equivalent to self.h[name]),
.w for getting the underlying widget
(i.e., self.get_widget(name) is equivalent to self.w[name]),
.v for settings/getting values using the default getting method
(equivalent to .wv if cache_values=False in setup(), and to .cv otherwise),
.wv for settings/getting current current widget values without caching
(i.e., self.get_value(name) is equivalent to self.v[name], and self.set_value(name, value) is equivalent to self.v[name]=value),
.cv for settings/getting values using cached value’s table for getting
(i.e., self.current_values[name] is equivalent to self.cv[name], and self.set_value(name, value) is equivalent to self.cv[name]=value),
(i.e., self.get_value(name) is equivalent to self.v[name], and self.set_value(name, value) is equivalent to self.v[name]=value),
.i for settings/getting indicator values
(i.e., self.get_indicator(name) is equivalent to self.i[name], and self.set_indicator(name, value) is equivalent to self.i[name]=value)
.vs for getting the value changed Qt signal
(i.e., self.get_value_changed_signal(name) is equivalent to self.s[name]),

Like most widgets, requires calling setup() to set up before usage.

	Parameters:

	parent – parent widget

	
setup(name=None, add_indicator=True, gui_thread_safe=False, cache_values=False, change_focused_control=False)

	Setup the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – table widget name

	add_indicator (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, add indicators for all added widgets by default.

	gui_thread_safe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, all value-access and indicator-access calls
(get/set_value, get/set_all_values, get/set_indicator, and update_indicators) are automatically called in the GUI thread.

	cache_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True or "update_one", store a dictionary with all the current values and update it every time a GUI value is changed;
provides a thread-safe way to check current parameters without lag
(unlike get_value() or get_all_values() with gui_thread_safe==True, which re-route calls to a GUI thread and may cause up to 100ms delay)
can also be set to "update_all", in which case change of any value will cause value update of all variables;
otherwise, change of a value will only cause update of that same value (might potentially miss some value updates for custom controls).

	change_focused_control (bool [https://docs.python.org/3/library/functions.html#bool]) – if False and set_value() method is called while the widget has user focus, ignore the value;
note that set_all_values() will still set the widget value.

	
add_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
using_new_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
pad_borders(kind='both', stretch=0)

	Add expandable paddings on the bottom and/or right border.

kind can be "bottom", "right", "both", or "none" (do nothing).
Note that if more elements are added, they will be placed after the padding, so the table will be padded in the middle.

	
add_frame(name, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
class ParamRow(widget, label, indicator, value_handler, indicator_handler)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
indicator

	

	
indicator_handler

	

	
label

	

	
value_handler

	

	
widget

	

	
add_simple_widget(name, widget, label=None, value_handler=None, add_indicator=None, location=None, tooltip=None, add_change_event=True)

	Add a ‘simple’ (single-spaced, single-valued) widget to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	widget – widget to add

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – if not None, specifies label to put in front of the widget in the layout

	value_handler – value handler of the widget; by default, use auto-detected value handler (works for many simple built-in or custom widgets)

	add_indicator – if True, add an indicator label in the third column and a corresponding indicator handler in the built-in values table;
by default, use the default value supplied to setup()

	location (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (row, column) specifying location of the widget (or widget label, if it is specified);
by default, add to a new row in the end and into the first column
can also be a string "skip", which means that the widget is added to some other location manually later
(this option only works if label=None, and doesn’t add any indicator)

	tooltip – widget tooltip (mouseover text)

	add_change_event (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, changing of the widget’s value emits the table’s contained_value_changed event

Return the widget’s value handler

	
add_custom_widget(name, widget, value_handler=None, indicator_handler=None, location=None, tooltip=None, add_change_event=True)

	Add a ‘custom’ (multi-spaced, possibly complex-valued) widget to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	widget – widget to add

	value_handler – value handler of the widget; by default, use auto-detected value handler (works for many simple built-in or custom widgets)

	indicator_handler – indicator handler of the widget; by default, use auto-detected indicator handler
(use set/get_indicator methods if present, or no indicator otherwise)

	location (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (row, column, rowspan, colspan) specifying location of the widget;
by default, add to a new row in the end and into the first column, span one row and all table columns
can also be a string "skip", which means that the widget is added to some other location manually later

	add_change_event (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, changing of the widget’s value emits the table’s contained_value_changed event

Return the widget’s value handler

	
remove_widget(name)

	Remove the widget and, if applicable, its indicator and label

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=None)

	Add a virtual table element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_button(name, caption, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a button to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str]) – text on the button

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_toggle_button(name, caption, value=False, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a toggle button to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – text on the button; can be a single string, or a list of two strings which specifies the caption for off and on states

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_dropdown_button(name, caption, options=None, index_values=None, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a button which shows a dropdown menu when clicked.

Similar in behavior to a regular button, but its changed event provides a single argument which is the name of the selected item.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – text on the button

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strings specifying menu options

	index_values (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of values corresponding to menu options; if supplied, these values are used when setting/getting values or sending signals.

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_check_box(name, caption, value=False, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a checkbox to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str]) – text on the checkbox

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_text_label(name, value='', label=None, location=None, tooltip=None, add_change_event=False, virtual=False)

	Add a text label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_enum_label(name, options, value=None, out_of_range='error', prep=None, label=None, location=None, tooltip=None, add_change_event=False, virtual=False)

	Add a text label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – dictionary {index_value: text} which converts values into text

	out_of_range (str [https://docs.python.org/3/library/stdtypes.html#str]) – behavior when out-of-range value is applied;
can be "error" (raise error), "text" (convert value into text), or "ignore" (keep current value).

	prep – a function which takes a single value argument and converts into an option; useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_num_label(name, value=0, limiter=None, formatter=None, label=None, tooltip=None, location=None, add_change_event=False, virtual=False)

	Add a numerical label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (float [https://docs.python.org/3/library/functions.html#float]) – specifies initial value

	limiter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (upper_limit, lower_limit, action, value_type) specifying value limits;
see limiter.as_limiter() for details

	formatter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – either "int" (for integer values), or tuple specifying floating value format;
see formatter.as_formatter() for details

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_text_edit(name, value='', label=None, multiline=False, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a text edit to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use multi-line text edit widget; otherwise, use a standard single-line edit

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_num_edit(name, value=None, limiter=None, formatter=None, custom_steps=None, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a numerical edit to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	limiter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (upper_limit, lower_limit, action, value_type) specifying value limits;
see NumEdit.set_limiter() for details

	formatter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – either "int" (for integer values), or tuple specifying floating value format;
see NumEdit.set_formatter() for details

	custom_steps – if not None, can specify custom fixed value steps when up/down keys are pressed with a modifier key (Control, Alt, or Shift)
specifies a dictionary {'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the corresponding steps (missing elements mean that the modifier key is ignored)

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_progress_bar(name, value=None, label=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a progress bar to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_combo_box(name, value=None, options=None, index_values=None, out_of_range='reset', label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a combo box to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value – specifies initial value

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strings specifying box options or a dictionary {option: index_value}

	index_values (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of values corresponding to box options; if supplied, these values are used when setting/getting values or sending signals;
if options is a dictionary, this parameter is ignored

	out_of_range (str [https://docs.python.org/3/library/stdtypes.html#str]) – behavior when out-of-range value is applied;
can be "error" (raise error), "reset" (reset to no-value position), or "ignore" (keep current value).

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
set_enabled(names=None, enabled=True, include_indicator=True, include_label=True)

	Enable or disable widgets with the given names (by default, all widgets)

	
set_visible(names=None, visible=True, include_indicator=True, include_label=True)

	Show or hide widgets with the given names (by default, all widgets)

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_all_values()

	Get values of all widget in the container

	
set_value(name, value, force=True)

	Set value of a widget with the given name.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

	
set_all_values(value, force=True)

	Set values of all widgets in the table.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
get_indicator_widget(name)

	Get indicator widget for a parameter with the given name, or None if this parameter has no indicator label

	
get_label_widget(name)

	Get label widget for a parameter with the given name, or None if this parameter has no label

	
get_child(name)

	Get the child widget with the given name

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_all_indicators()

	Get indicator values of all widget in the container

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_all_indicators(value, ignore_missing=True)

	

	
update_indicators()

	Update all indicators to represent current values

	
clear(disconnect=False)

	Clear the table (remove all widgets)

If disconnect==True, also disconnect all slots connected to the contained_value_changed signal.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
remove_layout_element(element)

	Remove a previously added layout element

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
class pylablib.core.gui.widgets.param_table.StatusTable(parent=None, name=None)

	Bases: ParamTable

Expansion of ParamTable which adds status lines, which automatically subscribe to signals and update values.

	
setup(name=None, add_indicator=True, gui_thread_safe=False, cache_values=False, change_focused_control=False)

	Setup the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – table widget name

	add_indicator (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, add indicators for all added widgets by default.

	gui_thread_safe (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, all value-access and indicator-access calls
(get/set_value, get/set_all_values, get/set_indicator, and update_indicators) are automatically called in the GUI thread.

	cache_values (bool [https://docs.python.org/3/library/functions.html#bool]) – if True or "update_one", store a dictionary with all the current values and update it every time a GUI value is changed;
provides a thread-safe way to check current parameters without lag
(unlike get_value() or get_all_values() with gui_thread_safe==True, which re-route calls to a GUI thread and may cause up to 100ms delay)
can also be set to "update_all", in which case change of any value will cause value update of all variables;
otherwise, change of a value will only cause update of that same value (might potentially miss some value updates for custom controls).

	change_focused_control (bool [https://docs.python.org/3/library/functions.html#bool]) – if False and set_value() method is called while the widget has user focus, ignore the value;
note that set_all_values() will still set the widget value.

	
add_status_line(name, label=None, srcs=None, tags=None, filt=None, fmt=None)

	Add a status line to the table:

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – if not None, specifies label to put in front of the status line

	srcs (list [https://docs.python.org/3/library/stdtypes.html#list]) – status signal sources

	tags (list [https://docs.python.org/3/library/stdtypes.html#list]) – status signal tags

	filt (list [https://docs.python.org/3/library/stdtypes.html#list]) – filter function for the signals

	fmt – if not None, specifies a function which takes 3 arguments (signal source, tag, and value) and generates a status line text.

	
update_status_line(name, thread=None, path=None)

	Update status line to the variable with the given path from the thread with the given thread name.

If thread is None, use srcs name provided upon creation.
If path is None, use tags name provided upon creation.

	
TimerUIDGenerator = <pylablib.core.utils.general.NamedUIDGenerator object>

	

	
add_button(name, caption, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a button to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str]) – text on the button

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_check_box(name, caption, value=False, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a checkbox to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str]) – text on the checkbox

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_child(name, widget, location=None, gui_values_path=True)

	Add a contained child widget.

name specifies the child storage name;
if name==False, only add the widget to they layout, but not to the container.
location specifies the layout location to which the widget is added;
if location=="skip", skip adding it to the layout (can be manually added later).
Note that if the widget is added to the layout, it will be completely deleted
when clear or remove_child methods are called;
otherwise, simply its clear method will be called, and its GUI values will be deleted.

If gui_values_path is False or None, do not add it to the GUI values table;
if it is True, add it under the same root (path=="") if it’s a container, and under name if it’s not;
otherwise, gui_values_path specifies the path under which the widget values are stored.

	
add_child_values(name, widget, path, add_change_event=True)

	Add child’s values to the container’s table.

If widget is a container and path=="" or ends in "/*" (e.g., "subpath/*"),
use its setup_gui_values to make it share the same GUI values;
otherwise, simply add it to the GUI values under the given path.
if add_change_event==True, changing of the widget’s value emits the container’s contained_value_changed event

	
add_combo_box(name, value=None, options=None, index_values=None, out_of_range='reset', label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a combo box to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value – specifies initial value

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strings specifying box options or a dictionary {option: index_value}

	index_values (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of values corresponding to box options; if supplied, these values are used when setting/getting values or sending signals;
if options is a dictionary, this parameter is ignored

	out_of_range (str [https://docs.python.org/3/library/stdtypes.html#str]) – behavior when out-of-range value is applied;
can be "error" (raise error), "reset" (reset to no-value position), or "ignore" (keep current value).

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_custom_widget(name, widget, value_handler=None, indicator_handler=None, location=None, tooltip=None, add_change_event=True)

	Add a ‘custom’ (multi-spaced, possibly complex-valued) widget to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	widget – widget to add

	value_handler – value handler of the widget; by default, use auto-detected value handler (works for many simple built-in or custom widgets)

	indicator_handler – indicator handler of the widget; by default, use auto-detected indicator handler
(use set/get_indicator methods if present, or no indicator otherwise)

	location (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (row, column, rowspan, colspan) specifying location of the widget;
by default, add to a new row in the end and into the first column, span one row and all table columns
can also be a string "skip", which means that the widget is added to some other location manually later

	add_change_event (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, changing of the widget’s value emits the table’s contained_value_changed event

Return the widget’s value handler

	
add_decoration_label(text, location='next')

	Add a decoration text label with the given text

	
add_dropdown_button(name, caption, options=None, index_values=None, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a button which shows a dropdown menu when clicked.

Similar in behavior to a regular button, but its changed event provides a single argument which is the name of the selected item.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – text on the button

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strings specifying menu options

	index_values (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of values corresponding to menu options; if supplied, these values are used when setting/getting values or sending signals.

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_enum_label(name, options, value=None, out_of_range='error', prep=None, label=None, location=None, tooltip=None, add_change_event=False, virtual=False)

	Add a text label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – dictionary {index_value: text} which converts values into text

	out_of_range (str [https://docs.python.org/3/library/stdtypes.html#str]) – behavior when out-of-range value is applied;
can be "error" (raise error), "text" (convert value into text), or "ignore" (keep current value).

	prep – a function which takes a single value argument and converts into an option; useful for “fuzzy” options (e.g., when 0 and False mean the same thing)

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_frame(name, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)

	Add a new frame container to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_group_box(name, caption, layout='vbox', location=('next', 0, 1, 'end'), gui_values_path=True, no_margins=True)

	Add a new group box container with the given caption to the layout.

layout specifies the layout ("vbox", "hbox", or "grid") of the new frame,
and location specifies its location within the container layout.
If no_margins==True, the frame will have no inner layout margins.
The other parameters are the same as in add_child() method.

	
add_num_edit(name, value=None, limiter=None, formatter=None, custom_steps=None, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a numerical edit to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	limiter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (upper_limit, lower_limit, action, value_type) specifying value limits;
see NumEdit.set_limiter() for details

	formatter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – either "int" (for integer values), or tuple specifying floating value format;
see NumEdit.set_formatter() for details

	custom_steps – if not None, can specify custom fixed value steps when up/down keys are pressed with a modifier key (Control, Alt, or Shift)
specifies a dictionary {'ctrl':ctrl_step, 'alt':alt_step, 'shift':shift_step} with the corresponding steps (missing elements mean that the modifier key is ignored)

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_num_label(name, value=0, limiter=None, formatter=None, label=None, tooltip=None, location=None, add_change_event=False, virtual=False)

	Add a numerical label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (float [https://docs.python.org/3/library/functions.html#float]) – specifies initial value

	limiter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (upper_limit, lower_limit, action, value_type) specifying value limits;
see limiter.as_limiter() for details

	formatter (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – either "int" (for integer values), or tuple specifying floating value format;
see formatter.as_formatter() for details

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_padding(kind='auto', location='next', stretch=0)

	Add a padding (expandable spacer) of the given kind to the given location.

kind can be "vertical", "horizontal", "auto" (vertical for grid and vbox layouts, horizontal for hbox),
or "both" (stretches in both directions).
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
can also be a tuple with two stretches along vertical and horizontal directions.

	
add_progress_bar(name, value=None, label=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a progress bar to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_property_element(name, getter=None, setter=None, add_indicator=True)

	Add a property value element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view;
each time the value is set or get, the corresponding setter and getter methods are called.
If add_indicator==True, add default (stored value) indicator handler as well.

	
add_simple_widget(name, widget, label=None, value_handler=None, add_indicator=None, location=None, tooltip=None, add_change_event=True)

	Add a ‘simple’ (single-spaced, single-valued) widget to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	widget – widget to add

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – if not None, specifies label to put in front of the widget in the layout

	value_handler – value handler of the widget; by default, use auto-detected value handler (works for many simple built-in or custom widgets)

	add_indicator – if True, add an indicator label in the third column and a corresponding indicator handler in the built-in values table;
by default, use the default value supplied to setup()

	location (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (row, column) specifying location of the widget (or widget label, if it is specified);
by default, add to a new row in the end and into the first column
can also be a string "skip", which means that the widget is added to some other location manually later
(this option only works if label=None, and doesn’t add any indicator)

	tooltip – widget tooltip (mouseover text)

	add_change_event (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, changing of the widget’s value emits the table’s contained_value_changed event

Return the widget’s value handler

	
add_spacer(height=0, width=0, stretch_height=False, stretch_width=False, stretch=0, location='next')

	Add a spacer with the given width and height to the given location.

If stretch_height==True or stretch_width==True, the widget will stretch in these directions; otherwise, the widget size is fixed.
If stretch is not None, it specifies stretch of the spacer the corresponding direction (applied to the upper row and leftmost column for multi-cell spacer);
if kind==”both”`, it can also be a tuple with two stretches along vertical and horizontal directions.

	
add_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))

	Add a sublayout to the given location.

name specifies the sublayout name, which can be used to refer to it in specifying locations later.
kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

	
add_text_edit(name, value='', label=None, multiline=False, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a text edit to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use multi-line text edit widget; otherwise, use a standard single-line edit

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_text_label(name, value='', label=None, location=None, tooltip=None, add_change_event=False, virtual=False)

	Add a text label to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_timer(name, period, autostart=True)

	Add a periodic timer with the given name and period.

Rarely needs to be called explicitly (one is created automatically if timer event is created).
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_timer_event(name, loop=None, start=None, stop=None, period=None, timer=None, autostart=True)

	Add timer event with the given name.

Add an event which should be called periodically (e.g., a GUI update). Internally implemented through Qt timers.
loop, start and stop are the functions called, correspondingly, on timer (periodically), when timer is start, and when it’s finished.
One can either specify the timer by name (timer parameter), or create a new one with the given period.
If autostart==True and the container has been started (by calling start() method), start the timer as well.

	
add_to_layout(element, location=None, kind='widget')

	Add an existing element to the layout at the given location.

kind can be "widget" for widgets, "layout" for other layouts, or "item" for layout items (spacers).

	
add_toggle_button(name, caption, value=False, label=None, add_indicator=None, location=None, tooltip=None, add_change_event=True, virtual=False)

	Add a toggle button to the table.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – widget name (used to reference its value in the values table)

	caption (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – text on the button; can be a single string, or a list of two strings which specifies the caption for off and on states

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – specifies initial value

	virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the widget is not added, and a virtual handler is added instead

Rest of the arguments and the return value are the same as add_simple_widget().

	
add_virtual_element(name, value=None, multivalued=False, add_indicator=None)

	Add a virtual table element.

Doesn’t correspond to any actual widget, but behaves very similarly from the application point of view
(its value can be set or read, it has on-change events, it can have indicator).
The element value is simply stored on set and retrieved on get.
If multivalued==True, the internal value is assumed to be complex, so it is forced to be a Dictionary every time it is set.
If add_indicator==True, add default indicator handler as well.

	
clear(disconnect=False)

	Clear the table (remove all widgets)

If disconnect==True, also disconnect all slots connected to the contained_value_changed signal.

	
contained_value_changed = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
get_all_indicators()

	Get indicator values of all widget in the container

	
get_all_values()

	Get values of all widget in the container

	
get_child(name)

	Get the child widget with the given name

	
get_element_position(element)

	Get the sublayout and the position of the given widget.

Return tuple (sublayout, location), where sublayout is the sublayout name ("name" for the main layout),
and location is a tuple (row, column, rowspan, colspan).
If the given widget is not in this layout, return None.

	
get_handler(name)

	Get value handler of a widget with the given name

	
get_indicator(name=None)

	Get indicator value for a widget with the given name (None means all indicators)

	
get_indicator_widget(name)

	Get indicator widget for a parameter with the given name, or None if this parameter has no indicator label

	
get_label_widget(name)

	Get label widget for a parameter with the given name, or None if this parameter has no label

	
get_layout_shape(name=None)

	Get shape (rows, cols) of the current layout

	
get_sublayout(name=None)

	Get the previously added sublayout

	
get_sublayout_kind(name=None)

	Get the kind of the previously added sublayout

	
get_value(name=None)

	Get value of a widget with the given name (None means all values)

	
get_value_changed_signal(name)

	Get a value-changed signal for a widget with the given name

	
get_widget(name)

	Get a widget corresponding to a value with the given name

	
insert_column(col, sublayout=None, stretch=0)

	Insert a new column at the given location in the grid layout

	
insert_row(row, sublayout=None, stretch=0)

	Insert a new row at the given location in the grid layout

	
is_running()

	Check if the container is running (started and not yet stopped)

	
is_stopping()

	Check if the container is stopping (stopping initialized and not yet done)

	
is_timer_running(name)

	Check if the timer with the given name is running

	
iter_sublayout_items(name=None, include=('widget',), nested=False)

	Iterate over items contained in a given sublayout.

include is a tuple which contains items to iterate over; can include "widget" or "layout".
If nested==True, iterate over items in contained layouts as well.

	
pad_borders(kind='both', stretch=0)

	Add expandable paddings on the bottom and/or right border.

kind can be "bottom", "right", "both", or "none" (do nothing).
Note that if more elements are added, they will be placed after the padding, so the table will be padded in the middle.

	
remove_child(name, clear=True)

	Remove widget from the container and the layout and (if clear==True) clear it, and remove it

	
remove_layout_element(element)

	Remove a previously added layout element

	
remove_widget(name)

	Remove the widget and, if applicable, its indicator and label

	
set_all_indicators(value, ignore_missing=True)

	

	
set_all_values(value, force=True)

	Set values of all widgets in the table.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

	
set_column_stretch(*args, layout=None)

	Set column stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all columns.

	
set_enabled(names=None, enabled=True, include_indicator=True, include_label=True)

	Enable or disable widgets with the given names (by default, all widgets)

	
set_indicator(name, value, ignore_missing=False)

	Set indicator value for a widget or a branch with the given name

	
set_row_stretch(*args, layout=None)

	Set row stretch for a given layout.

Takes either two arguments index and stretch, or a single list of stretches for all rows.

	
set_value(name, value, force=True)

	Set value of a widget with the given name.

If force==True, force widget value (e.g., ignoring restriction on not changing values of focused widgets)

	
set_visible(names=None, visible=True, include_indicator=True, include_label=True)

	Show or hide widgets with the given names (by default, all widgets)

	
setup_name(name)

	Set the object’s name

	
start()

	Start the container.

Starts all the internal timers, and calls start method for all the contained widgets.

	
start_timer(name)

	Start the timer with the given name (also called automatically on start() method)

	
stop()

	Stop the container.

Stops all the internal timers, and calls stop method for all the contained widgets.

	
stop_timer(name)

	Stop the timer with the given name (also called automatically on stop() method)

	
update_indicators()

	Update all indicators to represent current values

	
update_value(name=None)

	Send update signal for a handler with a given name or list of names.

Emit a value changed signal with the current value to notify the subscribed slots.
If name is None, emit for all values in the table.

	
using_layout(name)

	Use a different sublayout as default inside the with block

	
using_new_sublayout(name, kind='grid', location=('next', 0, 1, 'end'))

	Create a different sublayout and use it as default inside the with block.

kind can be "grid", "vbox" (vertical single-column box), or "hbox" (horizontal single-row box).

Module contents

pylablib.core.thread package

Submodules

pylablib.core.thread.callsync module

	
class pylablib.core.thread.callsync.QCallResultSynchronizer(skippable=True)

	Bases: QThreadNotifier

	
get_progress()

	Get the progress of the call execution.

Can be "waiting" (call is not done executing), "done" (call done successfully),
"fail" (call failed, probably due to thread being stopped), "skip" (call was skipped),
or "exception" (call raised an exception).

	
is_call_done()

	Check if the call is done

	
skipped()

	Check if the call was skipped

	
failed()

	Check if the call failed

	
get_value_sync(timeout=None, default=None, error_on_fail=True, error_on_skip=True, pass_exception=True)

	Wait (with the given timeout) for the value passed by the notifier

If error_on_fail==True and the controlled thread notifies of a fail (usually, if it’s stopped before it executed the call),
raise threadprop.NoControllerThreadError; otherwise, return default.
If error_on_skip==True and the call was skipped (e.g., due to full call queue), raise threadprop.SkippedCallError; otherwise, return default.
If pass_exception==True and the returned value represents exception, re-raise it in the caller thread; otherwise, return default.

	
done_notify()

	Check if notifying is done

	
done_wait()

	Check if waiting is done

	
get_value()

	Get the value passed by the notifier (doesn’t check if it has been passed already)

	
notify(*args, **kwargs)

	Notify the waiting process.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called before wait(), return immediately.

	
notifying_state()

	

	
success_wait()

	Check if waiting is done successfully

	
wait(*args, **kwargs)

	Wait for the notification.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called after notify(), return immediately.

	
waiting()

	Check if waiting is in progress

	
waiting_state()

	

	
class pylablib.core.thread.callsync.QDummyResultSynchronizer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Dummy result synchronizer for call which don’t require result synchronization (e.g., multicasts)

	
notify(value)

	

	
class pylablib.core.thread.callsync.QDirectResultSynchronizer(value)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Result “synchronizer” for direct calls.

Behaves as a regular result synchronizer with an already executed call.

	
get_progress()

	Get the progress of the call execution (always return "done")

	
is_call_done()

	Check if the call is done (always return True)

	
skipped()

	Check if the call was skipped (always return False)

	
failed()

	Check if the call failed (always return False)

	
get_value()

	Return stored value

	
get_value_sync(timeout=None, default=None, error_on_fail=True, error_on_skip=True, pass_exception=True)

	Return stored value.

Parameters are only for compatibility with QCallResultSynchronizer.

	
wait(*args, **kwargs)

	Do nothing (present only for compatibility with QCallResultSynchronizer)

	
notify(*args, **kwargs)

	Do nothing (present only for compatibility with QCallResultSynchronizer)

	
waiting()

	Check if waiting is in progress (always return False)

	
done_wait()

	Check if waiting is done (always return True)

	
success_wait()

	Check if waiting is done successfully (always return True)

	
done_notify()

	Check if notifying is done (always return True)

	
waiting_state()

	

	
notifying_state()

	

	
class pylablib.core.thread.callsync.QScheduledCall(func, args=None, kwargs=None, silent=False, result_synchronizer=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing a scheduled remote call.

Can be executed, skipped, or failed in the target thread, in which case it notifies the result synchronizer (if supplied).

	Parameters:

	
	func – callable to be invoked in the destination thread

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	silent – if True, silence the exception in the execution thread and simply pass it to the caller thread;
otherwise, the exception is raised in both threads

	result_synchronizer – result synchronizer object; can be None (create new QCallResultSynchronizer),
"async" (no result synchronization), or a QCallResultSynchronizer object.

	
class Callback(func, pass_result, call_on_exception, call_on_unschedule)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
call_on_exception

	

	
call_on_unschedule

	

	
func

	

	
pass_result

	

	
execute(silent=None)

	Execute the call and notify the result synchronizer (invoked by the destination thread)

	
add_callback(callback, pass_result=True, call_on_exception=False, call_on_unschedule=False, front=False)

	Set the callback to be executed after the main call is done.

If pass_result==True, pass function result to the callback (or None if call failed); otherwise, pass no arguments.
If call_on_exception==True, call it even if the original call raised an exception.
If call_on_unschedule==True, call it for any call unscheduling event, including using skip() or fail() methods
(this effectively ignores call_on_exception, since the callback is called regardless of the exception).
If front==True, add the callback in the front of the line (executes first).

	
fail()

	Notify that the call is failed (invoked by the destination thread)

	
skip()

	Notify that the call is skipped (invoked by the destination thread)

	
class pylablib.core.thread.callsync.TDefaultCallInfo(call_time)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
call_time

	

	
class pylablib.core.thread.callsync.QScheduler(call_info_argname=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic call scheduler.

Two methods are used by the external scheduling routines: build_call() to create a QScheduledCall with appropriate parameters,
and schedule(), which takes a call and schedules it.
The schedule() method should return True if the scheduling was successful (at least, for now), and False otherwise.

	Parameters:

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by build_call_info()) is passed on function call

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
schedule(call)

	Schedule the call

	
clear()

	Clear the scheduler

	
class pylablib.core.thread.callsync.QDirectCallScheduler(call_info_argname=None)

	Bases: QScheduler

Simplest call scheduler: directly executes the calls on scheduling in the scheduling thread.

	Parameters:

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=False)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
schedule(call)

	Schedule the call

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
clear()

	Clear the scheduler

	
class pylablib.core.thread.callsync.QQueueScheduler(on_full_queue='skip_current', call_info_argname=None)

	Bases: QScheduler

Call scheduler with a builtin call queue.

Supports placing the calls and retrieving them (from the destination thread).
Has ability to skip some calls if, e.g., the queue is too full. Whether the call should be skipped is determined
by can_schedule() (should be overloaded in subclasses).
Used as a default command scheduler.

	Parameters:

	
	on_full_queue – action to be taken if the call can’t be scheduled (i.e., can_schedule() returns False); can be
"skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current)
"skip_oldest" (skip the oldest call in the queue; place the current),
"call_current" (execute the call which is being scheduled immediately in the caller thread),
"call_newest" (execute the most recent call immediately in the caller thread),
"call_oldest" (execute the oldest call in the queue immediately in the caller thread), or
"wait" (wait until the call can be scheduled, which is checked after every call removal from the queue; place the call)

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	Methods to overload:
	
	can_schedule(): check if the call can be scheduled

	call_added(): called when a new call has been added to the queue

	call_popped(): called when a call has been removed from the queue (either for execution, or for skipping)

	
can_schedule(call)

	Check if the call can be scheduled

	
call_added(call)

	Called whenever call has been added to the queue

	
call_popped(call, idx)

	Called whenever call has been removed from the queue

idx determines the call position within the queue.

	
schedule(call)

	Schedule a call

	
pop_call()

	Pop the call from the queue head.

If the queue is empty, return None

	
unschedule(call)

	Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified elsewhere).

	
has_calls()

	Check if there are queued calls

	
clear(close=True)

	Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and fail all calls in the queue;
otherwise, skip all calls currently in the queue.

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
class pylablib.core.thread.callsync.QQueueLengthLimitScheduler(max_len=1, on_full_queue='skip_current', call_info_argname=None)

	Bases: QQueueScheduler

Queued call scheduler with a length limit.

	Parameters:

	
	max_len – maximal queue length; non-positive values are interpreted as no limit
can also be a tuple (arg_name, max_len), in which case the length is calculated separately
for every value of the parameter arg_name supplied to the method

	on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can be
"skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current)
"skip_oldest" (skip the oldest call in the queue; place the current),
"call_current" (execute the call which is being scheduled immediately in the caller thread),
"call_newest" (execute the most recent call immediately in the caller thread),
"call_oldest" (execute the oldest call in the queue immediately in the caller thread), or
"wait" (wait until the call can be scheduled, which is checked after every call removal from the queue; place the call)

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	
change_max_len(max_len)

	Change maximal length of the call queue (doesn’t affect already scheduled calls)

	
get_current_len()

	Get current number of calls in the queue

	
call_added(call)

	Called whenever call has been added to the queue

	
call_popped(call, idx)

	Called whenever call has been removed from the queue

idx determines the call position within the queue.

	
can_schedule(call)

	Check if the call can be scheduled

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
clear(close=True)

	Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and fail all calls in the queue;
otherwise, skip all calls currently in the queue.

	
has_calls()

	Check if there are queued calls

	
pop_call()

	Pop the call from the queue head.

If the queue is empty, return None

	
schedule(call)

	Schedule a call

	
unschedule(call)

	Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified elsewhere).

	
class pylablib.core.thread.callsync.QQueueSizeLimitScheduler(max_size=1, size_calc=None, on_full_queue='skip_current', call_info_argname=None)

	Bases: QQueueScheduler

Queued call scheduler with a generic size limit; similar to QQueueLengthLimitScheduler,
but more flexible and can implement more restrictions (e.g., queue length and arguments RAM size).

	Parameters:

	
	max_size – maximal total size of the arguments; can be either a single number, or a tuple (if several different size metrics are involved);
non-positive values are interpreted as no limit

	size_calc – function that takes a single argument (call to be placed) and returns its size; can be either a single number,
or a tuple (if several different size metrics are involved);
by default, simply returns 1, which makes the scheduler behavior identical to QQueueLengthLimitScheduler

	on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can be
"skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current)
"skip_oldest" (skip the oldest call in the queue; place the current),
"call_current" (execute the call which is being scheduled immediately in the caller thread),
"call_newest" (execute the most recent call immediately in the caller thread),
"call_oldest" (execute the oldest call in the queue immediately in the caller thread), or
"wait" (wait until the call can be scheduled, which is checked after every call removal from the queue; place the call)

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	
change_max_size(max_size)

	Change size restrictions

	
get_current_size()

	Get current size metrics

	
call_added(call)

	Called whenever call has been added to the queue

	
call_popped(call, idx)

	Called whenever call has been removed from the queue

idx determines the call position within the queue.

	
can_schedule(call)

	Check if the call can be scheduled

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
clear(close=True)

	Clear the call queue.

If close==True, mark the queue as closed (any attempt to schedule more calls fails automatically) and fail all calls in the queue;
otherwise, skip all calls currently in the queue.

	
has_calls()

	Check if there are queued calls

	
pop_call()

	Pop the call from the queue head.

If the queue is empty, return None

	
schedule(call)

	Schedule a call

	
unschedule(call)

	Unschedule a given call.

Designed for joint queue operation, so the call is not notified (assume that it has been already notified elsewhere).

	
pylablib.core.thread.callsync.schedule_multiple_queues(call, queues)

	Schedule the call simultaneously in several queues.

Go through queues in the given order and schedule call in every one of them.
If one of the schedules failed or the call has been executed there, unschedule it from all the previous queues
and return False; otherwise, return True.

	
class pylablib.core.thread.callsync.QMultiQueueScheduler(schedulers, notifiers)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper around schedule_multiple_queues() which acts as a single scheduler.

Support additional notifiers, which are called if the scheduling is successful
(e.g., to notify and wake up the destination thread).

	
build_call(*args, **kwargs)

	

	
schedule(call)

	

	
class pylablib.core.thread.callsync.QThreadCallScheduler(thread=None, tag=None, priority=0, interrupt=True, call_info_argname=None)

	Bases: QScheduler

Call scheduler via thread calls (QThreadController.call_in_thread_callback())

	Parameters:

	
	thread – destination thread (by default, thread which creates the scheduler)

	tag – if supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally, higher priority method).

	priority – message priority (only when tag is not None)

	interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or sleeping), or it should be called in the main event loop

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	
schedule(call)

	Schedule the call

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
clear()

	Clear the scheduler

	
class pylablib.core.thread.callsync.QMulticastThreadCallScheduler(thread=None, limit_queue=1, tag=None, priority=0, interrupt=True, call_info_argname=None)

	Bases: QThreadCallScheduler

Extended call scheduler via thread calls, which can limit number of queued calls.

	Parameters:

	
	thread – destination thread (by default, thread which creates the scheduler)

	limit_queue – call queue limit (non-positive numbers are interpreted as no limit)

	tag – if supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally, higher priority method).

	priority – message priority (only when tag is not None)

	interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or sleeping), or it should be called in the main event loop

	call_info_argname – if not None, supplies a name of a keyword argument
via which call info (generated by QScheduler.build_call_info()) is passed on function call

	
schedule(call)

	Schedule the call

	
build_call(func, args=None, kwargs=None, callback=None, pass_result=True, callback_on_exception=True, sync_result=True)

	Build QScheduledCall for subsequent scheduling.

	Parameters:

	
	func – function to be called

	args – arguments to be passed to func

	kwargs – keyword arguments to be passed to func

	callback – optional callback to be called when func is done

	pass_result (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, pass func result as a single argument to the callback; otherwise, give no arguments

	callback_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, execute the callback on call fail or skip (if it requires an argument, None is supplied);
otherwise, only execute it if the call was successful

	sync_result – if True, the call has a default result synchronizer; otherwise, no synchronization is made.

	
build_call_info()

	Build call info tuple which can be passed to scheduled calls

	
clear()

	Clear the scheduler

pylablib.core.thread.controller module

	
pylablib.core.thread.controller.exint(error_msg_template='{}:', pass_stop_exception=False)

	Context that intercepts exceptions and stops the execution in a controlled manner (quitting the main thread)

	
pylablib.core.thread.controller.add_exception_hook(name, func, single_call=False)

	Add an exception hook, which is called whenever exception is caught via exint() wrapper.

If single_call==True, the hook is removed from the set when it is called.

	
pylablib.core.thread.controller.remove_exception_hook(name)

	Remove the exception hook with the given name

	
pylablib.core.thread.controller.exsafe(func)

	Decorator that intercepts exceptions raised by func and stops the execution in a controlled manner (quitting the main thread)

	
pylablib.core.thread.controller.exsafeSlot(*slargs, **slkwargs)

	Wrapper around Qt slot which intercepts exceptions and stops the execution in a controlled manner

	
pylablib.core.thread.controller.toploopSlot(*slargs, **slkwargs)

	Wrapper around Qt slot which intercepts exceptions and stops the execution in a controlled manner

	
class pylablib.core.thread.controller.QThreadControllerThread(controller)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
finalized = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	

	
run()

	

	
quit_sync()

	

	
pylablib.core.thread.controller.remote_call(func)

	Decorator that turns a controller method into a remote call (call from a different thread is passed synchronously)

	
pylablib.core.thread.controller.call_in_thread(thread_name, interrupt=True, pass_exception=True, silent=False, sync=True)

	Decorator that turns any function into a remote call in a thread with a given name (call from a different thread is passed synchronously)

	
pylablib.core.thread.controller.call_in_gui_thread(func=None, interrupt=True, pass_exception=True, silent=False, sync=True)

	Decorator that turns any function into a remote call in a GUI thread (call from a different thread is passed synchronously)

	
pylablib.core.thread.controller.gui_thread_method(func)

	Decorator for an object’s method that checks if the object’s gui_thread_safe attribute is true, in which case the call is routed to the GUI thread

	
class pylablib.core.thread.controller.QThreadController(name=None, kind='loop', multicast_pool=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic Qt thread controller.

Responsible for all inter-thread synchronization. There is one controller per thread, and

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – thread name (by default, generate a new unique name);
this name can be used to obtain thread controller via get_controller()

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – thread kind; can be "loop" (thread is running in the Qt message loop; behavior is implemented in process_message() and remote calls),
"run" (thread executes run() method and quits after it is complete), or "main" (can only be created in the main GUI thread)

	multicast_pool – MulticastPool for this thread (by default, use the default common pool)

	Methods to overload:
	
	on_start(): executed on the thread startup (between synchronization points "start" and "run")

	on_finish(): executed on thread cleanup (attempts to execute in any case, including exceptions)

	run(): executed once per thread; thread is stopped afterwards (only if kind=="run")

	
	process_message(): function that takes 2 arguments (tag and value) of the message and processes it; returns True if the message has been processed and False otherwise
	(in which case it is stored and can be recovered via wait_for_message()/pop_message()); by default, always return False

	
	process_interrupt(): function that tales 2 arguments (tag and value) of the interrupt message (message with a tag starting with "interrupt.") and processes it;
	by default, assumes that any value with tag "execute" is a function and executes it

	Signals:
	
	started: emitted on thread start (after on_start() is executed)

	finished: emitted on thread finish (before on_finish() is executed)

	
started = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	This signal is emitted after the thread has started (after the setup code has been executed, before its lifetime state is changed)

	
finished = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	This signal is emitted before the thread has finished (before the cleanup code has been executed, after its lifetime state is changed)

	
allowing_toploop(depth=1)

	Context manager which temporarily treats the current loop level and several deeper levels as a top loop.

All event loops which lie up to depth below this one are treated as top loops.

	
blocking_control_signals(kinds='all', ignore=None)

	Context manager which temporarily blocks external control signals.

After leaving the wrapped code segment, all of the blocked but not ignored calls are executed.
kind determines the kind of calls to block; it is a collection of elements among
"message", "stop", and "call" and blocks, correspondingly, messages, stop signals,
and any call_in_thread-related requests; can be also be "all", which includes all of these categories.
ignore specifies kinds which are completely ignored if sent during the blocking interval;
can also be "all", which includes all of the kinds categories.
Useful to temporarily “suspend” the thread communication with other threads, especially for the main GUI thread (e.g., to show a blocking message box).
Local call method.

	
wait_for_message(tag, timeout=None, top_loop=False)

	Wait for a single message with a given tag.

Return value of a received message with this tag.
If timeout is passed, raise threadprop.TimeoutThreadError.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
new_messages_number(tag)

	Get the number of queued messages with a given tag.

Local call method.

	
pop_message(tag)

	Pop the latest message with the given tag.

Select the message with the highest priority, and among those the oldest one.
If no messages are available, raise threadprop.NoMessageThreadError.
Local call method.

	
wait_for_sync(tag, uid, timeout=None)

	Wait for synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code.
If timeout is passed, raise threadprop.TimeoutThreadError.
Local call method.

	
wait_for_any_message(timeout=None, top_loop=False)

	Wait for any message (including synchronization messages or pokes).

If timeout is passed, raise threadprop.TimeoutThreadError.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
wait_until(check, timeout=None, top_loop=False)

	Wait until a given condition is true.

Condition is given by the check function, which is called after every new received message and should return True if the condition is met.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
If timeout is passed, raise threadprop.TimeoutThreadError.
Local call method.

	
check_messages(top_loop=False)

	Receive new messages.

Runs the underlying message loop to process newly received message and signals (and place them in corresponding queues if necessary).
This method is rarely invoked, and only should be used periodically during long computations to not ‘freeze’ the thread.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
sleep(timeout, wake_on_message=False, top_loop=False)

	Sleep for a given time (in seconds).

Unlike time.sleep() [https://docs.python.org/3/library/time.html#time.sleep], constantly checks the event loop for new messages (e.g., if stop or interrupt commands are issued).
In addition, if wake_on_message==True, wake up if any message has been received;
it this case. return True if the wait has been completed, and False if it has been interrupted by a message.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
If timeout is None, wait forever (usually, until the application is closed, or some interrupt message raises and error).
Local call method.

	
no_stopping()

	Context manager, which temporarily suspends stop requests (InterruptExceptionStop exceptions).

If the stop request has been made within this block, raise the exception on exit.
Note that stop() method and, correspondingly, stop_controller() still work, when called from the controlled thread.

	
process_interrupt(tag, value)

	Process a new interrupt.

If the function returns False, the interrupt is put in the corresponding queue.
Otherwise, the the message is interrupt to be already, and it gets ‘absorbed’.
Local call method, called automatically.

	
process_message(tag, value)

	Process a new message.

If the function returns False, the message is put in the corresponding queue.
Otherwise, the the message is considered to be already, and it gets ‘absorbed’.
Local call method, called automatically.

	
on_start()

	Method invoked on the start of the thread.

Local call method, called automatically.

	
on_finish()

	Method invoked in the end of the thread.

Called regardless of the stopping reason (normal finishing, exception, application finishing).
Local call method, called automatically.

	
run()

	Method called to run the main thread code (only for "run" thread kind).

Local call method, called automatically.

	
subscribe_sync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0, limit_queue=None, call_interrupt=True, add_call_info=False, return_result=False, sid=None)

	Subscribe a synchronous callback to a multicast.

If a multicast is sent, callback is called from the dest_controller thread (by default, thread which is calling this function)
via the thread call mechanism (QThreadController.call_in_thread_callback()).
In Qt, analogous to making a signal connection with a queued call.
By default, the subscribed destination is the thread’s name.
Local call method.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	subscription_priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	limit_queue (int [https://docs.python.org/3/library/functions.html#int]) – limits the maximal number of scheduled calls
(if the multicast is sent while at least limit_queue callbacks are already in queue to be executed, ignore it)
0 or negative value means no limit (not recommended, as it can increase the queue indefinitely if the multicast rate is high enough)

	call_interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or sleeping), or it should be called in the main event loop

	add_call_info (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, add a fourth argument containing a call information (tuple with a single element, a timestamps of the call).

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique name).

	
subscribe_direct(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0, scheduler=None, return_result=False, sid=None)

	Subscribe asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should be used with care.
In Qt, analogous to making a signal connection with a direct call.
By default, the subscribed destination is the thread’s name.
Local call method.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	subscription_priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	scheduler – if defined, multicast call gets scheduled using this scheduler instead of being called directly (which is the default behavior)

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique id and return it).

	
unsubscribe(sid)

	Unsubscribe from a subscription with a given ID.

Note that multicasts which are already emitted but not processed will remain in the queue;
if they need to be ignored, it should be handled explicitly.
Local call method.

	
send_multicast(dst='any', tag=None, value=None, src=None, filter_results=True)

	Send a multicast to the multicast pool.

By default, the multicast source is the thread’s name.
Return result synchronizers for all executed subscribed methods.
Local call method.

	Parameters:

	
	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast destination; can be a name, "all" (will pass all subscribers’ destination filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" destination).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast tag.

	value – multicast value.

	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast source; can be None (current thread name), a specific name, "all" (will pass all subscribers’ source filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" source).

	filter_results – if True, filter the results to exclude dummy synchronizers, which correspond to calls which do not return anything

	
send_multicast_sync(dst='any', tag=None, value=None, src=None, timeout=None, default_result=None, pass_exception=True)

	Send a multicast to the multicast pool and synchronize the results, if available.

By default, the multicast source is the thread’s name.
Results are collected and synchronized only from the subscriptions which return them (i.e., set return_result=True).
Local call method.

	Parameters:

	
	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast destination; can be a name, "all" (will pass all subscribers’ destination filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" destination).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast tag.

	value – multicast value.

	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast source; can be None (current thread name), a specific name, "all" (will pass all subscribers’ source filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" source).

	timeout – synchronization timeout (None means waiting forever)

	default_result – default result value if synchronization failed (timed out, thread stopped, etc.)

	pass_exception – if True and the signal processor raised an exception, raise it in this thread as well
If pass_exception==True and the returned value represents exception, re-raise it in the caller thread; otherwise, return default.

	
set_variable(name, value, update=False, notify=False, notify_tag='changed/*', simple=False)

	Set thread variable.

Can be called in any thread (controlled or external).
If notify==True, send an multicast with the given notify_tag (where "*" symbol is replaced by the variable name).
If update==True and the value is a dictionary, update the branch rather than overwrite it.
If simple==True, assume that the result is a single atomic variable, in which case the lock is not used;
note that in this case the threads waiting on this variable (or branches containing it) will not be notified.
Local call method.

	
delete_variable(name, missing_error=False)

	Delete thread variable.

If missing_error==False and no variable exists, do nothing; otherwise, raise and error.
Local call method.

	
set_func_variable(name, func, use_lock=True)

	Set a ‘function’ variable.

Acts as a thread variable to the external user, but instead of reading a stored value, it executed a function instead.
Note, that the function is executed in the caller thread (i.e., the thread which tries to access the variable),
so use of synchronization methods (commands, signals, locks) is highly advised.

If use_lock==True, then the function call will be wrapped into the usual variable lock,
i.e., it won’t run concurrently with other variable access.
Local call method.

	
add_thread_method(name, method, interrupt=True)

	Add a thread method.

Adds a named method to the thread, which can be called later using call_thread_method().
This method will be called in this thread.

Useful for GUI thread to set up some global access methods, which other threads can safely use.
For QTaskThread threads it’s a better idea to set up a command instead.
Local call method.

	
delete_thread_method(name)

	Delete a thread method.

Local call method.

	
call_thread_method(name, *args, **kwargs)

	Call a thread method.

Method needs to be set up beforehand using add_thread_method(). It is always executed in the current thread.
Local call method.

	
send_message(tag, value, priority=0)

	Send a message to the thread with a given tag, value and priority.

External call method.

	
send_interrupt(tag, value, priority=0)

	Send an interrupt message to the thread with a given tag, value and priority.

External call method.

	
send_sync(tag, uid)

	Send a synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code (e.g., QThreadNotifier).
External call method.

	
get_variable(name, default=None, copy_branch=True, missing_error=False, simple=False)

	Get thread variable.

If missing_error==False and no variable exists, return default; otherwise, raise and error.
If copy_branch==True and the variable is a Dictionary branch, return its copy to ensure that it stays unaffected on possible further variable assignments.
If simple==True, assume that the result is a single atomic variable, in which case the lock is not used;
this only works with actual variables and not function variables.
Universal call method.

	
sync_variable(name, pred, timeout=None)

	Wait until thread variable with the given name satisfies the condition given by pred.

pred can be a variable values, a container (list, set, tuple) of possible values,
or a function which takes one argument (variable value) and returns whether the condition is satisfied.
It is executed in the caller thread.
External call method.

	
start()

	Start the thread.

External call method.

	
request_stop()

	Request thread stop (send a stop command).

External call method.

	
stop(code=0, sync=False)

	Stop the thread.

If called from the thread, stop immediately by raising a threadprop.InterruptExceptionStop exception. Otherwise, schedule thread stop.
If the thread kind is "main", stop the whole application with the given exit code. Otherwise, stop the thread.
If sync==True and the thread is not main or current, wait until it is completely stopped.
Universal call method.

	
sync_stop()

	Wait until the controller and the thread are stopped.

External call method.

	
poke()

	Send a dummy message to the thread.

A cheap way to notify the thread that something happened (useful for, e.g., making thread leave wait_for_any_message() method).
External call method.

	
running()

	Check if the thread is running

	
finishing()

	Check if the thread is finishing

	
notify_exec_point(point)

	Mark the given execution point as passed.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished).
Can be extended for arbitrary points.
Local call method.

	
fail_exec_point(point)

	Mark the given execution point as failed.

Automatically invoked for "run" (thread setup and ready to run) if the startup raised an error before the thread properly started
("start", "cleanup", and "stop" are notified in any case)
Can be extended for arbitrary points.
Local call method.

	
get_exec_counter(point)

	Get the counter (number of notifications) for the given point.

See sync_exec_point() for details.
External call.

	
sync_exec_point(point, timeout=None, counter=1)

	Wait for the given execution point.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished).
If timeout is passed, raise threadprop.TimeoutThreadError.
counter specifies the minimal number of pre-requisite notify_exec_point() calls to finish the waiting (by default, a single call is enough).
Return actual number of notifier calls up to date.
External call method.

	
add_stop_notifier(func, call_if_stopped=True)

	Add stop notifier: a function which is called when the thread is about to be stopped (left the main message loop).

The supplied function is called in the controlled thread close to its shutdown, so it should be short, non-blocking, and thread-safe.
If the thread is already stopped and call_if_stopped==True, call func immediately (from the caller’s thread).
Return True if the thread is still running and the notifier is added, and False otherwise.
Local call method.

	
remove_stop_notifier(func)

	Remove the stop notifier from this controller.

Return True if the notifier was in this thread and is now removed, and False otherwise.
Local call method.

	
is_in_controlled()

	Check if the thread executing this code is controlled by this controller

	
call_in_thread_callback(func, args=None, kwargs=None, callback=None, tag=None, priority=0, interrupt=True)

	Call a function in this thread with the given arguments.

If callback is supplied, call it with the result as a single argument (call happens in the controller thread).
If tag is supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally, higher priority method).
If interrupt==True, method can be called inside any control loop (either main loop, or during waiting); otherwise, only call it in the top loop.
Universal call method.

	
call_in_thread_sync(func, args=None, kwargs=None, sync=True, callback=None, timeout=None, default_result=None, pass_exception=True, silent=False, tag=None, priority=0, interrupt=True, error_on_stopped=True, same_thread_shortcut=True)

	Call a function in this thread with the given arguments.

If sync==True, calling thread is blocked until the controlled thread executes the function, and the function result is returned
(in essence, the fact that the function executes in a different thread is transparent).
Otherwise, exit call immediately, and return a synchronizer object (QCallResultSynchronizer),
which can be used to check if the call is done (method is_done) and obtain the result (method QCallResultSynchronizer.get_value_sync()).
If callback is not None, call it after the function is successfully executed (from the target thread), with a single parameter being function result.
If pass_exception==True and func raises an exception, re-raise it in the caller thread (applies only if sync==True).
If silent==True and func raises an exception, silence it in the execution thread and only re-raise it in the caller thread;
note that if pass_exception==False and silent==True, the exception is ignored in both threads.
If tag is supplied, send the call in a message with the given tag and priority; otherwise, use the interrupt call (generally, higher priority method).
If interrupt==True, method can be called inside any control loop (either main loop, or during waiting); otherwise, only call it in the top loop.
If error_on_stopped==True and the controlled thread is stopped before it executed the call, raise threadprop.NoControllerThreadError; otherwise, return default_result.
If same_thread_shortcut==True (default), the call is synchronous, and the caller thread is the same as the controlled thread, call the function directly.
Universal call method.

	
class pylablib.core.thread.controller.QTaskThread(name=None, args=None, kwargs=None, multicast_pool=None)

	Bases: QThreadController

Thread which allows to set up and run jobs and batch jobs with a certain time period, and execute commands in the meantime.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – thread name (by default, generate a new unique name)

	args – args supplied to setup_task() method

	kwargs – keyword args supplied to setup_task() method

	multicast_pool – MulticastPool for this thread (by default, use the default common pool)

	
ca

	asynchronous command accessor, which makes calls more function-like;
ctl.ca.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,sync=False)

	
cai

	asynchronous command accessor which ignores and silences any exceptions (including missing /stopped controller)
useful for sending queries during thread finalizing / application shutdown, when it’s not guaranteed that the command recipient is running
ctl.cai.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,sync=False,ignore_errors=True)

	
cad

	asynchronous command accessor returning a result synchronizer, which makes calls more function-like;
ctl.cad.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,sync="delayed")

	
cs

	synchronous command accessor, which makes calls more function-like;
ctl.cs.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",args,kwargs,sync=True)

	
css

	synchronous command accessor which is made ‘exception-safe’ via exsafe() wrapper (i.e., safe to directly connect to slots)
ctl.css.comm(*args,**kwarg) is equivalent to with exint(): ctl.call_command("comm",args,kwargs,sync=True)

	
csi

	synchronous command accessor which ignores and silences any exceptions (including missing /stopped controller)
useful for sending queries during thread finalizing / application shutdown, when it’s not guaranteed that the command recipient is running

	
m

	method accessor; directly calls the method corresponding to the command;
ctl.m.comm(*args,**kwarg) is equivalent to ctl.call_command("comm",*args,**kwargs), which is often also equivalent to ctl.comm(*args,**kwargs);
for most practical purposes it’s the same as directly invoking the class method, but it makes intent more explicit
(as command methods are usually not called directly from other threads), and it doesn’t invoke warning about calling method instead of command from another thread.

	Methods to overload:
	
	setup_task(): executed on the thread startup (between synchronization points "start" and "run")

	finalize_task(): executed on thread cleanup (attempts to execute in any case, including exceptions)

	
class TBatchJob(job, cleanup, min_run_time, priority)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cleanup

	

	
job

	

	
min_run_time

	

	
priority

	

	
class TCommand(command, scheduler, priority)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
command

	

	
priority

	

	
scheduler

	

	
class Job(job, period, queue, jobs_order)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A single job loop.

Deals with scheduling, time counting, pausing, and cleanup.

	Parameters:

	
	job – job function

	period – job period

	queue – thread controller’s scheduling queue, to which the job must be added

	jobs_order – thread controller’s job queue which determines the jobs scheduling order

	
schedule()

	Schedule the job

	
mark_unscheduled()

	Mark the job as unscheduled.

Called automatically on job completion.

	
unschedule()

	Manually unschedule the job (e.g., when paused or removed)

	
clear()

	Clear the job and remove it from the jobs list

	
change_period(period)

	Change the job period

	
pause(paused=True, unschedule=True)

	Pause or resume the job.

If pausing and unschedule==True, remove already scheduled job from the queue.

	
time_left(t=None)

	Get the amount of time left till the next call, or None if the job is paused

	
add_job(name, job, period, initial_call=True, priority=-10)

	Add a recurrent job which is called every period seconds.

The job starts running automatically when the main thread loop start executing.
If initial_call==True, call job once immediately after adding.
priority specifies the call priority in the scheduling queue;
by default, it is lower than the command and multicasts (0).
Local call method.

	
change_job_period(name, period)

	Change the period of the job name.

Local call method.

	
remove_job(name)

	Remove the job name from the job list.

Local call method.

	
add_batch_job(name, job, cleanup=None, min_runtime=0, priority=-10)

	Add a batch job which is executed once, but with continuations.

After this call the job is just created, but is not running. To start it, call start_batch_job().
If specified, cleanup is a finalizing function which is called both when the job terminates normally,
and when it is forcibly stopped (including thread termination).
min_runtime specifies minimal expected runtime of a job; if a job executes faster than this time,
it is repeated again unless at least min_runtime seconds passed; useful for high-throughput jobs,
as it reduces overhead from the job scheduling mechanism (repeating within min_runtime time window is fast)

Unlike the usual recurrent jobs, here job is a generator (usually defined by a function with yield statement).
When the job is running, the generator is periodically called until it raises StopIteration [https://docs.python.org/3/library/exceptions.html#StopIteration] exception, which signifies that the job is finished.
From generator function point of view, after the job is started, the function is executed normally,
but every time yield statement is encountered, the execution is suspended for period seconds (specified in start_batch_job()).
priority specifies the call priority in the scheduling queue;
by default, it is lower than the command and multicasts (0).
Local call method.

	
change_batch_job_parameters(name, job='keep', cleanup='keep', min_runtime='keep', priority='keep', stop=False, restart=False)

	Change parameters (main body, cleanup function, and minimal runtime) of the batch job.

The parameters are the same as for add_batch_job(). If any of them are "keep", don’t change them.
If stop==True, stop the job before changing the parameters;
otherwise the job is continued with the previous parameters (including cleanup) until it is stopped and restarted.
If restart==True, restart the job after changing the parameters.
Local call method.

	
remove_batch_job(name)

	Remove the batch job name, stopping it if necessary.

Local call method.

	
start_batch_job(name, period, *args, start_immediate=True, **kwargs)

	Start the batch job with the given name.

period specifies suspension period. Optional arguments are passed to the job and the cleanup functions.
If start_immediate==True, start the job (i.e., run the first iteration) immediately during the call;
otherwise, start it only when it is scheduled, after the currently running call is complete.
Local call method.

	
is_batch_job_running(name)

	Check if a given batch job running.

Local call method.

	
stop_batch_job(name, stop_immediate=True, error_on_stopped=False)

	Stop a given batch job.

If error_on_stopped==True and the job is not currently running, raise an error. Otherwise, do nothing.
If stop_immediate==True, stop the job (i.e., unschedule it and run the cleanup code) immediately during the call;
otherwise, stop it when its next iteration is called.
Local call method.

	
restart_batch_job(name, start_immediate=True, error_on_stopped=False)

	Restart the running batch job with its current arguments.

If error_on_stopped==True and the job is not currently running, raise an error. Otherwise, do nothing.
Local call method.

	
run_as_batch_job(job, period, cleanup=None, name=None, priority=-10, start_immediate=True, args=None, kwargs=None)

	Create a temporarily batch job and immediately run it.

If name is None, generate a new unique name.
The job is removed after it is complete (i.e., after cleanup).
Note that this implies, that it can not be restarted using restart_batch_job(), as it will be removed after the stopping before the restart.
All the parameters are the same as for add_batch_job() and start_batch_job().
Return the batch job name (either supplied or newly generated).

	
run()

	Method called to run the main thread code (only for "run" thread kind).

Local call method, called automatically.

	
on_start()

	Method invoked on the start of the thread.

Local call method, called automatically.

	
on_finish()

	Method invoked in the end of the thread.

Called regardless of the stopping reason (normal finishing, exception, application finishing).
Local call method, called automatically.

	
setup_task(*args, **kwargs)

	Setup the thread (called before the main task loop).

Local call method, called automatically.

	
finalize_task()

	Finalize the thread (always called on thread termination, regardless of the reason).

Local call method, called automatically.

	
update_status(kind, status, text=None, notify=True)

	Update status represented in thread variables.

kind is the status kind and status is its value.
Status variable name is "status/"+kind.
If text is not None, it specifies new status text stored in "status/"+kind+"_text".
If notify==True, send an multicast about the status change.
Local call method.

	
add_command(name, command=None, scheduler=None, limit_queue=None, on_full_queue='skip_current', priority=0)

	Add a new command to the command set.

Return scheduler, which can be used for adding another command (if the same queue should be used for several commands).
Local call method.

	Parameters:

	
	name – command name

	command – command function; if None, look for the method with the given name.

	scheduler – a command scheduler; by default, it is a QQueueLengthLimitScheduler,
which maintains a call queue with the given length limit and full queue behavior;
can also be a name of a different command, with which it will share a single queue with the same limitations;
if supplied, limit_queue and on_full_queue parameters are ignored

	limit_queue – command call queue limit; None means no limit

	on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can be
"skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current)
"skip_oldest" (skip the oldest call in the queue; place the current),
"call_current" (execute the call which is being scheduled immediately in the caller thread),
"call_newest" (execute the most recent call immediately in the caller thread),
"call_oldest" (execute the oldest call in the queue immediately in the caller thread), or
"wait" (wait until the call can be scheduled, which is checked after every call removal from the queue; place the call)

	priority – command priority; higher-priority multicasts and commands are always executed before the lower-priority ones.

	
add_direct_call_command(name, command=None, error_on_async=True)

	Add a direct method call which appears as a command.

Unlike regular commands, the call is executed directly in the caller thread (i.e., it is identical to the direct method call).
Useful for lightweight and/or lock-wrapped methods, which can be called in a thread-safe way, but which still use command interface for consistency.
Note that this kind of commands doesn’t have the same level of synchronization as regular commands
(e.g., it can be executed during execution of another command, or commsync multicast method).
Local call method.

	Parameters:

	
	name – command name

	command – command function; if None, look for the method with the given name.

	error_on_async – if True and the command is called asynchronously, raise an error; otherwise, substitute for a synchronous call

	
subscribe_commsync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0, scheduler=None, limit_queue=None, on_full_queue='skip_current', priority=0, add_call_info=False, return_result=False, sid=None)

	Subscribe a callback to a multicast which is synchronized with commands and jobs execution.

Unlike the standard QThreadController.subscribe_sync() method, the subscribed callback will only be executed between jobs or commands, not during one of these.
Local call method.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	subscription_priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	scheduler – if defined, multicast call gets scheduled using this scheduler;
by default, create a new call queue scheduler with the given limit_queue, on_full_queue and add_call_info arguments.

	limit_queue (int [https://docs.python.org/3/library/functions.html#int]) – limits the maximal number of scheduled calls
(if the multicast is sent while at least limit_queue callbacks are already in queue to be executed, ignore it)
0 or negative value means no limit (not recommended, as it can increase the queue indefinitely if the multicast rate is high enough)

	on_full_queue – action to be taken if the call can’t be scheduled (the queue is full); can be
"skip_current" (skip the call which is being scheduled),
"skip_newest" (skip the most recent call; place the current)
"skip_oldest" (skip the oldest call in the queue; place the current),
"call_current" (execute the call which is being scheduled immediately in the caller thread),
"call_newest" (execute the most recent call immediately in the caller thread),
"call_oldest" (execute the oldest call in the queue immediately in the caller thread), or
"wait" (wait until the call can be scheduled, which is checked after every call removal from the queue; place the call)

	add_call_info (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, add a fourth argument containing a call information (tuple with a single element, a timestamps of the call).

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique id and return it).

	
call_command_direct(name, args=None, kwargs=None)

	Invoke a command directly and immediately in the current thread.

Universal call method.

	
call_command(name, args=None, kwargs=None, sync=False, callback=None, timeout=None, ignore_errors=False)

	Invoke command call with the given name and arguments

If callback is not None, call it after the command is successfully executed (from the target thread), with a single parameter being the command result.
If sync==True, pause caller thread execution (for at most timeout seconds) until the command has been executed by the target thread, and then return the command result.
If sync=="delayed", return QCallResultSynchronizer object which can be used to wait for and read the command result;
otherwise, return None.
In the sync==True case, if ignore_errors==True, ignore all possible problems with the call (controller stopped, call raised an exception, call was skipped)
and return None instead; otherwise, these problems raise exceptions in the caller thread.
Universal call method.

	
call_in_thread_commsync(func, args=None, kwargs=None, sync=True, timeout=None, priority=0, ignore_errors=False, same_thread_shortcut=True)

	Call a function in this thread such that it is synchronous with other commands, and jobs.

Mostly equivalent to calling a command, only the command function is supplied instead of its name, and the advanced scheduling
(maximal schedule size, sharing with different commands, etc.) is not used.
args and kwargs specify the function arguments.
If sync==True, pause caller thread execution (for at most timeout seconds) until the command has been executed by the target thread, and then return the command result.
If sync=="delayed", return QCallResultSynchronizer object which can be used to wait for and read the command result;
otherwise, return None.
priority sets the call priority (by default, the same as the standard commands).
In the sync==True case, if ignore_errors==True, ignore all possible problems with the call (controller stopped, call raised an exception, call was skipped)
and return None instead; otherwise, these problems raise exceptions in the caller thread.
If same_thread_shortcut==True (default) and the caller thread is the same as the controlled thread, call the function directly.
Universal call method.

	
comm_paused()

	Context manager, which allows to temporarily pause all calls (commands, jobs, etc.)

	
class CommandAccess(parent, sync, direct=False, timeout=None, safe=False, ignore_errors=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Accessor object designed to simplify command syntax.

Automatically created by the thread, so doesn’t need to be invoked externally.

	
add_stop_notifier(func, call_if_stopped=True)

	Add stop notifier: a function which is called when the thread is about to be stopped (left the main message loop).

The supplied function is called in the controlled thread close to its shutdown, so it should be short, non-blocking, and thread-safe.
If the thread is already stopped and call_if_stopped==True, call func immediately (from the caller’s thread).
Return True if the thread is still running and the notifier is added, and False otherwise.
Local call method.

	
add_thread_method(name, method, interrupt=True)

	Add a thread method.

Adds a named method to the thread, which can be called later using call_thread_method().
This method will be called in this thread.

Useful for GUI thread to set up some global access methods, which other threads can safely use.
For QTaskThread threads it’s a better idea to set up a command instead.
Local call method.

	
allowing_toploop(depth=1)

	Context manager which temporarily treats the current loop level and several deeper levels as a top loop.

All event loops which lie up to depth below this one are treated as top loops.

	
blocking_control_signals(kinds='all', ignore=None)

	Context manager which temporarily blocks external control signals.

After leaving the wrapped code segment, all of the blocked but not ignored calls are executed.
kind determines the kind of calls to block; it is a collection of elements among
"message", "stop", and "call" and blocks, correspondingly, messages, stop signals,
and any call_in_thread-related requests; can be also be "all", which includes all of these categories.
ignore specifies kinds which are completely ignored if sent during the blocking interval;
can also be "all", which includes all of the kinds categories.
Useful to temporarily “suspend” the thread communication with other threads, especially for the main GUI thread (e.g., to show a blocking message box).
Local call method.

	
call_in_thread_callback(func, args=None, kwargs=None, callback=None, tag=None, priority=0, interrupt=True)

	Call a function in this thread with the given arguments.

If callback is supplied, call it with the result as a single argument (call happens in the controller thread).
If tag is supplied, send the call in a message with the given tag; otherwise, use the interrupt call (generally, higher priority method).
If interrupt==True, method can be called inside any control loop (either main loop, or during waiting); otherwise, only call it in the top loop.
Universal call method.

	
call_in_thread_sync(func, args=None, kwargs=None, sync=True, callback=None, timeout=None, default_result=None, pass_exception=True, silent=False, tag=None, priority=0, interrupt=True, error_on_stopped=True, same_thread_shortcut=True)

	Call a function in this thread with the given arguments.

If sync==True, calling thread is blocked until the controlled thread executes the function, and the function result is returned
(in essence, the fact that the function executes in a different thread is transparent).
Otherwise, exit call immediately, and return a synchronizer object (QCallResultSynchronizer),
which can be used to check if the call is done (method is_done) and obtain the result (method QCallResultSynchronizer.get_value_sync()).
If callback is not None, call it after the function is successfully executed (from the target thread), with a single parameter being function result.
If pass_exception==True and func raises an exception, re-raise it in the caller thread (applies only if sync==True).
If silent==True and func raises an exception, silence it in the execution thread and only re-raise it in the caller thread;
note that if pass_exception==False and silent==True, the exception is ignored in both threads.
If tag is supplied, send the call in a message with the given tag and priority; otherwise, use the interrupt call (generally, higher priority method).
If interrupt==True, method can be called inside any control loop (either main loop, or during waiting); otherwise, only call it in the top loop.
If error_on_stopped==True and the controlled thread is stopped before it executed the call, raise threadprop.NoControllerThreadError; otherwise, return default_result.
If same_thread_shortcut==True (default), the call is synchronous, and the caller thread is the same as the controlled thread, call the function directly.
Universal call method.

	
call_thread_method(name, *args, **kwargs)

	Call a thread method.

Method needs to be set up beforehand using add_thread_method(). It is always executed in the current thread.
Local call method.

	
check_messages(top_loop=False)

	Receive new messages.

Runs the underlying message loop to process newly received message and signals (and place them in corresponding queues if necessary).
This method is rarely invoked, and only should be used periodically during long computations to not ‘freeze’ the thread.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
delete_thread_method(name)

	Delete a thread method.

Local call method.

	
delete_variable(name, missing_error=False)

	Delete thread variable.

If missing_error==False and no variable exists, do nothing; otherwise, raise and error.
Local call method.

	
fail_exec_point(point)

	Mark the given execution point as failed.

Automatically invoked for "run" (thread setup and ready to run) if the startup raised an error before the thread properly started
("start", "cleanup", and "stop" are notified in any case)
Can be extended for arbitrary points.
Local call method.

	
finished = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	This signal is emitted before the thread has finished (before the cleanup code has been executed, after its lifetime state is changed)

	
finishing()

	Check if the thread is finishing

	
get_exec_counter(point)

	Get the counter (number of notifications) for the given point.

See sync_exec_point() for details.
External call.

	
get_variable(name, default=None, copy_branch=True, missing_error=False, simple=False)

	Get thread variable.

If missing_error==False and no variable exists, return default; otherwise, raise and error.
If copy_branch==True and the variable is a Dictionary branch, return its copy to ensure that it stays unaffected on possible further variable assignments.
If simple==True, assume that the result is a single atomic variable, in which case the lock is not used;
this only works with actual variables and not function variables.
Universal call method.

	
is_in_controlled()

	Check if the thread executing this code is controlled by this controller

	
new_messages_number(tag)

	Get the number of queued messages with a given tag.

Local call method.

	
no_stopping()

	Context manager, which temporarily suspends stop requests (InterruptExceptionStop exceptions).

If the stop request has been made within this block, raise the exception on exit.
Note that stop() method and, correspondingly, stop_controller() still work, when called from the controlled thread.

	
notify_exec_point(point)

	Mark the given execution point as passed.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished).
Can be extended for arbitrary points.
Local call method.

	
poke()

	Send a dummy message to the thread.

A cheap way to notify the thread that something happened (useful for, e.g., making thread leave wait_for_any_message() method).
External call method.

	
pop_message(tag)

	Pop the latest message with the given tag.

Select the message with the highest priority, and among those the oldest one.
If no messages are available, raise threadprop.NoMessageThreadError.
Local call method.

	
process_interrupt(tag, value)

	Process a new interrupt.

If the function returns False, the interrupt is put in the corresponding queue.
Otherwise, the the message is interrupt to be already, and it gets ‘absorbed’.
Local call method, called automatically.

	
process_message(tag, value)

	Process a new message.

If the function returns False, the message is put in the corresponding queue.
Otherwise, the the message is considered to be already, and it gets ‘absorbed’.
Local call method, called automatically.

	
remove_stop_notifier(func)

	Remove the stop notifier from this controller.

Return True if the notifier was in this thread and is now removed, and False otherwise.
Local call method.

	
request_stop()

	Request thread stop (send a stop command).

External call method.

	
running()

	Check if the thread is running

	
send_interrupt(tag, value, priority=0)

	Send an interrupt message to the thread with a given tag, value and priority.

External call method.

	
send_message(tag, value, priority=0)

	Send a message to the thread with a given tag, value and priority.

External call method.

	
send_multicast(dst='any', tag=None, value=None, src=None, filter_results=True)

	Send a multicast to the multicast pool.

By default, the multicast source is the thread’s name.
Return result synchronizers for all executed subscribed methods.
Local call method.

	Parameters:

	
	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast destination; can be a name, "all" (will pass all subscribers’ destination filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" destination).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast tag.

	value – multicast value.

	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast source; can be None (current thread name), a specific name, "all" (will pass all subscribers’ source filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" source).

	filter_results – if True, filter the results to exclude dummy synchronizers, which correspond to calls which do not return anything

	
send_multicast_sync(dst='any', tag=None, value=None, src=None, timeout=None, default_result=None, pass_exception=True)

	Send a multicast to the multicast pool and synchronize the results, if available.

By default, the multicast source is the thread’s name.
Results are collected and synchronized only from the subscriptions which return them (i.e., set return_result=True).
Local call method.

	Parameters:

	
	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast destination; can be a name, "all" (will pass all subscribers’ destination filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" destination).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast tag.

	value – multicast value.

	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast source; can be None (current thread name), a specific name, "all" (will pass all subscribers’ source filters),
or "any" (will only be passed to subscribers specifically subscribed to multicast with "any" source).

	timeout – synchronization timeout (None means waiting forever)

	default_result – default result value if synchronization failed (timed out, thread stopped, etc.)

	pass_exception – if True and the signal processor raised an exception, raise it in this thread as well
If pass_exception==True and the returned value represents exception, re-raise it in the caller thread; otherwise, return default.

	
send_sync(tag, uid)

	Send a synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code (e.g., QThreadNotifier).
External call method.

	
set_func_variable(name, func, use_lock=True)

	Set a ‘function’ variable.

Acts as a thread variable to the external user, but instead of reading a stored value, it executed a function instead.
Note, that the function is executed in the caller thread (i.e., the thread which tries to access the variable),
so use of synchronization methods (commands, signals, locks) is highly advised.

If use_lock==True, then the function call will be wrapped into the usual variable lock,
i.e., it won’t run concurrently with other variable access.
Local call method.

	
set_variable(name, value, update=False, notify=False, notify_tag='changed/*', simple=False)

	Set thread variable.

Can be called in any thread (controlled or external).
If notify==True, send an multicast with the given notify_tag (where "*" symbol is replaced by the variable name).
If update==True and the value is a dictionary, update the branch rather than overwrite it.
If simple==True, assume that the result is a single atomic variable, in which case the lock is not used;
note that in this case the threads waiting on this variable (or branches containing it) will not be notified.
Local call method.

	
sleep(timeout, wake_on_message=False, top_loop=False)

	Sleep for a given time (in seconds).

Unlike time.sleep() [https://docs.python.org/3/library/time.html#time.sleep], constantly checks the event loop for new messages (e.g., if stop or interrupt commands are issued).
In addition, if wake_on_message==True, wake up if any message has been received;
it this case. return True if the wait has been completed, and False if it has been interrupted by a message.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
If timeout is None, wait forever (usually, until the application is closed, or some interrupt message raises and error).
Local call method.

	
start()

	Start the thread.

External call method.

	
started = <Mock name='mock.QtCore.pyqtSignal()' id='139822307332944'>

	This signal is emitted after the thread has started (after the setup code has been executed, before its lifetime state is changed)

	
stop(code=0, sync=False)

	Stop the thread.

If called from the thread, stop immediately by raising a threadprop.InterruptExceptionStop exception. Otherwise, schedule thread stop.
If the thread kind is "main", stop the whole application with the given exit code. Otherwise, stop the thread.
If sync==True and the thread is not main or current, wait until it is completely stopped.
Universal call method.

	
subscribe_direct(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0, scheduler=None, return_result=False, sid=None)

	Subscribe asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should be used with care.
In Qt, analogous to making a signal connection with a direct call.
By default, the subscribed destination is the thread’s name.
Local call method.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	subscription_priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	scheduler – if defined, multicast call gets scheduled using this scheduler instead of being called directly (which is the default behavior)

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique id and return it).

	
subscribe_sync(callback, srcs='any', tags=None, dsts='any', filt=None, subscription_priority=0, limit_queue=None, call_interrupt=True, add_call_info=False, return_result=False, sid=None)

	Subscribe a synchronous callback to a multicast.

If a multicast is sent, callback is called from the dest_controller thread (by default, thread which is calling this function)
via the thread call mechanism (QThreadController.call_in_thread_callback()).
In Qt, analogous to making a signal connection with a queued call.
By default, the subscribed destination is the thread’s name.
Local call method.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	subscription_priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	limit_queue (int [https://docs.python.org/3/library/functions.html#int]) – limits the maximal number of scheduled calls
(if the multicast is sent while at least limit_queue callbacks are already in queue to be executed, ignore it)
0 or negative value means no limit (not recommended, as it can increase the queue indefinitely if the multicast rate is high enough)

	call_interrupt – whether the call is an interrupt (call inside any loop, e.g., during waiting or sleeping), or it should be called in the main event loop

	add_call_info (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, add a fourth argument containing a call information (tuple with a single element, a timestamps of the call).

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique name).

	
sync_exec_point(point, timeout=None, counter=1)

	Wait for the given execution point.

Automatically invoked points include "start" (thread starting), "run" (thread setup and ready to run),
"cleanup" (thread stopping is invoked, starting to clean up) and "stop" (thread finished).
If timeout is passed, raise threadprop.TimeoutThreadError.
counter specifies the minimal number of pre-requisite notify_exec_point() calls to finish the waiting (by default, a single call is enough).
Return actual number of notifier calls up to date.
External call method.

	
sync_stop()

	Wait until the controller and the thread are stopped.

External call method.

	
sync_variable(name, pred, timeout=None)

	Wait until thread variable with the given name satisfies the condition given by pred.

pred can be a variable values, a container (list, set, tuple) of possible values,
or a function which takes one argument (variable value) and returns whether the condition is satisfied.
It is executed in the caller thread.
External call method.

	
unsubscribe(sid)

	Unsubscribe from a subscription with a given ID.

Note that multicasts which are already emitted but not processed will remain in the queue;
if they need to be ignored, it should be handled explicitly.
Local call method.

	
wait_for_any_message(timeout=None, top_loop=False)

	Wait for any message (including synchronization messages or pokes).

If timeout is passed, raise threadprop.TimeoutThreadError.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
wait_for_message(tag, timeout=None, top_loop=False)

	Wait for a single message with a given tag.

Return value of a received message with this tag.
If timeout is passed, raise threadprop.TimeoutThreadError.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
Local call method.

	
wait_for_sync(tag, uid, timeout=None)

	Wait for synchronization signal with the given tag and UID.

This method is rarely invoked directly, and is usually used by synchronizers code.
If timeout is passed, raise threadprop.TimeoutThreadError.
Local call method.

	
wait_until(check, timeout=None, top_loop=False)

	Wait until a given condition is true.

Condition is given by the check function, which is called after every new received message and should return True if the condition is met.
If top_loop==True, treat the waiting as the top message loop (i.e., any top loop message or signal can be executed here).
If timeout is passed, raise threadprop.TimeoutThreadError.
Local call method.

	
pylablib.core.thread.controller.get_controller(name=None, sync=True, timeout=None, sync_point=None)

	Find a controller with a given name.

If name is not supplied, yield current controller instead.
If name is of int type, interpret it as a thread id.
If the controller is not present and sync==True, wait (with the given timeout) until the controller is running;
otherwise, raise error if the controller is not running.
If sync_point is not None, synchronize to the thread sync_point point (by default, "run", i.e., after the setup is done) before returning.

	
pylablib.core.thread.controller.sync_controller(name, sync_point='run', timeout=None)

	Find a controller with a given name and synchronize to the given point.

If the controller is not present and sync==True, wait (with the given timeout) until the controller is running;
otherwise, raise error if the controller is not running.
Analogous to get_controller(name, sync=True, timeout=timeout, sync_point=sync_point).

	
pylablib.core.thread.controller.get_gui_controller(sync=False, timeout=None, create_if_missing=True)

	Get GUI thread controller.

If the controller is not present and sync==True, wait (with the given timeout) until the controller is running.
If the controller is still not present and create_if_missing==True, initialize the standard GUI controller.

	
pylablib.core.thread.controller.stop_controller(name=None, code=0, sync=True, require_controller=False)

	Stop a controller with a given name (current controller by default).

code specifies controller exit code (only applies to the main thread controller).
If require_controller==True and the controller is not present, raise and error; otherwise, do nothing.
If sync==True, wait until the controller is stopped.

	
pylablib.core.thread.controller.stop_all_controllers(sync=True, concurrent=True, stop_self=True)

	Stop all running threads.

If sync==True, wait until the all of the controller are stopped.
If sync==True and concurrent==True stop threads in concurrent manner (first issue stop messages to all of them, then wait until all are stopped).
If sync==True and concurrent==False stop threads in consecutive manner (wait for each thread to stop before stopping the next one).
If stop_self==True stop current thread after stopping all other threads.

	
pylablib.core.thread.controller.stop_app(code=0, sync=False)

	Initialize stopping the application.

Do this either by stopping the GUI controller (if it exists), or by stopping all controllers.
If sync is True and the thread is not the main one, wait at this point until the process is stopped during the app shutdown;
otherwise, the execution will continue as normal, and the thread will be stopped at a later time during the app shutdown.

	
pylablib.core.thread.controller.restart_app(code=0, sync=False)

	Restart the application.

Equivalent to stop_app() followed by the scrip restart.
If sync is True and the thread is not the main one, wait at this point until the process is stopped during the app shutdown;
otherwise, the execution will continue as normal, and the thread will be stopped at a later time during the app shutdown.

pylablib.core.thread.multicast_pool module

	
class pylablib.core.thread.multicast_pool.TMulticast(src, tag, value)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
src

	

	
tag

	

	
value

	

	
class pylablib.core.thread.multicast_pool.MulticastPool

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Multicast dispatcher (somewhat similar in functionality to Qt signals).

Manages dispatching multicasts between sources and destinations (callback functions).
Each multicast has defined source, destination (both can also be "all" or "any", see methods descriptions for details), tag and value.
Any thread can send a multicast or subscribe for a multicast with given filters (source, destination, tag, additional filters).
If a multicast is emitted, it is checked against filters for all subscribers, and the passing ones are then called.

	
subscribe_direct(callback, srcs='any', dsts='any', tags=None, filt=None, priority=0, scheduler=None, return_result=False, sid=None)

	Subscribe an asynchronous callback to a multicast.

If a multicast is sent, callback is called from the sending thread (not subscribed thread). Therefore, should be used with care.
In Qt, analogous to making a signal connection with a direct call.

	Parameters:

	
	callback – callback function, which takes 3 arguments: source, tag, and value.

	srcs (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast source name or list of source names to filter the subscription;
can be "any" (any source) or "all" (only multicasts specifically having "all" as a source).

	dsts (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – multicast destination name or list of destination names to filter the subscription;
can be "any" (any destination) or "all" (only source specifically having "all" as a destination).

	tags – multicast tag or list of tags to filter the subscription (any tag by default);
can also contain Unix shell style pattern ("*" matches everything, "?" matches one symbol, etc.)

	filt (callable) – additional filter function which takes 4 arguments: source, destination, tag, and value,
and checks whether multicast passes the requirements.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – subscription priority (higher priority subscribers are called first).

	scheduler – if defined, multicast call gets scheduled using this scheduler instead of being called directly (which is the default behavior)

	return_result – if True, use a result synchronizer to return the result of the subscribed call; otherwise, ignore the result

	sid (int [https://docs.python.org/3/library/functions.html#int]) – subscription ID (by default, generate a new unique name).

	Returns:

	subscription ID, which can be used to unsubscribe later.

	
unsubscribe(sid)

	Unsubscribe from a subscription with a given ID

	
send(src, dst='any', tag=None, value=None)

	Send a multicast.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast source; can be a name, "all" (will pass all subscribers’ source filters),
or "any" (will only be passed to subscribers specifically subscribed to multicasts with "any" source).

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast destination; can be a name, "all" (will pass all subscribers’ destination filters),
or "any" (will only be passed to subscribers specifically subscribed to multicasts with "any" destination).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – multicast tag.

	value – multicast value.

pylablib.core.thread.notifier module

	
class pylablib.core.thread.notifier.ISkippableNotifier(skippable=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic skippable notifier.

The main methods are wait() (wait until the event happened) and notify() (notify that the event happened).
Only calls underlying waiting and notifying methods once, duplicate calls are ignored.

	Parameters:

	skippable (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, allows for skippable wait events
(if notify() is called before wait(), neither methods are actually called).

	
wait(*args, **kwargs)

	Wait for the notification.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called after notify(), return immediately.

	
notify(*args, **kwargs)

	Notify the waiting process.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called before wait(), return immediately.

	
waiting()

	Check if waiting is in progress

	
done_wait()

	Check if waiting is done

	
success_wait()

	Check if waiting is done successfully

	
done_notify()

	Check if notifying is done

	
waiting_state()

	

	
notifying_state()

	

pylablib.core.thread.profile module

	
pylablib.core.thread.profile.start(reset=True)

	Start yappi profile logging.

If reset==True, reset the stats.

	
pylablib.core.thread.profile.reset()

	Reset yappi profiling stats

	
pylablib.core.thread.profile.stop()

	Stop yappi profiling

	
pylablib.core.thread.profile.get_stats()

	Get yappi profiling stats.

Return tuple ((ttime,wtime), (threads,ctls)).
Here ttime and wtime are total execution time (sum of all thread times) and the wall time (since the last reset) respectively.
threads are yappi-generated stats, and ctls is the list [(name,ctl)] with the controller names and thread controllers,
which are ordered in the same way as threads (for any non-controlled or stopped thread these are set to None).

	
pylablib.core.thread.profile.print_stats(nfunc=None, ntotfunc=None, min_func_frac=0.001)

	Print yappi profiling stats.

nfunc is the number of top (most expensive) functions to print per each thread,
ntotfunc is the number of global top function to print; None for either means that they are not printed.
min_func_frac specifies the minimal fraction of the total time for which the function stats are still printed
(to prevent lost of printouts for “cheap” threads).

pylablib.core.thread.synchronizing module

	
class pylablib.core.thread.synchronizing.QThreadNotifier(skippable=True)

	Bases: ISkippableNotifier

Wait-notify thread synchronizer for controlled Qt threads based on notifier.ISkippableNotifier.

Like notifier.ISkippableNotifier, the main functions are ISkippableNotifier.wait() (wait in a message loop until notified or until timeout expires)
and ISkippableNotifier.notify() (notify the waiting thread). Both of these can only be called once and will raise and error on repeating calls.
Along with notifying a variable can be passed, which can be accessed using get_value() and get_value_sync().

	Parameters:

	skippable (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, allows for skippable wait events
(if ISkippableNotifier.notify() is called before ISkippableNotifier.wait(), neither methods are actually called).

	
get_value()

	Get the value passed by the notifier (doesn’t check if it has been passed already)

	
get_value_sync(timeout=None)

	Wait (with the given timeout) for the value passed by the notifier

	
done_notify()

	Check if notifying is done

	
done_wait()

	Check if waiting is done

	
notify(*args, **kwargs)

	Notify the waiting process.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called before wait(), return immediately.

	
notifying_state()

	

	
success_wait()

	Check if waiting is done successfully

	
wait(*args, **kwargs)

	Wait for the notification.

Can only be called once per notifier lifetime.
If the notifier allows skipping, and this method is called after notify(), return immediately.

	
waiting()

	Check if waiting is in progress

	
waiting_state()

	

	
class pylablib.core.thread.synchronizing.QMultiThreadNotifier

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wait-notify thread synchronizer that can be used for multiple threads and called multiple times.

Performs similar function to conditional variables.
The synchronizer has an internal counter which is increased by 1 every time it is notified.
The wait functions have an option to wait until the counter reaches the specific counter value (usually, 1 above the last wait call).

	
wait(state=1, timeout=None)

	Wait until notifier counter is equal to at least state

Return current counter state plus 1, which is the next smallest value resulting in waiting.

	
wait_until(condition, timeout=None)

	Wait until condition is met.

condition is a function which is called (in the waiting thread) every time the synchronizer is notified.
If it return non-False, the waiting is complete and its result is returned.

	
notify()

	Notify all waiting threads

	
fail()

	Mark notifier as fails

Fails all waiting notifiers.
All subsequent wait calls raise an error

	
class pylablib.core.thread.synchronizing.QLockNotifier

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resource lock.

Behaves similarly to the regular lock, but waiting is done in the message loop, which still allows interrupts.

	
acquire(timeout=None)

	

	
release()

	

pylablib.core.thread.threadprop module

	
exception pylablib.core.thread.threadprop.ThreadError(msg=None)

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Generic thread error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.NoControllerThreadError(msg=None)

	Bases: ThreadError

Thread error for a case of thread having no controllers

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.DuplicateControllerThreadError(msg=None)

	Bases: ThreadError

Thread error for a case of a duplicate thread controller

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.TimeoutThreadError(msg=None)

	Bases: ThreadError, TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError]

Thread error for a case of a wait timeout

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
characters_written

	

	
errno

	POSIX exception code

	
filename

	exception filename

	
filename2

	second exception filename

	
strerror

	exception strerror

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.NoMessageThreadError(msg=None)

	Bases: ThreadError

Thread error for a case of trying to get a non-existing message

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.SkippedCallError(msg=None)

	Bases: ThreadError

Thread error for a case of external call getting skipped (unscheduled)

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.InterruptException(msg=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Generic interrupt exception (raised by some function to signal interrupts from other threads)

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.thread.threadprop.InterruptExceptionStop(msg=None)

	Bases: InterruptException

Interrupt exception denoting thread stop request

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
pylablib.core.thread.threadprop.get_app()

	Get current application instance

	
pylablib.core.thread.threadprop.get_gui_thread()

	Get main (GUI) thread, or None if application is not running

	
pylablib.core.thread.threadprop.is_gui_running()

	Check if GUI is running

	
pylablib.core.thread.threadprop.is_gui_thread()

	Check if the current thread is the one running the GUI loop

	
pylablib.core.thread.threadprop.current_controller(require_controller=True)

	Get controller of the current thread.

If the current thread has not controller and `require_controller==True`, raise an error; otherwise, return None.

pylablib.core.thread.utils module

	
class pylablib.core.thread.utils.ReadChangeLock

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Lock based on condition variables which handles a state which can be read or changed.

Any number of threads can read simultaneously, but changing is incompatible with other reading or changing.

	
can_read()

	Check if the state can be read

	
can_change()

	Check if the state can be changed

	
reading()

	Context manager denoting reading event

	
changing()

	Context manager denoting changing event

Module contents

pylablib.core.utils package

Submodules

pylablib.core.utils.array_utils module

	
pylablib.core.utils.array_utils.as_array(data, force_copy=False, try_object=True)

	Turn data into a numpy array.

If force_copy==True, copy the data if it’s already a numpy array.
If try_object==False, only try to convert to numerical numpy arrays; otherwise, generic numpy arrays (with dtype=="object") are acceptable.

	
pylablib.core.utils.array_utils.get_shape(data, strict=False)

	Get the data shape.

If the data is a nested list and strict==True, raise an error unless all sublists have the same length (i.e., the data is rectangular).

pylablib.core.utils.cext_tools module

	
pylablib.core.utils.cext_tools.try_import_cext()

	Context manager for trying to import a possibly missing C extension; if an error arises, re-raises with a more detailed message

pylablib.core.utils.crc module

	
pylablib.core.utils.crc.binv(a, l)

	Reverse bit order of a treating it as an l-bit number

	
pylablib.core.utils.crc.calc_table(poly, ref=False)

	Calculate CRC byte table for the given polynomial and reflection parameter.

ref specifies whether both input and output bit sequences are reflected.

	
pylablib.core.utils.crc.crc(msg, poly, refin=False, refout=False, init=0, xorout=0)

	Calculate CRC for the given message, polynomial, and additional parameters.

msg should be a bytes object, while poly is an integer with the polynomial coefficients.

pylablib.core.utils.ctypes_wrap module

	
pylablib.core.utils.ctypes_wrap.get_value(rval)

	Get value of a ctypes variable

	
pylablib.core.utils.ctypes_wrap.setup_func(func, argtypes, restype=None, errcheck=None)

	Setup a ctypes function.

Assign argtypes (list of argument types), restype (return value type) and errcheck (error checking function called for the return value).

	
class pylablib.core.utils.ctypes_wrap.CFunctionWrapper(restype=None, errcheck=None, tuple_single_retval=False, return_res='auto', default_rvals='rest', pointer_byref=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper object for ctypes function.

The main methods are wrap_annotated() and wrap_bare(), which wrap a ctypes function and returns a Python function with a proper signature.
These methods can also handle some standard use cases such as passing parameters by reference, or setting up the function arguments, or parsing the results.
These methods can also be invoked when the wrapper is used as a callable; in this case, the exact method is determined by the presence
of .argtypes attribute in the supplied function.

	Parameters:

	
	restype – default type of the function return value when calling wrap_bare() and restype is not supplied there explicitly (defaults to ctypes.int)

	errcheck – default error-checking function which is automatically called for the return value; can also be overridden explicitly when calling wrapping methods
if None, no error checking method

	tuple_single_retval (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if a single return values gets turned into a single-element tuple

	return_res (bool [https://docs.python.org/3/library/functions.html#bool]) – determined if the function result gets returned; only used when list of return arguments (rvals) to wrapping functions is not explicitly supplied;
can also be set to "auto" (default), which means that function returns its return value when no other rvals are found, and omits it otherwise.

	default_rvals – default value for rvals in wrap_annotated() and wrap_bare(), if it is specified as None (default for those methods).

	pointer_byref (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use explicit pointer creation instead of byref (in rare cases use of byref crashes the call).

	
byref(value)

	

	
wrap_bare(func, argtypes, argnames=None, restype=None, args='nonrval', rvals='default', argprep=None, rconv=None, byref='all', errcheck=None)

	Annotate and wrap bare C function in a Python call.

Same as wrap_annotated(), but annotates the function first.

	Parameters:

	
	func – C function

	argtypes – list of ctypes types corresponding to function arguments; gets assigned as func.argtypes

	argnames – list of argument names; if not supplied, generated automatically as "arg1", "arg2", etc. Same for names which are defined as None.

	restype – type of the function return value; if None, use the value supplied to the wrapper constructor (defaults to ctypes.int)

	args – names of Python function arguments; can also be "all" (all C function arguments in that order), or "nonrval" (same, but with return value arguments excluded)
by default, use "nonrval"

	rvals – names of return value arguments; can include either a C function argument name, or None (which means the function return value);
can also be "rest" (listsall the arguments not included into args; if args=="nonrval", assume that there are no rvals),
"pointer" (assume that all pointer arguments are rvals; this does not include c_void_p, c_char_p, or c_wchar_p);
by default, use the value supplied on the wrapper creation ("rest" by default)

	argprep – dictionary {name: prep} of ways to prepare of C function arguments;
each prep can be a value (which is assumed to be default argument value), or a callable, which is given values of Python function arguments

	rconv – dictionary {name: conv} of converters of the return values;
each conv is a function which takes 3 arguments: unconverted ctypes value, dictionary of all C function arguments, and dictionary of all Python function arguments
if conv takes less than 3 argument, then the arguments list is trimmed (e.g., if it takes only one argument, it will be an unconverted value)
conv can also be "ctypes" (return raw ctypes value), or "raw" (return raw value for buffers).

	byref – list of all argument names which should by passed by reference; by default, it includes all arguments listed in rvals

	errcheck – error-checking function which is automatically called for the return value;
if None, use the value supplied to the wrapper constructor (none by default)

	
wrap_annotated(func, args='nonrval', rvals='default', alias=None, argprep=None, rconv=None, byref='all', errcheck=None)

	Wrap annotated C function in a Python call.

Assumes that the functions has defined .argtypes (list of argument types) and .argnames (list of argument names) attributes.

	Parameters:

	
	func – C function

	args – names of Python function arguments; can also be "all" (all C function arguments in that order), or "nonrval" (same, but with return value arguments excluded);
by default, use "nonrval"

	rvals – names of return value arguments; can include either a C function argument name, or None (which means the function return value);
can also be "rest" (lists all the arguments not included into args; if args=="nonrval", assume that there are no rvals),
"pointer" (assume that all pointer arguments are rvals; this does not include c_void_p, c_char_p, or c_wchar_p);
by default, use the value supplied on the wrapper creation ("rest" by default)

	alias – either a list of argument names which replace .argnames, or a dictionary {argname: alias} which transforms names;
all names in all other parameters (rvals, argprep, rconv, and byref) take aliased names

	argprep – dictionary {name: prep} of ways to prepare of C function arguments;
each prep can be a value (which is assumed to be default argument value), or a callable, which is given values of Python function arguments

	rconv – dictionary {name: conv} of converters of the return values;
each conv is a function which takes 3 arguments: unconverted ctypes value, dictionary of all C function arguments, and dictionary of all Python function arguments
if conv takes less than 3 argument, then the arguments list is trimmed (e.g., if it takes only one argument, it will be an unconverted value)

	byref – list of all argument names which should by passed by reference; by default, it includes all arguments listed in rvals

	errcheck – error-checking function which is automatically called for the return value;
if None, use the value supplied to the wrapper constructor (none by default)

	
pylablib.core.utils.ctypes_wrap.strprep(l, ctype=None, unicode=False)

	Make a string preparation function.

Return a function which creates a string with a fixed length of l bytes and returns a pointer to it.
ctype can specify the type of the result (by default, ctypes.c_char_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p]).

	
pylablib.core.utils.ctypes_wrap.strconv(l=None, unicode=False)

	Make a string conversion function.

Return a function which converts a pointer a string.
If unicode==True, use regular single-byte string conversion; otherwise, use unicode (wchar) string conversion;
if specified, l determines the string length (otherwise use the standard null-terminated string convention).

	
pylablib.core.utils.ctypes_wrap.buffprep(size_arg_pos, dtype)

	Make a buffer preparation function.

Return a function which creates a string with a variable size (specified by an argument at a position size_arg_pos).
The buffer size is given in elements. dtype specifies the datatype of the buffer, whose size is used to determine buffer size in bytes.

	
pylablib.core.utils.ctypes_wrap.buffconv(size_arg_pos, dtype)

	Make a buffer conversion function.

Return a function which converts a pointer of a variable size (specified by an argument at a position size_arg_pos) into a numpy array.
The buffer size is given in elements. dtype specifies the datatype of the resulting array.

	
class pylablib.core.utils.ctypes_wrap.CStructWrapper(struct=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper around a ctypes structure, which allows for easier creation of parsing of these structures.

When created, all structure fields can be accessed/modified as attributes of the wrapper object.
It can also be converted into tuple using tup() method, or back into C structure using to_struct() method.

Class variable _struct should be set to the ctypes structure which is being wrapped.
Several other class variables determine the behavior when generating and parsing:

	_prep: dictionary {name: prep} of methods to prepare individual structure parameters;
can be either a value or a function (which takes as ordered arguments all structure fields as ctypes values)

	_conv: dictionary {name: conv} of methods to convert individual structure parameters when parsing a C structure;
can be either a function (which takes ctypes value of the field as a single argument) or a value;
also can be used as a source of default values on wrapper creation

	_tup: dictionary {name: conv} of functions to convert structure values when generating a tuple

	_tup_exc: list of values to exclude from the resulting tuple

	_tup_inc: list of values to include in the resulting tuple (if None, include all)

	_tup_add: list of values to add to the resulting tuple (these values must then exist either as attributes, or as entries in _tup dictionary)

	_tup_order: order of fields in the returned tuple (by default, same as structure order)

Also specifies two overloaded methods for a more flexible preparation/conversion of structures.
conv() takes no arguments and is called in the end of wrapper creation to finish setting up attributes.
prep() takes a single argument (C structure) and is called when converting into a C structure to finish setting up the fields (e.g., size field).

	Parameters:

	struct – C structure to wrap (if None, create a new ‘blank’ structure).

	
to_struct()

	Convert wrapper into a C structure

	
prep(struct)

	Prepare C structure after creation (by default, do nothing)

	
conv()

	Prepare wrapper after setting up the fields from the wrapped structure

	
tup()

	Convert wrapper into a named tuple

	
classmethod prep_struct(*args, **kwargs)

	Prepare a blank C structure

	
classmethod prep_struct_args(*args, **kwargs)

	Prepare a C structure with the given supplied fields

	
classmethod tup_struct(struct, *args, **kwargs)

	Convert C structure into a named tuple

	
pylablib.core.utils.ctypes_wrap.class_tuple_to_dict(val, norm_strings=True, expand_lists=False)

	Convert a named tuple (usually, a tuple returned by CStructWrapper.tup()) into a dictionary.

Iterate recursively over all named tuple elements as well.
If norm_strings==True, automatically translate byte strings into regular ones.
If expand_lists==True, iterate recursively over lists members.

pylablib.core.utils.dictionary module

Tree-like multi-level dictionary with advanced indexing options.

	
pylablib.core.utils.dictionary.split_path(path, omit_empty=True, sep=None)

	Split generic path into individual path entries.

	Parameters:

	
	path – Generic path. Lists and tuples (possible nested) are flattened;
strings are split according to separators; non-strings are converted into strings first.

	omit_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if empty entries are skipped.

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines regex for path separators; default separator is '/'.

	Returns:

	A list of individual entries.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pylablib.core.utils.dictionary.normalize_path_entry(entry, case_normalization=None)

	Normalize the case of the entry if it’s not case-sensitive. Normalization is either None (no normalization, names are case-sensitive), 'lower' or 'upper'

	
pylablib.core.utils.dictionary.normalize_path(path, omit_empty=True, case_normalization=None, sep=None, force=False)

	Split and normalize generic path into individual path entries.

	Parameters:

	
	path – Generic path. Lists and tuples (possible nested) are flattened;
strings are split according to separators; non-strings are converted into strings first.

	omit_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines if empty entries are skipped.

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Case normalization rules; can be None (no normalization, names are case-sensitive), 'lower' or 'upper'.

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, defines regex for path separators; default separator is '/'.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, treat lists as if they’re already normalized.

	Returns:

	A list of individual normalized entries.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pylablib.core.utils.dictionary.is_dictionary(obj, generic=False)

	Determine if the object is a dictionary.

	Parameters:

	
	obj – object

	generic (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, passes only Dictionary (or subclasses) objects;
otherwise, passes any dictionary-like object.

	Returns:

	bool

	
pylablib.core.utils.dictionary.as_dictionary(obj, case_normalization=None)

	Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

	
pylablib.core.utils.dictionary.as_dict(obj, style='nested', copy=True)

	Convert object into standard dict with the given parameters.

If object is already a dict, return unchanged, even if the parameters are different.

	
class pylablib.core.utils.dictionary.Dictionary(root=None, case_normalization=None, copy=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Multi-level dictionary.

Access is done by path (all path elements are converted into strings and concatenated to form a single string path).
If dictionary is not case-sensitive, all inserted and accessed paths are normalized to lower or upper case.

	Parameters:

	
	root (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) – Initial value.

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Case normalization rules; can be None (no normalization, names are case-sensitive), 'lower' or 'upper'.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make copy of the supplied data; otherwise, just make it the root.

Warning

If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might be incorrect.

	
static is_dictionary(obj, generic=True)

	Determine if the object is a dictionary.

	Parameters:

	
	obj –

	generic (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, passes only Dictionary (or subclasses) objects;
otherwise, passes any dictionary-like object.

	Returns:

	bool

	
static as_dictionary(obj, case_normalization=None)

	Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

	
add_entry(path, value, force=False, branch_option='normalize')

	Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

	Parameters:

	
	path –

	value –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, change leaf into a branch and vice-versa; otherwise, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the conversion is necessary.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Decides what to do if the value is dictionary-like:
	
	'attach' – just attach the root,

	'copy' – copy and attach,

	'normalize' – copy while normalizing all the keys according to the current rules.

	
get_entry(path, as_pointer=False)

	Get entry at a given path

	Parameters:

	
	path –

	as_pointer (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and entry is not a leaf, return DictionaryPointer; otherwise, return Dictionary

	
has_entry(path, kind='all')

	Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

	
is_leaf_path(path)

	Determine if the path is in the dictionary and points to a leaf

	
is_branch_path(path)

	Determine if the path is in the dictionary and points to a branch

	
get_max_prefix(path, kind='all')

	Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules (i.e., these are lists representing normalized paths).
kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

	
del_entry(path)

	Delete entry from the dictionary.

Return True if the path was present.
Note that it never raises KeyError.

	
size()

	Return the total size of the dictionary (number of nodes)

	
get(path, default=None)

	Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

	
pop(path, default=None)

	Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
setdefault(path, default=None)

	Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not in D.

	
items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
values(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewvalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
itervalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
keys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
viewkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
iterkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
paths(ordered=False, topdown=False, path_kind='split')

	Return list of all paths (leafs and nodes).

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return node’s leafs before its subtrees leafs.

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
merge(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
update(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
detach(path)

	Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary.
If path is missing, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
collect(paths, detach=False, ignore_missing=True)

	Collect a set of subpaths into a separate dictionary.

	Parameters:

	
	paths – list or set of paths

	detach – if True, added branches are removed from this dictionary

	ignore_missing – if True, ignore paths from the list which are not present in this dictionary; otherwise, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
branch_copy(branch='')

	Get a copy of the branch as a Dictionary

	
copy()

	Get a full copy the dictionary

	
updated(source, path='', overwrite=True, normalize_paths=True)

	Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

	
as_dict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
asdict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
as_json(style='nested')

	Convert into a JSON string.

	Parameters:

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines style of the result:
- 'nested' – subtrees are turned into nested dictionaries,
- 'flat' – single dictionary is formed with full paths as keys.

	
classmethod from_json(data, case_normalization=None)

	Convert JSON representations of a dictionary into a Dictionary object

	
as_pandas(index_key=True, as_series=True)

	Convert into a pandas DataFrame or Series object.

	Parameters:

	
	index_key (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, create a 2-column table with the first column ("key") containing string path
and the second column ("value") containing value; otherwise, move key to the table index.

	as_series (bool [https://docs.python.org/3/library/functions.html#bool]) – If index_key==True and as_series==True, convert the resulting DataFrame into 1D Series
(the key is the index); otherwise, keep it as a single-column table

	
get_path()

	

	
branch_pointer(branch='')

	Get a DictionaryPointer of a given branch

	
map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')

	Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

	Parameters:

	
	func (callable) – Mapping function. Leafs are passed by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the map function.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to func.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the function returns a dict-like object, determines how to incorporate into the dictionary;
can be "normalize" (make a copy with normalized paths and insert that), "copy" (make a copy without normalization),
or "attach" (simply replace the value without copying and normalization)

	
filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)

	Remove all the nodes from the dictionary for which pred returns False.

	Parameters:

	
	pred (callable) – Filter function. Leafs are passed to pred by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the predicate.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to pred.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	
diff(other)

	Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	DictionaryDiff

	
static diff_flatdict(first, second)

	Find the difference between flat dict [https://docs.python.org/3/library/stdtypes.html#dict] objects.

	Returns:

	DictionaryDiff

	
static find_intersection(dicts, use_flatten=False)

	Find intersection of multiple dictionaries.

	Parameters:

	
	dicts ([Dictionary]) –

	use_flatten (bool [https://docs.python.org/3/library/functions.html#bool]) – If True flatten all dictionaries before comparison (works faster for a large number of dictionaries).

	Returns:

	DictionaryIntersection

	
get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get all paths in the tree that match the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get a subtree containing nodes with paths matching the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
class pylablib.core.utils.dictionary.DictionaryDiff(same, changed_from, changed_to, removed, added)

	Bases: DictionaryDiff

Describes a difference between the two dictionaries.

	
same

	Contains the leafs which is the same.

	Type:

	Dictionary

	
changed_from

	Contains the leafs from the first dictionary which have different values in the second dictionary.

	Type:

	Dictionary

	
changed_to

	Contains the leafs from the second dictionary which have different values in the first dictionary.

	Type:

	Dictionary

	
removed

	Contains the leafs from the first dictionary which are absent in the second dictionary.

	Type:

	Dictionary

	
added

	Contains the leafs from the second dictionary which are absent in the first dictionary.

	Type:

	Dictionary

	
added

	

	
changed_from

	

	
changed_to

	

	
removed

	

	
same

	

	
class pylablib.core.utils.dictionary.DictionaryIntersection(common, individual)

	Bases: DictionaryIntersection

Describes the result of finding intersection of multiple dictionaries.

	
common

	Contains the intersection of all dictionaries.

	Type:

	Dictionary

	
individual

	Contains list of difference from intersection for all dictionaries.

	Type:

	[Dictionary]

	
common

	

	
individual

	

	
class pylablib.core.utils.dictionary.DictionaryPointer(root=None, pointer=None, case_normalization=None, copy=True)

	Bases: Dictionary

Similar to Dictionary, but can point at one of the branches instead of the full dictionary.

Effect is mostly equivalent to prepending some path to all queries.

	Parameters:

	
	root (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) – Complete tree.

	pointer – Path to the pointer location.

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Case normalization rules; can be None (no normalization, names are case-sensitive), 'lower' or 'upper'.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make copy of the supplied data; otherwise, just make it the root.

Warning

If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might be incorrect.

	
get_path()

	Return pointer path in the whole dictionary.

	
move_to(path='', absolute=True)

	Move the pointer to a new path.

	Parameters:

	
	path –

	absolute (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, path is specified with respect to the root;
otherwise, it’s specified with respect to the current position (and can only go deeper).

	
move_up(levels, strict=True)

	Move the pointer by the given number of levels up.

If strict==True and there are not enough levels above, raise an error.
Otherwise, stop at the top dictionary level.

	
branch_pointer(branch='')

	Get a DictionaryPointer of a given branch.

	
add_entry(path, value, force=False, branch_option='normalize')

	Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

	Parameters:

	
	path –

	value –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, change leaf into a branch and vice-versa; otherwise, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the conversion is necessary.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Decides what to do if the value is dictionary-like:
	
	'attach' – just attach the root,

	'copy' – copy and attach,

	'normalize' – copy while normalizing all the keys according to the current rules.

	
as_dict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
static as_dictionary(obj, case_normalization=None)

	Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

	
as_json(style='nested')

	Convert into a JSON string.

	Parameters:

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines style of the result:
- 'nested' – subtrees are turned into nested dictionaries,
- 'flat' – single dictionary is formed with full paths as keys.

	
as_pandas(index_key=True, as_series=True)

	Convert into a pandas DataFrame or Series object.

	Parameters:

	
	index_key (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, create a 2-column table with the first column ("key") containing string path
and the second column ("value") containing value; otherwise, move key to the table index.

	as_series (bool [https://docs.python.org/3/library/functions.html#bool]) – If index_key==True and as_series==True, convert the resulting DataFrame into 1D Series
(the key is the index); otherwise, keep it as a single-column table

	
asdict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
branch_copy(branch='')

	Get a copy of the branch as a Dictionary

	
collect(paths, detach=False, ignore_missing=True)

	Collect a set of subpaths into a separate dictionary.

	Parameters:

	
	paths – list or set of paths

	detach – if True, added branches are removed from this dictionary

	ignore_missing – if True, ignore paths from the list which are not present in this dictionary; otherwise, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
copy()

	Get a full copy the dictionary

	
del_entry(path)

	Delete entry from the dictionary.

Return True if the path was present.
Note that it never raises KeyError.

	
detach(path)

	Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary.
If path is missing, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
diff(other)

	Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	DictionaryDiff

	
static diff_flatdict(first, second)

	Find the difference between flat dict [https://docs.python.org/3/library/stdtypes.html#dict] objects.

	Returns:

	DictionaryDiff

	
filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)

	Remove all the nodes from the dictionary for which pred returns False.

	Parameters:

	
	pred (callable) – Filter function. Leafs are passed to pred by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the predicate.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to pred.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	
static find_intersection(dicts, use_flatten=False)

	Find intersection of multiple dictionaries.

	Parameters:

	
	dicts ([Dictionary]) –

	use_flatten (bool [https://docs.python.org/3/library/functions.html#bool]) – If True flatten all dictionaries before comparison (works faster for a large number of dictionaries).

	Returns:

	DictionaryIntersection

	
classmethod from_json(data, case_normalization=None)

	Convert JSON representations of a dictionary into a Dictionary object

	
get(path, default=None)

	Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

	
get_entry(path, as_pointer=False)

	Get entry at a given path

	Parameters:

	
	path –

	as_pointer (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and entry is not a leaf, return DictionaryPointer; otherwise, return Dictionary

	
get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get all paths in the tree that match the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get a subtree containing nodes with paths matching the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_max_prefix(path, kind='all')

	Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules (i.e., these are lists representing normalized paths).
kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

	
has_entry(path, kind='all')

	Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

	
is_branch_path(path)

	Determine if the path is in the dictionary and points to a branch

	
static is_dictionary(obj, generic=True)

	Determine if the object is a dictionary.

	Parameters:

	
	obj –

	generic (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, passes only Dictionary (or subclasses) objects;
otherwise, passes any dictionary-like object.

	Returns:

	bool

	
is_leaf_path(path)

	Determine if the path is in the dictionary and points to a leaf

	
items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iterkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
itervalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
keys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')

	Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

	Parameters:

	
	func (callable) – Mapping function. Leafs are passed by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the map function.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to func.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the function returns a dict-like object, determines how to incorporate into the dictionary;
can be "normalize" (make a copy with normalized paths and insert that), "copy" (make a copy without normalization),
or "attach" (simply replace the value without copying and normalization)

	
merge(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
paths(ordered=False, topdown=False, path_kind='split')

	Return list of all paths (leafs and nodes).

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return node’s leafs before its subtrees leafs.

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
pop(path, default=None)

	Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
setdefault(path, default=None)

	Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not in D.

	
size()

	Return the total size of the dictionary (number of nodes)

	
update(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
updated(source, path='', overwrite=True, normalize_paths=True)

	Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

	
values(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
viewvalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
pylablib.core.utils.dictionary.combine_dictionaries(dicts, func, select='all', pass_missing=False)

	Combine several dictionaries element-wise (only for leafs) using a given function.

	Parameters:

	
	dicts (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – list of dictionaries (Dictionary or dict) to be combined

	func (callable) – combination function. Takes a single argument, which is a list of elements to be combined.

	select (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines which keys are selected for the resulting dictionary.
Can be either "all" (only keep keys which are present in all the dictionaries), or "any" (keep keys which are present in at least one dictionary).
Only keys that point to leafs count; if a key points to a non-leaf branch in some dictionary, it is considered absent from this dictionary.

	pass_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – if select=="any", this parameter determines whether missing elements will be passed to func as None, or omitted entirely.

	
class pylablib.core.utils.dictionary.PrefixTree(root=None, case_normalization=None, wildcard='*', matchcard='.', copy=True)

	Bases: Dictionary

Expansion of a Dictionary designed to store data related to prefixes.

Each branch node can have a leaf with a name given by wildcard ('*' by default) or matchcard ('.' by default).
Wildcard assumes that the branch node path is a prefix; matchcard assumes exact match.
These leafs are inspected when specific prefix tree functions (find_largest_prefix() and find_all_prefixes()) are used.

	Parameters:

	
	root (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) – Complete tree.

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Case normalization rules; can be None (no normalization, names are case-sensitive), 'lower' or 'upper'.

	wildcard (str [https://docs.python.org/3/library/stdtypes.html#str]) – Symbol for a wildcard entry.

	matchcard (str [https://docs.python.org/3/library/stdtypes.html#str]) – Symbol for a matchcard entry.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make copy of the supplied data; otherwise, just make it the root.

Warning

If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might be incorrect.

	
copy()

	Get a full copy the prefix tree

	
find_largest_prefix(path, default=None, allow_nomatch_exact=True, return_path=False, return_subpath=False)

	Find the entry which is the largest prefix of a given path.

	Parameters:

	
	path –

	default – Default value if the path isn’t found.

	allow_nomatch_exact (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, just element with the given path can be returned;
otherwise, only elements stored under wildcards and matchcards are considered.

	return_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return path to the element (i.e., the largest prefix) instead of the element itself.

	return_subpath (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return tuple with a second element being part of the path left after subtraction of the prefix.

	
find_all_prefixes(path, allow_nomatch_exact=True, return_path=True, return_subpath=False)

	Find list of all the entries which are prefixes of a given path.

	Parameters:

	
	path –

	default – Default value if the path isn’t found.

	allow_nomatch_exact (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, just element with the given path can be returned;
otherwise, only elements stored under wildcards and matchcards are considered.

	return_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return path to the element (i.e., the largest prefix) instead of the element itself.

	return_subpath (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return tuple with a second element being part of the path left after subtraction of the prefix.

	
add_entry(path, value, force=False, branch_option='normalize')

	Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

	Parameters:

	
	path –

	value –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, change leaf into a branch and vice-versa; otherwise, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the conversion is necessary.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Decides what to do if the value is dictionary-like:
	
	'attach' – just attach the root,

	'copy' – copy and attach,

	'normalize' – copy while normalizing all the keys according to the current rules.

	
as_dict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
static as_dictionary(obj, case_normalization=None)

	Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

	
as_json(style='nested')

	Convert into a JSON string.

	Parameters:

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines style of the result:
- 'nested' – subtrees are turned into nested dictionaries,
- 'flat' – single dictionary is formed with full paths as keys.

	
as_pandas(index_key=True, as_series=True)

	Convert into a pandas DataFrame or Series object.

	Parameters:

	
	index_key (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, create a 2-column table with the first column ("key") containing string path
and the second column ("value") containing value; otherwise, move key to the table index.

	as_series (bool [https://docs.python.org/3/library/functions.html#bool]) – If index_key==True and as_series==True, convert the resulting DataFrame into 1D Series
(the key is the index); otherwise, keep it as a single-column table

	
asdict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
branch_copy(branch='')

	Get a copy of the branch as a Dictionary

	
branch_pointer(branch='')

	Get a DictionaryPointer of a given branch

	
collect(paths, detach=False, ignore_missing=True)

	Collect a set of subpaths into a separate dictionary.

	Parameters:

	
	paths – list or set of paths

	detach – if True, added branches are removed from this dictionary

	ignore_missing – if True, ignore paths from the list which are not present in this dictionary; otherwise, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
del_entry(path)

	Delete entry from the dictionary.

Return True if the path was present.
Note that it never raises KeyError.

	
detach(path)

	Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary.
If path is missing, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
diff(other)

	Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	DictionaryDiff

	
static diff_flatdict(first, second)

	Find the difference between flat dict [https://docs.python.org/3/library/stdtypes.html#dict] objects.

	Returns:

	DictionaryDiff

	
filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)

	Remove all the nodes from the dictionary for which pred returns False.

	Parameters:

	
	pred (callable) – Filter function. Leafs are passed to pred by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the predicate.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to pred.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	
static find_intersection(dicts, use_flatten=False)

	Find intersection of multiple dictionaries.

	Parameters:

	
	dicts ([Dictionary]) –

	use_flatten (bool [https://docs.python.org/3/library/functions.html#bool]) – If True flatten all dictionaries before comparison (works faster for a large number of dictionaries).

	Returns:

	DictionaryIntersection

	
classmethod from_json(data, case_normalization=None)

	Convert JSON representations of a dictionary into a Dictionary object

	
get(path, default=None)

	Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

	
get_entry(path, as_pointer=False)

	Get entry at a given path

	Parameters:

	
	path –

	as_pointer (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and entry is not a leaf, return DictionaryPointer; otherwise, return Dictionary

	
get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get all paths in the tree that match the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get a subtree containing nodes with paths matching the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_max_prefix(path, kind='all')

	Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules (i.e., these are lists representing normalized paths).
kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

	
get_path()

	

	
has_entry(path, kind='all')

	Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

	
is_branch_path(path)

	Determine if the path is in the dictionary and points to a branch

	
static is_dictionary(obj, generic=True)

	Determine if the object is a dictionary.

	Parameters:

	
	obj –

	generic (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, passes only Dictionary (or subclasses) objects;
otherwise, passes any dictionary-like object.

	Returns:

	bool

	
is_leaf_path(path)

	Determine if the path is in the dictionary and points to a leaf

	
items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iterkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
itervalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
keys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')

	Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

	Parameters:

	
	func (callable) – Mapping function. Leafs are passed by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the map function.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to func.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the function returns a dict-like object, determines how to incorporate into the dictionary;
can be "normalize" (make a copy with normalized paths and insert that), "copy" (make a copy without normalization),
or "attach" (simply replace the value without copying and normalization)

	
merge(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
paths(ordered=False, topdown=False, path_kind='split')

	Return list of all paths (leafs and nodes).

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return node’s leafs before its subtrees leafs.

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
pop(path, default=None)

	Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
setdefault(path, default=None)

	Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not in D.

	
size()

	Return the total size of the dictionary (number of nodes)

	
update(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
updated(source, path='', overwrite=True, normalize_paths=True)

	Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

	
values(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
viewvalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
class pylablib.core.utils.dictionary.FilterTree(root=None, case_normalization=None, default=False, match_prefix=False, copy=True)

	Bases: Dictionary

Expansion of a Dictionary designed to store hierarchical path filtering rules.

Store path templates and the corresponding values (usually True or False for a filter tree, but other values are possible).
The match() method is then tested against this templates, and the value of the closest matching template (or default value, if none match) is returned.
The templates can contain direct matches (e.g., "a/b/c", which matches only "a/b/c/" path),
"*" path entries for a single level wildcard (e.g., "a/*/c" matches "a/b/c" or 'a/d/c", but not "a/c" or "a/b/d/c"),
or "**" path entries for a multi-level wildcard (e.g., "a/**/c" matches "a/b/c", "a/c", or "a/b/d/c").
The paths are always tested first for direct match, then for "*" match, then for "**" match starting from the smallest subpath matching "**".

	Parameters:

	
	root (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) – A filter tree or a list of filter tree paths (which are all assumed to be have the True value).s

	case_normalization (str [https://docs.python.org/3/library/stdtypes.html#str]) – Case normalization rules; can be None (no normalization, names are case-sensitive), 'lower' or 'upper'.

	default – Default value to return if no match is found.

	match_prefix – if True, match the result even if only its prefix matches the tree content (same effect as adding "/**" to every tree path)

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make copy of the supplied data; otherwise, just make it the root.

Warning

If copy==False, the root data is already assumed to be normalized. If it isn’t, the behavior might be incorrect.

	
copy()

	Get a full copy the prefix tree

	
match(path)

	Return the match result for the path

	
add_entry(path, value, force=False, branch_option='normalize')

	Add value to a given path (overwrite leaf value if necessary).

Doesn’t replace leaves with branches and vice-verse if force==False.

	Parameters:

	
	path –

	value –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, change leaf into a branch and vice-versa; otherwise, raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the conversion is necessary.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Decides what to do if the value is dictionary-like:
	
	'attach' – just attach the root,

	'copy' – copy and attach,

	'normalize' – copy while normalizing all the keys according to the current rules.

	
as_dict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
static as_dictionary(obj, case_normalization=None)

	Convert object into Dictionary with the given parameters.

If object is already a Dictionary (or its subclass), return unchanged, even if its parameters are different.

	
as_json(style='nested')

	Convert into a JSON string.

	Parameters:

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines style of the result:
- 'nested' – subtrees are turned into nested dictionaries,
- 'flat' – single dictionary is formed with full paths as keys.

	
as_pandas(index_key=True, as_series=True)

	Convert into a pandas DataFrame or Series object.

	Parameters:

	
	index_key (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, create a 2-column table with the first column ("key") containing string path
and the second column ("value") containing value; otherwise, move key to the table index.

	as_series (bool [https://docs.python.org/3/library/functions.html#bool]) – If index_key==True and as_series==True, convert the resulting DataFrame into 1D Series
(the key is the index); otherwise, keep it as a single-column table

	
asdict(style='nested', copy=True)

	Convert into a dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	Parameters:

	
	style (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	Determines style of the result:
	
	'nested' – subtrees are turned into nested dictionaries,

	'flat' – single dictionary is formed with full paths as keys.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False and style=='nested', return the root dictionary.

	
branch_copy(branch='')

	Get a copy of the branch as a Dictionary

	
branch_pointer(branch='')

	Get a DictionaryPointer of a given branch

	
collect(paths, detach=False, ignore_missing=True)

	Collect a set of subpaths into a separate dictionary.

	Parameters:

	
	paths – list or set of paths

	detach – if True, added branches are removed from this dictionary

	ignore_missing – if True, ignore paths from the list which are not present in this dictionary; otherwise, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
del_entry(path)

	Delete entry from the dictionary.

Return True if the path was present.
Note that it never raises KeyError.

	
detach(path)

	Remove a branch or a leaf from the current dictionary.

Branch is returned as a separate Dictionary.
If path is missing, raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
diff(other)

	Perform an element-wise comparison to another Dictionary.

If the other Dictionary has a different case sensitivity, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	DictionaryDiff

	
static diff_flatdict(first, second)

	Find the difference between flat dict [https://docs.python.org/3/library/stdtypes.html#dict] objects.

	Returns:

	DictionaryDiff

	
filter_self(pred, to_visit='leafs', pass_path=False, topdown=False)

	Remove all the nodes from the dictionary for which pred returns False.

	Parameters:

	
	pred (callable) – Filter function. Leafs are passed to pred by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the predicate.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to pred.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	
static find_intersection(dicts, use_flatten=False)

	Find intersection of multiple dictionaries.

	Parameters:

	
	dicts ([Dictionary]) –

	use_flatten (bool [https://docs.python.org/3/library/functions.html#bool]) – If True flatten all dictionaries before comparison (works faster for a large number of dictionaries).

	Returns:

	DictionaryIntersection

	
classmethod from_json(data, case_normalization=None)

	Convert JSON representations of a dictionary into a Dictionary object

	
get(path, default=None)

	Analog of dict.get(): D.get(k,d) -> D[k] if k in D else d

	
get_entry(path, as_pointer=False)

	Get entry at a given path

	Parameters:

	
	path –

	as_pointer (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and entry is not a leaf, return DictionaryPointer; otherwise, return Dictionary

	
get_matching_paths(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get all paths in the tree that match the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_matching_subtree(pattern, wildkey='*', wildpath='**', only_leaves=True)

	Get a subtree containing nodes with paths matching the provided pattern.

	Parameters:

	
	wildkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any key.

	wildpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pattern symbol that matches any subpath (possibly empty).

	only_leaves (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only check leaf paths; otherwise, check subtree paths (i.e., incomplete leaf paths) as well.
Basically, only_leaves=False is analogous to adding wildpath at the end of the pattern.

	
get_max_prefix(path, kind='all')

	Find the longest prefix of path contained in the dictionary.

Return tuple (prefix, rest), where both path entries are normalized according to the dictionary rules (i.e., these are lists representing normalized paths).
kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'. If the longest prefix is of a different kind, return (None,None).

	
get_path()

	

	
has_entry(path, kind='all')

	Determine if the path is in the dictionary.

kind determines which kind of path to consider and can be 'leaf', 'branch' or 'all'.

	
is_branch_path(path)

	Determine if the path is in the dictionary and points to a branch

	
static is_dictionary(obj, generic=True)

	Determine if the object is a dictionary.

	Parameters:

	
	obj –

	generic (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, passes only Dictionary (or subclasses) objects;
otherwise, passes any dictionary-like object.

	Returns:

	bool

	
is_leaf_path(path)

	Determine if the path is in the dictionary and points to a leaf

	
items(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iteritems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
iterkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
iternodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
itervalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
keys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
map_self(func, to_visit='leafs', pass_path=False, topdown=False, branch_option='normalize')

	Apply func to the nodes in the dictionary.

Note that any pointers to the replaced branches or their sub-branches will become invalid.

	Parameters:

	
	func (callable) – Mapping function. Leafs are passed by value, branches (if visited) are passed as DictionaryPointer.

	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary passed to the map function.

	pass_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, pass the node path (in the form of a normalized list) as a first argument to func.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	branch_option (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the function returns a dict-like object, determines how to incorporate into the dictionary;
can be "normalize" (make a copy with normalized paths and insert that), "copy" (make a copy without normalization),
or "attach" (simply replace the value without copying and normalization)

	
merge(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
nodes(to_visit='leafs', ordered=False, include_path=False, topdown=False)

	Iterate over nodes.

	Parameters:

	
	to_visit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Can be 'leafs', 'branches' or 'all' and determines which parts of the dictionary are visited.

	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	include_path (bool [https://docs.python.org/3/library/functions.html#bool]) – Include in the return value.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, visit node and its leafs before its subtrees leafs.

	Yields:

	Values for leafs and DictionaryPointer for branches.
If include_path==True, yields tuple (path, value), where path is in the form of a normalized list.

	
paths(ordered=False, topdown=False, path_kind='split')

	Return list of all paths (leafs and nodes).

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over paths in alphabetic order.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return node’s leafs before its subtrees leafs.

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
pop(path, default=None)

	Analog of dict.pop(): remove value at path and return it if path in D, otherwise return default

Note that it never raises KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

	
setdefault(path, default=None)

	Analog of dict.setdefault(): D.setdefault(k,d) -> D.get(k,d), also sets D[k]=d if k not in D.

	
size()

	Return the total size of the dictionary (number of nodes)

	
update(source, path='', overwrite=True, normalize_paths=True)

	Attach source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or other Dictionary) to a given branch; source is automatically deep-copied.

If source is not a dictionary, simply assign it (i.e., D.merge(v,p) is equivalent to D.add_entry(p,v,force=True) in this case).
Compared to add_entry(), merges two branches instead of removing the old branch completely.

	Parameters:

	
	source (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Dictionary) –

	branch (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, replaces the old entries with the new ones (it only matters for leaf assignments).

	normalize_paths (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the dictionary isn’t case sensitive, perform normalization if the source.

	
updated(source, path='', overwrite=True, normalize_paths=True)

	Get a copy of the dictionary and attach a new branch to it.

Parameters are the same as in the Dictionary.merge().

	
values(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewitems(ordered=False, leafs=False, path_kind='split', wrap_branches=True)

	Analog of dict.items(), by default iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
viewkeys(ordered=False, leafs=False, path_kind='split')

	Analog of dict.keys(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	path_kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – either "split" (each path is a tuple of individual keys), or "joined" (each path is a single string)

	
viewvalues(ordered=False, leafs=False, wrap_branches=True)

	Analog of dict.values(), iterating only over the immediate children of the root.

	Parameters:

	
	ordered (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over keys in alphabetic order.

	leafs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, loop over leaf nodes (i.e., behave as ‘flat’ dictionary);
otherwise, loop over immediate children (i.e., behave as ‘nested’ dictionary)

	wrap_branches (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wrap sub-branches into DictionaryPointer objects; otherwise, return them as nested built-in dictionaries

	
class pylablib.core.utils.dictionary.PrefixShortcutTree(shortcuts=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Convenient storage for dictionary path shortcuts.

	Parameters:

	shortcuts (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of shortcuts {shortcut: full_path}.

	
copy()

	Return full copy

	
add_shortcut(source, dest, exact=False)

	Add a single shortcut.

	Parameters:

	
	source – Shortcut path.

	dest – expanded path corresponding to the shortcut.

	exact (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the shortcut works only for the exact path; otherwise, it works for any path with ‘source’ as a prefix.

	
add_shortcuts(shortcuts, exact=False)

	Add a dictionary of shortcuts {shortcut: full_path}.

Arguments are the same as in PrefixShortcutTree.add_shortcut().

	
remove_shortcut(source)

	Remove a shortcut from the tree

	
updated(shortcuts, exact=False)

	Make a copy and add additional shortcuts.

Arguments are the same as in PrefixShortcutTree.add_shortcuts().

	
class pylablib.core.utils.dictionary.DictionaryNode(**vargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
pylablib.core.utils.dictionary.dict_to_object_local(data, name=None, object_generator=<function _default_object_generator>)

	

	
class pylablib.core.utils.dictionary.ItemAccessor(getter=None, setter=None, deleter=None, iterator=None, contains_checker='auto', normalize_names=True, path_separator=None, missing_error=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple wrapper which implements array interface using supplied methods.

Also has an option to normalize requested paths (enabled by default)

	Parameters:

	
	getter – method for getting values (None means none is supplied, so getting raises an error)

	setter – method for setting values (None means none is supplied, so setting raises an error)

	deleter – method for deleting values (None means none is supplied, so deleting raises an error)

	contains_checker – method for checking if variable is present
(None means none is supplied, so checking containment raises an error; "auto" means that getter raising KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is used for checking)

	normalize_names – if True, normalize a supplied path using the standard Dictionary rules and join it into a single string using the supplied separator

	path_separator – path separator regex used for splitting and joining the supplied paths (by default, the standard "/" separator)

	missing_error – if not None, specifies the error raised on the missing value;
used in __contains__, get() and setdefault() to determine if the value is missing

	
get(name, default=None)

	

	
setdefault(name, default=None)

	

pylablib.core.utils.files module

Utilities for working with the file system: creating/removing/listing folders, comparing folders and files, working with zip archives.

	
pylablib.core.utils.files.eof(f, strict=False)

	Standard EOF function.

Return True if the the marker is at the end of the file.
If strict==True, only return True if the marker is exactly at the end of file; otherwise, return True if it’s at the end of further.

	
pylablib.core.utils.files.get_file_creation_time(path, timestamp=True)

	Try to find a file creation time. Return current time if an error occurs.

If timestamp==True, return UNIX timestamp; otherwise, return datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime].

	
pylablib.core.utils.files.get_file_modification_time(path, timestamp=True)

	Try to find a file modification time. Return current time if an error occurs.

If timestamp==True, return UNIX timestamp; otherwise, return datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
pylablib.core.utils.files.touch(fname, times=None)

	Update file access and modification times.

	Parameters:

	times (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Access and modification times; if times is None, use current time.

	
pylablib.core.utils.files.generate_indexed_filename(name_format, idx_start=0, folder='')

	Generate an unused indexed filename in folder.

The name has name_format (using standard Python format() [https://docs.python.org/3/library/functions.html#format] rules, e.g., "data_{:03d}.dat"),
and the index starts with idx_start.

	
pylablib.core.utils.files.generate_prefixed_filename(prefix='', suffix='', idx_start=None, idx_fmt='d', folder=None)

	Generate an unused filename with the given prefix and suffix in the given folder.

By default, the format is prefix_{:d}_suffix, where the parameter is the index starting with idx_start.
If idx_start is None, first check simply prefix+suffix name before using numbered indices.

	
pylablib.core.utils.files.generate_temp_filename(prefix='__tmp__', idx_start=0, idx_template='d', folder='')

	Generate a temporary filename with a given prefix.

idx_template is the number index format (only the parameter itself, not the whole string).

	
pylablib.core.utils.files.fullsplit(path, ignore_empty=True)

	Split path into a list.

If ignore_empty==True, exclude empty folder names.

	
pylablib.core.utils.files.normalize_path(p)

	Normalize filesystem path (case and origin). If two paths are identical, they should be equal when normalized

	
pylablib.core.utils.files.case_sensitive_path()

	Check if OS path names are case-sensitive (e.g., Linux)

	
pylablib.core.utils.files.paths_equal(a, b)

	Determine if the two paths are equal (can be local or have different case)

	
pylablib.core.utils.files.relative_path(a, b, check_paths=True)

	Determine return path a as seen from b.

If check_paths==True, check if a is contained in b and raise the OSError [https://docs.python.org/3/library/exceptions.html#OSError] if it isn’t.

	
pylablib.core.utils.files.is_path_valid(p)

	Check if the string is a valid path.

Not guaranteed to have complete success rate, but catches most likely errors (invalid characters, reserved file names, too long, etc.)
Does not check if the path actually exists or if it can be written into.

	
class pylablib.core.utils.files.TempFile(folder='', name=None, mode='w', wait_time=None, rep_time=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Temporary file context manager.

Upon creation, generate an unused temporary filename.
Upon entry, create the file using supplied mode and return self.
Upon exit, close and remove the file.

Can be mostly substituted by tempfile.TemporaryFile() [https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryFile], but generates file locally, and with specified/determined name.
Preserved largely for legacy reasons.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Containing folder.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name. If None, generate new temporary name.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – File opening mode.

	wait_time (float [https://docs.python.org/3/library/functions.html#float]) – Waiting time between attempts to create the file if the first try fails.

	rep_time (int [https://docs.python.org/3/library/functions.html#int]) – Number of attempts to create the file if the first try fails.

	
f

	File object.

	
name

	File name.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
full_name

	File name including containing folder.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pylablib.core.utils.files.copy_file(source, dest, overwrite=True, cmp_on_overwrite=True, preserve_metadata=True)

	Copy file, creating a containing folder if necessary. Return True if the operation was performed.

	Parameters:

	
	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, overwrite existing file.

	cmp_on_overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the two files are compared to be the same, don’t perform overwrite.

	preserve_metadata (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preserve file metadata (such as creation time) by using shutil.copy2() [https://docs.python.org/3/library/shutil.html#shutil.copy2]; otherwise, use shutil.copy() [https://docs.python.org/3/library/shutil.html#shutil.copy]

	
pylablib.core.utils.files.move_file(source, dest, overwrite=True, cmp_on_overwrite=True, preserve_if_not_move=False)

	Move file, creating a containing folder if necessary. Returns True if the operation was performed.

	Parameters:

	
	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, overwrite existing file (if the existing file isn’t overwritten, preserve the original).

	cmp_on_overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the two files are compared to be the same, don’t perform overwrite.

	preserve_if_not_move (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the files are identical, preserve the original.

	
pylablib.core.utils.files.ensure_dir_singlelevel(path, error_on_file=True)

	

	
pylablib.core.utils.files.ensure_dir(path, error_on_file=True)

	Ensure that the folder exists (create a new one if necessary).

If error_on_file==True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name.

	
pylablib.core.utils.files.remove_dir(path, error_on_file=True)

	Remove the folder recursively if it exists.

If error_on_file==True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name.

	
pylablib.core.utils.files.remove_dir_if_empty(path, error_on_file=True)

	Remove the folder only if it’s empty.

If error_on_file==True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name.

	
pylablib.core.utils.files.clean_dir(path, error_on_file=True)

	Remove the folder and then recreate it.

If error_on_file==True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name.

	
class pylablib.core.utils.files.FolderList(folders, files)

	Bases: FolderList

Describes folder content

	
files

	

	
folders

	

	
pylablib.core.utils.files.list_dir(folder='', folder_filter=None, file_filter=None, separate_kinds=True, error_on_file=True)

	Return folder content filtered by folder_filter and file_filter.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the folder.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	separate_kinds (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return FolderList with files and folder separate; otherwise, return a single list (works much faster).

	error_on_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name as the target folder.

	
pylablib.core.utils.files.dir_empty(folder, folder_filter=None, file_filter=None, level='single', error_on_file=True)

	Check if the folder is empty (only checks content filtered by folder_filter and file_filter).

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the folder.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) – if 'single', check only immediate folder content; if 'recursive', follow recursively in all folders passing folder_filter.

	error_on_file (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, raise OSError [https://docs.python.org/3/library/exceptions.html#OSError] if there’s a file with the same name as the target folder.

	
pylablib.core.utils.files.walk_dir(folder, folder_filter=None, file_filter=None, rel_path=True, topdown=True, visit_folder_filter=None, max_depth=None)

	Modification of os.walk() [https://docs.python.org/3/library/os.html#os.walk] function.

Acts in a similar way, but followlinks is always False and errors of os.listdir() [https://docs.python.org/3/library/os.html#os.listdir] are always passed.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the folder.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	rel_path (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned folder path is specified relative to the initial path.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return folder before its subfolders.

	visit_folder_filter – Filter for visiting folders (more description at string.get_string_filter()).
If not None, specifies filter for visiting folders which is different from folder_filter (filter for returned folders).

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – If not None, limits the recursion depth.

	Yields:

	
	For each folder (including the original) yields a tuple (folder_path, folders, files),
	where folder_path is the containing folder name and folders and files are its content (similar to list_dir()).

	
pylablib.core.utils.files.list_dir_recursive(folder, folder_filter=None, file_filter=None, topdown=True, visit_folder_filter=None, max_depth=None)

	Recursive walk analog of list_dir().

Parameters are the same as walk_dir().

	Returns:

	FolderList

	
pylablib.core.utils.files.copy_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True, cmp_on_overwrite=True, preserve_metadata=True)

	Copy files satisfying the filtering conditions.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source path.

	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, overwrite existing files.

	cmp_on_overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the two files are compared to be the same, don’t perform overwrite.

	preserve_metadata (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, preserve file metadata (such as creation time) by using shutil.copy2() [https://docs.python.org/3/library/shutil.html#shutil.copy2]; otherwise, use shutil.copy() [https://docs.python.org/3/library/shutil.html#shutil.copy]

	
pylablib.core.utils.files.move_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True, cmp_on_overwrite=True, preserve_if_not_move=False)

	Move files satisfying the filtering conditions.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source path.

	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, overwrite existing files (if the existing file isn’t overwritten, preserve the original).

	cmp_on_overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the two files are compared to be the same, don’t perform overwrite.

	preserve_if_not_move (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and the files are identical, preserve the original.

	
pylablib.core.utils.files.combine_diff(d1, d2)

	

	
pylablib.core.utils.files.cmp_dirs(a, b, folder_filter=None, file_filter=None, shallow=True, return_difference=False)

	Compare the folders based on the content filtered by folder_filter and file_filter.

	Parameters:

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – First folder path

	b (str [https://docs.python.org/3/library/stdtypes.html#str]) – Second folder path

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	shallow – If True, do shallow comparison of the files (see filecmp.cmp() [https://docs.python.org/3/library/filecmp.html#filecmp.cmp]).

	return_difference – If False, simply return bool; otherwise, return difference type ('=', '+', '-' or '*').

	
pylablib.core.utils.files.retry_copy(source, dest, overwrite=True, cmp_on_overwrite=True, preserve_metadata=True, try_times=5, delay=0.3)

	Retrying version of copy_file().

If the operation raises error, wait for delay (in seconds) and call it again.
Try total of try_times times.

	
pylablib.core.utils.files.retry_move(source, dest, overwrite=True, cmp_on_overwrite=True, preserve_if_not_move=False, try_times=5, delay=0.3)

	Retrying version of move_file() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_remove(path, try_times=5, delay=0.3)

	Retrying version of os.remove() [https://docs.python.org/3/library/os.html#os.remove] (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_ensure_dir(path, error_on_file=True, try_times=5, delay=0.3)

	Retrying version of ensure_dir() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_copy_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True, cmp_on_overwrite=True, preserve_metadata=True, try_times=5, delay=0.3)

	Retrying version of copy_dir() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_move_dir(source, dest, folder_filter=None, file_filter=None, overwrite=True, cmp_on_overwrite=True, preserve_if_not_move=False, try_times=5, delay=0.3)

	Retrying version of move_dir() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_remove_dir(path, error_on_file=True, try_times=5, delay=0.3)

	Retrying version of remove_dir() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_remove_dir_if_empty(path, error_on_file=True, try_times=5, delay=0.3)

	Retrying version of remove_dir_if_empty() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.retry_clean_dir(path, error_on_file=True, try_times=5, delay=0.3)

	Retrying version of clean_dir() (see retry_copy() for details on retrying).

	
pylablib.core.utils.files.zip_folder(zip_path, source_path, inside_path='', folder_filter=None, file_filter=None, mode='a', compression=8, compresslevel=None)

	Add a folder into a zip archive.

	Parameters:

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the .zip file.

	source_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the source folder.

	inside_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination path inside the zip archive.

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Zip archive adding mode (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compression – Zip archive compression (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compresslevel – Zip archive compression level (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]); ignored for Python version below 3.7.

	
pylablib.core.utils.files.zip_file(zip_path, source_path, inside_name=None, mode='a', compression=8, compresslevel=None)

	Add a file into a zip archive.

	Parameters:

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the .zip file.

	source_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the source file.

	inside_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination file name inside the zip archive (source name on the top level by default).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Zip archive adding mode (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compression – Zip archive compression (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compresslevel – Zip archive compression level (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]); ignored for Python version below 3.7.

	
pylablib.core.utils.files.zip_multiple_files(zip_path, source_paths, inside_names=None, mode='a', compression=8, compresslevel=None)

	Add a multiple files into a zip archive.

	Parameters:

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the .zip file.

	source_paths ([str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of path to the source files.

	inside_names ([str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – List of destination file names inside the zip archive (source name on the top level by default).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Zip archive adding mode (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compression – Zip archive compression (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]).

	compresslevel – Zip archive compression level (see zipfile.ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]); ignored for Python version below 3.7.

	
pylablib.core.utils.files.unzip_folder(zip_path, dest_path, inside_path='', folder_filter=None, file_filter=None)

	Extract a folder from a zip archive (create containing folder if necessary).

	Parameters:

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the .zip file.

	dest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the destination folder.

	inside_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source path inside the zip archive; extracted data paths are relative (i.e., they don’t include inside_path).

	folder_filter – Folder filter function (more description at string.get_string_filter()).

	file_filter – File filter function (more description at string.get_string_filter()).

	
pylablib.core.utils.files.unzip_file(zip_path, dest_path, inside_path)

	Extract a file from a zip archive (create containing folder if necessary).

	Parameters:

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the .zip file.

	dest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Destination file path.

	inside_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source path inside the zip archive.

pylablib.core.utils.funcargparse module

Contains routines for checking arguments passed into a function for better flexibility.

	
pylablib.core.utils.funcargparse.parameter_value_error(par_val, par_name, message=None, error_type=None)

	Raise parameter value error (ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] by default).

	
pylablib.core.utils.funcargparse.parameter_range_error(par_val, par_name, par_set=None, message=None, error_type=None)

	Raise parameter range error (ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] by default).

	
pylablib.core.utils.funcargparse.check_parameter_range(par_val, par_name, par_set, message=None, error_type=None)

	Raise error if par_val is not in in the par_set (par_name is used in the error message).

	
pylablib.core.utils.funcargparse.getdefault(value, default_value, unassigned_value=None, conflict_action='ignore', message=None, error_type=None)

	Analog of dict’s getdefault.

If value is unassigned_value, return default_value instead.
If conflict_action=='error' and value!=default_value, raise value error using message and error_type.

	
pylablib.core.utils.funcargparse.is_sequence(value, sequence_type='builtin;nostring')

	Check if value is a sequence.

	sequence_type is semicolon separated list of possible sequence types:
	
	'builtin' - list, tuple or str

	'nostring' - str is not allows

	'array' - list, tuple or numpy.ndarray

	'indexable' - anything which can be indexed

	'haslength' - anything with length property

	
pylablib.core.utils.funcargparse.make_sequence(element, length=1, sequence_type='list')

	Turn element into a sequence of sequence_type ('list' or 'tuple') repeated length times.

	
pylablib.core.utils.funcargparse.as_sequence(value, multiply_length=1, allowed_type='builtin;nostring', wrapping_type='list', length_conflict_action='ignore', message=None, error_type=None)

	Ensure that value is a sequence.

If value is not a sequence of allowed_type (as checked by is_sequence()), turn it into a sequence specified by wrapping_type and multiply_length.

If value is a sequence and length_conflict_action=='error', raise error with error_type and error_message if the length doesn’t match multiply_length.
Otherwise, return value unchanged.

pylablib.core.utils.functions module

Utilities for dealing with function, methods and function signatures.

	
class pylablib.core.utils.functions.FunctionSignature(arg_names=None, defaults=None, varg_name=None, kwarg_name=None, kwonly_arg_names=None, cls=None, obj=None, name=None, doc=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Description of a function signature, including name, argument names, default values, names of varg and kwarg arguments, class and object (for methods) and docstring.

	Parameters:

	
	arg_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – Names of the arguments.

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary {name: value} of default values.

	varg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of *varg parameter (None means no such parameter).

	kwarg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of **kwarg parameter (None means no such parameter).

	cls – Caller class, for methods.

	obj – Caller object, for methods.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Function name.

	doc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Function docstring.

	
get_defaults_list()

	Get list of default values for arguments in the order specified in the signature.

	
signature(pass_order=None)

	Get string containing a signature (arguments list) of the function (call or definition), including *vargs and **kwargs.

If pass_order is not None, it specifies the order in which the arguments are passed.

	
wrap_function(func, pass_order=None)

	Wrap a function func into a containing function with this signature.

Sets function name, argument names, default values, object and class (for methods) and docstring.
If pass_order is not None, it determines the order in which the positional arguments are passed to the wrapped function.

	
as_kwargs(args, kwargs, add_defaults=False, exclude=None)

	Turn args and kwargs into a single kwargs dictionary using the names of positional arguments.

If add_defaults==True, add all the non-specified default arguments as well.
If the function takes *args argument and some of the supplied arguments go there, place them into a list under "*" key in the result.
If exclude is not None is specifies arguments which should be excluded.

	
arg_value(argname, args=None, kwargs=None)

	Get the value of the argument with the given name for given args and kwargs

	
mandatory_args_num()

	Get minimal number of arguments which have to be passed to the function.

The mandatory arguments are the ones which are not bound to caller object (i.e., not self) and don’t have default values.

	
max_args_num(include_positional=True, include_keywords=True)

	Get maximal number of arguments which can be passed to the function.

	Parameters:

	
	include_positional (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and function accepts *vargs, return None (unlimited number of arguments).

	include_keywords (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and function accepts **kwargs, return None (unlimited number of arguments).

	
static from_function(func, follow_wrapped=True)

	Get signature of the given function or method.

If follow_wrapped==True, follow __wrapped__ attributes until the innermost function
(useful for getting signatures of functions wrapped using functools methods).

	
copy()

	Return a copy

	
as_simple_func()

	Turn the signature into a simple function (as opposed to a bound method).

If the signature corresponds to a bound method, get rid of the first argument in the signature (self) and the bound object.
Otherwise, return unchanged.

	
static merge(inner, outer, add_place='front', merge_duplicates=True, overwrite=None, hide_outer_obj=False)

	Merge two signatures (used for wrapping functions).

The signature describes the function would take arguments according to the outer signature and pass them according to the inner signature.

	The arguments are combined:
	
	if add_place=='front', the outer arguments are placed in the beginning, followed by inner arguments not already listed;

	if add_place=='back', the inner arguments are placed in the beginning, followed by outer arguments not already listed.

The default values are joined, with the outer values superseding the inner values.

overwrite is a set or a list specifying which inner parameters are overwritten by the outer.
It includes 'name', 'doc', 'cls', 'obj', 'varg_name' and 'kwarg_name';
the default value is all parameters.

If the inner signature is a bound method and hide_inner_obj==True, treat it as a function (with self argument missing).
In this case, the wrapped signature .obj field will be None.

	Returns:

	(signature, pass_order)

pass_order is the order in which the arguments of the combined signature may be passed to the inner signature;
it may be different from the signature order if add_place=='front'.
If merge_duplicates==True, duplicate entries in pass_order are omitted; otherwise, they’re repeated.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
pylablib.core.utils.functions.funcsig(func, follow_wrapped=True)

	Return a function signature object

	
pylablib.core.utils.functions.getargsfrom(source, **merge_params)

	Decorator factory.

Returns decorator that conforms function signature to the source function.
**merge_params are passed to the FunctionSignature.merge() method merging wrapped and source signature.

The default behavior (conforming parameter names, default values args and kwargs names) is useful for wrapping universal functions like g(*args, **kwargs).

Example:

def f(x, y=2):
 return x+y

@getargsfrom(f)
def g(*args): # Now g has the same signature as f, including parameter names and default values.
 return prod(args)

	
pylablib.core.utils.functions.call_cut_args(func, *args, **kwargs)

	Call func with the given arguments, omitting the ones that don’t fit its signature.

	
pylablib.core.utils.functions.getattr_call(obj, attr_name, *args, **vargs)

	Call the getter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the getter (fget); otherwise, ignore them.

	
pylablib.core.utils.functions.setattr_call(obj, attr_name, *args, **vargs)

	Call the setter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the setter (fset);
otherwise, the set value is assumed to be either the first argument, or the keyword argument with the name 'value'.

	
pylablib.core.utils.functions.delattr_call(obj, attr_name, *args, **vargs)

	Call the deleter for the attribute attr_name of obj.

If the attribute is a property, pass *args and **kwargs to the deleter (fdel); otherwise, ignore them.

	
class pylablib.core.utils.functions.IObjectCall

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Universal interface for object method call (makes methods, attributes and properties look like methods).

Should be called with an object as a first argument.

	
class pylablib.core.utils.functions.MethodObjectCall(method)

	Bases: IObjectCall

Object call created from an object method.

	Parameters:

	method – Either a method object or a method name which is used for the call.

	
class pylablib.core.utils.functions.AttrObjectCall(name, as_getter)

	Bases: IObjectCall

Object call created from an object attribute (makes attributes and properties look like methods).

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute name.

	as_getter (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, call the getter when invoked; otherwise, call the setter.

If an attribute is a simple attribute, than getter gets no arguments and setter gets one argument
(either the first argument, or the keyword argument named 'value').
If it’s a property, pass all the parameters to the property call.

	
class pylablib.core.utils.functions.IObjectProperty

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Universal interface for an object property (makes methods, attributes and properties look like properties).

Can be used to get, set or remove a property.

	
get(obj, params=None)

	

	
set(obj, value)

	

	
rem(obj, params=None)

	

	
class pylablib.core.utils.functions.MethodObjectProperty(getter=None, setter=None, remover=None, expand_tuple=True)

	Bases: IObjectProperty

Object property created from object methods (makes methods look like properties).

	Parameters:

	
	getter (callable) – Method invoked on get(). If None, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when called.

	setter (callable) – Method invoked on set(). If None, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when called.

	remover (callable) – Method invoked on rem(). If None, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when called.

	expand_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and if the first argument in the method call is a tuple,
expand it as an argument list for the underlying function call.

	
get(obj, params=None)

	

	
set(obj, value)

	

	
rem(obj, params=None)

	

	
class pylablib.core.utils.functions.AttrObjectProperty(name, use_getter=True, use_setter=True, use_remover=True, expand_tuple=True)

	Bases: IObjectProperty

Object property created from object attribute. Works with attributes or properties.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute name.

	use_getter (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when calling get method.

	use_setter (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when calling set method.

	use_remover (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, raise RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] when calling rem method.

	expand_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and if the first argument in the method call is a tuple,
expand it as an argument list for the underlying function call.

	
get(obj, params=None)

	

	
set(obj, value)

	

	
rem(obj, params=None)

	

	
pylablib.core.utils.functions.empty_object_property(value=None)

	Dummy property which does nothing and returns value on get (None by default).

	
pylablib.core.utils.functions.obj_prop(*args, **kwargs)

	Build an object property wrapper.

If no arguments (or a single None argument) are supplied, return a dummy property.
If one argument is supplied, return AttrObjectProperty for a property with a given name.
Otherwise, return MethodObjectProperty property.

	
pylablib.core.utils.functions.as_obj_prop(value)

	Turn value into an object property using obj_prop() function.

If it’s already IObjectProperty, return unchanged.
If value is a tuple, expand as an argument list.

	
pylablib.core.utils.functions.delaydef(gen)

	Wrapper for a delayed definition of a function inside of a module.

Useful if defining a function is computationally costly.
The wrapped function should be a generator of the target function rather than the function itself.

On the first call the generator is executed to define the target function, which is then substituted for all subsequent calls.

pylablib.core.utils.general module

Collection of small utilities.

	
pylablib.core.utils.general.set_props(obj, prop_names, props)

	Set multiple attributes of obj.

Names are given by prop_names list and values are given by props list.

	
pylablib.core.utils.general.get_props(obj, prop_names)

	Get multiple attributes of obj.

Names are given by prop_names list.

	
pylablib.core.utils.general.getattr_multivar(obj, attrs, **kwargs)

	Try to get an attribute of obj given a list attrs of its potential names.

If no attributes are found and default keyword argument is supplied, return this default value; otherwise, raise AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError].

	
pylablib.core.utils.general.using_method(func, method_name=None, inherit_signature=True)

	Decorator that makes the function attempt to call the first argument’s method instead of func.

Before calling the function, try and call a method of the first argument named method_name (func name by default).
If the method exists, call it instead of the wrapped function.
If inherit_signature==True, completely copy the signature of the wrapped method (name, args list, docstring, etc.).

	
pylablib.core.utils.general.to_predicate(x)

	Turn x into a predicate.

If x is callable, it will be called with a single argument and returned value determines if the argument passes.
If x is a container, an argument passes if it’s contained in x.

	
pylablib.core.utils.general.map_container(value, func)

	Map values in the container.

value can be a tuple, a list or a dict (mapping is applied to the values)
raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if it’s something else.

	
pylablib.core.utils.general.as_container(val, t)

	Turn iterable into a container of type t.

Can handle named tuples, which have different constructor signature.

	
pylablib.core.utils.general.recursive_map(value, func)

	Map container recursively.

value can be a tuple, a list or a dict (mapping is applied to the values).

	
pylablib.core.utils.general.make_flat_namedtuple(nt, fields=None, name=None, subfield_fmt='{field:}_{subfield:}')

	Turn a nested structure of named tuples into a single flat namedtuple.

	Parameters:

	
	nt – toplevel namedtuple class to be flattened

	fields – a dictionary {name: desc} of the fields, where name is the named tuple name,
and desc is either a nested namedtuple class, or a list of arguments which are passed to the
recursive call to this function (e.g., [TTuple, {"field": TNestedTuple}]).
Any tuple field which is present in this dictionary gets recursively flattened,
and the field names of the corresponding returned tuple are added to the full list of fields

	name – name of the resulting tuple

	subfield_fmt – format string, which describes how the combined field name is built
out of the original field name and the subtuple field name;
by default, connect with "_", i.e., t.field.subfiled turns into t.field_subfield.

	Returns:

	a new namedtuple class, which describes the flattened structure

	
pylablib.core.utils.general.any_item(d)

	Return arbitrary tuple (key, value) contained in the dictionary (works both in Python 2 and 3)

	
pylablib.core.utils.general.merge_dicts(*dicts)

	Combine multiple dict objects together.

If multiple dictionaries have the same keys, later arguments have higher priority.

	
pylablib.core.utils.general.filter_dict(pred, d, exclude=False)

	Filter dictionary based on a predicate.

pred can be a callable or a container (in which case the predicate is true if a value is in the container).
If exclude==True, the predicate is inverted.

	
pylablib.core.utils.general.map_dict_keys(func, d)

	Map dictionary keys with func

	
pylablib.core.utils.general.map_dict_values(func, d)

	Map dictionary values with func

	
pylablib.core.utils.general.to_dict(d, default=None)

	Convert a dict or a list of pairs or single keys (or mixed) into a dict.

If a list element is single, default value is used.

	
pylablib.core.utils.general.to_pairs_list(d, default=None)

	Convert a dict or a list of pairs or single keys (or mixed) into a list of pairs.

If a list element is single, default value is used.
When converting list into list, the order is preserved.

	
pylablib.core.utils.general.invert_dict(d, kmap=None)

	Invert dictionary (switch keys and values).

If kmap is supplied, it’s a function mapping dictionary values into inverted dictionary keys (identity by default).

	
pylablib.core.utils.general.flatten_list(l)

	Flatten nested list/tuple structure into a single list.

	
pylablib.core.utils.general.partition_list(pred, l)

	Split the lis` l into two parts based on the predicate.

	
pylablib.core.utils.general.split_in_groups(key_func, l, continuous=True, max_group_size=None)

	Split the list l into groups according to the key_func.

Go over the list and group the elements with the same key value together.
If continuous==False, groups all elements with the same key together regardless of where they are in the list.
otherwise, group only continuous sequences of the elements with the same key together (element with different key in the middle will result in two groups).
If continuous==True and max_group_size is not None, it determines the maximal size of a group; larger groups are split into separate groups.

	
pylablib.core.utils.general.sort_set_by_list(s, l, keep_duplicates=True)

	Convert the set s into a list ordered by a list l.

Elements in s which are not in l are omitted.
If keep_duplicates==True, keep duplicate occurrences in l in the result; otherwise, only keep the first occurrence.

	
pylablib.core.utils.general.compare_lists(l1, l2, sort_lists=False, keep_duplicates=True)

	Return three lists (l1 and l2, l1-l2, l2-l1).

If sort_lists==True, sort the first two lists by l1, and the last one by l2; otherwise, the order is undefined.
If sort_lists==True, keep_duplicated determines if duplicate elements show up in the result.

	
pylablib.core.utils.general.topological_order(graph, visit_order=None)

	Get a topological order of a graph.

Return a list of nodes where each node is listed after its children.
If visit_order is not None, it is a list specifying nodes visiting order (nodes earlier in the list are visited first). Otherwise, the visit order is undefined.
graph is a dictionary {node: [children]}.
If graph contains loops, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	
class pylablib.core.utils.general.DummyResource

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object that acts as a resource (has __enter__ and __exit__ methods), but doesn’t do anything.

Analog of:

@contextlib.contextmanager
def dummy_resource():
 yield

	
class pylablib.core.utils.general.RetryOnException(tries=None, exceptions=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper for repeating the same block of code several time if an exception occurs

Useful for filesystem or communication operations, where retrying a failed operation is a valid option.

	Parameters:

	
	tries (int [https://docs.python.org/3/library/functions.html#int]) – Determines how many time will the chunk of code execute before re-raising the exception;
None (default) means no limit

	exceptions (Exception [https://docs.python.org/3/library/exceptions.html#Exception] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A single exception class or a list of exception classes which are going to be silenced.

Example:

for t in RetryOnException(tries,exceptions):
 with t:
 ... do stuff ...

is analogue of:

for i in range(tries):
 try:
 ... do stuff ...
 except exceptions:
 if i==tries-1:
 raise

	
class ExceptionCatcher(retrier, try_number)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
reraise()

	

	
pylablib.core.utils.general.retry_wait(func, try_times=1, delay=0.0, exceptions=None)

	Try calling function (with no arguments) at most try_times as long as it keeps raising exception.

If exceptions is not None, it specifies which exception types should be silenced.
If an exception has been raised, wait delay seconds before retrying.

	
class pylablib.core.utils.general.SilenceException(exceptions=None, on_exception=None, reraise=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context which silences exceptions raised in a block of code.

	Parameters:

	
	exceptions (Exception [https://docs.python.org/3/library/exceptions.html#Exception] or list [https://docs.python.org/3/library/stdtypes.html#list]) – A single exception class or a list of exception classes which are going to be silenced.

	on_exception (callable) – A callback to be invoked if an exception occurs.

	reraise (bool [https://docs.python.org/3/library/functions.html#bool]) – Defines if the exception is re-raised after the callback has been invoked.

A simple bit of syntax sugar. The code:

with SilenceException(exceptions,on_exception,reraise):
 ... do stuff ...

is exactly analogous to:

try:
 ... do stuff ...
except exceptions:
 on_exception()
 if reraise:
 raise

	
pylablib.core.utils.general.full_exit(code=Signals.SIGTERM)

	Terminate the current process and all of its threads.

Doesn’t perform any cleanup or resource release; should only be used if the process is irrevocably damaged.

	
class pylablib.core.utils.general.UIDGenerator(thread_safe=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generator of unique numeric IDs.

	Parameters:

	thread_safe (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, using lock to ensure that simultaneous calls from different threads are handled properly.

	
reset(value=0)

	Reset the generator to the given value

	
class pylablib.core.utils.general.NamedUIDGenerator(name_template='{0}{1:03d}', thread_safe=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generator of unique string IDs based on a name.

	Parameters:

	
	name_template (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format string with two parameters (name and numeric ID) used to generate string IDs.

	thread_safe (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, using lock to ensure that simultaneous calls from different threads are handled properly.

	
pylablib.core.utils.general.call_limit(func, period=1, cooldown=0.0, limit=None, default=None)

	Wrap func such that calls to it are forwarded only under certain conditions.

If period>1, then func is called after at least period calls to the wrapped function.
If cooldown>0, then func is called after at least cooldown seconds passed since the last call.
if limit is not None, then func is called only first limit times.
If several conditions are specified, they should be satisfied simultaneously.
default specifies return value if func wasn’t called.
Returned function also has an added method reset, which resets the internal call and time counters.

	
pylablib.core.utils.general.doc_inherit(parent)

	Wrapper for inheriting docstrings from parent classes.

Takes parent class as an argument and replaces the docstring of the wrapped function
by the docstring of the same-named function from the parent class (if available).

	
class pylablib.core.utils.general.Countdown(timeout, start=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object for convenient handling of timeouts and countdowns with interrupts.

	Parameters:

	
	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Countdown timeout; if None, assumed to be infinite.

	start (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, automatically start the countdown; otherwise, wait until trigger() is called explicitly

	
reset(start=True)

	Restart the countdown from the current moment

	
trigger(restart=True)

	Trigger the countdown.

If restart==True, restart the countdown if it’s running; otherwise, do nothing in that situation.

	
running()

	Check if the countdown is running

	
stop()

	Stop the timer if currently running

	
time_left(t=None, bound_below=True)

	Return the amount of time left. For infinite timeout, return None.

If bound_below==True, instead of negative time return zero.
If t is supplied, it indicates the current time; otherwise, use time.time().

	
add_time(dt, t=None, bound_below=True)

	Add a given amount of time (positive or negative) to the start time (timeout stays the same).

If bound_below==True, do not let the end time (start time plus timeout) to get below the current time.
If t is supplied, it indicates the current time; otherwise, use time.time().

	
set_timeout(timeout)

	Change the timer timeout

	
time_passed()

	Return the amount of time passed since the countdown start/reset, or None if it is not started

	
passed()

	Check if the timeout has passed

	
class pylablib.core.utils.general.Timer(period, skip_first=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object for keeping time of repeating tasks.

	Parameters:

	period (float [https://docs.python.org/3/library/functions.html#float]) – Timer period.

	
change_period(period, method='current')

	Change the timer period.

method specifies the changing method. Could be "current" (change the period of the ongoing tick), "next" (change the period starting from the next tick),
"reset_skip" (reset the timer and skip the first tick) or "reset_noskip" (reset the timer and don’t skip the first tick).

	
reset(skip_first=False)

	Reset the timer.

If skip_first==False, timer ticks immediately; otherwise, it starts ticking only after one period.

	
time_left(t=None, bound_below=True)

	Return the amount of time left before the next tick.

If bound_below==True, instead of negative time return zero.

	
passed(t=None)

	Return the number of ticks passed.

If timer period is zero, always return 1.

	
acknowledge(n=None, nmin=0)

	Acknowledge the timer tick.

n specifies the number of tick to acknowledge (by default, all passed).
Return number of actually acknowledged ticks (0 if the timer hasn’t ticked since the last acknowledgement).

	
class pylablib.core.utils.general.TimeTracker(verbose='all')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Time tracker used for estimating time for different sections of code.

	Parameters:

	verbose – determines the verbosity level;
can be "all" (print on mark and on summary), "summary" (only print summery), or "none" (do not print anything)

	
reset()

	Reset the internal timer

	
summary(join_records='auto', exclude_untracked=True, compact=False, reset=True, period=None)

	Print the sections runtime summary.

If join_records==True, count all records with the same message as the same event and present total / per call statistics;
otherwise, print one line per record.
If join_records=="auto", set to True if there are several records with the same name.
If exclude_untracked==True, exclude code periods marked with no message (i.e., None) from the total time calculation.
If compact==True, only print one line per record; otherwise, also include header and total time.
If reset==True, reset the sections history.
If period is not None, defines the maximal summary printing period.

	
class pylablib.core.utils.general.StreamFileLogger(path, stream=None, lock=None, autoflush=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Stream logger that replaces standard output stream (usually stdout or stderr) and logs them into a file.

	Parameters:

	
	path – path to the destination logfile. The file is always appended.

	stream – an optional output stream into which the output will be duplicated; usually, the original stream which is being replaced

	lock – a thread lock object, which is used for any file writing operation;
necessary if replacing standard streams (such as sys.stdout or sys.stderr) in a multithreading environment.

	autoflush – if True, flush after any write operation into stream

It is also possible to subclass the file and overload write_header() method to write a header before the first file write operation during the execution.

The intended use is to log stdout or stderr streams:

import sys, threading
sys.stderr = StreamFileLogger("error_log.txt", stream=sys.stderr, lock=threading.Lock())

	
write_header(f)

	Write header to file stream f

	
add_path(path)

	Add another logging path to the list

	
add_stream(stream)

	Add another output stream to the list

	
remove_path(path)

	Remove logging path to the list

	
write(s)

	

	
flush()

	

	
pylablib.core.utils.general.setbp()

	

	
pylablib.core.utils.general.timing(n=1, name=None, profile=False)

	Context manager for timing a piece of code.

Measures the time it takes to execute the wrapped code and prints the result.

	Parameters:

	
	n – can specify the number of repetitions, which is used to show time per single repetition.

	name – name which is printed alongside the time

	profile – if True, use cProfile and print its output instead of a simple timing

	
class pylablib.core.utils.general.AccessIterator(obj, access_function=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple sequential access iterator with customizable access function (by default it’s 1D indexing).

Determines end of iterations by IndexError [https://docs.python.org/3/library/exceptions.html#IndexError].

	Parameters:

	
	obj – Container to be iterated over.

	access_function (callable) – A function which takes two parameters obj and idx
and either returns the element or raises IndexError [https://docs.python.org/3/library/exceptions.html#IndexError]. By default, a simple __getitem__ operation.

	
next()

	

	
pylablib.core.utils.general.muxcall(argname, special_args=None, mux_argnames=None, return_kind='list', allow_partial=False)

	Wrap a function such that it can become multiplexable over a given argument.

	Parameters:

	
	argname – name of the argument to loop over

	special_args – if not None, defines a dictionary {arg: func} for special values of the argument
(e.g., "all", None, etc.), where arg is its value, and func is the method taking the same arguments
as the called function and returning the substitute argument (e.g., a list of all arguments)

	mux_argnames – names of additional arguments which, when supplied list or dict values, and when the argname value is a list,
specify different values for different calls

	return_kind – method to combined multiple returned values; can be "list", "dict" (return dict {arg: result}),
or "none" (simply return None)

	allow_partial – if True and some of mux_argnames argument do not specify value for the full range of argname value,
do not call the function for those unspecified values; otherwise (allow_partial is True), the error will be raised

	
pylablib.core.utils.general.wait_for_keypress(message='Waiting...')

	

	
pylablib.core.utils.general.restart()

	Restart the script.

Execution will not resume after this call.
Note: due to Windows limitations, this function does not replace the current process with a new one,
but rather calls a new process and makes the current one wait for its execution.
Hence, each nested call adds an additional loaded application into the memory.
Therefore, nesting restart calls (i.e., calling several restarts in a row) should be avoided.

pylablib.core.utils.indexing module

Processing and normalization of different indexing styles.

	
pylablib.core.utils.indexing.string_list_idx(names_to_find, names_list, only_exact=False)

	Index through a list of strings in names_list.

Return corresponding numerical indices.
Case sensitive; first look for exact matching, then for prefix matching (unless only_exact=True).

	
pylablib.core.utils.indexing.is_slice(idx)

	Check if idx is slice.

	
pylablib.core.utils.indexing.is_range(idx)

	Check if idx is iterable (list, numpy array, or builtins.range).

	
pylablib.core.utils.indexing.is_bool_array(idx)

	Check if idx is a boolean array.

	
pylablib.core.utils.indexing.to_range(idx, length)

	Turn list, array, builtins.range, slice into an iterable.

	
pylablib.core.utils.indexing.covers_all(idx, length, strict=False, ordered=True)

	Check if idx covers all of the elements (indices from 0 to length).

If strict==True, strictly checks the condition;
otherwise may return False even if idx actually covers everything, but takes less time (i.e., can be used for optimization).
If ordered==True, only returns True when indices follow in order.

	
class pylablib.core.utils.indexing.IIndex

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic index object.

Used to transform a variety of indexes into a subset applicable for specific objects (numpy arrays or lists).

	Allowed input index types:
	
	scalar: integer, string

	vector: integer lists or numpy arrays, bool lists or numpy arrays, string lists or numpy arrays, builtin.ranges, slices and string slices

	
tup()

	Represent index as a tuple for easy unpacking.

	
class pylablib.core.utils.indexing.NumpyIndex(idx, ndim=None)

	Bases: IIndex

NumPy compatible index: allows for integers, slices, numpy integer or boolean arrays, integer lists or builtin.ranges.

	Parameters:

	
	idx – raw index

	ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already normalized

	
tup()

	Represent index as a tuple for easy unpacking.

	
class pylablib.core.utils.indexing.ListIndex(idx, names=None, ndim=None)

	Bases: IIndex

List compatible index: allows for integers, slices, numpy integer arrays, integer lists or builtin.ranges.

	Parameters:

	
	idx – raw index

	names – list of allowed index string values, which is used to convert them into integers

	ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already normalized

	
tup()

	Represent index as a tuple for easy unpacking.

	
class pylablib.core.utils.indexing.ListIndexNoSlice(idx, names=None, length=None, ndim=None)

	Bases: ListIndex

List compatible index with slice unwrapped into builtin.range: allows for integers, numpy integer arrays, integer lists or builtin.ranges.

	Parameters:

	
	idx – raw index

	names – list of allowed index string values, which is used to convert them into integers

	length – length of the list (used to expand slice indices)

	ndim – index dimensionality (either 0 or 1); if supplied, assume that idx is already normalized

	
tup()

	Represent index as a tuple for easy unpacking.

	
pylablib.core.utils.indexing.to_double_index(idx, names)

	Convert double index into a pair of indexes.

Assume that one index is purely numerical, while the other can take names (out of the supplied list).

	Parameters:

	
	idx – raw double index

	names – list of allowed index string values, which is used to convert them into integers

pylablib.core.utils.ipc module

Universal interface for inter-process communication.

Focus on higher throughput for large numpy arrays via shared memory.

	
class pylablib.core.utils.ipc.IIPCChannel

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic IPC channel interface

	
send(data)

	Send data

	
recv(timeout=None)

	Receive data

	
send_numpy(data)

	Send numpy array

	
recv_numpy(timeout=None)

	Receive numpy array

	
get_peer_args()

	Get arguments required to create a peer connection

	
classmethod from_args(*args)

	Create a peer connection from the supplied arguments

	
class pylablib.core.utils.ipc.TPipeMsg(id, data)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
data

	

	
id

	

	
class pylablib.core.utils.ipc.PipeIPCChannel(pipe_conn=None)

	Bases: IIPCChannel

Generic IPC channel interface using pipe.

	
get_peer_args()

	Get arguments required to create a peer connection

	
send(data)

	Send data

	
recv(timeout=None)

	Receive data

	
classmethod from_args(*args)

	Create a peer connection from the supplied arguments

	
recv_numpy(timeout=None)

	Receive numpy array

	
send_numpy(data)

	Send numpy array

	
class pylablib.core.utils.ipc.SharedMemIPCChannel(pipe_conn=None, arr=None, arr_size=None)

	Bases: PipeIPCChannel

Generic IPC channel interface using pipe and shared memory for large arrays.

	
get_peer_args()

	Get arguments required to create a peer connection

	
send_numpy(data, method='auto', timeout=None)

	Send numpy array

	
recv_numpy(timeout=None)

	Receive numpy array

	
classmethod from_args(*args)

	Create a peer connection from the supplied arguments

	
recv(timeout=None)

	Receive data

	
send(data)

	Send data

	
class pylablib.core.utils.ipc.TShmemVarDesc(offset, size, kind, fixed_size)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
fixed_size

	

	
kind

	

	
offset

	

	
size

	

	
class pylablib.core.utils.ipc.SharedMemIPCTable(pipe_conn=None, arr=None, arr_size=None, lock=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Shared memory table for exchanging shared variables between processes.

Can be used instead of channels for variables which are rarely changed but frequently checked (e.g., status),
or when synchronization of sending and receiving might be difficult

	
add_variable(name, size, kind='pickle')

	Add a variable with a given name.

The variable info is also communicated to the other endpoint.
size determines maximal variable size in bytes. If the actual size ever exceeds it, an exception will be raised.
kind determines the way to convert variable into bytes; can be "pickle" (universal, but large size overhead),
"nps_###"` (where ### can be any numpy scalar dtype description, e.g., "float" or "<u2") for numpy scalars,
or "npa_###"` (where ### means the same as for nps) for numpy arrays (in this case the array size and shape need to be communicated separately).

	
set_variable(name, value)

	Set a variable with a given name.

If the variable is missing, raise an exception.

	
get_variable(name, default=None)

	Get a variable with a given name.

If the variable is missing, return default.

	
is_peer_connected()

	Check if the peer is connected (i.e., the other side of the pipe is initialized)

	
close_connection()

	Mark the connection as closed

	
is_peer_closed()

	Check if the peer is closed

	
get_peer_args()

	Get arguments required to create a peer connection

	
classmethod from_args(*args)

	Create a peer connection from the supplied arguments

pylablib.core.utils.library_parameters module

Storage for global library parameters

	
pylablib.core.utils.library_parameters.temp_library_parameters(restore=None)

	Context manager, which restores library parameters upon exit.

If rester is not None, it can specify a list of parameters to be restored (by default, all parameters).

pylablib.core.utils.module module

Library for dealing with python module properties.

	
pylablib.core.utils.module.get_package_version(pkg)

	Get the version of the package.

If the package version is unavailable, return None.

	
pylablib.core.utils.module.cmp_versions(ver1, ver2)

	Compare two package versions.

Return '<' if the first version is older (smaller), '>' if it’s younger (larger) or '=' if it’s the same.

	
pylablib.core.utils.module.cmp_package_version(pkg, ver)

	Compare current package version to ver.

ver should be a name of the package (rather than the module).
Return '<' if current version is older (smaller), '>' if it’s younger (larger) or '=' if it’s the same.
If the package version is unavailable, return None.

	
pylablib.core.utils.module.expand_relative_path(module_name, rel_path)

	Turn a relative module path into an absolute one.

module_name is the absolute name of the reference module, rel_path is the path relative to this module.

	
pylablib.core.utils.module.get_loaded_package_modules(pkg_name)

	Get all modules in the package pkg_name.

Returns a dict {name: module}.

	
pylablib.core.utils.module.get_imported_modules(module, explicit=False)

	Get modules imported within a given module.

If explicit==True, take into account only toplevel objects which are modules (corresponds to import module or from package import module statements)
If explicit==False, also include all modules containing toplevel objects (corresponds to from module import Class or from package import function statements).
Return a dictionary {name: module} (modules with the same name are considered to be the same).

	
pylablib.core.utils.module.get_reload_order(modules)

	Find reload order for modules which respects dependencies (a module is loaded before its dependents).

modules is a dict {name: module}.

The module dependencies (i.e., the modules which the current module depends on) are determined based on imported modules and modules containing toplevel module objects.

	
pylablib.core.utils.module.reload_package_modules(pkg_name, ignore_errors=False)

	Reload package pkg_name, while respecting dependencies of its submodules.

If ignore_errors=True, ignore ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] exceptions during the reloading process.

	
pylablib.core.utils.module.unload_package_modules(pkg_name, ignore_errors=False)

	Reload package pkg_name, while respecting dependencies of its submodules.

If ignore_errors=True, ignore ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] exceptions during the reloading process.

	
pylablib.core.utils.module.get_library_path()

	Get a filesystem path for the pyLabLib library (the one containing current the module).

	
pylablib.core.utils.module.get_library_name()

	Get the name for the pyLabLib library (the one containing current the module).

	
pylablib.core.utils.module.get_executable(console=False)

	Get Python executable.

If console==True and the current executable is windowed (i.e., "pythonw.exe"), return the corresponding "python.exe" instead.

	
pylablib.core.utils.module.get_python_folder()

	Return Python interpreter folder (the folder containing the python executable)

	
pylablib.core.utils.module.pip_install(pkg, upgrade=False)

	Call pip install for a given package.

If upgrade==True, call with --upgrade key (upgrade current version if it is already installed).

	
pylablib.core.utils.module.install_if_older(pkg, min_ver='')

	Install pkg from the default PyPI repository if its version is lower that min_ver

If min_ver is None, upgrade to the newest version regardless; if min_ver=="", install only if no version is installed.
Return True if the package was installed.

pylablib.core.utils.nbtools module

	
pylablib.core.utils.nbtools.c_array(base='u1', ndim=1, readonly=False, contiguous='C')

	Generate a numba C-ordered array type with the given element type, number of dimensions, and read-only and contiguous flags

	
pylablib.core.utils.nbtools.au1(x, off)

	Extract a little-endian 1-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.au2(x, off)

	Extract a little-endian 2-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.au4(x, off)

	Extract a little-endian 4-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.au8(x, off)

	Extract a little-endian 8-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.ai1(x, off)

	Extract a little-endian 1-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.ai2(x, off)

	Extract a little-endian 2-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.ai4(x, off)

	Extract a little-endian 4-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.ai8(x, off)

	Extract a little-endian 8-byte unsigned integer from a numpy byte array at the given offset

	
pylablib.core.utils.nbtools.copy_array_chunks(base='u1', par=False, nogil=True)

	Generate and compile a numba function for copying an array in chunks.
base specifies the base array type (by default, unsigned byte);
if par==True, generate a parallelized implementation.
if nogil==True, use the nogil numba option to release GIL during the execution.

The returned function takes 4 arguments: source array, destination array, number of chunks, and size (in elements) of each chunk.

	
pylablib.core.utils.nbtools.copy_array_strided(base='u1', par=False, nogil=True)

	Generate and compile a numba function for copying an array in chunks with an arbitrary stride.
base specifies the base array type (by default, unsigned byte);
if par==True, generate a parallelized implementation.
if nogil==True, use the nogil numba option to release GIL during the execution.

The returned function takes 6 arguments: source array, destination array, number of chunks, size (in elements) of each chunk,
chunks stride (in elements) in the source array, and offset (in elements) from the beginning of the first array.
If size is the same as stride and the offset is zero, this function would mimic the one generated by copy_array_chunks().

pylablib.core.utils.net module

A wrapper for built-in TCP/IP routines.

	
exception pylablib.core.utils.net.SocketError

	Bases: OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Base socket error class.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
characters_written

	

	
errno

	POSIX exception code

	
filename

	exception filename

	
filename2

	second exception filename

	
strerror

	exception strerror

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.core.utils.net.SocketTimeout

	Bases: SocketError

Socket timeout error.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
characters_written

	

	
errno

	POSIX exception code

	
filename

	exception filename

	
filename2

	second exception filename

	
strerror

	exception strerror

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
pylablib.core.utils.net.get_local_addr()

	Get local IP address

	
pylablib.core.utils.net.get_all_local_addr()

	Get a list of all local IP addresses

	
pylablib.core.utils.net.get_local_hostname(full=True)

	Get a local host name

	
pylablib.core.utils.net.get_all_remote_addr(hostname)

	Get a list of all remote addresses of a remote host by name

	
pylablib.core.utils.net.get_remote_hostname(addr, error_on_missing=False)

	Get a remote host name by its address

	
pylablib.core.utils.net.as_addr_port(addr, port)

	Parse the given address and port combination.

addr can be a host address, a tuple (addr, port), or a string "addr:port";
in the first case the given port is used, while in the other two it is ignore.
Return tuple (addr, port).

	
class pylablib.core.utils.net.ClientSocket(sock=None, timeout=None, wait_callback=None, send_method='decllen', recv_method='decllen', datatype='auto', nodelay=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A client socket (used to connect to a server socket).

	Parameters:

	
	sock (socket.socket [https://docs.python.org/3/library/socket.html#socket.socket]) – Socket to wrap; if None create a new one.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The timeout used for connecting and sending/receiving (None means no timeout).

	wait_callback (callable) – Called periodically (every 100ms by default) while waiting for connecting or sending/receiving.

	send_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default sending method.

	recv_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default receiving method.

	datatype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the returned data; can be "bytes" (return bytes object), "str" (return str object),
or "auto" (default Python result: str in Python 2 and bytes in Python 3)

	nodelay (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable TCP_NODELAY.

	Possible sending/receiving methods are:
	
	'fixedlen': data is sent as is, and receiving requires to know the length of the message;

	'decllen': data is prepended by a length, and receiving reads this length and doesn’t need predetermined length info.

	
sock

	Corresponding Python socket.

	Type:

	socket.socket [https://docs.python.org/3/library/socket.html#socket.socket]

	
decllen_bo

	Byteorder of the prepended length for 'decllen' sending method.
Can be either '>' (big-endian, default) or '<'.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
decllen_ll

	Length of the prepended length for 'decllen' sending method; default is 4 bytes (corresponding to maximum of 4Gb per single length-prepended message)

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
set_wait_callback(wait_callback=None)

	Set callback function for waiting during connecting or sending/receiving

	
set_timeout(timeout=None)

	Set timeout for connecting or sending/receiving

	
get_timeout()

	Get timeout for connecting or sending/receiving

	
using_timeout(timeout=None)

	Context manager for usage of a different timeout inside a block

	
connect(host, port)

	Connect to a remote host

	
close()

	Close the connection

	
is_connected()

	Check if the connection is opened

	
get_local_name()

	Return IP address and port of this socket

	
get_peer_name()

	Return IP address and port of the peer socket

	
recv_fixedlen(l)

	Receive fixed-length message of length l

	
recv_delimiter(delim, lmax=None, chunk_l=1024, strict=False)

	Receive a single message ending with a delimiter delim (can be several characters, or list several possible delimiter strings).

lmax specifies the maximal received length (None means no limit).
chunk_l specifies the size of data chunk to be read in one try.
If strict==False, keep receiving as much data as possible until a delimiter is found in the end (only works properly if a single line is expected);
otherwise, receive the data byte-by-byte and stop as soon as a delimiter is found (equivalent to setting chunk_l=1).

	
recv_decllen()

	Receive variable-length message (prepended by its length).

Length format is described by decllen_bo and decllen_ll attributes.

	
recv(l=None)

	Receive a message using the default method.

	
recv_all(chunk_l=1024)

	Receive all of the data currently in the socket.

chunk_l specifies the size of data chunk to be read in one try.
For technical reasons, use 1ms timeout (i.e., this operation takes 1ms).

	
recv_ack(l=None)

	Receive a message using the default method and send an acknowledgement (message length)

	
send_fixedlen(msg)

	Send a message as is

	
send_decllen(msg)

	Send a message as a variable-length (prepending its length in the sent message).

Length format is described by decllen_bo and decllen_ll attributes.

	
send_delimiter(msg, delimiter)

	Send a message with a delimiter delim (can be several characters)

	
send(msg)

	Send a message using the default method.

	
send_ack(msg)

	Send a message using default method and wait for acknowledgement (message length).

If the acknowledgement message length doesn’t agree, raise SocketError.

	
pylablib.core.utils.net.recv_JSON(sock, chunk_l=1024, strict=True)

	Receive a complete JSON token from the socket.

chunk_l specifies the size of data chunk to be read in one try.
If strict==False, keep receiving as much data as possible until the received data forms a complete JSON token.
otherwise, receive the data byte-by-byte and stop as soon as a token is formed (equivalent to setting chunk_l=1).

	
pylablib.core.utils.net.listen(host, port, conn_func, port_func=None, wait_callback=None, timeout=None, backlog=10, wrap_socket=True, connections_number=None, socket_kwargs=None)

	Run a server socket at the given host and port.

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server host address. If None, use the local host defined by socket.gethostname() [https://docs.python.org/3/library/socket.html#socket.gethostname].

	port (int [https://docs.python.org/3/library/functions.html#int]) – Server port. If 0, generate an arbitrary free port.

	conn_func (callable) – Called with the client socket as a single argument every time a connection is established.

	port_func (callable) – Called with the port as a single argument when the listening starts (useful with port=0).

	wait_callback (callable) – A callback function which is called periodically (every 100ms by default) while awaiting for connections.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Timeout for waiting for the connections (None is no timeout).

	backlog (int [https://docs.python.org/3/library/functions.html#int]) – Backlog length for the socket (see socket.socket.listen() [https://docs.python.org/3/library/socket.html#socket.socket.listen]).

	wrap_socket (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, wrap the client socket of the connection into ClientSocket class;
otherwise, return socket.socket [https://docs.python.org/3/library/socket.html#socket.socket] object.

	connections_number (int [https://docs.python.org/3/library/functions.html#int]) – Specifies maximal number of connections before the listening function returns (by default, the number is unlimited).

	socket_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional keyword arguments passed to ClientSocket constructor.

Checking for connections is paused until conn_func returns.
If multiple simultaneous connections are expected, conn_func should spawn a separate processing thread and return.
If connections_number is None (i.e., there’s no limit on the number of connections before closing), this function never returns.

pylablib.core.utils.numerical module

Numerical functions that don’t deal with sequences.

	
pylablib.core.utils.numerical.gcd(*numbers)

	Euclid’s algorithm for GCD. Arguments are cast to integer

	
pylablib.core.utils.numerical.integer_distance(x)

	Get distance to the closes integer

	
pylablib.core.utils.numerical.gcd_approx(a, b, min_fraction=1e-08, tolerance=1e-05)

	Approximate Euclid’s algorithm for possible non-integer values.

Try to find a number d such that a/d and b/d are less than tolerance away from a closest integer.
If GCD becomes less than min_fraction * min(a, b), raise ArithmeticError [https://docs.python.org/3/library/exceptions.html#ArithmeticError].

	
pylablib.core.utils.numerical.round_significant(x, n)

	Rounds x to n significant digits (not the same as n decimal places!).

	
pylablib.core.utils.numerical.limit_to_range(x, min_val=None, max_val=None, default=0)

	Confine x to the given limit.

Default limit values are None, which means no limit.
default specifies returned value if both x, min_val and max_val are None.

	
class pylablib.core.utils.numerical.infinite_list(start=0, step=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mimics the behavior of the usual list, but is infinite and immutable.

Supports accessing elements, slicing (including slices giving infinite lists) and iterating.
Iterating over it naturally leads to an infinite loop, so it should only be used either for finite slices or for loops with break condition.

	Parameters:

	
	start – The first element of the list.

	step – List step.

	
class counter(lst)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
next()

	

	
pylablib.core.utils.numerical.unity()

	Return a unity function

	
pylablib.core.utils.numerical.constant(c)

	Return a function which returns a constant c.

c can only be either a scalar, or an array-like object with the shape matching the expected argument.

	
pylablib.core.utils.numerical.polynomial(coeffs)

	Return a polynomial function which with coefficients coeffs.

Coefficients are list lowest-order first, so that coeffs[i] is the coefficient in front of x**i.

pylablib.core.utils.observer_pool module

A simple observer pool (notification pool) implementation.

	
class pylablib.core.utils.observer_pool.ObserverPool(expand_tuple=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An observer pool.

Stores notification functions (callbacks), and calls them whenever notify() is called.
The callbacks can have priority (higher priority ones are called first) and filter (observer is only called if the filter function passes the notification tag).

	Parameters:

	expand_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the notification value is a tuple, treat it as an argument list for the callback functions.

	
class Observer(filt, callback, priority, attr, cacheable)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
attr

	

	
cacheable

	

	
callback

	

	
filt

	

	
priority

	

	
add_observer(callback, name=None, filt=None, priority=0, attr=None, cacheable=False)

	Add the observer callback.

	Parameters:

	
	callback (callable) – callback function; takes at least one argument (notification tag), and possible more depending on the notification value.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – stored callback name; by default, a unique name is auto-generated

	filt (callable or None) – a filter function for this observer (the observer is called only if the notify() function tag and value pass the filter); by default, all tags are accepted

	priority (int [https://docs.python.org/3/library/functions.html#int]) – callback priority; higher priority callback are invoked first.

	attr – additional observer attributes (can be used by ObserverPool subclasses to change their behavior).

	cacheable (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, assumes that the filter function only depends on the tag, so its calls can be cached.

	Returns:

	callback name (equal to name if supplied; an automatically generated name otherwise).

	
remove_observer(name)

	Remove the observer callback with the given name

	
find_observers(tag, value)

	

	
notify(tag, value=())

	Notify the observers by calling their callbacks.

Return a dictionary of the callback results.
By default the value is an empty tuple: for expand_tuple==True this means that only one argument (tag) is passed to the callbacks.

pylablib.core.utils.py3 module

Dealing with Python2 / Python3 compatibility.

	
pylablib.core.utils.py3.as_str(data)

	Convert a string into a text string

	
pylablib.core.utils.py3.as_bytes(data)

	Convert a string into bytes

	
pylablib.core.utils.py3.as_builtin_bytes(data)

	Convert a string into bytes

	
pylablib.core.utils.py3.as_datatype(data, datatype)

	Convert a string into a given datatypes.

datatype can be "str" (text string), "bytes" (byte string), or "auto" (no conversion).

pylablib.core.utils.rpyc_utils module

Routines and classes related to RPyC package

	
pylablib.core.utils.rpyc_utils.obtain(proxy, serv=None, deep=False, direct=False)

	Obtain a remote netref object by value (i.e., copy it to the local Python instance).

Wrapper around rpyc.utils.classic.obtain() [https://rpyc.readthedocs.io/en/latest/api/utils_classic.html#rpyc.utils.classic.obtain] with some special cases handling.
serv specifies the current remote service. If it is of type SocketTunnelService, use its socket tunnel for faster transfer.
If deep==True and proxy is a container (tuple, list, or dict), run the function recursively for all its sub-elements.
If direct==True, directly use RPyC obtain method; otherwise use the custom method, which works better with large numpy arrays,
but worse with composite types (e.g., lists).

	
pylablib.core.utils.rpyc_utils.transfer(obj, serv)

	Send a local object to the remote PC by value (i.e., copy it to the remote Python instance).

A ‘reversed’ version of obtain().

	
class pylablib.core.utils.rpyc_utils.SocketTunnelService(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: SlaveService

Extension of the standard rpyc.core.service.SlaveService [https://rpyc.readthedocs.io/en/latest/api/core_service.html#rpyc.core.service.SlaveService] with built-in network socket tunnel for faster data transfer.

In order for the tunnel to work, services on both ends need to be subclasses of SocketTunnelService.
Because of the initial setup protocol, the two services are asymmetric: one should be ‘server’ (corresponding to the listening server),
and one should be ‘client’ (external connection). The roles are decided by the server constructor parameter.

	
tunnel_send(obj, packer=None)

	Send data through the socket tunnel.

If packer is not None, it defines a function to convert obj to a bytes string.

	
tunnel_recv(unpacker=None)

	Receive data sent through the socket tunnel.

If unpacker is not None, it defines a function to convert the received bytes string into an object.

	
obtain(proxy)

	Execute obtain() on the local instance

	
transfer(obj)

	Execute transfer() on the local instance

	
on_connect(conn)

	

	
on_disconnect(conn)

	

	
class pylablib.core.utils.rpyc_utils.DeviceService(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: SocketTunnelService

Device RPyC service.

Expands on SocketTunnelService by adding get_device() method,
which opens local devices, tracks them, and closes them automatically on disconnect.

	
on_connect(conn)

	

	
on_disconnect(conn)

	

	
get_device_class(cls)

	Get remote device class.

cls is the full class name, including the module within pylablib.devices
(e.g., Attocube.ANC300).

	
get_device(cls, *args, **kwargs)

	Connect to a device.

cls is the full class name, including the module within pylablib.devices
(e.g., Attocube.ANC300).
Stores reference to the connected device and closes it automatically on disconnect.

	
obtain(proxy)

	Execute obtain() on the local instance

	
transfer(obj)

	Execute transfer() on the local instance

	
tunnel_recv(unpacker=None)

	Receive data sent through the socket tunnel.

If unpacker is not None, it defines a function to convert the received bytes string into an object.

	
tunnel_send(obj, packer=None)

	Send data through the socket tunnel.

If packer is not None, it defines a function to convert obj to a bytes string.

	
pylablib.core.utils.rpyc_utils.run_device_service(port=18812, verbose=False)

	Start DeviceService at the given port

	
pylablib.core.utils.rpyc_utils.connect_device_service(addr, port=18812, timeout=3, attempts=2, error_on_fail=True, config=None)

	Connect to the DeviceService running at the given address and port

timeout and attempts define respectively timeout of a single connection attempt, and the number of attempts
(RPyC default is 3 seconds timeout and 6 attempts).
If error_on_fail==True, raise error if the connection failed; otherwise, return None

pylablib.core.utils.strdump module

Utils for converting variables into standard python objects (lists, dictionaries, strings, etc.) and back (e.g., for a more predictable LAN transfer).
Provides an extension for pickle for more customized classes (numpy arrays, Dictionary).

	
class pylablib.core.utils.strdump.StrDumper

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for dumping and loading an object.

Stores procedures for dumping and loading, i.e.,
conversion from complex classes (such as Dictionary) to simple built-in classes (such as dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str]).

	
add_class(cls, dumpf=None, loadf=None, name=None, allow_subclass=True, recursive=False)

	Add a rule for dumping/loading an object of class cls.

	Parameters:

	
	cls –

	dumpf (callable) – Function for dumping an object of the class; None means identity function.

	loadf (callable) – Function for loading an object of the class; None means identity function.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of class, which is stored in the packed data (cls.__name__ by default).

	allow_subclass (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this rule is also used for subclasses of this class.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the functions are given a second argument, which is a dumping/loading function for their sub-elements.

	
dump(obj)

	Convert an object into a dumped value

	
load(obj)

	Convert a dumped value into an object

	
loads(s)

	Convert a pickled string of a damped object into an object

	
dumps(obj)

	Dump an object into a pickled string

	
pylablib.core.utils.strdump.dumper = <pylablib.core.utils.strdump.StrDumper object>

	Default dumper for converting into standard Python classes and pickling.

Converts numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and Dictionary objects
(these conversion routines are defined when corresponding modules are imported).
The converted values include non-printable characters (conversion uses numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load] and numpy.ndarray.dump() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dump.html#numpy.ndarray.dump]),
so they can’t be saved into text files. However, they’re suited for pickling.

	
pylablib.core.utils.strdump.dump(obj)

	Convert obj into standard Python classes using the default dumper

	
pylablib.core.utils.strdump.load(s)

	Convert standard Python class representation s into an object using the default dumper

	
pylablib.core.utils.strdump.dumps(obj)

	Convert obj into a pickled string using the default dumper

	
pylablib.core.utils.strdump.loads(s)

	Convert a pickled string into an object using the default dumper

pylablib.core.utils.string module

String search, manipulation and conversion routines.

	
pylablib.core.utils.string.string_equal(name1, name2, case_sensitive=True, as_prefix=False)

	Determine if name1 and name2 are equal with taking special rules (case_sensitive and as_prefix) into account.

If as_prefix==True, strings match even if name1 is just a prefix of name2 (not the other wait around).

	
pylablib.core.utils.string.find_list_string(name, str_list, case_sensitive=True, as_prefix=False, first_matched=False)

	Find name in the string list.

Comparison parameters are defined in string_equal().
If first_matched==True, stop at the first match; otherwise if multiple occurrences happen, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	tuple (index, value).

	
pylablib.core.utils.string.find_dict_string(name, str_dict, case_sensitive=True, as_prefix=False)

	Find name in the string dictionary.

Comparison parameters are defined in string_equal().
If multiple occurrences happen, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	Returns:

	tuple (key, value).

	
pylablib.core.utils.string.find_first_entry(line, elements, start=0, not_found_value=-1)

	Find the index of the earliest position inside the line of any of the strings in elements, starting from start.

If none are found, return not_found_value.

	
pylablib.core.utils.string.find_all_first_locations(line, elements, start=0, not_found_value=-1, known_locations=None)

	Find the indices of the earliest position inside the line of all of the strings in elements, starting from start.

Return dict {element: pos}, where pos is either position in the string, or not_found_value if no entries are present.
known_locations can specify a dictionary of already known locations of some of the elements.
In this case, only missing elements or elements located before start will be re-evaluated.

	
pylablib.core.utils.string.translate_string_filter(filt, syntax, match_case=True, default=False)

	Turns filt into a matching function.

The matching function takes single str [https://docs.python.org/3/library/stdtypes.html#str] argument, returns bool [https://docs.python.org/3/library/functions.html#bool] value.

	filt can be
	
	None: function always returns default,

	bool [https://docs.python.org/3/library/functions.html#bool]: function always returns this value,

	str [https://docs.python.org/3/library/stdtypes.html#str]: pattern, determined by syntax,

	anything else: returned as is (assumed to already be a callable).

syntax can be 're' (re [https://docs.python.org/3/library/re.html#module-re]), 'glob' (glob [https://docs.python.org/3/library/glob.html#module-glob]) or 'pred' (simply matching predicate).
match_case determines whether the filter cares about the string case when matching.

	
class pylablib.core.utils.string.StringFilter(include=None, exclude=None, syntax='re', match_case=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

String filter function.

Matches string if it matches include (matches all strings by default) and doesn’t match exclude (matches nothing by default).

	Parameters:

	
	include – Inclusion filter (translated by translate_string_filter() with syntax specified by syntax); include all by default.

	exclude – Exclusion filter (translated by translate_string_filter() with syntax specified by syntax); exclude none by default.

	syntax – Default syntax for pattern filters. Can be 're' (re [https://docs.python.org/3/library/re.html#module-re]), 'glob' (glob [https://docs.python.org/3/library/glob.html#module-glob]) or 'pred' (simply matching predicate).

	match_case (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether filter ignores case when matching.

	
pylablib.core.utils.string.get_string_filter(include=None, exclude=None, syntax='re', match_case=False)

	Generate StringFilter with the given parameters.

If the first argument is already StringFilter, return as is. If it’s a tuple, expand as argument list.

	
pylablib.core.utils.string.sfglob(include=None, exclude=None)

	Return string filter based on glob [https://docs.python.org/3/library/glob.html#module-glob] syntax

	
pylablib.core.utils.string.sfregex(include=None, exclude=None, match_case=False)

	Return string filter based on re [https://docs.python.org/3/library/re.html#module-re] syntax

	
pylablib.core.utils.string.filter_string_list(l, filt)

	Filter string list based on the filter

	
pylablib.core.utils.string.escape_string(value, location='element', escape_convertible=True, quote_type='"')

	Escape string.

	Escaping can be partially skipped depending on location:
	
	
	"parameter": escape only if it contains hard delimiters ("\n\t\v\r") anywhere
	or _border_escaped (", ' or space) on the sides (suited for parameters taking the full string);

	"entry": same as above, plus containing soft delimiters (, or space) anywhere (suited for entries of a table);

	"element": always escaped

	If escape_convertible==True, escape strings which can be misinterpreted as other values, such as "1" or "[]";
	otherwise, escape only strings which contain special characters.

	If quote_type is not None, automatically put the string into the specified quotation marks;
	if quote_type is None, all quotation marks are escaped; if it’s not None, only quote_type marks are escaped.

	
class pylablib.core.utils.string.TConversionClass(label, cls, rep, conv)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cls

	

	
conv

	

	
label

	

	
rep

	

	
pylablib.core.utils.string.add_conversion_class(label, cls, rep, conv)

	Add a string conversion class.

Some values (e.g., numpy arrays or named tuples) lose some of their associated information when converted into strings.
With this function is possible to define custom conversion rules for such classes.

	Parameters:

	
	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – class label (e.g., "array")

	cls – class which is used to determine if the value should use this conversion functions (e.g., np.ndarray)

	rep – function which takes a single argument (object of class cls) and returns its representations;
can return a string or an object which is easier to convert to a string (e.g., a list or a tuple)

	conv – function which takes one or several arguments (converted values of the class representation) and returns the corresponding object;
if rep returns a tuple, treat it as a list of several arguments, which are passed to conv separately;
otherwise, conv gets a single argument which is the result of rep

When converting to string, if an object of class cls is encountered, it is converted in a string label(str_rep) (e.g., "array([0, 1, 2])"),
where str_rep is the result of calling rep (if this result is a tuple, avoid double parentheses,
e.g., if the result is a tuple (1, 2), the string becomes "label(1, 2)" instead of "label((1, 2))").
When converting from string, the values inside the parentheses are passed as arguments to conv function to get the resulting value.

	
pylablib.core.utils.string.add_namedtuple_class(cls)

	Add conversion class for a given named tuple class.

For details, see add_conversion_class().

	
pylablib.core.utils.string.to_string(value, location='element', value_formats=None, parenthesis_rules='text', use_classes=False)

	Convert value to string with an option of modifying format string.

	Parameters:

	
	value –

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used for converting strings (see escape_string()).

	value_formats (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary {value_type: fmt},
where value type can be int, float or complex and fmt is a format string used to represent value of this type (e.g., "5.3f");
default formats are {float:".12E", complex:".12E", int:"d"}.

	parenthesis_rules (str [https://docs.python.org/3/library/stdtypes.html#str]) – determine how to deal with single-element tuples and complex numbers
can be "text" (single-element tuples are represented with simple parentheses, e.g., "(1)"; complex number are represented without parentheses, e.g., "1+2j")
or "python" (single-element tuples are represented with a comma in the end, e.g., "(1,)"; complex number are represented with parentheses, e.g., "(1+2j)")

	use_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use additional representation classes for special objects
(e.g., numpy arrays will be represented as "array([1, 2, 3])" instead of just "[1, 2, 3]").
This improves conversion fidelity, but makes result harder to parse (e.g., by external string parsers).
See add_conversion_class() for more explanation.

	
pylablib.core.utils.string.is_convertible(value)

	Check if the value can be converted to a string using standard to_string() function.

	
pylablib.core.utils.string.extract_escaped_string(line, start=0)

	Extract escaped string in quotation marks from the line, starting from start.

line[start] should be a quotation mark (' or ") or r or b followed by a quotation mark (for raw or binary strings).

	Returns:

	tuple (end position, un-escaped string).

	
pylablib.core.utils.string.unescape_string(value)

	Un-escape string.

Only attempt if the string starts a quotation mark " or '.
Otherwise (including strings like 'r""' or 'b""'), return the string as is.
Raise an error if the string starts with a quotation mark, but does not correspond to a proper escaped string
(e.g., '"abc or '"abc"def).

	
pylablib.core.utils.string.to_range(range_tuple)

	

	
pylablib.core.utils.string.from_string(value, case_sensitive=True, parenthesis_rules='text', use_classes=True)

	Parse a string.

Recognizes integers, floats, complex numbers (with i or j for complex part), strings (in quotation marks), dicts, sets, list and tuples, booleans and None.
If item is unrecognizable, assumed to be a string.

	Parameters:

	
	case_sensitive (bool [https://docs.python.org/3/library/functions.html#bool]) – applied when compared to None, True or False.

	parenthesis_rules (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines how to deal with empty entries (e.g., [1,,3])
and complex number representation ("1+2j" vs. "(1+2j)"):

	'text': any empty entries are translated into empty_string (i.e., [,] -> [empty_string, empty_string]),
except for completely empty structures ([] or ());
complex numbers are represented without parentheses, so that "(1+2j)" will be interpreted as a single-element tuple (1+2j,).

	'python': empty entries in the middle are not allowed; empty entries at the end are ignored (i.e., [2,] -> [2])
(single-element tuple can still be expressed in two ways: (e,) or (e));
complex numbers are by default represented with parentheses, so that "(1+2j)" will be interpreted as a complex number,
and only (1+2j,), ((1+2j)) or ((1+2j),) as a single-element tuple.

	use_classes (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use additional representation classes for special objects
(e.g., "array([1, 2, 3])" will be converted into a numpy array instead of raising an error).
See add_conversion_class() for more explanation.

	
pylablib.core.utils.string.from_string_partial(value, delimiters=re.compile('\\s*,\\s*|\\s+'), case_sensitive=True, parenthesis_rules='text', use_classes=True, return_string=False)

	Convert the first part of the supplied string (bounded by delimiters) into a value.

delimiters is a string or a regexp (default is "\s*,\s*|\s+", i.e., comma or spaces).
If return_string==False, convert the value string and return tuple (end_position, converted_value); otherwise, return tuple (end_position, value_string).

The rest of the parameters is the same as in from_string().

	
pylablib.core.utils.string.from_row_string(value, delimiters=re.compile('\\s*,\\s*|\\s+'), case_sensitive=True, parenthesis_rules='text', use_classes=True, return_string=False)

	Convert the row string into a list of values, separated by delimiters.

If return_string==False, return list of converted objects; otherwise, return list of unconverted strings.

The rest of the parameters is the same as in from_string_partial().

pylablib.core.utils.strpack module

Utilities for packing values into bitstrings.
Small extension of the struct module.

	
pylablib.core.utils.strpack.int2bytes(val, l, bo='>')

	Convert integer into a list of bytes of length l.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.bytes2int(val, bo='>')

	Convert a list of bytes into an integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.int2bits(val, l, bo='>')

	Convert integer into a list of bits of length l.

bo determines byte (and bit) order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.bits2int(val, bo='>')

	Convert a list of bits into an integer.

bo determines byte (and bit) order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.pack_uint(val, l, bo='>')

	Convert an unsigned integer into a bytestring of length l.

Return bytes object.
bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.pack_int(val, l, bo='>')

	Convert a signed integer into a bytestring of length l.

Return bytes object.
bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.unpack_uint(msg, bo='>')

	Convert a bytestring into an unsigned integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.unpack_int(msg, bo='>')

	Convert a bytestring into an signed integer.

bo determines byte order: '>' is big-endian (MSB first), '<' is little-endian (LSB first).

	
pylablib.core.utils.strpack.unpack_numpy_u12bit(buffer, byteorder='<', count=-1)

	

pylablib.core.utils.units module

Routines for conversion of physical units.

	
pylablib.core.utils.units.split_units(value)

	Split string value with a dimension.

Return tuple (val, unit), where val is the float part of the value, and unit is the string representing units.

	
pylablib.core.utils.units.convert_length_units(value, value_unit='m', result_unit='m', case_sensitive=True)

	Convert value from value_unit to result_unit.

The possible length units are 'm', 'mm', 'um', 'nm', 'pm', 'fm'.
If case_sensitive==True, matching units is case sensitive.

	
pylablib.core.utils.units.convert_time_units(value, value_unit='s', result_unit='s', case_sensitive=True)

	Convert value from value_unit to result_unit.

The possible time units are 's', 'ms', 'us', 'ns', 'ps', 'fs', 'as'.
If case_sensitive==True, matching units is case sensitive.

	
pylablib.core.utils.units.convert_frequency_units(value, value_unit='Hz', result_unit='Hz', case_sensitive=True)

	Convert value from value_unit to result_unit.

The possible frequency units are 'Hz', 'kHz', 'MHz', 'GHz'.
If case_sensitive==True, matching units is case sensitive.

	
pylablib.core.utils.units.convert_power_units(value, value_unit='dBm', result_unit='dBm', case_sensitive=True, impedance=50.0)

	Convert value from value_unit to result_unit.

For conversion between voltage and power, assume RMS voltage and the given impedance.
The possible power units are 'dBm', 'dBmV', 'dBuV', 'W', 'mW', 'uW', 'nW', 'mV', 'nV'.
If case_sensitive==True, matching units is case sensitive.

Module contents

pylablib.devices package

Subpackages

	pylablib.devices.AWG package
	Submodules

	pylablib.devices.AWG.generic module
	GenericAWGError
	GenericAWGError.add_note()

	GenericAWGError.args

	GenericAWGError.with_traceback()

	GenericAWGBackendError
	GenericAWGBackendError.add_note()

	GenericAWGBackendError.args

	GenericAWGBackendError.with_traceback()

	GenericAWG
	GenericAWG.Error

	GenericAWG.ReraiseError

	GenericAWG.get_channels_number()

	GenericAWG.get_current_channel()

	GenericAWG.select_current_channel()

	GenericAWG.is_output_enabled()

	GenericAWG.enable_output()

	GenericAWG.get_output_polarity()

	GenericAWG.set_output_polarity()

	GenericAWG.is_sync_output_enabled()

	GenericAWG.enable_sync_output()

	GenericAWG.get_load()

	GenericAWG.set_load()

	GenericAWG.get_function()

	GenericAWG.set_function()

	GenericAWG.get_amplitude()

	GenericAWG.set_amplitude()

	GenericAWG.get_offset()

	GenericAWG.set_offset()

	GenericAWG.get_output_range()

	GenericAWG.set_output_range()

	GenericAWG.get_frequency()

	GenericAWG.set_frequency()

	GenericAWG.get_phase()

	GenericAWG.set_phase()

	GenericAWG.sync_phase()

	GenericAWG.get_duty_cycle()

	GenericAWG.set_duty_cycle()

	GenericAWG.get_ramp_symmetry()

	GenericAWG.set_ramp_symmetry()

	GenericAWG.get_pulse_width()

	GenericAWG.set_pulse_width()

	GenericAWG.is_burst_enabled()

	GenericAWG.enable_burst()

	GenericAWG.get_burst_mode()

	GenericAWG.set_burst_mode()

	GenericAWG.get_burst_ncycles()

	GenericAWG.set_burst_ncycles()

	GenericAWG.get_gate_polarity()

	GenericAWG.set_gate_polarity()

	GenericAWG.get_trigger_source()

	GenericAWG.set_trigger_source()

	GenericAWG.get_trigger_slope()

	GenericAWG.set_trigger_slope()

	GenericAWG.is_trigger_output_enabled()

	GenericAWG.enable_trigger_output()

	GenericAWG.get_output_trigger_slope()

	GenericAWG.BackendError

	GenericAWG.apply_settings()

	GenericAWG.ask()

	GenericAWG.close()

	GenericAWG.flush()

	GenericAWG.get_arg_type()

	GenericAWG.get_device_variable()

	GenericAWG.get_esr()

	GenericAWG.get_full_info()

	GenericAWG.get_full_status()

	GenericAWG.get_id()

	GenericAWG.get_settings()

	GenericAWG.is_opened()

	GenericAWG.lock()

	GenericAWG.locking()

	GenericAWG.open()

	GenericAWG.parse_array_data()

	GenericAWG.read()

	GenericAWG.read_binary_array_data()

	GenericAWG.reconnect()

	GenericAWG.reset()

	GenericAWG.set_device_variable()

	GenericAWG.set_output_trigger_slope()

	GenericAWG.sleep()

	GenericAWG.unlock()

	GenericAWG.using_write_buffer()

	GenericAWG.wait()

	GenericAWG.wait_dev()

	GenericAWG.wait_sync()

	GenericAWG.write()

	pylablib.devices.AWG.specific module
	Agilent33500
	Agilent33500.BackendError

	Agilent33500.Error

	Agilent33500.ReraiseError

	Agilent33500.apply_settings()

	Agilent33500.ask()

	Agilent33500.close()

	Agilent33500.enable_burst()

	Agilent33500.enable_output()

	Agilent33500.enable_sync_output()

	Agilent33500.enable_trigger_output()

	Agilent33500.flush()

	Agilent33500.get_amplitude()

	Agilent33500.get_arg_type()

	Agilent33500.get_burst_mode()

	Agilent33500.get_burst_ncycles()

	Agilent33500.get_channels_number()

	Agilent33500.get_current_channel()

	Agilent33500.get_device_variable()

	Agilent33500.get_duty_cycle()

	Agilent33500.get_esr()

	Agilent33500.get_frequency()

	Agilent33500.get_full_info()

	Agilent33500.get_full_status()

	Agilent33500.get_function()

	Agilent33500.get_gate_polarity()

	Agilent33500.get_id()

	Agilent33500.get_load()

	Agilent33500.get_offset()

	Agilent33500.get_output_polarity()

	Agilent33500.get_output_range()

	Agilent33500.get_output_trigger_slope()

	Agilent33500.get_phase()

	Agilent33500.get_pulse_width()

	Agilent33500.get_ramp_symmetry()

	Agilent33500.get_settings()

	Agilent33500.get_trigger_slope()

	Agilent33500.get_trigger_source()

	Agilent33500.is_burst_enabled()

	Agilent33500.is_opened()

	Agilent33500.is_output_enabled()

	Agilent33500.is_sync_output_enabled()

	Agilent33500.is_trigger_output_enabled()

	Agilent33500.lock()

	Agilent33500.locking()

	Agilent33500.open()

	Agilent33500.parse_array_data()

	Agilent33500.read()

	Agilent33500.read_binary_array_data()

	Agilent33500.reconnect()

	Agilent33500.reset()

	Agilent33500.select_current_channel()

	Agilent33500.set_amplitude()

	Agilent33500.set_burst_mode()

	Agilent33500.set_burst_ncycles()

	Agilent33500.set_device_variable()

	Agilent33500.set_duty_cycle()

	Agilent33500.set_frequency()

	Agilent33500.set_function()

	Agilent33500.set_gate_polarity()

	Agilent33500.set_load()

	Agilent33500.set_offset()

	Agilent33500.set_output_polarity()

	Agilent33500.set_output_range()

	Agilent33500.set_output_trigger_slope()

	Agilent33500.set_phase()

	Agilent33500.set_pulse_width()

	Agilent33500.set_ramp_symmetry()

	Agilent33500.set_trigger_slope()

	Agilent33500.set_trigger_source()

	Agilent33500.sleep()

	Agilent33500.sync_phase()

	Agilent33500.unlock()

	Agilent33500.using_write_buffer()

	Agilent33500.wait()

	Agilent33500.wait_dev()

	Agilent33500.wait_sync()

	Agilent33500.write()

	Agilent33220A
	Agilent33220A.BackendError

	Agilent33220A.Error

	Agilent33220A.ReraiseError

	Agilent33220A.apply_settings()

	Agilent33220A.ask()

	Agilent33220A.close()

	Agilent33220A.enable_burst()

	Agilent33220A.enable_output()

	Agilent33220A.enable_sync_output()

	Agilent33220A.enable_trigger_output()

	Agilent33220A.flush()

	Agilent33220A.get_amplitude()

	Agilent33220A.get_arg_type()

	Agilent33220A.get_burst_mode()

	Agilent33220A.get_burst_ncycles()

	Agilent33220A.get_channels_number()

	Agilent33220A.get_current_channel()

	Agilent33220A.get_device_variable()

	Agilent33220A.get_duty_cycle()

	Agilent33220A.get_esr()

	Agilent33220A.get_frequency()

	Agilent33220A.get_full_info()

	Agilent33220A.get_full_status()

	Agilent33220A.get_function()

	Agilent33220A.get_gate_polarity()

	Agilent33220A.get_id()

	Agilent33220A.get_load()

	Agilent33220A.get_offset()

	Agilent33220A.get_output_polarity()

	Agilent33220A.get_output_range()

	Agilent33220A.get_output_trigger_slope()

	Agilent33220A.get_phase()

	Agilent33220A.get_pulse_width()

	Agilent33220A.get_ramp_symmetry()

	Agilent33220A.get_settings()

	Agilent33220A.get_trigger_slope()

	Agilent33220A.get_trigger_source()

	Agilent33220A.is_burst_enabled()

	Agilent33220A.is_opened()

	Agilent33220A.is_output_enabled()

	Agilent33220A.is_sync_output_enabled()

	Agilent33220A.is_trigger_output_enabled()

	Agilent33220A.lock()

	Agilent33220A.locking()

	Agilent33220A.open()

	Agilent33220A.parse_array_data()

	Agilent33220A.read()

	Agilent33220A.read_binary_array_data()

	Agilent33220A.reconnect()

	Agilent33220A.reset()

	Agilent33220A.select_current_channel()

	Agilent33220A.set_amplitude()

	Agilent33220A.set_burst_mode()

	Agilent33220A.set_burst_ncycles()

	Agilent33220A.set_device_variable()

	Agilent33220A.set_duty_cycle()

	Agilent33220A.set_frequency()

	Agilent33220A.set_function()

	Agilent33220A.set_gate_polarity()

	Agilent33220A.set_load()

	Agilent33220A.set_offset()

	Agilent33220A.set_output_polarity()

	Agilent33220A.set_output_range()

	Agilent33220A.set_output_trigger_slope()

	Agilent33220A.set_phase()

	Agilent33220A.set_pulse_width()

	Agilent33220A.set_ramp_symmetry()

	Agilent33220A.set_trigger_slope()

	Agilent33220A.set_trigger_source()

	Agilent33220A.sleep()

	Agilent33220A.sync_phase()

	Agilent33220A.unlock()

	Agilent33220A.using_write_buffer()

	Agilent33220A.wait()

	Agilent33220A.wait_dev()

	Agilent33220A.wait_sync()

	Agilent33220A.write()

	InstekAFG2225
	InstekAFG2225.get_offset()

	InstekAFG2225.set_offset()

	InstekAFG2225.get_amplitude()

	InstekAFG2225.set_amplitude()

	InstekAFG2225.BackendError

	InstekAFG2225.Error

	InstekAFG2225.ReraiseError

	InstekAFG2225.apply_settings()

	InstekAFG2225.ask()

	InstekAFG2225.close()

	InstekAFG2225.enable_burst()

	InstekAFG2225.enable_output()

	InstekAFG2225.enable_sync_output()

	InstekAFG2225.enable_trigger_output()

	InstekAFG2225.flush()

	InstekAFG2225.get_arg_type()

	InstekAFG2225.get_burst_mode()

	InstekAFG2225.get_burst_ncycles()

	InstekAFG2225.get_channels_number()

	InstekAFG2225.get_current_channel()

	InstekAFG2225.get_device_variable()

	InstekAFG2225.get_duty_cycle()

	InstekAFG2225.get_esr()

	InstekAFG2225.get_frequency()

	InstekAFG2225.get_full_info()

	InstekAFG2225.get_full_status()

	InstekAFG2225.get_function()

	InstekAFG2225.get_gate_polarity()

	InstekAFG2225.get_id()

	InstekAFG2225.get_load()

	InstekAFG2225.get_output_polarity()

	InstekAFG2225.get_output_range()

	InstekAFG2225.get_output_trigger_slope()

	InstekAFG2225.get_phase()

	InstekAFG2225.get_pulse_width()

	InstekAFG2225.get_ramp_symmetry()

	InstekAFG2225.get_settings()

	InstekAFG2225.get_trigger_slope()

	InstekAFG2225.get_trigger_source()

	InstekAFG2225.is_burst_enabled()

	InstekAFG2225.is_opened()

	InstekAFG2225.is_output_enabled()

	InstekAFG2225.is_sync_output_enabled()

	InstekAFG2225.is_trigger_output_enabled()

	InstekAFG2225.lock()

	InstekAFG2225.locking()

	InstekAFG2225.open()

	InstekAFG2225.parse_array_data()

	InstekAFG2225.read()

	InstekAFG2225.read_binary_array_data()

	InstekAFG2225.reconnect()

	InstekAFG2225.reset()

	InstekAFG2225.select_current_channel()

	InstekAFG2225.set_burst_mode()

	InstekAFG2225.set_burst_ncycles()

	InstekAFG2225.set_device_variable()

	InstekAFG2225.set_duty_cycle()

	InstekAFG2225.set_frequency()

	InstekAFG2225.set_function()

	InstekAFG2225.set_gate_polarity()

	InstekAFG2225.set_load()

	InstekAFG2225.set_output_polarity()

	InstekAFG2225.set_output_range()

	InstekAFG2225.set_output_trigger_slope()

	InstekAFG2225.set_phase()

	InstekAFG2225.set_pulse_width()

	InstekAFG2225.set_ramp_symmetry()

	InstekAFG2225.set_trigger_slope()

	InstekAFG2225.set_trigger_source()

	InstekAFG2225.sleep()

	InstekAFG2225.sync_phase()

	InstekAFG2225.unlock()

	InstekAFG2225.using_write_buffer()

	InstekAFG2225.wait()

	InstekAFG2225.wait_dev()

	InstekAFG2225.wait_sync()

	InstekAFG2225.write()

	InstekAFG2000
	InstekAFG2000.BackendError

	InstekAFG2000.Error

	InstekAFG2000.ReraiseError

	InstekAFG2000.apply_settings()

	InstekAFG2000.ask()

	InstekAFG2000.close()

	InstekAFG2000.enable_burst()

	InstekAFG2000.enable_output()

	InstekAFG2000.enable_sync_output()

	InstekAFG2000.enable_trigger_output()

	InstekAFG2000.flush()

	InstekAFG2000.get_amplitude()

	InstekAFG2000.get_arg_type()

	InstekAFG2000.get_burst_mode()

	InstekAFG2000.get_burst_ncycles()

	InstekAFG2000.get_channels_number()

	InstekAFG2000.get_current_channel()

	InstekAFG2000.get_device_variable()

	InstekAFG2000.get_duty_cycle()

	InstekAFG2000.get_esr()

	InstekAFG2000.get_frequency()

	InstekAFG2000.get_full_info()

	InstekAFG2000.get_full_status()

	InstekAFG2000.get_function()

	InstekAFG2000.get_gate_polarity()

	InstekAFG2000.get_id()

	InstekAFG2000.get_load()

	InstekAFG2000.get_offset()

	InstekAFG2000.get_output_polarity()

	InstekAFG2000.get_output_range()

	InstekAFG2000.get_output_trigger_slope()

	InstekAFG2000.get_phase()

	InstekAFG2000.get_pulse_width()

	InstekAFG2000.get_ramp_symmetry()

	InstekAFG2000.get_settings()

	InstekAFG2000.get_trigger_slope()

	InstekAFG2000.get_trigger_source()

	InstekAFG2000.is_burst_enabled()

	InstekAFG2000.is_opened()

	InstekAFG2000.is_output_enabled()

	InstekAFG2000.is_sync_output_enabled()

	InstekAFG2000.is_trigger_output_enabled()

	InstekAFG2000.lock()

	InstekAFG2000.locking()

	InstekAFG2000.open()

	InstekAFG2000.parse_array_data()

	InstekAFG2000.read()

	InstekAFG2000.read_binary_array_data()

	InstekAFG2000.reconnect()

	InstekAFG2000.reset()

	InstekAFG2000.select_current_channel()

	InstekAFG2000.set_amplitude()

	InstekAFG2000.set_burst_mode()

	InstekAFG2000.set_burst_ncycles()

	InstekAFG2000.set_device_variable()

	InstekAFG2000.set_duty_cycle()

	InstekAFG2000.set_frequency()

	InstekAFG2000.set_function()

	InstekAFG2000.set_gate_polarity()

	InstekAFG2000.set_load()

	InstekAFG2000.set_offset()

	InstekAFG2000.set_output_polarity()

	InstekAFG2000.set_output_range()

	InstekAFG2000.set_output_trigger_slope()

	InstekAFG2000.set_phase()

	InstekAFG2000.set_pulse_width()

	InstekAFG2000.set_ramp_symmetry()

	InstekAFG2000.set_trigger_slope()

	InstekAFG2000.set_trigger_source()

	InstekAFG2000.sleep()

	InstekAFG2000.sync_phase()

	InstekAFG2000.unlock()

	InstekAFG2000.using_write_buffer()

	InstekAFG2000.wait()

	InstekAFG2000.wait_dev()

	InstekAFG2000.wait_sync()

	InstekAFG2000.write()

	RSInstekAFG21000
	RSInstekAFG21000.get_offset()

	RSInstekAFG21000.get_amplitude()

	RSInstekAFG21000.BackendError

	RSInstekAFG21000.Error

	RSInstekAFG21000.ReraiseError

	RSInstekAFG21000.apply_settings()

	RSInstekAFG21000.ask()

	RSInstekAFG21000.close()

	RSInstekAFG21000.enable_burst()

	RSInstekAFG21000.enable_output()

	RSInstekAFG21000.enable_sync_output()

	RSInstekAFG21000.enable_trigger_output()

	RSInstekAFG21000.flush()

	RSInstekAFG21000.get_arg_type()

	RSInstekAFG21000.get_burst_mode()

	RSInstekAFG21000.get_burst_ncycles()

	RSInstekAFG21000.get_channels_number()

	RSInstekAFG21000.get_current_channel()

	RSInstekAFG21000.get_device_variable()

	RSInstekAFG21000.get_duty_cycle()

	RSInstekAFG21000.get_esr()

	RSInstekAFG21000.get_frequency()

	RSInstekAFG21000.get_full_info()

	RSInstekAFG21000.get_full_status()

	RSInstekAFG21000.get_function()

	RSInstekAFG21000.get_gate_polarity()

	RSInstekAFG21000.get_id()

	RSInstekAFG21000.get_load()

	RSInstekAFG21000.get_output_polarity()

	RSInstekAFG21000.get_output_range()

	RSInstekAFG21000.get_output_trigger_slope()

	RSInstekAFG21000.get_phase()

	RSInstekAFG21000.get_pulse_width()

	RSInstekAFG21000.get_ramp_symmetry()

	RSInstekAFG21000.get_settings()

	RSInstekAFG21000.get_trigger_slope()

	RSInstekAFG21000.get_trigger_source()

	RSInstekAFG21000.is_burst_enabled()

	RSInstekAFG21000.is_opened()

	RSInstekAFG21000.is_output_enabled()

	RSInstekAFG21000.is_sync_output_enabled()

	RSInstekAFG21000.is_trigger_output_enabled()

	RSInstekAFG21000.lock()

	RSInstekAFG21000.locking()

	RSInstekAFG21000.open()

	RSInstekAFG21000.parse_array_data()

	RSInstekAFG21000.read()

	RSInstekAFG21000.read_binary_array_data()

	RSInstekAFG21000.reconnect()

	RSInstekAFG21000.reset()

	RSInstekAFG21000.select_current_channel()

	RSInstekAFG21000.set_amplitude()

	RSInstekAFG21000.set_burst_mode()

	RSInstekAFG21000.set_burst_ncycles()

	RSInstekAFG21000.set_device_variable()

	RSInstekAFG21000.set_duty_cycle()

	RSInstekAFG21000.set_frequency()

	RSInstekAFG21000.set_function()

	RSInstekAFG21000.set_gate_polarity()

	RSInstekAFG21000.set_load()

	RSInstekAFG21000.set_offset()

	RSInstekAFG21000.set_output_polarity()

	RSInstekAFG21000.set_output_range()

	RSInstekAFG21000.set_output_trigger_slope()

	RSInstekAFG21000.set_phase()

	RSInstekAFG21000.set_pulse_width()

	RSInstekAFG21000.set_ramp_symmetry()

	RSInstekAFG21000.set_trigger_slope()

	RSInstekAFG21000.set_trigger_source()

	RSInstekAFG21000.sleep()

	RSInstekAFG21000.sync_phase()

	RSInstekAFG21000.unlock()

	RSInstekAFG21000.using_write_buffer()

	RSInstekAFG21000.wait()

	RSInstekAFG21000.wait_dev()

	RSInstekAFG21000.wait_sync()

	RSInstekAFG21000.write()

	TektronixAFG1000
	TektronixAFG1000.get_pulse_width()

	TektronixAFG1000.set_pulse_width()

	TektronixAFG1000.BackendError

	TektronixAFG1000.Error

	TektronixAFG1000.ReraiseError

	TektronixAFG1000.apply_settings()

	TektronixAFG1000.ask()

	TektronixAFG1000.close()

	TektronixAFG1000.enable_burst()

	TektronixAFG1000.enable_output()

	TektronixAFG1000.enable_sync_output()

	TektronixAFG1000.enable_trigger_output()

	TektronixAFG1000.flush()

	TektronixAFG1000.get_amplitude()

	TektronixAFG1000.get_arg_type()

	TektronixAFG1000.get_burst_mode()

	TektronixAFG1000.get_burst_ncycles()

	TektronixAFG1000.get_channels_number()

	TektronixAFG1000.get_current_channel()

	TektronixAFG1000.get_device_variable()

	TektronixAFG1000.get_duty_cycle()

	TektronixAFG1000.get_esr()

	TektronixAFG1000.get_frequency()

	TektronixAFG1000.get_full_info()

	TektronixAFG1000.get_full_status()

	TektronixAFG1000.get_function()

	TektronixAFG1000.get_gate_polarity()

	TektronixAFG1000.get_id()

	TektronixAFG1000.get_load()

	TektronixAFG1000.get_offset()

	TektronixAFG1000.get_output_polarity()

	TektronixAFG1000.get_output_range()

	TektronixAFG1000.get_output_trigger_slope()

	TektronixAFG1000.get_phase()

	TektronixAFG1000.get_ramp_symmetry()

	TektronixAFG1000.get_settings()

	TektronixAFG1000.get_trigger_slope()

	TektronixAFG1000.get_trigger_source()

	TektronixAFG1000.is_burst_enabled()

	TektronixAFG1000.is_opened()

	TektronixAFG1000.is_output_enabled()

	TektronixAFG1000.is_sync_output_enabled()

	TektronixAFG1000.is_trigger_output_enabled()

	TektronixAFG1000.lock()

	TektronixAFG1000.locking()

	TektronixAFG1000.open()

	TektronixAFG1000.parse_array_data()

	TektronixAFG1000.read()

	TektronixAFG1000.read_binary_array_data()

	TektronixAFG1000.reconnect()

	TektronixAFG1000.reset()

	TektronixAFG1000.select_current_channel()

	TektronixAFG1000.set_amplitude()

	TektronixAFG1000.set_burst_mode()

	TektronixAFG1000.set_burst_ncycles()

	TektronixAFG1000.set_device_variable()

	TektronixAFG1000.set_duty_cycle()

	TektronixAFG1000.set_frequency()

	TektronixAFG1000.set_function()

	TektronixAFG1000.set_gate_polarity()

	TektronixAFG1000.set_load()

	TektronixAFG1000.set_offset()

	TektronixAFG1000.set_output_polarity()

	TektronixAFG1000.set_output_range()

	TektronixAFG1000.set_output_trigger_slope()

	TektronixAFG1000.set_phase()

	TektronixAFG1000.set_ramp_symmetry()

	TektronixAFG1000.set_trigger_slope()

	TektronixAFG1000.set_trigger_source()

	TektronixAFG1000.sleep()

	TektronixAFG1000.sync_phase()

	TektronixAFG1000.unlock()

	TektronixAFG1000.using_write_buffer()

	TektronixAFG1000.wait()

	TektronixAFG1000.wait_dev()

	TektronixAFG1000.wait_sync()

	TektronixAFG1000.write()

	RigolDG1000
	RigolDG1000.sync_phase()

	RigolDG1000.BackendError

	RigolDG1000.Error

	RigolDG1000.ReraiseError

	RigolDG1000.apply_settings()

	RigolDG1000.ask()

	RigolDG1000.close()

	RigolDG1000.enable_burst()

	RigolDG1000.enable_output()

	RigolDG1000.enable_sync_output()

	RigolDG1000.enable_trigger_output()

	RigolDG1000.flush()

	RigolDG1000.get_amplitude()

	RigolDG1000.get_arg_type()

	RigolDG1000.get_burst_mode()

	RigolDG1000.get_burst_ncycles()

	RigolDG1000.get_channels_number()

	RigolDG1000.get_current_channel()

	RigolDG1000.get_device_variable()

	RigolDG1000.get_duty_cycle()

	RigolDG1000.get_esr()

	RigolDG1000.get_frequency()

	RigolDG1000.get_full_info()

	RigolDG1000.get_full_status()

	RigolDG1000.get_function()

	RigolDG1000.get_gate_polarity()

	RigolDG1000.get_id()

	RigolDG1000.get_load()

	RigolDG1000.get_offset()

	RigolDG1000.get_output_polarity()

	RigolDG1000.get_output_range()

	RigolDG1000.get_output_trigger_slope()

	RigolDG1000.get_phase()

	RigolDG1000.get_pulse_width()

	RigolDG1000.get_ramp_symmetry()

	RigolDG1000.get_settings()

	RigolDG1000.get_trigger_slope()

	RigolDG1000.get_trigger_source()

	RigolDG1000.is_burst_enabled()

	RigolDG1000.is_opened()

	RigolDG1000.is_output_enabled()

	RigolDG1000.is_sync_output_enabled()

	RigolDG1000.is_trigger_output_enabled()

	RigolDG1000.lock()

	RigolDG1000.locking()

	RigolDG1000.open()

	RigolDG1000.parse_array_data()

	RigolDG1000.read()

	RigolDG1000.read_binary_array_data()

	RigolDG1000.reconnect()

	RigolDG1000.reset()

	RigolDG1000.select_current_channel()

	RigolDG1000.set_amplitude()

	RigolDG1000.set_burst_mode()

	RigolDG1000.set_burst_ncycles()

	RigolDG1000.set_device_variable()

	RigolDG1000.set_duty_cycle()

	RigolDG1000.set_frequency()

	RigolDG1000.set_function()

	RigolDG1000.set_gate_polarity()

	RigolDG1000.set_load()

	RigolDG1000.set_offset()

	RigolDG1000.set_output_polarity()

	RigolDG1000.set_output_range()

	RigolDG1000.set_output_trigger_slope()

	RigolDG1000.set_phase()

	RigolDG1000.set_pulse_width()

	RigolDG1000.set_ramp_symmetry()

	RigolDG1000.set_trigger_slope()

	RigolDG1000.set_trigger_source()

	RigolDG1000.sleep()

	RigolDG1000.unlock()

	RigolDG1000.using_write_buffer()

	RigolDG1000.wait()

	RigolDG1000.wait_dev()

	RigolDG1000.wait_sync()

	RigolDG1000.write()

	Module contents

	pylablib.devices.AlliedVision package
	Submodules

	pylablib.devices.AlliedVision.Bonito module
	BonitoError
	BonitoError.add_note()

	BonitoError.args

	BonitoError.with_traceback()

	TDeviceInfo
	TDeviceInfo.grabber_info

	TDeviceInfo.serial_number

	TDeviceInfo.version

	IBonitoCamera
	IBonitoCamera.Error

	IBonitoCamera.GrabberClass

	IBonitoCamera.open()

	IBonitoCamera.serial_query()

	IBonitoCamera.get_serial_parameter()

	IBonitoCamera.set_serial_parameter()

	IBonitoCamera.get_device_info()

	IBonitoCamera.get_detector_size()

	IBonitoCamera.get_roi()

	IBonitoCamera.set_roi()

	IBonitoCamera.get_roi_limits()

	IBonitoCamera.setup_acquisition()

	IBonitoCamera.get_exposure_control_mode()

	IBonitoCamera.set_exposure_control_mode()

	IBonitoCamera.get_exposure()

	IBonitoCamera.set_exposure()

	IBonitoCamera.get_frame_period()

	IBonitoCamera.set_frame_period()

	IBonitoCamera.get_frame_timings()

	IBonitoCamera.is_status_line_enabled()

	IBonitoCamera.enable_status_line()

	IBonitoCamera.get_black_level_offset()

	IBonitoCamera.set_black_level_offset()

	IBonitoCamera.get_digital_gain()

	IBonitoCamera.set_digital_gain()

	IBonitoCamera.FrameTransferError

	IBonitoCamera.TimeoutError

	IBonitoCamera.acquisition_in_progress()

	IBonitoCamera.apply_settings()

	IBonitoCamera.clear_acquisition()

	IBonitoCamera.close()

	IBonitoCamera.get_acquisition_parameters()

	IBonitoCamera.get_data_dimensions()

	IBonitoCamera.get_device_variable()

	IBonitoCamera.get_frame_format()

	IBonitoCamera.get_frame_info_fields()

	IBonitoCamera.get_frame_info_format()

	IBonitoCamera.get_frame_info_period()

	IBonitoCamera.get_frames_status()

	IBonitoCamera.get_full_info()

	IBonitoCamera.get_full_status()

	IBonitoCamera.get_image_indexing()

	IBonitoCamera.get_new_images_range()

	IBonitoCamera.get_settings()

	IBonitoCamera.grab()

	IBonitoCamera.is_acquisition_setup()

	IBonitoCamera.is_opened()

	IBonitoCamera.pausing_acquisition()

	IBonitoCamera.read_multiple_images()

	IBonitoCamera.read_newest_image()

	IBonitoCamera.read_oldest_image()

	IBonitoCamera.set_device_variable()

	IBonitoCamera.set_frame_format()

	IBonitoCamera.set_frame_info_format()

	IBonitoCamera.set_frame_info_period()

	IBonitoCamera.set_image_indexing()

	IBonitoCamera.snap()

	IBonitoCamera.start_acquisition()

	IBonitoCamera.stop_acquisition()

	IBonitoCamera.wait_for_frame()

	BonitoIMAQCamera
	BonitoIMAQCamera.Error

	BonitoIMAQCamera.GrabberClass

	BonitoIMAQCamera.FrameTransferError

	BonitoIMAQCamera.TimeoutError

	BonitoIMAQCamera.acquisition_in_progress()

	BonitoIMAQCamera.apply_settings()

	BonitoIMAQCamera.clear_acquisition()

	BonitoIMAQCamera.clear_all_triggers()

	BonitoIMAQCamera.close()

	BonitoIMAQCamera.configure_trigger_in()

	BonitoIMAQCamera.configure_trigger_out()

	BonitoIMAQCamera.enable_status_line()

	BonitoIMAQCamera.get_acquisition_parameters()

	BonitoIMAQCamera.get_all_grabber_attribute_values()

	BonitoIMAQCamera.get_black_level_offset()

	BonitoIMAQCamera.get_data_dimensions()

	BonitoIMAQCamera.get_detector_size()

	BonitoIMAQCamera.get_device_info()

	BonitoIMAQCamera.get_device_variable()

	BonitoIMAQCamera.get_digital_gain()

	BonitoIMAQCamera.get_exposure()

	BonitoIMAQCamera.get_exposure_control_mode()

	BonitoIMAQCamera.get_frame_format()

	BonitoIMAQCamera.get_frame_info_fields()

	BonitoIMAQCamera.get_frame_info_format()

	BonitoIMAQCamera.get_frame_info_period()

	BonitoIMAQCamera.get_frame_period()

	BonitoIMAQCamera.get_frame_timings()

	BonitoIMAQCamera.get_frames_status()

	BonitoIMAQCamera.get_full_info()

	BonitoIMAQCamera.get_full_status()

	BonitoIMAQCamera.get_grabber_attribute_value()

	BonitoIMAQCamera.get_grabber_detector_size()

	BonitoIMAQCamera.get_grabber_roi()

	BonitoIMAQCamera.get_grabber_roi_limits()

	BonitoIMAQCamera.get_image_indexing()

	BonitoIMAQCamera.get_new_images_range()

	BonitoIMAQCamera.get_roi()

	BonitoIMAQCamera.get_roi_limits()

	BonitoIMAQCamera.get_serial_parameter()

	BonitoIMAQCamera.get_serial_params()

	BonitoIMAQCamera.get_settings()

	BonitoIMAQCamera.grab()

	BonitoIMAQCamera.is_acquisition_setup()

	BonitoIMAQCamera.is_opened()

	BonitoIMAQCamera.is_status_line_enabled()

	BonitoIMAQCamera.open()

	BonitoIMAQCamera.pausing_acquisition()

	BonitoIMAQCamera.read_multiple_images()

	BonitoIMAQCamera.read_newest_image()

	BonitoIMAQCamera.read_oldest_image()

	BonitoIMAQCamera.read_trigger()

	BonitoIMAQCamera.reset()

	BonitoIMAQCamera.send_software_trigger()

	BonitoIMAQCamera.serial_flush()

	BonitoIMAQCamera.serial_query()

	BonitoIMAQCamera.serial_read()

	BonitoIMAQCamera.serial_readline()

	BonitoIMAQCamera.serial_write()

	BonitoIMAQCamera.set_black_level_offset()

	BonitoIMAQCamera.set_device_variable()

	BonitoIMAQCamera.set_digital_gain()

	BonitoIMAQCamera.set_exposure()

	BonitoIMAQCamera.set_exposure_control_mode()

	BonitoIMAQCamera.set_frame_format()

	BonitoIMAQCamera.set_frame_info_format()

	BonitoIMAQCamera.set_frame_info_period()

	BonitoIMAQCamera.set_frame_period()

	BonitoIMAQCamera.set_grabber_attribute_value()

	BonitoIMAQCamera.set_grabber_roi()

	BonitoIMAQCamera.set_image_indexing()

	BonitoIMAQCamera.set_roi()

	BonitoIMAQCamera.set_serial_parameter()

	BonitoIMAQCamera.setup_acquisition()

	BonitoIMAQCamera.setup_serial_params()

	BonitoIMAQCamera.snap()

	BonitoIMAQCamera.start_acquisition()

	BonitoIMAQCamera.stop_acquisition()

	BonitoIMAQCamera.wait_for_frame()

	check_grabber_association()

	TStatusLine
	TStatusLine.framestamp

	get_status_lines()

	BonitoStatusLineChecker
	BonitoStatusLineChecker.get_framestamp()

	BonitoStatusLineChecker.check_indices()

	Module contents

	pylablib.devices.Andor package
	Submodules

	pylablib.devices.Andor.AndorSDK2 module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	get_SDK_version()

	get_cameras_number()

	TDeviceInfo
	TDeviceInfo.controller_model

	TDeviceInfo.head_model

	TDeviceInfo.serial_number

	TCycleTimings
	TCycleTimings.accum_cycle_time

	TCycleTimings.exposure

	TCycleTimings.kinetic_cycle_time

	TAcqProgress
	TAcqProgress.cycles_done

	TAcqProgress.frames_done

	AndorSDK2Camera
	AndorSDK2Camera.Error

	AndorSDK2Camera.TimeoutError

	AndorSDK2Camera.open()

	AndorSDK2Camera.close()

	AndorSDK2Camera.is_opened()

	AndorSDK2Camera.get_device_info()

	AndorSDK2Camera.get_status()

	AndorSDK2Camera.acquisition_in_progress()

	AndorSDK2Camera.get_capabilities()

	AndorSDK2Camera.get_pixel_size()

	AndorSDK2Camera.is_cooler_on()

	AndorSDK2Camera.set_cooler()

	AndorSDK2Camera.get_temperature_status()

	AndorSDK2Camera.get_temperature()

	AndorSDK2Camera.set_temperature()

	AndorSDK2Camera.get_temperature_setpoint()

	AndorSDK2Camera.get_temperature_range()

	AndorSDK2Camera.get_all_amp_modes()

	AndorSDK2Camera.get_max_vsspeed()

	AndorSDK2Camera.get_all_vsspeeds()

	AndorSDK2Camera.set_amp_mode()

	AndorSDK2Camera.get_amp_mode()

	AndorSDK2Camera.set_vsspeed()

	AndorSDK2Camera.get_channel()

	AndorSDK2Camera.get_channel_bitdepth()

	AndorSDK2Camera.get_oamp()

	AndorSDK2Camera.get_oamp_desc()

	AndorSDK2Camera.get_hsspeed()

	AndorSDK2Camera.get_hsspeed_frequency()

	AndorSDK2Camera.get_preamp()

	AndorSDK2Camera.get_preamp_gain()

	AndorSDK2Camera.get_vsspeed()

	AndorSDK2Camera.get_vsspeed_period()

	AndorSDK2Camera.get_EMCCD_gain()

	AndorSDK2Camera.set_EMCCD_gain()

	AndorSDK2Camera.init_amp_mode()

	AndorSDK2Camera.get_min_shutter_times()

	AndorSDK2Camera.setup_shutter()

	AndorSDK2Camera.get_shutter_parameters()

	AndorSDK2Camera.get_shutter()

	AndorSDK2Camera.set_fan_mode()

	AndorSDK2Camera.get_fan_mode()

	AndorSDK2Camera.read_in_aux_port()

	AndorSDK2Camera.set_out_aux_port()

	AndorSDK2Camera.set_trigger_mode()

	AndorSDK2Camera.get_trigger_mode()

	AndorSDK2Camera.get_trigger_level_limits()

	AndorSDK2Camera.setup_ext_trigger()

	AndorSDK2Camera.get_ext_trigger_parameters()

	AndorSDK2Camera.send_software_trigger()

	AndorSDK2Camera.set_acquisition_mode()

	AndorSDK2Camera.get_acquisition_mode()

	AndorSDK2Camera.setup_accum_mode()

	AndorSDK2Camera.get_accum_mode_parameters()

	AndorSDK2Camera.setup_kinetic_mode()

	AndorSDK2Camera.get_kinetic_mode_parameters()

	AndorSDK2Camera.setup_fast_kinetic_mode()

	AndorSDK2Camera.get_fast_kinetic_mode_parameters()

	AndorSDK2Camera.setup_cont_mode()

	AndorSDK2Camera.get_cont_mode_parameters()

	AndorSDK2Camera.set_exposure()

	AndorSDK2Camera.get_exposure()

	AndorSDK2Camera.set_frame_period()

	AndorSDK2Camera.enable_frame_transfer_mode()

	AndorSDK2Camera.is_frame_transfer_enabled()

	AndorSDK2Camera.get_cycle_timings()

	AndorSDK2Camera.get_frame_timings()

	AndorSDK2Camera.get_readout_time()

	AndorSDK2Camera.get_keepclean_time()

	AndorSDK2Camera.set_read_mode()

	AndorSDK2Camera.get_read_mode()

	AndorSDK2Camera.setup_single_track_mode()

	AndorSDK2Camera.get_single_track_mode_parameters()

	AndorSDK2Camera.setup_multi_track_mode()

	AndorSDK2Camera.get_multi_track_mode_parameters()

	AndorSDK2Camera.setup_random_track_mode()

	AndorSDK2Camera.get_random_track_mode_parameters()

	AndorSDK2Camera.setup_image_mode()

	AndorSDK2Camera.get_image_mode_parameters()

	AndorSDK2Camera.get_detector_size()

	AndorSDK2Camera.get_roi()

	AndorSDK2Camera.set_roi()

	AndorSDK2Camera.get_roi_limits()

	AndorSDK2Camera.setup_acquisition()

	AndorSDK2Camera.clear_acquisition()

	AndorSDK2Camera.start_acquisition()

	AndorSDK2Camera.stop_acquisition()

	AndorSDK2Camera.get_acquisition_progress()

	AndorSDK2Camera.get_buffer_size()

	AndorSDK2Camera.FrameTransferError

	AndorSDK2Camera.apply_settings()

	AndorSDK2Camera.get_acquisition_parameters()

	AndorSDK2Camera.get_data_dimensions()

	AndorSDK2Camera.get_device_variable()

	AndorSDK2Camera.get_frame_format()

	AndorSDK2Camera.get_frame_info_fields()

	AndorSDK2Camera.get_frame_info_format()

	AndorSDK2Camera.get_frame_info_period()

	AndorSDK2Camera.get_frame_period()

	AndorSDK2Camera.get_frames_status()

	AndorSDK2Camera.get_full_info()

	AndorSDK2Camera.get_full_status()

	AndorSDK2Camera.get_image_indexing()

	AndorSDK2Camera.get_new_images_range()

	AndorSDK2Camera.get_settings()

	AndorSDK2Camera.grab()

	AndorSDK2Camera.is_acquisition_setup()

	AndorSDK2Camera.pausing_acquisition()

	AndorSDK2Camera.read_multiple_images()

	AndorSDK2Camera.read_newest_image()

	AndorSDK2Camera.read_oldest_image()

	AndorSDK2Camera.set_device_variable()

	AndorSDK2Camera.set_frame_format()

	AndorSDK2Camera.set_frame_info_format()

	AndorSDK2Camera.set_frame_info_period()

	AndorSDK2Camera.set_image_indexing()

	AndorSDK2Camera.snap()

	AndorSDK2Camera.wait_for_frame()

	pylablib.devices.Andor.AndorSDK3 module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	get_cameras_number()

	AndorSDK3Attribute
	AndorSDK3Attribute.name

	AndorSDK3Attribute.kind

	AndorSDK3Attribute.implemented

	AndorSDK3Attribute.readable

	AndorSDK3Attribute.writable

	AndorSDK3Attribute.min

	AndorSDK3Attribute.max

	AndorSDK3Attribute.ivalues

	AndorSDK3Attribute.values

	AndorSDK3Attribute.labels

	AndorSDK3Attribute.ilabels

	AndorSDK3Attribute.is_command

	AndorSDK3Attribute.update_properties()

	AndorSDK3Attribute.get_value()

	AndorSDK3Attribute.set_value()

	AndorSDK3Attribute.call_command()

	AndorSDK3Attribute.get_range()

	AndorSDK3Attribute.update_limits()

	AndorSDK3Attribute.truncate_value()

	TDeviceInfo
	TDeviceInfo.camera_model

	TDeviceInfo.camera_name

	TDeviceInfo.firmware_version

	TDeviceInfo.serial_number

	TDeviceInfo.software_version

	TMissedFramesStatus
	TMissedFramesStatus.overflows

	TMissedFramesStatus.skipped

	TFrameInfo
	TFrameInfo.frame_index

	TFrameInfo.pixeltype

	TFrameInfo.size

	TFrameInfo.stride

	TFrameInfo.timestamp_dev

	AndorSDK3Camera
	AndorSDK3Camera.Error

	AndorSDK3Camera.TimeoutError

	AndorSDK3Camera.FrameTransferError

	AndorSDK3Camera.open()

	AndorSDK3Camera.close()

	AndorSDK3Camera.is_opened()

	AndorSDK3Camera.add_attribute()

	AndorSDK3Camera.get_attribute()

	AndorSDK3Camera.get_attribute_value()

	AndorSDK3Camera.set_attribute_value()

	AndorSDK3Camera.get_all_attribute_values()

	AndorSDK3Camera.set_all_attribute_values()

	AndorSDK3Camera.call_command()

	AndorSDK3Camera.get_device_info()

	AndorSDK3Camera.get_trigger_mode()

	AndorSDK3Camera.set_trigger_mode()

	AndorSDK3Camera.get_shutter()

	AndorSDK3Camera.set_shutter()

	AndorSDK3Camera.is_cooler_on()

	AndorSDK3Camera.set_cooler()

	AndorSDK3Camera.get_temperature()

	AndorSDK3Camera.get_temperature_setpoint()

	AndorSDK3Camera.set_temperature()

	AndorSDK3Camera.get_exposure()

	AndorSDK3Camera.set_exposure()

	AndorSDK3Camera.get_frame_period()

	AndorSDK3Camera.set_frame_period()

	AndorSDK3Camera.get_frame_timings()

	AndorSDK3Camera.is_metadata_enabled()

	AndorSDK3Camera.enable_metadata()

	AndorSDK3Camera.BufferManager

	AndorSDK3Camera.setup_acquisition()

	AndorSDK3Camera.clear_acquisition()

	AndorSDK3Camera.start_acquisition()

	AndorSDK3Camera.stop_acquisition()

	AndorSDK3Camera.acquisition_in_progress()

	AndorSDK3Camera.get_missed_frames_status()

	AndorSDK3Camera.reset_overflows_counter()

	AndorSDK3Camera.set_overflow_behavior()

	AndorSDK3Camera.get_detector_size()

	AndorSDK3Camera.get_roi()

	AndorSDK3Camera.set_roi()

	AndorSDK3Camera.get_roi_limits()

	AndorSDK3Camera.apply_settings()

	AndorSDK3Camera.get_acquisition_parameters()

	AndorSDK3Camera.get_all_attributes()

	AndorSDK3Camera.get_data_dimensions()

	AndorSDK3Camera.get_device_variable()

	AndorSDK3Camera.get_frame_format()

	AndorSDK3Camera.get_frame_info_fields()

	AndorSDK3Camera.get_frame_info_format()

	AndorSDK3Camera.get_frame_info_period()

	AndorSDK3Camera.get_frames_status()

	AndorSDK3Camera.get_full_info()

	AndorSDK3Camera.get_full_status()

	AndorSDK3Camera.get_image_indexing()

	AndorSDK3Camera.get_new_images_range()

	AndorSDK3Camera.get_settings()

	AndorSDK3Camera.grab()

	AndorSDK3Camera.is_acquisition_setup()

	AndorSDK3Camera.pausing_acquisition()

	AndorSDK3Camera.read_newest_image()

	AndorSDK3Camera.read_oldest_image()

	AndorSDK3Camera.set_device_variable()

	AndorSDK3Camera.set_frame_format()

	AndorSDK3Camera.set_frame_info_format()

	AndorSDK3Camera.set_frame_info_period()

	AndorSDK3Camera.set_image_indexing()

	AndorSDK3Camera.snap()

	AndorSDK3Camera.wait_for_frame()

	AndorSDK3Camera.read_multiple_images()

	pylablib.devices.Andor.Shamrock module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	list_spectrographs()

	get_spectrographs_number()

	TDeviceInfo
	TDeviceInfo.serial_number

	TOpticalParameters
	TOpticalParameters.angular_deviation

	TOpticalParameters.focal_length

	TOpticalParameters.focal_tilt

	TGratingInfo
	TGratingInfo.blaze_wavelength

	TGratingInfo.home

	TGratingInfo.lines

	TGratingInfo.offset

	ShamrockSpectrograph
	ShamrockSpectrograph.open()

	ShamrockSpectrograph.close()

	ShamrockSpectrograph.is_opened()

	ShamrockSpectrograph.get_device_info()

	ShamrockSpectrograph.get_optical_parameters()

	ShamrockSpectrograph.get_gratings_number()

	ShamrockSpectrograph.get_grating()

	ShamrockSpectrograph.set_grating()

	ShamrockSpectrograph.get_grating_info()

	ShamrockSpectrograph.get_grating_offset()

	ShamrockSpectrograph.set_grating_offset()

	ShamrockSpectrograph.get_detector_offset()

	ShamrockSpectrograph.set_detector_offset()

	ShamrockSpectrograph.get_turret()

	ShamrockSpectrograph.set_turret()

	ShamrockSpectrograph.is_wavelength_control_present()

	ShamrockSpectrograph.get_wavelength()

	ShamrockSpectrograph.set_wavelength()

	ShamrockSpectrograph.get_wavelength_limits()

	ShamrockSpectrograph.reset_wavelength()

	ShamrockSpectrograph.is_at_zero_order()

	ShamrockSpectrograph.goto_zero_order()

	ShamrockSpectrograph.is_slit_present()

	ShamrockSpectrograph.get_slit_width()

	ShamrockSpectrograph.set_slit_width()

	ShamrockSpectrograph.reset_slit()

	ShamrockSpectrograph.is_shutter_present()

	ShamrockSpectrograph.get_shutter()

	ShamrockSpectrograph.is_shutter_mode_possible()

	ShamrockSpectrograph.set_shutter()

	ShamrockSpectrograph.is_filter_present()

	ShamrockSpectrograph.get_filter()

	ShamrockSpectrograph.set_filter()

	ShamrockSpectrograph.get_filter_info()

	ShamrockSpectrograph.reset_filter()

	ShamrockSpectrograph.is_flipper_present()

	ShamrockSpectrograph.get_flipper_port()

	ShamrockSpectrograph.set_flipper_port()

	ShamrockSpectrograph.reset_flipper()

	ShamrockSpectrograph.is_accessory_present()

	ShamrockSpectrograph.get_accessory_state()

	ShamrockSpectrograph.set_accessory_state()

	ShamrockSpectrograph.get_pixel_width()

	ShamrockSpectrograph.set_pixel_width()

	ShamrockSpectrograph.get_number_pixels()

	ShamrockSpectrograph.set_number_pixels()

	ShamrockSpectrograph.setup_pixels_from_camera()

	ShamrockSpectrograph.get_calibration()

	ShamrockSpectrograph.apply_settings()

	ShamrockSpectrograph.get_device_variable()

	ShamrockSpectrograph.get_full_info()

	ShamrockSpectrograph.get_full_status()

	ShamrockSpectrograph.get_settings()

	ShamrockSpectrograph.set_device_variable()

	pylablib.devices.Andor.atcore_features module

	pylablib.devices.Andor.base module
	AndorError
	AndorError.add_note()

	AndorError.args

	AndorError.with_traceback()

	AndorTimeoutError
	AndorTimeoutError.add_note()

	AndorTimeoutError.args

	AndorTimeoutError.with_traceback()

	AndorFrameTransferError
	AndorFrameTransferError.add_note()

	AndorFrameTransferError.args

	AndorFrameTransferError.with_traceback()

	AndorNotSupportedError
	AndorNotSupportedError.add_note()

	AndorNotSupportedError.args

	AndorNotSupportedError.with_traceback()

	Module contents

	pylablib.devices.Arcus package
	Submodules

	pylablib.devices.Arcus.base module
	ArcusError
	ArcusError.add_note()

	ArcusError.args

	ArcusError.with_traceback()

	ArcusBackendError
	ArcusBackendError.add_note()

	ArcusBackendError.args

	ArcusBackendError.with_traceback()

	pylablib.devices.Arcus.performax module
	get_usb_device_info()

	list_usb_performax_devices()

	GenericPerformaxStage
	GenericPerformaxStage.Error

	GenericPerformaxStage.open()

	GenericPerformaxStage.close()

	GenericPerformaxStage.is_opened()

	GenericPerformaxStage.get_device_info()

	GenericPerformaxStage.query()

	GenericPerformaxStage.get_device_number()

	GenericPerformaxStage.set_device_number()

	GenericPerformaxStage.store_defaults()

	GenericPerformaxStage.apply_settings()

	GenericPerformaxStage.get_all_axes()

	GenericPerformaxStage.get_device_variable()

	GenericPerformaxStage.get_full_info()

	GenericPerformaxStage.get_full_status()

	GenericPerformaxStage.get_settings()

	GenericPerformaxStage.remap_axes()

	GenericPerformaxStage.set_device_variable()

	Performax4EXStage
	Performax4EXStage.get_baudrate()

	Performax4EXStage.set_baudrate()

	Performax4EXStage.enable_absolute_mode()

	Performax4EXStage.enable_limit_errors()

	Performax4EXStage.limit_errors_enabled()

	Performax4EXStage.is_enabled()

	Performax4EXStage.enable_axis()

	Performax4EXStage.get_position()

	Performax4EXStage.set_position_reference()

	Performax4EXStage.get_encoder()

	Performax4EXStage.set_encoder_reference()

	Performax4EXStage.move_to()

	Performax4EXStage.move_by()

	Performax4EXStage.jog()

	Performax4EXStage.stop()

	Performax4EXStage.home()

	Performax4EXStage.get_global_speed()

	Performax4EXStage.get_axis_speed()

	Performax4EXStage.set_global_speed()

	Performax4EXStage.set_axis_speed()

	Performax4EXStage.get_current_axis_speed()

	Performax4EXStage.get_status_n()

	Performax4EXStage.get_status()

	Performax4EXStage.is_moving()

	Performax4EXStage.wait_move()

	Performax4EXStage.check_limit_error()

	Performax4EXStage.clear_limit_error()

	Performax4EXStage.get_analog_input()

	Performax4EXStage.get_digital_input()

	Performax4EXStage.get_digital_input_register()

	Performax4EXStage.get_digital_output()

	Performax4EXStage.get_digital_output_register()

	Performax4EXStage.set_digital_output()

	Performax4EXStage.set_digital_output_register()

	Performax4EXStage.Error

	Performax4EXStage.apply_settings()

	Performax4EXStage.close()

	Performax4EXStage.get_all_axes()

	Performax4EXStage.get_device_info()

	Performax4EXStage.get_device_number()

	Performax4EXStage.get_device_variable()

	Performax4EXStage.get_full_info()

	Performax4EXStage.get_full_status()

	Performax4EXStage.get_settings()

	Performax4EXStage.is_opened()

	Performax4EXStage.open()

	Performax4EXStage.query()

	Performax4EXStage.remap_axes()

	Performax4EXStage.set_device_number()

	Performax4EXStage.set_device_variable()

	Performax4EXStage.store_defaults()

	Performax2EXStage
	Performax2EXStage.Error

	Performax2EXStage.apply_settings()

	Performax2EXStage.check_limit_error()

	Performax2EXStage.clear_limit_error()

	Performax2EXStage.close()

	Performax2EXStage.enable_absolute_mode()

	Performax2EXStage.enable_axis()

	Performax2EXStage.enable_limit_errors()

	Performax2EXStage.get_all_axes()

	Performax2EXStage.get_analog_input()

	Performax2EXStage.get_axis_speed()

	Performax2EXStage.get_baudrate()

	Performax2EXStage.get_current_axis_speed()

	Performax2EXStage.get_device_info()

	Performax2EXStage.get_device_number()

	Performax2EXStage.get_device_variable()

	Performax2EXStage.get_digital_input()

	Performax2EXStage.get_digital_input_register()

	Performax2EXStage.get_digital_output()

	Performax2EXStage.get_digital_output_register()

	Performax2EXStage.get_encoder()

	Performax2EXStage.get_full_info()

	Performax2EXStage.get_full_status()

	Performax2EXStage.get_global_speed()

	Performax2EXStage.get_position()

	Performax2EXStage.get_settings()

	Performax2EXStage.get_status()

	Performax2EXStage.get_status_n()

	Performax2EXStage.home()

	Performax2EXStage.is_enabled()

	Performax2EXStage.is_moving()

	Performax2EXStage.is_opened()

	Performax2EXStage.jog()

	Performax2EXStage.limit_errors_enabled()

	Performax2EXStage.move_by()

	Performax2EXStage.move_to()

	Performax2EXStage.open()

	Performax2EXStage.query()

	Performax2EXStage.remap_axes()

	Performax2EXStage.set_axis_speed()

	Performax2EXStage.set_baudrate()

	Performax2EXStage.set_device_number()

	Performax2EXStage.set_device_variable()

	Performax2EXStage.set_digital_output()

	Performax2EXStage.set_digital_output_register()

	Performax2EXStage.set_encoder_reference()

	Performax2EXStage.set_global_speed()

	Performax2EXStage.set_position_reference()

	Performax2EXStage.stop()

	Performax2EXStage.store_defaults()

	Performax2EXStage.wait_move()

	PerformaxDMXJSAStage
	PerformaxDMXJSAStage.enable_absolute_mode()

	PerformaxDMXJSAStage.is_enabled()

	PerformaxDMXJSAStage.enable_axis()

	PerformaxDMXJSAStage.get_position()

	PerformaxDMXJSAStage.set_position_reference()

	PerformaxDMXJSAStage.move_to()

	PerformaxDMXJSAStage.move_by()

	PerformaxDMXJSAStage.jog()

	PerformaxDMXJSAStage.stop()

	PerformaxDMXJSAStage.home()

	PerformaxDMXJSAStage.get_axis_speed()

	PerformaxDMXJSAStage.set_axis_speed()

	PerformaxDMXJSAStage.get_status_n()

	PerformaxDMXJSAStage.get_status()

	PerformaxDMXJSAStage.is_moving()

	PerformaxDMXJSAStage.wait_move()

	PerformaxDMXJSAStage.check_limit_error()

	PerformaxDMXJSAStage.clear_limit_error()

	PerformaxDMXJSAStage.get_digital_input()

	PerformaxDMXJSAStage.get_digital_input_register()

	PerformaxDMXJSAStage.get_digital_output()

	PerformaxDMXJSAStage.get_digital_output_register()

	PerformaxDMXJSAStage.Error

	PerformaxDMXJSAStage.apply_settings()

	PerformaxDMXJSAStage.close()

	PerformaxDMXJSAStage.get_all_axes()

	PerformaxDMXJSAStage.get_device_info()

	PerformaxDMXJSAStage.get_device_number()

	PerformaxDMXJSAStage.get_device_variable()

	PerformaxDMXJSAStage.get_full_info()

	PerformaxDMXJSAStage.get_full_status()

	PerformaxDMXJSAStage.get_settings()

	PerformaxDMXJSAStage.is_opened()

	PerformaxDMXJSAStage.open()

	PerformaxDMXJSAStage.query()

	PerformaxDMXJSAStage.remap_axes()

	PerformaxDMXJSAStage.set_device_number()

	PerformaxDMXJSAStage.set_device_variable()

	PerformaxDMXJSAStage.set_digital_output()

	PerformaxDMXJSAStage.store_defaults()

	PerformaxDMXJSAStage.set_digital_output_register()

	Module contents

	pylablib.devices.Arduino package
	Submodules

	pylablib.devices.Arduino.base module
	ArduinoError
	ArduinoError.add_note()

	ArduinoError.args

	ArduinoError.with_traceback()

	ArduinoBackendError
	ArduinoBackendError.add_note()

	ArduinoBackendError.args

	ArduinoBackendError.with_traceback()

	IArduinoDevice
	IArduinoDevice.Error

	IArduinoDevice.reopen()

	IArduinoDevice.reset_board()

	IArduinoDevice.comm()

	IArduinoDevice.query()

	IArduinoDevice.apply_settings()

	IArduinoDevice.close()

	IArduinoDevice.get_device_variable()

	IArduinoDevice.get_full_info()

	IArduinoDevice.get_full_status()

	IArduinoDevice.get_settings()

	IArduinoDevice.is_opened()

	IArduinoDevice.lock()

	IArduinoDevice.locking()

	IArduinoDevice.open()

	IArduinoDevice.set_device_variable()

	IArduinoDevice.unlock()

	Module contents

	pylablib.devices.Attocube package
	Submodules

	pylablib.devices.Attocube.anc300 module
	muxaxis()

	TDeviceInfo
	TDeviceInfo.serial

	TDeviceInfo.version

	ANC300
	ANC300.Error

	ANC300.open()

	ANC300.query()

	ANC300.update_available_axes()

	ANC300.get_device_info()

	ANC300.get_axis_serial()

	ANC300.set_mode()

	ANC300.get_mode()

	ANC300.is_enabled()

	ANC300.enable_axis()

	ANC300.disable_axis()

	ANC300.measure_capacitance()

	ANC300.get_voltage()

	ANC300.set_voltage()

	ANC300.get_offset()

	ANC300.set_offset()

	ANC300.get_output()

	ANC300.get_frequency()

	ANC300.set_frequency()

	ANC300.get_capacitance()

	ANC300.get_voltage_pattern()

	ANC300.set_voltage_pattern()

	ANC300.get_trigger_input()

	ANC300.set_trigger_input()

	ANC300.get_external_input_modes()

	ANC300.set_external_input_modes()

	ANC300.get_axis_correction()

	ANC300.set_axis_correction()

	ANC300.jog()

	ANC300.move_by()

	ANC300.wait_move()

	ANC300.is_moving()

	ANC300.stop()

	ANC300.apply_settings()

	ANC300.close()

	ANC300.get_all_axes()

	ANC300.get_device_variable()

	ANC300.get_full_info()

	ANC300.get_full_status()

	ANC300.get_settings()

	ANC300.is_opened()

	ANC300.lock()

	ANC300.locking()

	ANC300.remap_axes()

	ANC300.set_device_variable()

	ANC300.unlock()

	pylablib.devices.Attocube.anc350 module
	get_usb_devices_number()

	ANC350
	ANC350.Error

	ANC350.Telegram

	ANC350.Reply

	ANC350.check_tell()

	ANC350.set_value()

	ANC350.get_value()

	ANC350.enable_updates()

	ANC350.get_hardware_id()

	ANC350.set_hardware_id()

	ANC350.is_connected()

	ANC350.is_enabled()

	ANC350.enable_axis()

	ANC350.disable_axis()

	ANC350.is_moving()

	ANC350.check_limit()

	ANC350.get_status_n()

	ANC350.status_bits

	ANC350.get_status()

	ANC350.get_target_position()

	ANC350.get_precision()

	ANC350.set_precision()

	ANC350.is_target_reached()

	ANC350.get_sensor_voltage()

	ANC350.set_sensor_voltage()

	ANC350.get_voltage()

	ANC350.set_voltage()

	ANC350.get_offset()

	ANC350.set_offset()

	ANC350.get_frequency()

	ANC350.set_frequency()

	ANC350.get_capacitance()

	ANC350.get_position()

	ANC350.move_to()

	ANC350.move_by()

	ANC350.move_by_steps()

	ANC350.wait_move()

	ANC350.stop()

	ANC350.jog()

	ANC350.apply_settings()

	ANC350.close()

	ANC350.get_all_axes()

	ANC350.get_device_variable()

	ANC350.get_full_info()

	ANC350.get_full_status()

	ANC350.get_settings()

	ANC350.is_opened()

	ANC350.lock()

	ANC350.locking()

	ANC350.open()

	ANC350.remap_axes()

	ANC350.set_device_variable()

	ANC350.unlock()

	pylablib.devices.Attocube.base module
	AttocubeError
	AttocubeError.add_note()

	AttocubeError.args

	AttocubeError.with_traceback()

	AttocubeBackendError
	AttocubeBackendError.add_note()

	AttocubeBackendError.args

	AttocubeBackendError.with_traceback()

	Module contents

	pylablib.devices.Basler package
	Submodules

	pylablib.devices.Basler.pylon module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	TCameraInfo
	TCameraInfo.devclass

	TCameraInfo.devversion

	TCameraInfo.friendly_name

	TCameraInfo.model

	TCameraInfo.name

	TCameraInfo.props

	TCameraInfo.serial

	TCameraInfo.user_name

	TCameraInfo.vendor

	get_device_info()

	list_cameras()

	get_cameras_number()

	BaslerPylonAttribute
	BaslerPylonAttribute.name

	BaslerPylonAttribute.kind

	BaslerPylonAttribute.display_name

	BaslerPylonAttribute.tooltip

	BaslerPylonAttribute.description

	BaslerPylonAttribute.visibility

	BaslerPylonAttribute.access

	BaslerPylonAttribute.readable

	BaslerPylonAttribute.writable

	BaslerPylonAttribute.implemented

	BaslerPylonAttribute.available

	BaslerPylonAttribute.min

	BaslerPylonAttribute.max

	BaslerPylonAttribute.inc

	BaslerPylonAttribute.units

	BaslerPylonAttribute.repr

	BaslerPylonAttribute.ivalues

	BaslerPylonAttribute.values

	BaslerPylonAttribute.labels

	BaslerPylonAttribute.ilabels

	BaslerPylonAttribute.update_limits()

	BaslerPylonAttribute.truncate_value()

	BaslerPylonAttribute.get_value()

	BaslerPylonAttribute.set_value()

	BaslerPylonAttribute.call_command()

	TDeviceInfo
	TDeviceInfo.devclass

	TDeviceInfo.devversion

	TDeviceInfo.friendly_name

	TDeviceInfo.model

	TDeviceInfo.name

	TDeviceInfo.props

	TDeviceInfo.serial

	TDeviceInfo.user_name

	TDeviceInfo.vendor

	BaslerPylonCamera
	BaslerPylonCamera.Error

	BaslerPylonCamera.TimeoutError

	BaslerPylonCamera.open()

	BaslerPylonCamera.close()

	BaslerPylonCamera.is_opened()

	BaslerPylonCamera.post_open()

	BaslerPylonCamera.get_attribute_value()

	BaslerPylonCamera.set_attribute_value()

	BaslerPylonCamera.call_command()

	BaslerPylonCamera.get_all_attribute_values()

	BaslerPylonCamera.set_all_attribute_values()

	BaslerPylonCamera.get_device_info()

	BaslerPylonCamera.get_detector_size()

	BaslerPylonCamera.get_roi()

	BaslerPylonCamera.set_roi()

	BaslerPylonCamera.get_roi_limits()

	BaslerPylonCamera.get_exposure()

	BaslerPylonCamera.set_exposure()

	BaslerPylonCamera.get_frame_period()

	BaslerPylonCamera.set_frame_period()

	BaslerPylonCamera.get_frame_timings()

	BaslerPylonCamera.BufferManager

	BaslerPylonCamera.ScheduleLooper

	BaslerPylonCamera.setup_acquisition()

	BaslerPylonCamera.clear_acquisition()

	BaslerPylonCamera.start_acquisition()

	BaslerPylonCamera.stop_acquisition()

	BaslerPylonCamera.acquisition_in_progress()

	BaslerPylonCamera.enable_raw_readout()

	BaslerPylonCamera.FrameTransferError

	BaslerPylonCamera.apply_settings()

	BaslerPylonCamera.get_acquisition_parameters()

	BaslerPylonCamera.get_all_attributes()

	BaslerPylonCamera.get_attribute()

	BaslerPylonCamera.get_data_dimensions()

	BaslerPylonCamera.get_device_variable()

	BaslerPylonCamera.get_frame_format()

	BaslerPylonCamera.get_frame_info_fields()

	BaslerPylonCamera.get_frame_info_format()

	BaslerPylonCamera.get_frame_info_period()

	BaslerPylonCamera.get_frames_status()

	BaslerPylonCamera.get_full_info()

	BaslerPylonCamera.get_full_status()

	BaslerPylonCamera.get_image_indexing()

	BaslerPylonCamera.get_new_images_range()

	BaslerPylonCamera.get_settings()

	BaslerPylonCamera.grab()

	BaslerPylonCamera.is_acquisition_setup()

	BaslerPylonCamera.pausing_acquisition()

	BaslerPylonCamera.read_multiple_images()

	BaslerPylonCamera.read_newest_image()

	BaslerPylonCamera.read_oldest_image()

	BaslerPylonCamera.set_device_variable()

	BaslerPylonCamera.set_frame_format()

	BaslerPylonCamera.set_frame_info_format()

	BaslerPylonCamera.set_frame_info_period()

	BaslerPylonCamera.set_image_indexing()

	BaslerPylonCamera.snap()

	BaslerPylonCamera.wait_for_frame()

	Module contents

	pylablib.devices.BitFlow package
	Submodules

	pylablib.devices.BitFlow.BitFlow module
	BitFlowError
	BitFlowError.add_note()

	BitFlowError.args

	BitFlowError.with_traceback()

	BitFlowTimeoutError
	BitFlowTimeoutError.add_note()

	BitFlowTimeoutError.args

	BitFlowTimeoutError.with_traceback()

	TDeviceInfo
	TDeviceInfo.idreg

	TDeviceInfo.idx

	TDeviceInfo.model

	list_cameras()

	get_cameras_number()

	BitFlowFrameGrabber
	BitFlowFrameGrabber.Error

	BitFlowFrameGrabber.TimeoutError

	BitFlowFrameGrabber.open()

	BitFlowFrameGrabber.close()

	BitFlowFrameGrabber.is_opened()

	BitFlowFrameGrabber.get_device_info()

	BitFlowFrameGrabber.get_detector_size()

	BitFlowFrameGrabber.get_grabber_detector_size()

	BitFlowFrameGrabber.get_roi()

	BitFlowFrameGrabber.get_grabber_roi()

	BitFlowFrameGrabber.set_roi()

	BitFlowFrameGrabber.set_grabber_roi()

	BitFlowFrameGrabber.get_roi_limits()

	BitFlowFrameGrabber.get_grabber_roi_limits()

	BitFlowFrameGrabber.BufferManager

	BitFlowFrameGrabber.setup_acquisition()

	BitFlowFrameGrabber.clear_acquisition()

	BitFlowFrameGrabber.start_acquisition()

	BitFlowFrameGrabber.stop_acquisition()

	BitFlowFrameGrabber.acquisition_in_progress()

	BitFlowFrameGrabber.FrameTransferError

	BitFlowFrameGrabber.apply_settings()

	BitFlowFrameGrabber.get_acquisition_parameters()

	BitFlowFrameGrabber.get_data_dimensions()

	BitFlowFrameGrabber.get_device_variable()

	BitFlowFrameGrabber.get_frame_format()

	BitFlowFrameGrabber.get_frame_info_fields()

	BitFlowFrameGrabber.get_frame_info_format()

	BitFlowFrameGrabber.get_frame_info_period()

	BitFlowFrameGrabber.get_frames_status()

	BitFlowFrameGrabber.get_full_info()

	BitFlowFrameGrabber.get_full_status()

	BitFlowFrameGrabber.get_image_indexing()

	BitFlowFrameGrabber.get_new_images_range()

	BitFlowFrameGrabber.get_settings()

	BitFlowFrameGrabber.grab()

	BitFlowFrameGrabber.is_acquisition_setup()

	BitFlowFrameGrabber.pausing_acquisition()

	BitFlowFrameGrabber.read_multiple_images()

	BitFlowFrameGrabber.read_newest_image()

	BitFlowFrameGrabber.read_oldest_image()

	BitFlowFrameGrabber.set_device_variable()

	BitFlowFrameGrabber.set_frame_format()

	BitFlowFrameGrabber.set_frame_info_format()

	BitFlowFrameGrabber.set_frame_info_period()

	BitFlowFrameGrabber.set_image_indexing()

	BitFlowFrameGrabber.snap()

	BitFlowFrameGrabber.wait_for_frame()

	BitFlowCamera
	BitFlowCamera.BufferManager

	BitFlowCamera.Error

	BitFlowCamera.FrameTransferError

	BitFlowCamera.TimeoutError

	BitFlowCamera.acquisition_in_progress()

	BitFlowCamera.apply_settings()

	BitFlowCamera.clear_acquisition()

	BitFlowCamera.close()

	BitFlowCamera.get_acquisition_parameters()

	BitFlowCamera.get_data_dimensions()

	BitFlowCamera.get_detector_size()

	BitFlowCamera.get_device_info()

	BitFlowCamera.get_device_variable()

	BitFlowCamera.get_frame_format()

	BitFlowCamera.get_frame_info_fields()

	BitFlowCamera.get_frame_info_format()

	BitFlowCamera.get_frame_info_period()

	BitFlowCamera.get_frames_status()

	BitFlowCamera.get_full_info()

	BitFlowCamera.get_full_status()

	BitFlowCamera.get_grabber_detector_size()

	BitFlowCamera.get_grabber_roi()

	BitFlowCamera.get_grabber_roi_limits()

	BitFlowCamera.get_image_indexing()

	BitFlowCamera.get_new_images_range()

	BitFlowCamera.get_roi()

	BitFlowCamera.get_roi_limits()

	BitFlowCamera.get_settings()

	BitFlowCamera.grab()

	BitFlowCamera.is_acquisition_setup()

	BitFlowCamera.is_opened()

	BitFlowCamera.open()

	BitFlowCamera.pausing_acquisition()

	BitFlowCamera.read_multiple_images()

	BitFlowCamera.read_newest_image()

	BitFlowCamera.read_oldest_image()

	BitFlowCamera.set_device_variable()

	BitFlowCamera.set_frame_format()

	BitFlowCamera.set_frame_info_format()

	BitFlowCamera.set_frame_info_period()

	BitFlowCamera.set_grabber_roi()

	BitFlowCamera.set_image_indexing()

	BitFlowCamera.set_roi()

	BitFlowCamera.setup_acquisition()

	BitFlowCamera.snap()

	BitFlowCamera.start_acquisition()

	BitFlowCamera.stop_acquisition()

	BitFlowCamera.wait_for_frame()

	CameraFileEditor
	CameraFileEditor.load()

	CameraFileEditor.save()

	CameraFileEditor.clean_modes()

	CameraFileEditor.get_mode_parameters()

	CameraFileEditor.set_mode_parameters()

	Module contents

	pylablib.devices.Conrad package
	Submodules

	pylablib.devices.Conrad.base module
	ConradError
	ConradError.add_note()

	ConradError.args

	ConradError.with_traceback()

	ConradBackendError
	ConradBackendError.add_note()

	ConradBackendError.args

	ConradBackendError.with_traceback()

	RelayBoard
	RelayBoard.Error

	RelayBoard.open()

	RelayBoard.TMessage

	RelayBoard.query()

	RelayBoard.get_all_relays()

	RelayBoard.set_all_relays()

	RelayBoard.get_relay()

	RelayBoard.set_relay()

	RelayBoard.apply_settings()

	RelayBoard.close()

	RelayBoard.get_device_variable()

	RelayBoard.get_full_info()

	RelayBoard.get_full_status()

	RelayBoard.get_settings()

	RelayBoard.is_opened()

	RelayBoard.lock()

	RelayBoard.locking()

	RelayBoard.set_device_variable()

	RelayBoard.unlock()

	Module contents

	pylablib.devices.Cryocon package
	Submodules

	pylablib.devices.Cryocon.base module
	CryoconError
	CryoconError.add_note()

	CryoconError.args

	CryoconError.with_traceback()

	CryoconBackendError
	CryoconBackendError.add_note()

	CryoconBackendError.args

	CryoconBackendError.with_traceback()

	Cryocon1x
	Cryocon1x.Error

	Cryocon1x.ReraiseError

	Cryocon1x.get_number_of_channels()

	Cryocon1x.get_display_units()

	Cryocon1x.set_display_units()

	Cryocon1x.get_temperature()

	Cryocon1x.get_all_temperatures()

	Cryocon1x.get_sensor_reading()

	Cryocon1x.get_all_sensor_readings()

	Cryocon1x.get_sensor_kind()

	Cryocon1x.get_all_sensor_kinds()

	Cryocon1x.set_sensor_kind()

	Cryocon1x.BackendError

	Cryocon1x.apply_settings()

	Cryocon1x.ask()

	Cryocon1x.close()

	Cryocon1x.flush()

	Cryocon1x.get_arg_type()

	Cryocon1x.get_device_variable()

	Cryocon1x.get_esr()

	Cryocon1x.get_full_info()

	Cryocon1x.get_full_status()

	Cryocon1x.get_id()

	Cryocon1x.get_settings()

	Cryocon1x.is_opened()

	Cryocon1x.lock()

	Cryocon1x.locking()

	Cryocon1x.open()

	Cryocon1x.parse_array_data()

	Cryocon1x.read()

	Cryocon1x.read_binary_array_data()

	Cryocon1x.reconnect()

	Cryocon1x.reset()

	Cryocon1x.set_device_variable()

	Cryocon1x.sleep()

	Cryocon1x.unlock()

	Cryocon1x.using_write_buffer()

	Cryocon1x.wait()

	Cryocon1x.wait_dev()

	Cryocon1x.wait_sync()

	Cryocon1x.write()

	Module contents

	pylablib.devices.Cryomagnetics package
	Submodules

	pylablib.devices.Cryomagnetics.base module
	CryomagneticsError
	CryomagneticsError.add_note()

	CryomagneticsError.args

	CryomagneticsError.with_traceback()

	CryomagneticsBackendError
	CryomagneticsBackendError.add_note()

	CryomagneticsBackendError.args

	CryomagneticsBackendError.with_traceback()

	LM500
	LM500.Error

	LM500.ReraiseError

	LM500.close()

	LM500.get_channel()

	LM500.select_channel()

	LM500.get_type()

	LM500.get_mode()

	LM500.set_mode()

	LM500.get_interval()

	LM500.set_interval()

	LM500.start_measurement()

	LM500.wait_for_measurement()

	LM500.get_level()

	LM500.measure_level()

	LM500.start_fill()

	LM500.get_fill_status()

	LM500.get_low_level()

	LM500.set_low_level()

	LM500.get_high_level()

	LM500.set_high_level()

	LM500.BackendError

	LM500.apply_settings()

	LM500.ask()

	LM500.flush()

	LM500.get_arg_type()

	LM500.get_device_variable()

	LM500.get_esr()

	LM500.get_full_info()

	LM500.get_full_status()

	LM500.get_id()

	LM500.get_settings()

	LM500.is_opened()

	LM500.lock()

	LM500.locking()

	LM500.open()

	LM500.parse_array_data()

	LM500.read()

	LM500.read_binary_array_data()

	LM500.reconnect()

	LM500.reset()

	LM500.set_device_variable()

	LM500.sleep()

	LM500.unlock()

	LM500.using_write_buffer()

	LM500.wait()

	LM500.wait_dev()

	LM500.wait_sync()

	LM500.write()

	LM510
	LM510.set_control_mode()

	LM510.BackendError

	LM510.Error

	LM510.ReraiseError

	LM510.apply_settings()

	LM510.ask()

	LM510.close()

	LM510.flush()

	LM510.get_arg_type()

	LM510.get_channel()

	LM510.get_device_variable()

	LM510.get_esr()

	LM510.get_fill_status()

	LM510.get_full_info()

	LM510.get_full_status()

	LM510.get_high_level()

	LM510.get_id()

	LM510.get_interval()

	LM510.get_level()

	LM510.get_low_level()

	LM510.get_mode()

	LM510.get_settings()

	LM510.get_type()

	LM510.is_opened()

	LM510.lock()

	LM510.locking()

	LM510.measure_level()

	LM510.open()

	LM510.parse_array_data()

	LM510.read()

	LM510.read_binary_array_data()

	LM510.reconnect()

	LM510.reset()

	LM510.select_channel()

	LM510.set_device_variable()

	LM510.set_high_level()

	LM510.set_interval()

	LM510.set_low_level()

	LM510.set_mode()

	LM510.sleep()

	LM510.start_fill()

	LM510.start_measurement()

	LM510.unlock()

	LM510.using_write_buffer()

	LM510.wait()

	LM510.wait_dev()

	LM510.wait_for_measurement()

	LM510.wait_sync()

	LM510.write()

	Module contents

	pylablib.devices.DCAM package
	Submodules

	pylablib.devices.DCAM.DCAM module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	get_cameras_number()

	DCAMAttribute
	DCAMAttribute.name

	DCAMAttribute.kind

	DCAMAttribute.readable

	DCAMAttribute.writable

	DCAMAttribute.min

	DCAMAttribute.max

	DCAMAttribute.step

	DCAMAttribute.unit

	DCAMAttribute.ivalues

	DCAMAttribute.values

	DCAMAttribute.labels

	DCAMAttribute.ilabels

	DCAMAttribute.as_text()

	DCAMAttribute.update_limits()

	DCAMAttribute.get_value()

	DCAMAttribute.set_value()

	TDeviceInfo
	TDeviceInfo.camera_version

	TDeviceInfo.model

	TDeviceInfo.serial_number

	TDeviceInfo.vendor

	TFrameInfo
	TFrameInfo.camerastamp

	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.pixeltype

	TFrameInfo.position

	TFrameInfo.timestamp_us

	DCAMCamera
	DCAMCamera.Error

	DCAMCamera.TimeoutError

	DCAMCamera.open()

	DCAMCamera.close()

	DCAMCamera.is_opened()

	DCAMCamera.get_device_info()

	DCAMCamera.get_attribute_value()

	DCAMCamera.set_attribute_value()

	DCAMCamera.get_all_attribute_values()

	DCAMCamera.set_all_attribute_values()

	DCAMCamera.set_trigger_mode()

	DCAMCamera.get_trigger_mode()

	DCAMCamera.get_all_trigger_modes()

	DCAMCamera.setup_ext_trigger()

	DCAMCamera.get_ext_trigger_parameters()

	DCAMCamera.send_software_trigger()

	DCAMCamera.set_exposure()

	DCAMCamera.get_exposure()

	DCAMCamera.set_readout_speed()

	DCAMCamera.get_readout_speed()

	DCAMCamera.get_all_readout_speeds()

	DCAMCamera.get_frame_readout_time()

	DCAMCamera.get_frame_timings()

	DCAMCamera.get_defect_correct_mode()

	DCAMCamera.set_defect_correct_mode()

	DCAMCamera.get_detector_size()

	DCAMCamera.get_roi()

	DCAMCamera.set_roi()

	DCAMCamera.get_roi_limits()

	DCAMCamera.setup_acquisition()

	DCAMCamera.clear_acquisition()

	DCAMCamera.start_acquisition()

	DCAMCamera.stop_acquisition()

	DCAMCamera.get_status()

	DCAMCamera.acquisition_in_progress()

	DCAMCamera.get_transfer_info()

	DCAMCamera.FrameTransferError

	DCAMCamera.apply_settings()

	DCAMCamera.get_acquisition_parameters()

	DCAMCamera.get_all_attributes()

	DCAMCamera.get_attribute()

	DCAMCamera.get_data_dimensions()

	DCAMCamera.get_device_variable()

	DCAMCamera.get_frame_format()

	DCAMCamera.get_frame_info_fields()

	DCAMCamera.get_frame_info_format()

	DCAMCamera.get_frame_info_period()

	DCAMCamera.get_frame_period()

	DCAMCamera.get_frames_status()

	DCAMCamera.get_full_info()

	DCAMCamera.get_full_status()

	DCAMCamera.get_image_indexing()

	DCAMCamera.get_new_images_range()

	DCAMCamera.get_settings()

	DCAMCamera.grab()

	DCAMCamera.is_acquisition_setup()

	DCAMCamera.pausing_acquisition()

	DCAMCamera.read_newest_image()

	DCAMCamera.read_oldest_image()

	DCAMCamera.set_device_variable()

	DCAMCamera.set_frame_format()

	DCAMCamera.set_frame_info_format()

	DCAMCamera.set_frame_info_period()

	DCAMCamera.set_image_indexing()

	DCAMCamera.snap()

	DCAMCamera.wait_for_frame()

	DCAMCamera.read_multiple_images()

	Module contents

	pylablib.devices.ElektroAutomatik package
	Submodules

	pylablib.devices.ElektroAutomatik.base module
	ElektroAutomatikError
	ElektroAutomatikError.add_note()

	ElektroAutomatikError.args

	ElektroAutomatikError.with_traceback()

	ElektroAutomatikBackendError
	ElektroAutomatikBackendError.add_note()

	ElektroAutomatikBackendError.args

	ElektroAutomatikBackendError.with_traceback()

	TDeviceInfo
	TDeviceInfo.article_no

	TDeviceInfo.manufacturer

	TDeviceInfo.model

	TDeviceInfo.serial_no

	TDeviceInfo.sw_ver

	TOutputLimits
	TOutputLimits.current

	TOutputLimits.power

	TOutputLimits.voltage

	TStatus
	TStatus.enabled

	TStatus.mode

	TStatus.ocp

	TStatus.opp

	TStatus.otp

	TStatus.ovp

	PS2000B
	PS2000B.Error

	PS2000B.TTelegram

	PS2000B.open()

	PS2000B.close()

	PS2000B.query()

	PS2000B.comm()

	PS2000B.get_device_info()

	PS2000B.get_output_limits()

	PS2000B.is_remote_enabled()

	PS2000B.enable_remote()

	PS2000B.is_output_enabled()

	PS2000B.enable_output()

	PS2000B.get_status()

	PS2000B.get_voltage_setpoint()

	PS2000B.get_voltage()

	PS2000B.set_voltage()

	PS2000B.get_current_setpoint()

	PS2000B.get_current()

	PS2000B.set_current()

	PS2000B.get_ovp_threshold()

	PS2000B.set_ovp_threshold()

	PS2000B.get_ocp_threshold()

	PS2000B.apply_settings()

	PS2000B.get_device_variable()

	PS2000B.get_full_info()

	PS2000B.get_full_status()

	PS2000B.get_settings()

	PS2000B.is_opened()

	PS2000B.lock()

	PS2000B.locking()

	PS2000B.set_device_variable()

	PS2000B.set_ocp_threshold()

	PS2000B.unlock()

	Module contents

	pylablib.devices.HighFinesse package
	Submodules

	pylablib.devices.HighFinesse.wlm module
	muxchannel()

	TDeviceInfo
	TDeviceInfo.compilation_number

	TDeviceInfo.model

	TDeviceInfo.revision_number

	TDeviceInfo.serial_number

	WLM
	WLM.Error

	WLM.open()

	WLM.close()

	WLM.is_opened()

	WLM.get_device_info()

	WLM.start_measurement()

	WLM.stop_measurement()

	WLM.is_measurement_running()

	WLM.set_read_mode()

	WLM.get_read_mode()

	WLM.get_channels_number()

	WLM.get_default_channel()

	WLM.set_default_channel()

	WLM.get_frequency()

	WLM.get_wavelength()

	WLM.get_exposure_mode()

	WLM.set_exposure_mode()

	WLM.get_exposure()

	WLM.set_exposure()

	WLM.get_switcher_mode()

	WLM.set_switcher_mode()

	WLM.get_active_channel()

	WLM.set_active_channel()

	WLM.is_switcher_channel_enabled()

	WLM.is_switcher_channel_shown()

	WLM.enable_switcher_channel()

	WLM.get_pulse_mode()

	WLM.set_pulse_mode()

	WLM.get_precision_mode()

	WLM.set_precision_mode()

	WLM.get_measurement_interval()

	WLM.set_measurement_interval()

	WLM.calibrate()

	WLM.get_autocalibration_parameters()

	WLM.setup_autocalibration()

	WLM.apply_settings()

	WLM.get_device_variable()

	WLM.get_full_info()

	WLM.get_full_status()

	WLM.get_settings()

	WLM.set_device_variable()

	Module contents

	pylablib.devices.IMAQ package
	Submodules

	pylablib.devices.IMAQ.IMAQ module
	list_cameras()

	get_cameras_number()

	TDeviceInfo
	TDeviceInfo.interface

	TDeviceInfo.serial_number

	IMAQFrameGrabber
	IMAQFrameGrabber.Error

	IMAQFrameGrabber.TimeoutError

	IMAQFrameGrabber.open()

	IMAQFrameGrabber.close()

	IMAQFrameGrabber.reset()

	IMAQFrameGrabber.is_opened()

	IMAQFrameGrabber.get_grabber_attribute_value()

	IMAQFrameGrabber.set_grabber_attribute_value()

	IMAQFrameGrabber.get_all_grabber_attribute_values()

	IMAQFrameGrabber.get_device_info()

	IMAQFrameGrabber.get_detector_size()

	IMAQFrameGrabber.get_grabber_detector_size()

	IMAQFrameGrabber.get_roi()

	IMAQFrameGrabber.get_grabber_roi()

	IMAQFrameGrabber.set_roi()

	IMAQFrameGrabber.set_grabber_roi()

	IMAQFrameGrabber.get_roi_limits()

	IMAQFrameGrabber.get_grabber_roi_limits()

	IMAQFrameGrabber.configure_trigger_in()

	IMAQFrameGrabber.send_software_trigger()

	IMAQFrameGrabber.configure_trigger_out()

	IMAQFrameGrabber.read_trigger()

	IMAQFrameGrabber.clear_all_triggers()

	IMAQFrameGrabber.setup_serial_params()

	IMAQFrameGrabber.get_serial_params()

	IMAQFrameGrabber.serial_write()

	IMAQFrameGrabber.serial_read()

	IMAQFrameGrabber.serial_readline()

	IMAQFrameGrabber.serial_flush()

	IMAQFrameGrabber.setup_acquisition()

	IMAQFrameGrabber.clear_acquisition()

	IMAQFrameGrabber.start_acquisition()

	IMAQFrameGrabber.stop_acquisition()

	IMAQFrameGrabber.acquisition_in_progress()

	IMAQFrameGrabber.FrameTransferError

	IMAQFrameGrabber.apply_settings()

	IMAQFrameGrabber.get_acquisition_parameters()

	IMAQFrameGrabber.get_data_dimensions()

	IMAQFrameGrabber.get_device_variable()

	IMAQFrameGrabber.get_frame_format()

	IMAQFrameGrabber.get_frame_info_fields()

	IMAQFrameGrabber.get_frame_info_format()

	IMAQFrameGrabber.get_frame_info_period()

	IMAQFrameGrabber.get_frames_status()

	IMAQFrameGrabber.get_full_info()

	IMAQFrameGrabber.get_full_status()

	IMAQFrameGrabber.get_image_indexing()

	IMAQFrameGrabber.get_new_images_range()

	IMAQFrameGrabber.get_settings()

	IMAQFrameGrabber.grab()

	IMAQFrameGrabber.is_acquisition_setup()

	IMAQFrameGrabber.pausing_acquisition()

	IMAQFrameGrabber.read_multiple_images()

	IMAQFrameGrabber.read_newest_image()

	IMAQFrameGrabber.read_oldest_image()

	IMAQFrameGrabber.set_device_variable()

	IMAQFrameGrabber.set_frame_format()

	IMAQFrameGrabber.set_frame_info_format()

	IMAQFrameGrabber.set_frame_info_period()

	IMAQFrameGrabber.set_image_indexing()

	IMAQFrameGrabber.snap()

	IMAQFrameGrabber.wait_for_frame()

	IMAQCamera
	IMAQCamera.Error

	IMAQCamera.FrameTransferError

	IMAQCamera.TimeoutError

	IMAQCamera.acquisition_in_progress()

	IMAQCamera.apply_settings()

	IMAQCamera.clear_acquisition()

	IMAQCamera.clear_all_triggers()

	IMAQCamera.close()

	IMAQCamera.configure_trigger_in()

	IMAQCamera.configure_trigger_out()

	IMAQCamera.get_acquisition_parameters()

	IMAQCamera.get_all_grabber_attribute_values()

	IMAQCamera.get_data_dimensions()

	IMAQCamera.get_detector_size()

	IMAQCamera.get_device_info()

	IMAQCamera.get_device_variable()

	IMAQCamera.get_frame_format()

	IMAQCamera.get_frame_info_fields()

	IMAQCamera.get_frame_info_format()

	IMAQCamera.get_frame_info_period()

	IMAQCamera.get_frames_status()

	IMAQCamera.get_full_info()

	IMAQCamera.get_full_status()

	IMAQCamera.get_grabber_attribute_value()

	IMAQCamera.get_grabber_detector_size()

	IMAQCamera.get_grabber_roi()

	IMAQCamera.get_grabber_roi_limits()

	IMAQCamera.get_image_indexing()

	IMAQCamera.get_new_images_range()

	IMAQCamera.get_roi()

	IMAQCamera.get_roi_limits()

	IMAQCamera.get_serial_params()

	IMAQCamera.get_settings()

	IMAQCamera.grab()

	IMAQCamera.is_acquisition_setup()

	IMAQCamera.is_opened()

	IMAQCamera.open()

	IMAQCamera.pausing_acquisition()

	IMAQCamera.read_multiple_images()

	IMAQCamera.read_newest_image()

	IMAQCamera.read_oldest_image()

	IMAQCamera.read_trigger()

	IMAQCamera.reset()

	IMAQCamera.send_software_trigger()

	IMAQCamera.serial_flush()

	IMAQCamera.serial_read()

	IMAQCamera.serial_readline()

	IMAQCamera.serial_write()

	IMAQCamera.set_device_variable()

	IMAQCamera.set_frame_format()

	IMAQCamera.set_frame_info_format()

	IMAQCamera.set_frame_info_period()

	IMAQCamera.set_grabber_attribute_value()

	IMAQCamera.set_grabber_roi()

	IMAQCamera.set_image_indexing()

	IMAQCamera.set_roi()

	IMAQCamera.setup_acquisition()

	IMAQCamera.setup_serial_params()

	IMAQCamera.snap()

	IMAQCamera.start_acquisition()

	IMAQCamera.stop_acquisition()

	IMAQCamera.wait_for_frame()

	pylablib.devices.IMAQ.niimaq_attrtypes module

	Module contents

	pylablib.devices.IMAQdx package
	Submodules

	pylablib.devices.IMAQdx.IMAQdx module
	TCameraInfo
	TCameraInfo.attr_url

	TCameraInfo.bus

	TCameraInfo.camera_file

	TCameraInfo.flags

	TCameraInfo.model

	TCameraInfo.name

	TCameraInfo.serial_number

	TCameraInfo.type

	TCameraInfo.vendor

	TCameraInfo.version

	list_cameras()

	get_cameras_number()

	IMAQdxAttribute
	IMAQdxAttribute.name

	IMAQdxAttribute.kind

	IMAQdxAttribute.display_name

	IMAQdxAttribute.tooltip

	IMAQdxAttribute.description

	IMAQdxAttribute.units

	IMAQdxAttribute.visibility

	IMAQdxAttribute.readable

	IMAQdxAttribute.writable

	IMAQdxAttribute.min

	IMAQdxAttribute.max

	IMAQdxAttribute.inc

	IMAQdxAttribute.ivalues

	IMAQdxAttribute.values

	IMAQdxAttribute.labels

	IMAQdxAttribute.ilabels

	IMAQdxAttribute.update_limits()

	IMAQdxAttribute.truncate_value()

	IMAQdxAttribute.get_value()

	IMAQdxAttribute.set_value()

	TDeviceInfo
	TDeviceInfo.bus_type

	TDeviceInfo.model

	TDeviceInfo.serial_number

	TDeviceInfo.vendor

	IMAQdxCamera
	IMAQdxCamera.Error

	IMAQdxCamera.TimeoutError

	IMAQdxCamera.open()

	IMAQdxCamera.close()

	IMAQdxCamera.reset()

	IMAQdxCamera.is_opened()

	IMAQdxCamera.post_open()

	IMAQdxCamera.get_attribute_value()

	IMAQdxCamera.set_attribute_value()

	IMAQdxCamera.get_all_attribute_values()

	IMAQdxCamera.set_all_attribute_values()

	IMAQdxCamera.get_device_info()

	IMAQdxCamera.get_detector_size()

	IMAQdxCamera.get_roi()

	IMAQdxCamera.set_roi()

	IMAQdxCamera.get_roi_limits()

	IMAQdxCamera.CallbackManager

	IMAQdxCamera.setup_acquisition()

	IMAQdxCamera.clear_acquisition()

	IMAQdxCamera.start_acquisition()

	IMAQdxCamera.stop_acquisition()

	IMAQdxCamera.acquisition_in_progress()

	IMAQdxCamera.refresh_acquisition()

	IMAQdxCamera.enable_raw_readout()

	IMAQdxCamera.FrameTransferError

	IMAQdxCamera.apply_settings()

	IMAQdxCamera.get_acquisition_parameters()

	IMAQdxCamera.get_all_attributes()

	IMAQdxCamera.get_attribute()

	IMAQdxCamera.get_data_dimensions()

	IMAQdxCamera.get_device_variable()

	IMAQdxCamera.get_frame_format()

	IMAQdxCamera.get_frame_info_fields()

	IMAQdxCamera.get_frame_info_format()

	IMAQdxCamera.get_frame_info_period()

	IMAQdxCamera.get_frames_status()

	IMAQdxCamera.get_full_info()

	IMAQdxCamera.get_full_status()

	IMAQdxCamera.get_image_indexing()

	IMAQdxCamera.get_new_images_range()

	IMAQdxCamera.get_settings()

	IMAQdxCamera.grab()

	IMAQdxCamera.is_acquisition_setup()

	IMAQdxCamera.pausing_acquisition()

	IMAQdxCamera.read_multiple_images()

	IMAQdxCamera.read_newest_image()

	IMAQdxCamera.read_oldest_image()

	IMAQdxCamera.set_device_variable()

	IMAQdxCamera.set_frame_format()

	IMAQdxCamera.set_frame_info_format()

	IMAQdxCamera.set_frame_info_period()

	IMAQdxCamera.set_image_indexing()

	IMAQdxCamera.snap()

	IMAQdxCamera.wait_for_frame()

	EthernetIMAQdxCamera
	EthernetIMAQdxCamera.post_open()

	EthernetIMAQdxCamera.CallbackManager

	EthernetIMAQdxCamera.Error

	EthernetIMAQdxCamera.FrameTransferError

	EthernetIMAQdxCamera.TimeoutError

	EthernetIMAQdxCamera.acquisition_in_progress()

	EthernetIMAQdxCamera.apply_settings()

	EthernetIMAQdxCamera.clear_acquisition()

	EthernetIMAQdxCamera.close()

	EthernetIMAQdxCamera.enable_raw_readout()

	EthernetIMAQdxCamera.get_acquisition_parameters()

	EthernetIMAQdxCamera.get_all_attribute_values()

	EthernetIMAQdxCamera.get_all_attributes()

	EthernetIMAQdxCamera.get_attribute()

	EthernetIMAQdxCamera.get_attribute_value()

	EthernetIMAQdxCamera.get_data_dimensions()

	EthernetIMAQdxCamera.get_detector_size()

	EthernetIMAQdxCamera.get_device_info()

	EthernetIMAQdxCamera.get_device_variable()

	EthernetIMAQdxCamera.get_frame_format()

	EthernetIMAQdxCamera.get_frame_info_fields()

	EthernetIMAQdxCamera.get_frame_info_format()

	EthernetIMAQdxCamera.get_frame_info_period()

	EthernetIMAQdxCamera.get_frames_status()

	EthernetIMAQdxCamera.get_full_info()

	EthernetIMAQdxCamera.get_full_status()

	EthernetIMAQdxCamera.get_image_indexing()

	EthernetIMAQdxCamera.get_new_images_range()

	EthernetIMAQdxCamera.get_roi()

	EthernetIMAQdxCamera.get_roi_limits()

	EthernetIMAQdxCamera.get_settings()

	EthernetIMAQdxCamera.grab()

	EthernetIMAQdxCamera.is_acquisition_setup()

	EthernetIMAQdxCamera.is_opened()

	EthernetIMAQdxCamera.open()

	EthernetIMAQdxCamera.pausing_acquisition()

	EthernetIMAQdxCamera.read_multiple_images()

	EthernetIMAQdxCamera.read_newest_image()

	EthernetIMAQdxCamera.read_oldest_image()

	EthernetIMAQdxCamera.refresh_acquisition()

	EthernetIMAQdxCamera.reset()

	EthernetIMAQdxCamera.set_all_attribute_values()

	EthernetIMAQdxCamera.set_attribute_value()

	EthernetIMAQdxCamera.set_device_variable()

	EthernetIMAQdxCamera.set_frame_format()

	EthernetIMAQdxCamera.set_frame_info_format()

	EthernetIMAQdxCamera.set_frame_info_period()

	EthernetIMAQdxCamera.set_image_indexing()

	EthernetIMAQdxCamera.set_roi()

	EthernetIMAQdxCamera.setup_acquisition()

	EthernetIMAQdxCamera.snap()

	EthernetIMAQdxCamera.start_acquisition()

	EthernetIMAQdxCamera.stop_acquisition()

	EthernetIMAQdxCamera.wait_for_frame()

	Module contents

	pylablib.devices.KJL package
	Submodules

	pylablib.devices.KJL.base module
	KJLError
	KJLError.add_note()

	KJLError.args

	KJLError.with_traceback()

	KJLBackendError
	KJLBackendError.add_note()

	KJLBackendError.args

	KJLBackendError.with_traceback()

	TKJL300DeviceInfo
	TKJL300DeviceInfo.swver

	KJL300
	KJL300.Error

	KJL300.comm()

	KJL300.query()

	KJL300.get_device_info()

	KJL300.reset()

	KJL300.get_pressure()

	KJL300.get_relay_setpoints()

	KJL300.set_relay_setpoints()

	KJL300.set_zero()

	KJL300.set_span()

	KJL300.apply_settings()

	KJL300.close()

	KJL300.get_device_variable()

	KJL300.get_full_info()

	KJL300.get_full_status()

	KJL300.get_settings()

	KJL300.is_opened()

	KJL300.lock()

	KJL300.locking()

	KJL300.open()

	KJL300.set_device_variable()

	KJL300.unlock()

	Module contents

	pylablib.devices.Keithley package
	Submodules

	pylablib.devices.Keithley.base module
	GenericKeithleyError
	GenericKeithleyError.add_note()

	GenericKeithleyError.args

	GenericKeithleyError.with_traceback()

	GenericKeithleyBackendError
	GenericKeithleyBackendError.add_note()

	GenericKeithleyBackendError.args

	GenericKeithleyBackendError.with_traceback()

	pylablib.devices.Keithley.multimeter module
	TGenericFunctionParameters
	TGenericFunctionParameters.autorng

	TGenericFunctionParameters.resolution

	TGenericFunctionParameters.rng

	TFrequencyFunctionParameters
	TFrequencyFunctionParameters.aperture

	TFrequencyFunctionParameters.rng

	TConfigurationParameters
	TConfigurationParameters.function

	TConfigurationParameters.resolution

	TConfigurationParameters.rng

	TAveragingParameters
	TAveragingParameters.count

	TAveragingParameters.enabled

	TAveragingParameters.mode

	Keithley2110
	Keithley2110.Error

	Keithley2110.ReraiseError

	Keithley2110.get_function()

	Keithley2110.set_function()

	Keithley2110.get_vcr_function_parameters()

	Keithley2110.get_cap_function_parameters()

	Keithley2110.get_freq_function_parameters()

	Keithley2110.get_function_parameters()

	Keithley2110.set_vcr_function_parameters()

	Keithley2110.set_cap_function_parameters()

	Keithley2110.set_freq_function_parameters()

	Keithley2110.set_function_parameters()

	Keithley2110.get_configuration()

	Keithley2110.set_configuration()

	Keithley2110.get_reading()

	Keithley2110.get_averaging_parameters()

	Keithley2110.setup_averaging()

	Keithley2110.BackendError

	Keithley2110.apply_settings()

	Keithley2110.ask()

	Keithley2110.close()

	Keithley2110.flush()

	Keithley2110.get_arg_type()

	Keithley2110.get_device_variable()

	Keithley2110.get_esr()

	Keithley2110.get_full_info()

	Keithley2110.get_full_status()

	Keithley2110.get_id()

	Keithley2110.get_settings()

	Keithley2110.is_opened()

	Keithley2110.lock()

	Keithley2110.locking()

	Keithley2110.open()

	Keithley2110.parse_array_data()

	Keithley2110.read()

	Keithley2110.read_binary_array_data()

	Keithley2110.reconnect()

	Keithley2110.reset()

	Keithley2110.set_device_variable()

	Keithley2110.sleep()

	Keithley2110.unlock()

	Keithley2110.using_write_buffer()

	Keithley2110.wait()

	Keithley2110.wait_dev()

	Keithley2110.wait_sync()

	Keithley2110.write()

	Module contents

	pylablib.devices.Lakeshore package
	Submodules

	pylablib.devices.Lakeshore.base module
	LakeshoreError
	LakeshoreError.add_note()

	LakeshoreError.args

	LakeshoreError.with_traceback()

	LakeshoreBackendError
	LakeshoreBackendError.add_note()

	LakeshoreBackendError.args

	LakeshoreBackendError.with_traceback()

	TLakeshore218AnalogSettings
	TLakeshore218AnalogSettings.bipolar

	TLakeshore218AnalogSettings.channel

	TLakeshore218AnalogSettings.high_value

	TLakeshore218AnalogSettings.low_value

	TLakeshore218AnalogSettings.man_value

	TLakeshore218AnalogSettings.mode

	TLakeshore218AnalogSettings.source

	TLakeshore218FilterSettings
	TLakeshore218FilterSettings.enabled

	TLakeshore218FilterSettings.points

	TLakeshore218FilterSettings.window

	TLakeshore218CurveHeader
	TLakeshore218CurveHeader.coeff

	TLakeshore218CurveHeader.fmt

	TLakeshore218CurveHeader.limit

	TLakeshore218CurveHeader.name

	TLakeshore218CurveHeader.serial

	Lakeshore218
	Lakeshore218.Error

	Lakeshore218.ReraiseError

	Lakeshore218.is_enabled()

	Lakeshore218.set_enabled()

	Lakeshore218.get_sensor_type()

	Lakeshore218.set_sensor_type()

	Lakeshore218.get_sensor_curve_index()

	Lakeshore218.set_sensor_curve_index()

	Lakeshore218.get_curve_header()

	Lakeshore218.set_curve_header()

	Lakeshore218.get_curve()

	Lakeshore218.set_curve()

	Lakeshore218.get_temperature()

	Lakeshore218.get_all_temperatures()

	Lakeshore218.get_sensor_reading()

	Lakeshore218.get_all_sensor_readings()

	Lakeshore218.get_analog_output_settings()

	Lakeshore218.setup_analog_output()

	Lakeshore218.set_analog_output_value()

	Lakeshore218.get_analog_output()

	Lakeshore218.get_filter_settings()

	Lakeshore218.setup_filter()

	Lakeshore218.BackendError

	Lakeshore218.apply_settings()

	Lakeshore218.ask()

	Lakeshore218.close()

	Lakeshore218.flush()

	Lakeshore218.get_arg_type()

	Lakeshore218.get_device_variable()

	Lakeshore218.get_esr()

	Lakeshore218.get_full_info()

	Lakeshore218.get_full_status()

	Lakeshore218.get_id()

	Lakeshore218.get_settings()

	Lakeshore218.is_opened()

	Lakeshore218.lock()

	Lakeshore218.locking()

	Lakeshore218.open()

	Lakeshore218.parse_array_data()

	Lakeshore218.read()

	Lakeshore218.read_binary_array_data()

	Lakeshore218.reconnect()

	Lakeshore218.reset()

	Lakeshore218.set_device_variable()

	Lakeshore218.sleep()

	Lakeshore218.unlock()

	Lakeshore218.using_write_buffer()

	Lakeshore218.wait()

	Lakeshore218.wait_dev()

	Lakeshore218.wait_sync()

	Lakeshore218.write()

	TLakeshore370RangeSettings
	TLakeshore370RangeSettings.autorange

	TLakeshore370RangeSettings.enable

	TLakeshore370RangeSettings.exc_mode

	TLakeshore370RangeSettings.exc_range

	TLakeshore370RangeSettings.res_range

	TLakeshore370AnalogSettings
	TLakeshore370AnalogSettings.bipolar

	TLakeshore370AnalogSettings.channel

	TLakeshore370AnalogSettings.high_value

	TLakeshore370AnalogSettings.low_value

	TLakeshore370AnalogSettings.man_value

	TLakeshore370AnalogSettings.mode

	TLakeshore370AnalogSettings.source

	TLakeshore370FilterSettings
	TLakeshore370FilterSettings.enabled

	TLakeshore370FilterSettings.settle_time

	TLakeshore370FilterSettings.window

	Lakeshore370
	Lakeshore370.Error

	Lakeshore370.ReraiseError

	Lakeshore370.get_temperature()

	Lakeshore370.get_resistance()

	Lakeshore370.get_sensor_power()

	Lakeshore370.select_channel()

	Lakeshore370.get_channel()

	Lakeshore370.get_channel_range_settings()

	Lakeshore370.setup_channel_range()

	Lakeshore370.get_analog_output_settings()

	Lakeshore370.setup_analog_output()

	Lakeshore370.set_analog_output_value()

	Lakeshore370.get_analog_output()

	Lakeshore370.get_filter_settings()

	Lakeshore370.setup_filter()

	Lakeshore370.BackendError

	Lakeshore370.apply_settings()

	Lakeshore370.ask()

	Lakeshore370.close()

	Lakeshore370.flush()

	Lakeshore370.get_arg_type()

	Lakeshore370.get_device_variable()

	Lakeshore370.get_esr()

	Lakeshore370.get_full_info()

	Lakeshore370.get_full_status()

	Lakeshore370.get_id()

	Lakeshore370.get_settings()

	Lakeshore370.is_opened()

	Lakeshore370.lock()

	Lakeshore370.locking()

	Lakeshore370.open()

	Lakeshore370.parse_array_data()

	Lakeshore370.read()

	Lakeshore370.read_binary_array_data()

	Lakeshore370.reconnect()

	Lakeshore370.reset()

	Lakeshore370.set_device_variable()

	Lakeshore370.sleep()

	Lakeshore370.unlock()

	Lakeshore370.using_write_buffer()

	Lakeshore370.wait()

	Lakeshore370.wait_dev()

	Lakeshore370.wait_sync()

	Lakeshore370.write()

	Module contents

	pylablib.devices.LaserQuantum package
	Submodules

	pylablib.devices.LaserQuantum.base module
	LaserQuantumError
	LaserQuantumError.add_note()

	LaserQuantumError.args

	LaserQuantumError.with_traceback()

	LaserQuantumBackendError
	LaserQuantumBackendError.add_note()

	LaserQuantumBackendError.args

	LaserQuantumBackendError.with_traceback()

	TDeviceInfo
	TDeviceInfo.cal_date

	TDeviceInfo.serial

	TDeviceInfo.software_version

	TWorkHours
	TWorkHours.laser_enabled

	TWorkHours.laser_threshold

	TWorkHours.psu

	TTemperatures
	TTemperatures.head

	TTemperatures.psu

	Finesse
	Finesse.Error

	Finesse.query()

	Finesse.get_device_info()

	Finesse.get_work_hours()

	Finesse.get_temperatures()

	Finesse.get_output_status()

	Finesse.get_interlock_status()

	Finesse.get_shutter_status()

	Finesse.is_shutter_opened()

	Finesse.set_shutter()

	Finesse.is_enabled()

	Finesse.enable()

	Finesse.get_output_power()

	Finesse.get_output_setpoint()

	Finesse.set_output_power()

	Finesse.get_current()

	Finesse.apply_settings()

	Finesse.close()

	Finesse.get_device_variable()

	Finesse.get_full_info()

	Finesse.get_full_status()

	Finesse.get_settings()

	Finesse.is_opened()

	Finesse.lock()

	Finesse.locking()

	Finesse.open()

	Finesse.set_device_variable()

	Finesse.unlock()

	Module contents

	pylablib.devices.Leybold package
	Submodules

	pylablib.devices.Leybold.base module
	LeyboldError
	LeyboldError.add_note()

	LeyboldError.args

	LeyboldError.with_traceback()

	LeyboldBackendError
	LeyboldBackendError.add_note()

	LeyboldBackendError.args

	LeyboldBackendError.with_traceback()

	TDeviceInfo
	TDeviceInfo.page

	TDeviceInfo.sensor

	TDeviceInfo.swver

	TUpdateValue
	TUpdateValue.device_info

	TUpdateValue.display_units

	TUpdateValue.error

	TUpdateValue.status

	TUpdateValue.value

	GenericITR
	GenericITR.Error

	GenericITR.get_update()

	GenericITR.send_command()

	GenericITR.get_device_info()

	GenericITR.get_units()

	GenericITR.get_pressure()

	GenericITR.apply_settings()

	GenericITR.close()

	GenericITR.get_device_variable()

	GenericITR.get_full_info()

	GenericITR.get_full_status()

	GenericITR.get_settings()

	GenericITR.is_opened()

	GenericITR.lock()

	GenericITR.locking()

	GenericITR.open()

	GenericITR.set_device_variable()

	GenericITR.unlock()

	TITR90Status
	TITR90Status.atm_adj

	TITR90Status.emission

	ITR90
	ITR90.set_units()

	ITR90.start_degas()

	ITR90.stop_degas()

	ITR90.Error

	ITR90.apply_settings()

	ITR90.close()

	ITR90.get_device_info()

	ITR90.get_device_variable()

	ITR90.get_full_info()

	ITR90.get_full_status()

	ITR90.get_pressure()

	ITR90.get_settings()

	ITR90.get_units()

	ITR90.get_update()

	ITR90.is_opened()

	ITR90.lock()

	ITR90.locking()

	ITR90.open()

	ITR90.send_command()

	ITR90.set_device_variable()

	ITR90.unlock()

	Module contents

	pylablib.devices.LighthousePhotonics package
	Submodules

	pylablib.devices.LighthousePhotonics.base module
	LighthousePhotonicsError
	LighthousePhotonicsError.add_note()

	LighthousePhotonicsError.args

	LighthousePhotonicsError.with_traceback()

	LighthousePhotonicsBackendError
	LighthousePhotonicsBackendError.add_note()

	LighthousePhotonicsBackendError.args

	LighthousePhotonicsBackendError.with_traceback()

	TDeviceInfo
	TDeviceInfo.configuration

	TDeviceInfo.product

	TDeviceInfo.serial

	TDeviceInfo.version

	TWorkHours
	TWorkHours.controller

	TWorkHours.laser

	SproutG
	SproutG.Error

	SproutG.query()

	SproutG.get_device_info()

	SproutG.get_work_hours()

	SproutG.get_warning_status()

	SproutG.get_interlock_status()

	SproutG.get_shutter_status()

	SproutG.get_output_mode()

	SproutG.set_output_mode()

	SproutG.is_enabled()

	SproutG.enable()

	SproutG.get_output_power()

	SproutG.get_output_setpoint()

	SproutG.set_output_power()

	SproutG.apply_settings()

	SproutG.close()

	SproutG.get_device_variable()

	SproutG.get_full_info()

	SproutG.get_full_status()

	SproutG.get_settings()

	SproutG.is_opened()

	SproutG.lock()

	SproutG.locking()

	SproutG.open()

	SproutG.set_device_variable()

	SproutG.unlock()

	Module contents

	pylablib.devices.Lumel package
	Submodules

	pylablib.devices.Lumel.base module
	TDeviceInfo
	TDeviceInfo.model

	LumelRE72Controller
	LumelRE72Controller.get_device_info()

	LumelRE72Controller.get_reg()

	LumelRE72Controller.set_reg()

	LumelRE72Controller.get_measurementf()

	LumelRE72Controller.get_setpointf()

	LumelRE72Controller.get_outputf()

	LumelRE72Controller.get_measurementi()

	LumelRE72Controller.get_setpointi()

	LumelRE72Controller.set_setpointi()

	LumelRE72Controller.Error

	LumelRE72Controller.apply_settings()

	LumelRE72Controller.close()

	LumelRE72Controller.get_device_variable()

	LumelRE72Controller.get_full_info()

	LumelRE72Controller.get_full_status()

	LumelRE72Controller.get_settings()

	LumelRE72Controller.is_opened()

	LumelRE72Controller.lock()

	LumelRE72Controller.locking()

	LumelRE72Controller.mb_get_default_address()

	LumelRE72Controller.mb_get_device_id()

	LumelRE72Controller.mb_read_coils()

	LumelRE72Controller.mb_read_discrete_inputs()

	LumelRE72Controller.mb_read_holding_registers()

	LumelRE72Controller.mb_read_input_registers()

	LumelRE72Controller.mb_scan_devices()

	LumelRE72Controller.mb_set_default_address()

	LumelRE72Controller.mb_using_address()

	LumelRE72Controller.mb_write_multiple_coils()

	LumelRE72Controller.mb_write_multiple_holding_registers()

	LumelRE72Controller.mb_write_single_coil()

	LumelRE72Controller.mb_write_single_holding_register()

	LumelRE72Controller.open()

	LumelRE72Controller.set_device_variable()

	LumelRE72Controller.unlock()

	Module contents

	pylablib.devices.M2 package
	Submodules

	pylablib.devices.M2.base module
	M2Error
	M2Error.add_note()

	M2Error.args

	M2Error.with_traceback()

	M2ParseError
	M2ParseError.add_note()

	M2ParseError.args

	M2ParseError.with_traceback()

	M2CommunicationError
	M2CommunicationError.add_note()

	M2CommunicationError.args

	M2CommunicationError.with_traceback()

	ICEBlocDevice
	ICEBlocDevice.Error

	ICEBlocDevice.ReraiseError

	ICEBlocDevice.BackendError

	ICEBlocDevice.open()

	ICEBlocDevice.close()

	ICEBlocDevice.is_opened()

	ICEBlocDevice.set_timeout()

	ICEBlocDevice.flush()

	ICEBlocDevice.noreply()

	ICEBlocDevice.query()

	ICEBlocDevice.update_reports()

	ICEBlocDevice.get_last_report()

	ICEBlocDevice.check_report()

	ICEBlocDevice.wait_for_report()

	ICEBlocDevice.start_link()

	ICEBlocDevice.apply_settings()

	ICEBlocDevice.get_device_variable()

	ICEBlocDevice.get_full_info()

	ICEBlocDevice.get_full_status()

	ICEBlocDevice.get_settings()

	ICEBlocDevice.set_device_variable()

	pylablib.devices.M2.emm module
	EMM
	EMM.get_laser_status()

	EMM.fine_tune_wavelength()

	EMM.check_fine_tuning_report()

	EMM.wait_for_fine_tuning()

	EMM.is_fine_tuning()

	EMM.get_fine_tuning_status()

	EMM.get_fine_wavelength()

	EMM.stop_fine_tuning()

	EMM.setup_terascan()

	EMM.start_terascan()

	EMM.enable_terascan_updates()

	EMM.check_terascan_update()

	EMM.wait_for_terascan_update()

	EMM.check_terascan_start_report()

	EMM.stop_terascan()

	EMM.get_terascan_status()

	EMM.stop_all_operation()

	EMM.BackendError

	EMM.Error

	EMM.ReraiseError

	EMM.apply_settings()

	EMM.check_report()

	EMM.close()

	EMM.flush()

	EMM.get_device_variable()

	EMM.get_full_info()

	EMM.get_full_status()

	EMM.get_last_report()

	EMM.get_settings()

	EMM.is_opened()

	EMM.noreply()

	EMM.open()

	EMM.query()

	EMM.set_device_variable()

	EMM.set_timeout()

	EMM.start_link()

	EMM.update_reports()

	EMM.wait_for_report()

	pylablib.devices.M2.solstis module
	Solstis
	Solstis.connect_wavemeter()

	Solstis.disconnect_wavemeter()

	Solstis.is_wavemeter_connected()

	Solstis.get_system_status()

	Solstis.get_full_web_status()

	Solstis.get_full_fine_tuning_status()

	Solstis.lock_wavemeter()

	Solstis.is_wavemeter_lock_on()

	Solstis.fine_tune_wavelength()

	Solstis.check_fine_tuning_report()

	Solstis.wait_for_fine_tuning()

	Solstis.get_fine_tuning_status()

	Solstis.get_fine_wavelength()

	Solstis.stop_fine_tuning()

	Solstis.coarse_tune_wavelength()

	Solstis.get_full_coarse_tuning_status()

	Solstis.get_coarse_tuning_status()

	Solstis.get_coarse_wavelength()

	Solstis.stop_coarse_tuning()

	Solstis.tune_etalon()

	Solstis.lock_etalon()

	Solstis.unlock_etalon()

	Solstis.get_etalon_lock_status()

	Solstis.tune_laser_resonator()

	Solstis.tune_reference_cavity()

	Solstis.lock_reference_cavity()

	Solstis.unlock_reference_cavity()

	Solstis.get_reference_cavity_lock_status()

	Solstis.setup_terascan()

	Solstis.start_terascan()

	Solstis.enable_terascan_updates()

	Solstis.check_terascan_update()

	Solstis.wait_for_terascan_update()

	Solstis.check_terascan_start_report()

	Solstis.stop_terascan()

	Solstis.get_terascan_status()

	Solstis.start_fast_scan()

	Solstis.check_fast_scan_start_report()

	Solstis.stop_fast_scan()

	Solstis.get_fast_scan_status()

	Solstis.stop_scan_web()

	Solstis.stop_all_operation()

	Solstis.BackendError

	Solstis.Error

	Solstis.ReraiseError

	Solstis.apply_settings()

	Solstis.check_report()

	Solstis.close()

	Solstis.flush()

	Solstis.get_device_variable()

	Solstis.get_full_info()

	Solstis.get_full_status()

	Solstis.get_last_report()

	Solstis.get_settings()

	Solstis.is_opened()

	Solstis.noreply()

	Solstis.open()

	Solstis.query()

	Solstis.set_device_variable()

	Solstis.set_timeout()

	Solstis.start_link()

	Solstis.update_reports()

	Solstis.wait_for_report()

	Module contents

	pylablib.devices.Mightex package
	Submodules

	pylablib.devices.Mightex.MightexSSeries module
	TCameraInfo
	TCameraInfo.idx

	TCameraInfo.model

	TCameraInfo.serial

	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	restart_lib()

	list_cameras()

	get_cameras_number()

	TDeviceInfo
	TDeviceInfo.model

	TDeviceInfo.serial

	MightexSSeriesCamera
	MightexSSeriesCamera.Error

	MightexSSeriesCamera.TimeoutError

	MightexSSeriesCamera.open()

	MightexSSeriesCamera.close()

	MightexSSeriesCamera.is_opened()

	MightexSSeriesCamera.get_device_info()

	MightexSSeriesCamera.get_detector_size()

	MightexSSeriesCamera.get_roi()

	MightexSSeriesCamera.set_roi()

	MightexSSeriesCamera.get_roi_limits()

	MightexSSeriesCamera.get_exposure()

	MightexSSeriesCamera.set_exposure()

	MightexSSeriesCamera.get_frame_timings()

	MightexSSeriesCamera.get_pixel_clock()

	MightexSSeriesCamera.set_pixel_clock()

	MightexSSeriesCamera.get_hblanking()

	MightexSSeriesCamera.set_hblanking()

	MightexSSeriesCamera.send_software_trigger()

	MightexSSeriesCamera.ReceiveLooper

	MightexSSeriesCamera.setup_acquisition()

	MightexSSeriesCamera.clear_acquisition()

	MightexSSeriesCamera.start_acquisition()

	MightexSSeriesCamera.stop_acquisition()

	MightexSSeriesCamera.acquisition_in_progress()

	MightexSSeriesCamera.FrameTransferError

	MightexSSeriesCamera.apply_settings()

	MightexSSeriesCamera.get_acquisition_parameters()

	MightexSSeriesCamera.get_data_dimensions()

	MightexSSeriesCamera.get_device_variable()

	MightexSSeriesCamera.get_frame_format()

	MightexSSeriesCamera.get_frame_info_fields()

	MightexSSeriesCamera.get_frame_info_format()

	MightexSSeriesCamera.get_frame_info_period()

	MightexSSeriesCamera.get_frame_period()

	MightexSSeriesCamera.get_frames_status()

	MightexSSeriesCamera.get_full_info()

	MightexSSeriesCamera.get_full_status()

	MightexSSeriesCamera.get_image_indexing()

	MightexSSeriesCamera.get_new_images_range()

	MightexSSeriesCamera.get_settings()

	MightexSSeriesCamera.grab()

	MightexSSeriesCamera.is_acquisition_setup()

	MightexSSeriesCamera.pausing_acquisition()

	MightexSSeriesCamera.read_multiple_images()

	MightexSSeriesCamera.read_newest_image()

	MightexSSeriesCamera.read_oldest_image()

	MightexSSeriesCamera.set_device_variable()

	MightexSSeriesCamera.set_frame_format()

	MightexSSeriesCamera.set_frame_info_format()

	MightexSSeriesCamera.set_frame_info_period()

	MightexSSeriesCamera.set_image_indexing()

	MightexSSeriesCamera.snap()

	MightexSSeriesCamera.wait_for_frame()

	pylablib.devices.Mightex.base module
	MightexError
	MightexError.add_note()

	MightexError.args

	MightexError.with_traceback()

	MightexTimeoutError
	MightexTimeoutError.add_note()

	MightexTimeoutError.args

	MightexTimeoutError.with_traceback()

	Module contents

	pylablib.devices.Modbus package
	Submodules

	pylablib.devices.Modbus.modbus module
	ModbusError
	ModbusError.add_note()

	ModbusError.args

	ModbusError.with_traceback()

	ModbusBackendError
	ModbusBackendError.add_note()

	ModbusBackendError.args

	ModbusBackendError.with_traceback()

	TModbusFrame
	TModbusFrame.address

	TModbusFrame.data

	TModbusFrame.function

	GenericModbusRTUDevice
	GenericModbusRTUDevice.Error

	GenericModbusRTUDevice.mb_get_default_address()

	GenericModbusRTUDevice.mb_set_default_address()

	GenericModbusRTUDevice.mb_using_address()

	GenericModbusRTUDevice.mb_read_coils()

	GenericModbusRTUDevice.mb_read_discrete_inputs()

	GenericModbusRTUDevice.mb_read_holding_registers()

	GenericModbusRTUDevice.mb_read_input_registers()

	GenericModbusRTUDevice.mb_write_single_coil()

	GenericModbusRTUDevice.mb_write_single_holding_register()

	GenericModbusRTUDevice.mb_write_multiple_coils()

	GenericModbusRTUDevice.mb_write_multiple_holding_registers()

	GenericModbusRTUDevice.mb_get_device_id()

	GenericModbusRTUDevice.mb_scan_devices()

	GenericModbusRTUDevice.apply_settings()

	GenericModbusRTUDevice.close()

	GenericModbusRTUDevice.get_device_variable()

	GenericModbusRTUDevice.get_full_info()

	GenericModbusRTUDevice.get_full_status()

	GenericModbusRTUDevice.get_settings()

	GenericModbusRTUDevice.is_opened()

	GenericModbusRTUDevice.lock()

	GenericModbusRTUDevice.locking()

	GenericModbusRTUDevice.open()

	GenericModbusRTUDevice.set_device_variable()

	GenericModbusRTUDevice.unlock()

	Module contents

	pylablib.devices.NI package
	Submodules

	pylablib.devices.NI.daq module
	NIError
	NIError.add_note()

	NIError.args

	NIError.with_traceback()

	NIDAQmxError
	NIDAQmxError.add_note()

	NIDAQmxError.args

	NIDAQmxError.with_traceback()

	TDeviceInfo
	TDeviceInfo.model

	TDeviceInfo.name

	TDeviceInfo.serial_number

	TVoltageOutputClockParameters
	TVoltageOutputClockParameters.autoloop

	TVoltageOutputClockParameters.continuous

	TVoltageOutputClockParameters.rate

	TVoltageOutputClockParameters.samps_per_chan

	TVoltageOutputClockParameters.sync_with_ai

	get_device_info()

	list_devices()

	NIDAQ
	NIDAQ.Error

	NIDAQ.ReraiseError

	NIDAQ.open()

	NIDAQ.close()

	NIDAQ.is_opened()

	NIDAQ.reset()

	NIDAQ.get_device_info()

	NIDAQ.setup_clock()

	NIDAQ.get_clock_parameters()

	NIDAQ.export_clock()

	NIDAQ.get_export_clock_terminal()

	NIDAQ.add_voltage_input()

	NIDAQ.add_counter_input()

	NIDAQ.add_clock_period_input()

	NIDAQ.add_digital_input()

	NIDAQ.get_input_channels()

	NIDAQ.get_voltage_input_parameters()

	NIDAQ.get_counter_input_parameters()

	NIDAQ.get_digital_input_parameters()

	NIDAQ.get_clock_period_input_parameters()

	NIDAQ.start()

	NIDAQ.stop()

	NIDAQ.is_running()

	NIDAQ.available_samples()

	NIDAQ.get_buffer_size()

	NIDAQ.wait_for_sample()

	NIDAQ.read()

	NIDAQ.add_digital_output()

	NIDAQ.get_digital_output_channels()

	NIDAQ.get_digital_output_parameters()

	NIDAQ.set_digital_outputs()

	NIDAQ.get_digital_outputs()

	NIDAQ.add_voltage_output()

	NIDAQ.get_voltage_output_channels()

	NIDAQ.get_voltage_output_parameters()

	NIDAQ.set_voltage_outputs()

	NIDAQ.get_voltage_output_buffer_fill()

	NIDAQ.fill_voltage_output_buffer()

	NIDAQ.get_voltage_outputs()

	NIDAQ.setup_voltage_output_clock()

	NIDAQ.get_voltage_output_clock_parameters()

	NIDAQ.add_pulse_output()

	NIDAQ.get_pulse_output_channels()

	NIDAQ.get_pulse_output_parameters()

	NIDAQ.set_pulse_output()

	NIDAQ.start_pulse_output()

	NIDAQ.stop_pulse_output()

	NIDAQ.apply_settings()

	NIDAQ.get_device_variable()

	NIDAQ.get_full_info()

	NIDAQ.get_full_status()

	NIDAQ.get_settings()

	NIDAQ.is_pulse_output_running()

	NIDAQ.set_device_variable()

	Module contents

	pylablib.devices.NKT package
	Submodules

	pylablib.devices.NKT.interbus module
	InterbusError
	InterbusError.add_note()

	InterbusError.args

	InterbusError.with_traceback()

	InterbusBackendError
	InterbusBackendError.add_note()

	InterbusBackendError.args

	InterbusBackendError.with_traceback()

	TInterbusTelegram
	TInterbusTelegram.dest

	TInterbusTelegram.payload

	TInterbusTelegram.src

	TInterbusTelegram.typ

	GenericInterbusDevice
	GenericInterbusDevice.Error

	GenericInterbusDevice.ib_get_default_address()

	GenericInterbusDevice.ib_set_default_address()

	GenericInterbusDevice.ib_using_address()

	GenericInterbusDevice.ib_get_reg()

	GenericInterbusDevice.ib_set_reg()

	GenericInterbusDevice.ib_scan_devices()

	GenericInterbusDevice.apply_settings()

	GenericInterbusDevice.close()

	GenericInterbusDevice.get_device_variable()

	GenericInterbusDevice.get_full_info()

	GenericInterbusDevice.get_full_status()

	GenericInterbusDevice.get_settings()

	GenericInterbusDevice.is_opened()

	GenericInterbusDevice.lock()

	GenericInterbusDevice.locking()

	GenericInterbusDevice.open()

	GenericInterbusDevice.set_device_variable()

	GenericInterbusDevice.unlock()

	IInterbusModule
	IInterbusModule.get_register()

	IInterbusModule.get_all_registers()

	IInterbusModule.set_register()

	IInterbusModule.get_status()

	IInterbusModule.apply_settings()

	IInterbusModule.close()

	IInterbusModule.get_device_variable()

	IInterbusModule.get_full_info()

	IInterbusModule.get_full_status()

	IInterbusModule.get_settings()

	IInterbusModule.is_opened()

	IInterbusModule.open()

	IInterbusModule.set_device_variable()

	GenericInterbusModule
	GenericInterbusModule.apply_settings()

	GenericInterbusModule.close()

	GenericInterbusModule.get_all_registers()

	GenericInterbusModule.get_device_variable()

	GenericInterbusModule.get_full_info()

	GenericInterbusModule.get_full_status()

	GenericInterbusModule.get_register()

	GenericInterbusModule.get_settings()

	GenericInterbusModule.get_status()

	GenericInterbusModule.is_opened()

	GenericInterbusModule.open()

	GenericInterbusModule.set_device_variable()

	GenericInterbusModule.set_register()

	SuperKExtremeInterbusModule
	SuperKExtremeInterbusModule.apply_settings()

	SuperKExtremeInterbusModule.close()

	SuperKExtremeInterbusModule.get_all_registers()

	SuperKExtremeInterbusModule.get_device_variable()

	SuperKExtremeInterbusModule.get_full_info()

	SuperKExtremeInterbusModule.get_full_status()

	SuperKExtremeInterbusModule.get_register()

	SuperKExtremeInterbusModule.get_settings()

	SuperKExtremeInterbusModule.get_status()

	SuperKExtremeInterbusModule.is_opened()

	SuperKExtremeInterbusModule.open()

	SuperKExtremeInterbusModule.set_device_variable()

	SuperKExtremeInterbusModule.set_register()

	SuperKFrontPanelInterbusModule
	SuperKFrontPanelInterbusModule.apply_settings()

	SuperKFrontPanelInterbusModule.close()

	SuperKFrontPanelInterbusModule.get_all_registers()

	SuperKFrontPanelInterbusModule.get_device_variable()

	SuperKFrontPanelInterbusModule.get_full_info()

	SuperKFrontPanelInterbusModule.get_full_status()

	SuperKFrontPanelInterbusModule.get_register()

	SuperKFrontPanelInterbusModule.get_settings()

	SuperKFrontPanelInterbusModule.get_status()

	SuperKFrontPanelInterbusModule.is_opened()

	SuperKFrontPanelInterbusModule.open()

	SuperKFrontPanelInterbusModule.set_device_variable()

	SuperKFrontPanelInterbusModule.set_register()

	SuperKSelectDriverInterbusModule
	SuperKSelectDriverInterbusModule.apply_settings()

	SuperKSelectDriverInterbusModule.close()

	SuperKSelectDriverInterbusModule.get_all_registers()

	SuperKSelectDriverInterbusModule.get_device_variable()

	SuperKSelectDriverInterbusModule.get_full_info()

	SuperKSelectDriverInterbusModule.get_full_status()

	SuperKSelectDriverInterbusModule.get_register()

	SuperKSelectDriverInterbusModule.get_settings()

	SuperKSelectDriverInterbusModule.get_status()

	SuperKSelectDriverInterbusModule.i

	SuperKSelectDriverInterbusModule.is_opened()

	SuperKSelectDriverInterbusModule.open()

	SuperKSelectDriverInterbusModule.set_device_variable()

	SuperKSelectDriverInterbusModule.set_register()

	SuperKSelectInterbusModule
	SuperKSelectInterbusModule.apply_settings()

	SuperKSelectInterbusModule.close()

	SuperKSelectInterbusModule.get_all_registers()

	SuperKSelectInterbusModule.get_device_variable()

	SuperKSelectInterbusModule.get_full_info()

	SuperKSelectInterbusModule.get_full_status()

	SuperKSelectInterbusModule.get_register()

	SuperKSelectInterbusModule.get_settings()

	SuperKSelectInterbusModule.get_status()

	SuperKSelectInterbusModule.is_opened()

	SuperKSelectInterbusModule.open()

	SuperKSelectInterbusModule.set_device_variable()

	SuperKSelectInterbusModule.set_register()

	InterbusSystem
	InterbusSystem.m

	InterbusSystem.Error

	InterbusSystem.apply_settings()

	InterbusSystem.close()

	InterbusSystem.get_all_module_registers()

	InterbusSystem.get_device_variable()

	InterbusSystem.get_full_info()

	InterbusSystem.get_full_status()

	InterbusSystem.get_settings()

	InterbusSystem.ib_get_default_address()

	InterbusSystem.ib_get_reg()

	InterbusSystem.ib_scan_devices()

	InterbusSystem.ib_set_default_address()

	InterbusSystem.ib_set_reg()

	InterbusSystem.ib_using_address()

	InterbusSystem.is_opened()

	InterbusSystem.lock()

	InterbusSystem.locking()

	InterbusSystem.open()

	InterbusSystem.set_device_variable()

	InterbusSystem.unlock()

	Module contents

	pylablib.devices.Newport package
	Submodules

	pylablib.devices.Newport.base module
	NewportError
	NewportError.add_note()

	NewportError.args

	NewportError.with_traceback()

	NewportBackendError
	NewportBackendError.add_note()

	NewportBackendError.args

	NewportBackendError.with_traceback()

	pylablib.devices.Newport.picomotor module
	get_usb_devices_number()

	muxaddr()

	TDeviceInfo
	TDeviceInfo.id

	Picomotor8742
	Picomotor8742.Error

	Picomotor8742.query()

	Picomotor8742.get_id()

	Picomotor8742.get_device_info()

	Picomotor8742.reset()

	Picomotor8742.save_parameters()

	Picomotor8742.restore_parameters()

	Picomotor8742.scan_devices()

	Picomotor8742.get_addr_map()

	Picomotor8742.wait_for_scan()

	Picomotor8742.get_addr()

	Picomotor8742.set_addr()

	Picomotor8742.get_ethernet_parameters()

	Picomotor8742.setup_ethernet()

	Picomotor8742.autodetect_motors()

	Picomotor8742.get_motor_type()

	Picomotor8742.set_motor_type()

	Picomotor8742.move_to()

	Picomotor8742.move_by()

	Picomotor8742.get_position()

	Picomotor8742.set_position_reference()

	Picomotor8742.jog()

	Picomotor8742.is_moving()

	Picomotor8742.wait_move()

	Picomotor8742.stop()

	Picomotor8742.get_velocity_parameters()

	Picomotor8742.setup_velocity()

	Picomotor8742.apply_settings()

	Picomotor8742.close()

	Picomotor8742.get_all_axes()

	Picomotor8742.get_device_variable()

	Picomotor8742.get_full_info()

	Picomotor8742.get_full_status()

	Picomotor8742.get_settings()

	Picomotor8742.is_opened()

	Picomotor8742.lock()

	Picomotor8742.locking()

	Picomotor8742.open()

	Picomotor8742.remap_axes()

	Picomotor8742.set_device_variable()

	Picomotor8742.unlock()

	Module contents

	pylablib.devices.OZOptics package
	Submodules

	pylablib.devices.OZOptics.base module
	OZOpticsError
	OZOpticsError.add_note()

	OZOpticsError.args

	OZOpticsError.with_traceback()

	OZOpticsBackendError
	OZOpticsBackendError.add_note()

	OZOpticsBackendError.args

	OZOpticsBackendError.with_traceback()

	OZOpticsDevice
	OZOpticsDevice.Error

	OZOpticsDevice.query()

	OZOpticsDevice.restart()

	OZOpticsDevice.get_config()

	OZOpticsDevice.apply_settings()

	OZOpticsDevice.close()

	OZOpticsDevice.get_device_variable()

	OZOpticsDevice.get_full_info()

	OZOpticsDevice.get_full_status()

	OZOpticsDevice.get_settings()

	OZOpticsDevice.is_opened()

	OZOpticsDevice.lock()

	OZOpticsDevice.locking()

	OZOpticsDevice.open()

	OZOpticsDevice.set_device_variable()

	OZOpticsDevice.unlock()

	TF100
	TF100.get_wavelength_correction()

	TF100.set_wavelength_correction()

	TF100.home()

	TF100.get_wavelength()

	TF100.set_wavelength()

	TF100.Error

	TF100.apply_settings()

	TF100.close()

	TF100.get_config()

	TF100.get_device_variable()

	TF100.get_full_info()

	TF100.get_full_status()

	TF100.get_settings()

	TF100.is_opened()

	TF100.lock()

	TF100.locking()

	TF100.open()

	TF100.query()

	TF100.restart()

	TF100.set_device_variable()

	TF100.unlock()

	DD100
	DD100.home()

	DD100.get_min_attenuation()

	DD100.get_max_attenuation()

	DD100.get_attenuation()

	DD100.set_attenuation()

	DD100.Error

	DD100.apply_settings()

	DD100.close()

	DD100.get_config()

	DD100.get_device_variable()

	DD100.get_full_info()

	DD100.get_full_status()

	DD100.get_settings()

	DD100.is_opened()

	DD100.lock()

	DD100.locking()

	DD100.open()

	DD100.query()

	DD100.restart()

	DD100.set_device_variable()

	DD100.unlock()

	EPC04
	EPC04.Error

	EPC04.query()

	EPC04.get_voltages()

	EPC04.set_voltage()

	EPC04.set_all_voltages()

	EPC04.step_voltage()

	EPC04.get_mode()

	EPC04.set_mode()

	EPC04.get_frequencies()

	EPC04.set_frequency()

	EPC04.set_all_frequencies()

	EPC04.get_waveform()

	EPC04.set_waveform()

	EPC04.save_preset()

	EPC04.apply_settings()

	EPC04.close()

	EPC04.get_device_variable()

	EPC04.get_full_info()

	EPC04.get_full_status()

	EPC04.get_settings()

	EPC04.is_opened()

	EPC04.lock()

	EPC04.locking()

	EPC04.open()

	EPC04.set_device_variable()

	EPC04.unlock()

	Module contents

	pylablib.devices.Ophir package
	Submodules

	pylablib.devices.Ophir.base module
	OphirError
	OphirError.add_note()

	OphirError.args

	OphirError.with_traceback()

	OphirBackendError
	OphirBackendError.add_note()

	OphirBackendError.args

	OphirBackendError.with_traceback()

	OphirDevice
	OphirDevice.Error

	OphirDevice.query()

	OphirDevice.apply_settings()

	OphirDevice.close()

	OphirDevice.get_device_variable()

	OphirDevice.get_full_info()

	OphirDevice.get_full_status()

	OphirDevice.get_settings()

	OphirDevice.is_opened()

	OphirDevice.lock()

	OphirDevice.locking()

	OphirDevice.open()

	OphirDevice.set_device_variable()

	OphirDevice.unlock()

	THeadInfo
	THeadInfo.capabilities

	THeadInfo.name

	THeadInfo.serial

	THeadInfo.type

	TDeviceInfo
	TDeviceInfo.id

	TDeviceInfo.name

	TDeviceInfo.rom_version

	TDeviceInfo.serial

	TWavelengthInfo
	TWavelengthInfo.curr_idx

	TWavelengthInfo.curr_wavelength

	TWavelengthInfo.mode

	TWavelengthInfo.presets

	TWavelengthInfo.rng

	TRangeInfo
	TRangeInfo.curr_idx

	TRangeInfo.curr_range

	TRangeInfo.ranges

	VegaPowerMeter
	VegaPowerMeter.get_head_info()

	VegaPowerMeter.get_device_info()

	VegaPowerMeter.reset()

	VegaPowerMeter.get_power()

	VegaPowerMeter.get_energy()

	VegaPowerMeter.get_frequency()

	VegaPowerMeter.get_units()

	VegaPowerMeter.get_wavelength_info()

	VegaPowerMeter.get_wavelength()

	VegaPowerMeter.set_wavelength()

	VegaPowerMeter.get_range_info()

	VegaPowerMeter.get_range()

	VegaPowerMeter.get_range_idx()

	VegaPowerMeter.set_range_idx()

	VegaPowerMeter.set_range()

	VegaPowerMeter.get_battery_condition()

	VegaPowerMeter.get_baudrate()

	VegaPowerMeter.get_supported_baudrates()

	VegaPowerMeter.set_baudrate()

	VegaPowerMeter.is_filter_in()

	VegaPowerMeter.set_filter()

	VegaPowerMeter.is_diffuser_in()

	VegaPowerMeter.set_diffuser()

	VegaPowerMeter.Error

	VegaPowerMeter.apply_settings()

	VegaPowerMeter.close()

	VegaPowerMeter.get_device_variable()

	VegaPowerMeter.get_full_info()

	VegaPowerMeter.get_full_status()

	VegaPowerMeter.get_settings()

	VegaPowerMeter.is_opened()

	VegaPowerMeter.lock()

	VegaPowerMeter.locking()

	VegaPowerMeter.open()

	VegaPowerMeter.query()

	VegaPowerMeter.set_device_variable()

	VegaPowerMeter.unlock()

	Module contents

	pylablib.devices.PCO package
	Submodules

	pylablib.devices.PCO.SC2 module
	list_cameras()

	get_cameras_number()

	reset_api()

	TDeviceInfo
	TDeviceInfo.interface

	TDeviceInfo.model

	TDeviceInfo.sensor

	TDeviceInfo.serial_number

	TCameraStatus
	TCameraStatus.errors

	TCameraStatus.status

	TCameraStatus.warnings

	TInternalBufferStatus
	TInternalBufferStatus.overruns

	TInternalBufferStatus.scheduled

	TInternalBufferStatus.scheduled_max

	TFrameInfo
	TFrameInfo.frame_index

	PCOSC2Camera
	PCOSC2Camera.Error

	PCOSC2Camera.TimeoutError

	PCOSC2Camera.open()

	PCOSC2Camera.close()

	PCOSC2Camera.is_opened()

	PCOSC2Camera.reboot()

	PCOSC2Camera.get_full_camera_data()

	PCOSC2Camera.update_full_data()

	PCOSC2Camera.get_device_info()

	PCOSC2Camera.get_capabilities()

	PCOSC2Camera.get_camera_status()

	PCOSC2Camera.get_temperature()

	PCOSC2Camera.get_conversion_factor()

	PCOSC2Camera.get_trigger_mode()

	PCOSC2Camera.set_trigger_mode()

	PCOSC2Camera.send_software_trigger()

	PCOSC2Camera.ScheduleLooper

	PCOSC2Camera.BufferManager

	PCOSC2Camera.get_internal_buffer_status()

	PCOSC2Camera.set_exposure()

	PCOSC2Camera.get_exposure()

	PCOSC2Camera.set_frame_delay()

	PCOSC2Camera.get_frame_delay()

	PCOSC2Camera.set_frame_period()

	PCOSC2Camera.get_frame_period()

	PCOSC2Camera.get_frame_timings()

	PCOSC2Camera.get_pixel_rate()

	PCOSC2Camera.get_available_pixel_rates()

	PCOSC2Camera.set_pixel_rate()

	PCOSC2Camera.setup_acquisition()

	PCOSC2Camera.start_acquisition()

	PCOSC2Camera.stop_acquisition()

	PCOSC2Camera.acquisition_in_progress()

	PCOSC2Camera.clear_acquisition()

	PCOSC2Camera.get_detector_size()

	PCOSC2Camera.get_roi()

	PCOSC2Camera.set_roi()

	PCOSC2Camera.requires_symmetric_roi()

	PCOSC2Camera.get_roi_limits()

	PCOSC2Camera.enable_pixel_correction()

	PCOSC2Camera.is_pixel_correction_enabled()

	PCOSC2Camera.get_noise_filter_mode()

	PCOSC2Camera.set_noise_filter_mode()

	PCOSC2Camera.set_status_line_mode()

	PCOSC2Camera.get_status_line_mode()

	PCOSC2Camera.get_bit_alignment()

	PCOSC2Camera.set_bit_alignment()

	PCOSC2Camera.set_metadata_mode()

	PCOSC2Camera.get_metadata_mode()

	PCOSC2Camera.get_double_image_mode()

	PCOSC2Camera.set_double_image_mode()

	PCOSC2Camera.FrameTransferError

	PCOSC2Camera.apply_settings()

	PCOSC2Camera.get_acquisition_parameters()

	PCOSC2Camera.get_data_dimensions()

	PCOSC2Camera.get_device_variable()

	PCOSC2Camera.get_frame_format()

	PCOSC2Camera.get_frame_info_fields()

	PCOSC2Camera.get_frame_info_format()

	PCOSC2Camera.get_frame_info_period()

	PCOSC2Camera.get_frames_status()

	PCOSC2Camera.get_full_info()

	PCOSC2Camera.get_full_status()

	PCOSC2Camera.get_image_indexing()

	PCOSC2Camera.get_new_images_range()

	PCOSC2Camera.get_settings()

	PCOSC2Camera.grab()

	PCOSC2Camera.is_acquisition_setup()

	PCOSC2Camera.pausing_acquisition()

	PCOSC2Camera.read_multiple_images()

	PCOSC2Camera.read_newest_image()

	PCOSC2Camera.read_oldest_image()

	PCOSC2Camera.set_device_variable()

	PCOSC2Camera.set_frame_format()

	PCOSC2Camera.set_frame_info_format()

	PCOSC2Camera.set_frame_info_period()

	PCOSC2Camera.set_image_indexing()

	PCOSC2Camera.snap()

	PCOSC2Camera.wait_for_frame()

	TStatusLine
	TStatusLine.framestamp

	get_status_line()

	get_status_lines()

	StatusLineChecker
	StatusLineChecker.get_framestamp()

	StatusLineChecker.check_indices()

	Module contents

	pylablib.devices.Pfeiffer package
	Submodules

	pylablib.devices.Pfeiffer.base module
	PfeifferError
	PfeifferError.add_note()

	PfeifferError.args

	PfeifferError.with_traceback()

	PfeifferBackendError
	PfeifferBackendError.add_note()

	PfeifferBackendError.args

	PfeifferBackendError.with_traceback()

	TTPG260SwitchSettings
	TTPG260SwitchSettings.channel

	TTPG260SwitchSettings.high_thresh

	TTPG260SwitchSettings.low_thresh

	TTPG260GaugeControlSettings
	TTPG260GaugeControlSettings.activation_control

	TTPG260GaugeControlSettings.deactivation_control

	TTPG260GaugeControlSettings.off_thresh

	TTPG260GaugeControlSettings.on_thresh

	TPG260
	TPG260.Error

	TPG260.comm()

	TPG260.query()

	TPG260.get_units()

	TPG260.set_units()

	TPG260.to_Pa()

	TPG260.from_Pa()

	TPG260.get_display_channel()

	TPG260.set_display_channel()

	TPG260.get_display_resolution()

	TPG260.set_display_resolution()

	TPG260.is_enabled()

	TPG260.enable()

	TPG260.get_channel_status()

	TPG260.get_pressure()

	TPG260.get_gauge_kind()

	TPG260.get_measurement_filter()

	TPG260.set_measurement_filter()

	TPG260.get_calibration_factor()

	TPG260.set_calibration_factor()

	TPG260.get_switch_settings()

	TPG260.setup_switch()

	TPG260.get_switch_status()

	TPG260.get_gauge_control_settings()

	TPG260.setup_gauge_control()

	TPG260.get_current_errors()

	TPG260.reset_error()

	TPG260.apply_settings()

	TPG260.close()

	TPG260.get_device_variable()

	TPG260.get_full_info()

	TPG260.get_full_status()

	TPG260.get_settings()

	TPG260.is_opened()

	TPG260.lock()

	TPG260.locking()

	TPG260.open()

	TPG260.set_device_variable()

	TPG260.unlock()

	DPG202
	DPG202.Error

	DPG202.query()

	DPG202.get_value()

	DPG202.comm()

	DPG202.get_pressure()

	DPG202.get_error_code()

	DPG202.get_software_version()

	DPG202.get_device_name()

	DPG202.apply_settings()

	DPG202.close()

	DPG202.get_device_variable()

	DPG202.get_full_info()

	DPG202.get_full_status()

	DPG202.get_settings()

	DPG202.is_opened()

	DPG202.lock()

	DPG202.locking()

	DPG202.open()

	DPG202.set_device_variable()

	DPG202.unlock()

	Module contents

	pylablib.devices.Photometrics package
	Submodules

	pylablib.devices.Photometrics.pvcam module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	list_cameras()

	get_cameras_number()

	PvcamAttribute
	PvcamAttribute.name

	PvcamAttribute.kind

	PvcamAttribute.available

	PvcamAttribute.readable

	PvcamAttribute.writable

	PvcamAttribute.min

	PvcamAttribute.max

	PvcamAttribute.inc

	PvcamAttribute.ivalues

	PvcamAttribute.values

	PvcamAttribute.labels

	PvcamAttribute.ilabels

	PvcamAttribute.default

	PvcamAttribute.update_limits()

	PvcamAttribute.truncate_value()

	PvcamAttribute.get_value()

	PvcamAttribute.set_value()

	TDeviceInfo
	TDeviceInfo.chip

	TDeviceInfo.part

	TDeviceInfo.product

	TDeviceInfo.serial

	TDeviceInfo.system

	TDeviceInfo.vendor

	TFrameInfo
	TFrameInfo.exposure_ns

	TFrameInfo.flags

	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.timestamp_end_ns

	TFrameInfo.timestamp_start_ns

	TReadoutInfo
	TReadoutInfo.gain_idx

	TReadoutInfo.gain_name

	TReadoutInfo.port_idx

	TReadoutInfo.port_name

	TReadoutInfo.speed_freq

	TReadoutInfo.speed_idx

	PvcamCamera
	PvcamCamera.Error

	PvcamCamera.TimeoutError

	PvcamCamera.open()

	PvcamCamera.close()

	PvcamCamera.is_opened()

	PvcamCamera.get_attribute_value()

	PvcamCamera.set_attribute_value()

	PvcamCamera.get_all_attribute_values()

	PvcamCamera.set_all_attribute_values()

	PvcamCamera.get_attribute_range()

	PvcamCamera.get_all_readout_modes()

	PvcamCamera.get_readout_mode()

	PvcamCamera.set_readout_mode()

	PvcamCamera.get_device_info()

	PvcamCamera.get_pixel_size()

	PvcamCamera.get_pixel_distance()

	PvcamCamera.get_temperature_setpoint()

	PvcamCamera.get_temperature()

	PvcamCamera.set_temperature()

	PvcamCamera.get_fan_mode()

	PvcamCamera.set_fan_mode()

	PvcamCamera.is_metadata_enabled()

	PvcamCamera.enable_metadata()

	PvcamCamera.get_exposure()

	PvcamCamera.set_exposure()

	PvcamCamera.get_clear_mode()

	PvcamCamera.set_clear_mode()

	PvcamCamera.get_clear_cycles()

	PvcamCamera.set_clear_cycles()

	PvcamCamera.get_clearing_time()

	PvcamCamera.get_readout_time()

	PvcamCamera.get_frame_timings()

	PvcamCamera.get_trigger_mode()

	PvcamCamera.set_trigger_mode()

	PvcamCamera.send_software_trigger()

	PvcamCamera.get_detector_size()

	PvcamCamera.get_roi()

	PvcamCamera.set_roi()

	PvcamCamera.get_roi_limits()

	PvcamCamera.get_supported_binning_modes()

	PvcamCamera.setup_acquisition()

	PvcamCamera.clear_acquisition()

	PvcamCamera.start_acquisition()

	PvcamCamera.stop_acquisition()

	PvcamCamera.acquisition_in_progress()

	PvcamCamera.read_multiple_images()

	PvcamCamera.FrameTransferError

	PvcamCamera.apply_settings()

	PvcamCamera.get_acquisition_parameters()

	PvcamCamera.get_all_attributes()

	PvcamCamera.get_attribute()

	PvcamCamera.get_data_dimensions()

	PvcamCamera.get_device_variable()

	PvcamCamera.get_frame_format()

	PvcamCamera.get_frame_info_fields()

	PvcamCamera.get_frame_info_format()

	PvcamCamera.get_frame_info_period()

	PvcamCamera.get_frame_period()

	PvcamCamera.get_frames_status()

	PvcamCamera.get_full_info()

	PvcamCamera.get_full_status()

	PvcamCamera.get_image_indexing()

	PvcamCamera.get_new_images_range()

	PvcamCamera.get_settings()

	PvcamCamera.grab()

	PvcamCamera.is_acquisition_setup()

	PvcamCamera.pausing_acquisition()

	PvcamCamera.read_newest_image()

	PvcamCamera.read_oldest_image()

	PvcamCamera.set_device_variable()

	PvcamCamera.set_frame_format()

	PvcamCamera.set_frame_info_format()

	PvcamCamera.set_frame_info_period()

	PvcamCamera.set_image_indexing()

	PvcamCamera.snap()

	PvcamCamera.wait_for_frame()

	get_roi_parameters()

	parse_metainfo_v1()

	parse_metainfo_v3()

	Module contents

	pylablib.devices.PhotonFocus package
	Submodules

	pylablib.devices.PhotonFocus.PhotonFocus module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	query_camera_name()

	TCameraInfo
	TCameraInfo.manufacturer

	TCameraInfo.port

	TCameraInfo.type

	TCameraInfo.version

	list_cameras()

	get_cameras_number()

	get_port_index()

	PFCamAttribute
	PFCamAttribute.name

	PFCamAttribute.kind

	PFCamAttribute.readable

	PFCamAttribute.writable

	PFCamAttribute.is_command

	PFCamAttribute.min

	PFCamAttribute.max

	PFCamAttribute.ivalues

	PFCamAttribute.values

	PFCamAttribute.labels

	PFCamAttribute.ilabels

	PFCamAttribute.update_limits()

	PFCamAttribute.truncate_value()

	PFCamAttribute.get_value()

	PFCamAttribute.set_value()

	PFCamAttribute.call_command()

	TDeviceInfo
	TDeviceInfo.grabber_info

	TDeviceInfo.model

	TDeviceInfo.serial_number

	IPhotonFocusCamera
	IPhotonFocusCamera.Error

	IPhotonFocusCamera.GrabberClass

	IPhotonFocusCamera.setup_max_baudrate()

	IPhotonFocusCamera.get_baudrate()

	IPhotonFocusCamera.open()

	IPhotonFocusCamera.close()

	IPhotonFocusCamera.get_attribute_value()

	IPhotonFocusCamera.set_attribute_value()

	IPhotonFocusCamera.get_all_attribute_values()

	IPhotonFocusCamera.set_all_attribute_values()

	IPhotonFocusCamera.update_attribute_value()

	IPhotonFocusCamera.call_command()

	IPhotonFocusCamera.get_device_info()

	IPhotonFocusCamera.get_detector_size()

	IPhotonFocusCamera.get_roi()

	IPhotonFocusCamera.fast_shift_roi()

	IPhotonFocusCamera.set_roi()

	IPhotonFocusCamera.get_roi_limits()

	IPhotonFocusCamera.get_exposure()

	IPhotonFocusCamera.set_exposure()

	IPhotonFocusCamera.get_frame_period()

	IPhotonFocusCamera.set_frame_period()

	IPhotonFocusCamera.get_frame_timings()

	IPhotonFocusCamera.is_CFR_enabled()

	IPhotonFocusCamera.enable_CFR()

	IPhotonFocusCamera.get_trigger_interleave()

	IPhotonFocusCamera.set_trigger_interleave()

	IPhotonFocusCamera.is_status_line_enabled()

	IPhotonFocusCamera.enable_status_line()

	IPhotonFocusCamera.get_black_level_offset()

	IPhotonFocusCamera.set_black_level_offset()

	IPhotonFocusCamera.FrameTransferError

	IPhotonFocusCamera.TimeoutError

	IPhotonFocusCamera.acquisition_in_progress()

	IPhotonFocusCamera.apply_settings()

	IPhotonFocusCamera.clear_acquisition()

	IPhotonFocusCamera.get_acquisition_parameters()

	IPhotonFocusCamera.get_all_attributes()

	IPhotonFocusCamera.get_attribute()

	IPhotonFocusCamera.get_data_dimensions()

	IPhotonFocusCamera.get_device_variable()

	IPhotonFocusCamera.get_frame_format()

	IPhotonFocusCamera.get_frame_info_fields()

	IPhotonFocusCamera.get_frame_info_format()

	IPhotonFocusCamera.get_frame_info_period()

	IPhotonFocusCamera.get_frames_status()

	IPhotonFocusCamera.get_full_info()

	IPhotonFocusCamera.get_full_status()

	IPhotonFocusCamera.get_image_indexing()

	IPhotonFocusCamera.get_new_images_range()

	IPhotonFocusCamera.get_settings()

	IPhotonFocusCamera.grab()

	IPhotonFocusCamera.is_acquisition_setup()

	IPhotonFocusCamera.is_opened()

	IPhotonFocusCamera.pausing_acquisition()

	IPhotonFocusCamera.read_multiple_images()

	IPhotonFocusCamera.read_newest_image()

	IPhotonFocusCamera.read_oldest_image()

	IPhotonFocusCamera.set_device_variable()

	IPhotonFocusCamera.set_frame_format()

	IPhotonFocusCamera.set_frame_info_format()

	IPhotonFocusCamera.set_frame_info_period()

	IPhotonFocusCamera.set_image_indexing()

	IPhotonFocusCamera.setup_acquisition()

	IPhotonFocusCamera.snap()

	IPhotonFocusCamera.start_acquisition()

	IPhotonFocusCamera.stop_acquisition()

	IPhotonFocusCamera.wait_for_frame()

	PhotonFocusIMAQCamera
	PhotonFocusIMAQCamera.Error

	PhotonFocusIMAQCamera.GrabberClass

	PhotonFocusIMAQCamera.open()

	PhotonFocusIMAQCamera.FrameTransferError

	PhotonFocusIMAQCamera.TimeoutError

	PhotonFocusIMAQCamera.acquisition_in_progress()

	PhotonFocusIMAQCamera.apply_settings()

	PhotonFocusIMAQCamera.call_command()

	PhotonFocusIMAQCamera.clear_acquisition()

	PhotonFocusIMAQCamera.clear_all_triggers()

	PhotonFocusIMAQCamera.close()

	PhotonFocusIMAQCamera.configure_trigger_in()

	PhotonFocusIMAQCamera.configure_trigger_out()

	PhotonFocusIMAQCamera.enable_CFR()

	PhotonFocusIMAQCamera.enable_status_line()

	PhotonFocusIMAQCamera.fast_shift_roi()

	PhotonFocusIMAQCamera.get_acquisition_parameters()

	PhotonFocusIMAQCamera.get_all_attribute_values()

	PhotonFocusIMAQCamera.get_all_attributes()

	PhotonFocusIMAQCamera.get_all_grabber_attribute_values()

	PhotonFocusIMAQCamera.get_attribute()

	PhotonFocusIMAQCamera.get_attribute_value()

	PhotonFocusIMAQCamera.get_baudrate()

	PhotonFocusIMAQCamera.get_black_level_offset()

	PhotonFocusIMAQCamera.get_data_dimensions()

	PhotonFocusIMAQCamera.get_detector_size()

	PhotonFocusIMAQCamera.get_device_info()

	PhotonFocusIMAQCamera.get_device_variable()

	PhotonFocusIMAQCamera.get_exposure()

	PhotonFocusIMAQCamera.get_frame_format()

	PhotonFocusIMAQCamera.get_frame_info_fields()

	PhotonFocusIMAQCamera.get_frame_info_format()

	PhotonFocusIMAQCamera.get_frame_info_period()

	PhotonFocusIMAQCamera.get_frame_period()

	PhotonFocusIMAQCamera.get_frame_timings()

	PhotonFocusIMAQCamera.get_frames_status()

	PhotonFocusIMAQCamera.get_full_info()

	PhotonFocusIMAQCamera.get_full_status()

	PhotonFocusIMAQCamera.get_grabber_attribute_value()

	PhotonFocusIMAQCamera.get_grabber_detector_size()

	PhotonFocusIMAQCamera.get_grabber_roi()

	PhotonFocusIMAQCamera.get_grabber_roi_limits()

	PhotonFocusIMAQCamera.get_image_indexing()

	PhotonFocusIMAQCamera.get_new_images_range()

	PhotonFocusIMAQCamera.get_roi()

	PhotonFocusIMAQCamera.get_roi_limits()

	PhotonFocusIMAQCamera.get_serial_params()

	PhotonFocusIMAQCamera.get_settings()

	PhotonFocusIMAQCamera.get_trigger_interleave()

	PhotonFocusIMAQCamera.grab()

	PhotonFocusIMAQCamera.is_CFR_enabled()

	PhotonFocusIMAQCamera.is_acquisition_setup()

	PhotonFocusIMAQCamera.is_opened()

	PhotonFocusIMAQCamera.is_status_line_enabled()

	PhotonFocusIMAQCamera.pausing_acquisition()

	PhotonFocusIMAQCamera.read_multiple_images()

	PhotonFocusIMAQCamera.read_newest_image()

	PhotonFocusIMAQCamera.read_oldest_image()

	PhotonFocusIMAQCamera.read_trigger()

	PhotonFocusIMAQCamera.reset()

	PhotonFocusIMAQCamera.send_software_trigger()

	PhotonFocusIMAQCamera.serial_flush()

	PhotonFocusIMAQCamera.serial_read()

	PhotonFocusIMAQCamera.serial_readline()

	PhotonFocusIMAQCamera.serial_write()

	PhotonFocusIMAQCamera.set_all_attribute_values()

	PhotonFocusIMAQCamera.set_attribute_value()

	PhotonFocusIMAQCamera.set_black_level_offset()

	PhotonFocusIMAQCamera.set_device_variable()

	PhotonFocusIMAQCamera.set_exposure()

	PhotonFocusIMAQCamera.set_frame_format()

	PhotonFocusIMAQCamera.set_frame_info_format()

	PhotonFocusIMAQCamera.set_frame_info_period()

	PhotonFocusIMAQCamera.set_frame_period()

	PhotonFocusIMAQCamera.set_grabber_attribute_value()

	PhotonFocusIMAQCamera.set_grabber_roi()

	PhotonFocusIMAQCamera.set_image_indexing()

	PhotonFocusIMAQCamera.set_roi()

	PhotonFocusIMAQCamera.set_trigger_interleave()

	PhotonFocusIMAQCamera.setup_acquisition()

	PhotonFocusIMAQCamera.setup_max_baudrate()

	PhotonFocusIMAQCamera.setup_serial_params()

	PhotonFocusIMAQCamera.snap()

	PhotonFocusIMAQCamera.start_acquisition()

	PhotonFocusIMAQCamera.stop_acquisition()

	PhotonFocusIMAQCamera.update_attribute_value()

	PhotonFocusIMAQCamera.wait_for_frame()

	PhotonFocusSiSoCamera
	PhotonFocusSiSoCamera.Error

	PhotonFocusSiSoCamera.GrabberClass

	PhotonFocusSiSoCamera.open()

	PhotonFocusSiSoCamera.BufferManager

	PhotonFocusSiSoCamera.FrameTransferError

	PhotonFocusSiSoCamera.TimeoutError

	PhotonFocusSiSoCamera.acquisition_in_progress()

	PhotonFocusSiSoCamera.apply_settings()

	PhotonFocusSiSoCamera.call_command()

	PhotonFocusSiSoCamera.clear_acquisition()

	PhotonFocusSiSoCamera.close()

	PhotonFocusSiSoCamera.enable_CFR()

	PhotonFocusSiSoCamera.enable_status_line()

	PhotonFocusSiSoCamera.fast_shift_roi()

	PhotonFocusSiSoCamera.get_acquisition_parameters()

	PhotonFocusSiSoCamera.get_all_attribute_values()

	PhotonFocusSiSoCamera.get_all_attributes()

	PhotonFocusSiSoCamera.get_all_grabber_attribute_values()

	PhotonFocusSiSoCamera.get_all_grabber_attributes()

	PhotonFocusSiSoCamera.get_attribute()

	PhotonFocusSiSoCamera.get_attribute_value()

	PhotonFocusSiSoCamera.get_available_camlink_pixel_formats()

	PhotonFocusSiSoCamera.get_baudrate()

	PhotonFocusSiSoCamera.get_black_level_offset()

	PhotonFocusSiSoCamera.get_camlink_pixel_format()

	PhotonFocusSiSoCamera.get_data_dimensions()

	PhotonFocusSiSoCamera.get_detector_size()

	PhotonFocusSiSoCamera.get_device_info()

	PhotonFocusSiSoCamera.get_device_variable()

	PhotonFocusSiSoCamera.get_exposure()

	PhotonFocusSiSoCamera.get_frame_format()

	PhotonFocusSiSoCamera.get_frame_info_fields()

	PhotonFocusSiSoCamera.get_frame_info_format()

	PhotonFocusSiSoCamera.get_frame_info_period()

	PhotonFocusSiSoCamera.get_frame_period()

	PhotonFocusSiSoCamera.get_frame_timings()

	PhotonFocusSiSoCamera.get_frames_status()

	PhotonFocusSiSoCamera.get_full_info()

	PhotonFocusSiSoCamera.get_full_status()

	PhotonFocusSiSoCamera.get_genicam_info_xml()

	PhotonFocusSiSoCamera.get_grabber_attribute()

	PhotonFocusSiSoCamera.get_grabber_attribute_value()

	PhotonFocusSiSoCamera.get_grabber_detector_size()

	PhotonFocusSiSoCamera.get_grabber_roi()

	PhotonFocusSiSoCamera.get_grabber_roi_limits()

	PhotonFocusSiSoCamera.get_image_indexing()

	PhotonFocusSiSoCamera.get_new_images_range()

	PhotonFocusSiSoCamera.get_roi()

	PhotonFocusSiSoCamera.get_roi_limits()

	PhotonFocusSiSoCamera.get_settings()

	PhotonFocusSiSoCamera.get_system_info()

	PhotonFocusSiSoCamera.get_trigger_interleave()

	PhotonFocusSiSoCamera.grab()

	PhotonFocusSiSoCamera.is_CFR_enabled()

	PhotonFocusSiSoCamera.is_acquisition_setup()

	PhotonFocusSiSoCamera.is_opened()

	PhotonFocusSiSoCamera.is_status_line_enabled()

	PhotonFocusSiSoCamera.pausing_acquisition()

	PhotonFocusSiSoCamera.read_multiple_images()

	PhotonFocusSiSoCamera.read_newest_image()

	PhotonFocusSiSoCamera.read_oldest_image()

	PhotonFocusSiSoCamera.set_all_attribute_values()

	PhotonFocusSiSoCamera.set_all_grabber_attribute_values()

	PhotonFocusSiSoCamera.set_attribute_value()

	PhotonFocusSiSoCamera.set_black_level_offset()

	PhotonFocusSiSoCamera.set_device_variable()

	PhotonFocusSiSoCamera.set_exposure()

	PhotonFocusSiSoCamera.set_frame_format()

	PhotonFocusSiSoCamera.set_frame_info_format()

	PhotonFocusSiSoCamera.set_frame_info_period()

	PhotonFocusSiSoCamera.set_frame_merge()

	PhotonFocusSiSoCamera.set_frame_period()

	PhotonFocusSiSoCamera.set_grabber_attribute_value()

	PhotonFocusSiSoCamera.set_grabber_roi()

	PhotonFocusSiSoCamera.set_image_indexing()

	PhotonFocusSiSoCamera.set_roi()

	PhotonFocusSiSoCamera.set_trigger_interleave()

	PhotonFocusSiSoCamera.setup_acquisition()

	PhotonFocusSiSoCamera.setup_camlink_pixel_format()

	PhotonFocusSiSoCamera.setup_max_baudrate()

	PhotonFocusSiSoCamera.snap()

	PhotonFocusSiSoCamera.start_acquisition()

	PhotonFocusSiSoCamera.stop_acquisition()

	PhotonFocusSiSoCamera.update_attribute_value()

	PhotonFocusSiSoCamera.wait_for_frame()

	PhotonFocusBitFlowCamera
	PhotonFocusBitFlowCamera.Error

	PhotonFocusBitFlowCamera.GrabberClass

	PhotonFocusBitFlowCamera.open()

	PhotonFocusBitFlowCamera.setup_acquisition()

	PhotonFocusBitFlowCamera.BufferManager

	PhotonFocusBitFlowCamera.FrameTransferError

	PhotonFocusBitFlowCamera.TimeoutError

	PhotonFocusBitFlowCamera.acquisition_in_progress()

	PhotonFocusBitFlowCamera.apply_settings()

	PhotonFocusBitFlowCamera.call_command()

	PhotonFocusBitFlowCamera.clear_acquisition()

	PhotonFocusBitFlowCamera.close()

	PhotonFocusBitFlowCamera.enable_CFR()

	PhotonFocusBitFlowCamera.enable_status_line()

	PhotonFocusBitFlowCamera.fast_shift_roi()

	PhotonFocusBitFlowCamera.get_acquisition_parameters()

	PhotonFocusBitFlowCamera.get_all_attribute_values()

	PhotonFocusBitFlowCamera.get_all_attributes()

	PhotonFocusBitFlowCamera.get_attribute()

	PhotonFocusBitFlowCamera.get_attribute_value()

	PhotonFocusBitFlowCamera.get_baudrate()

	PhotonFocusBitFlowCamera.get_black_level_offset()

	PhotonFocusBitFlowCamera.get_data_dimensions()

	PhotonFocusBitFlowCamera.get_detector_size()

	PhotonFocusBitFlowCamera.get_device_info()

	PhotonFocusBitFlowCamera.get_device_variable()

	PhotonFocusBitFlowCamera.get_exposure()

	PhotonFocusBitFlowCamera.get_frame_format()

	PhotonFocusBitFlowCamera.get_frame_info_fields()

	PhotonFocusBitFlowCamera.get_frame_info_format()

	PhotonFocusBitFlowCamera.get_frame_info_period()

	PhotonFocusBitFlowCamera.get_frame_period()

	PhotonFocusBitFlowCamera.get_frame_timings()

	PhotonFocusBitFlowCamera.get_frames_status()

	PhotonFocusBitFlowCamera.get_full_info()

	PhotonFocusBitFlowCamera.get_full_status()

	PhotonFocusBitFlowCamera.get_grabber_detector_size()

	PhotonFocusBitFlowCamera.get_grabber_roi()

	PhotonFocusBitFlowCamera.get_grabber_roi_limits()

	PhotonFocusBitFlowCamera.get_image_indexing()

	PhotonFocusBitFlowCamera.get_new_images_range()

	PhotonFocusBitFlowCamera.get_roi()

	PhotonFocusBitFlowCamera.get_roi_limits()

	PhotonFocusBitFlowCamera.get_settings()

	PhotonFocusBitFlowCamera.get_trigger_interleave()

	PhotonFocusBitFlowCamera.grab()

	PhotonFocusBitFlowCamera.is_CFR_enabled()

	PhotonFocusBitFlowCamera.is_acquisition_setup()

	PhotonFocusBitFlowCamera.is_opened()

	PhotonFocusBitFlowCamera.is_status_line_enabled()

	PhotonFocusBitFlowCamera.pausing_acquisition()

	PhotonFocusBitFlowCamera.read_multiple_images()

	PhotonFocusBitFlowCamera.read_newest_image()

	PhotonFocusBitFlowCamera.read_oldest_image()

	PhotonFocusBitFlowCamera.set_all_attribute_values()

	PhotonFocusBitFlowCamera.set_attribute_value()

	PhotonFocusBitFlowCamera.set_black_level_offset()

	PhotonFocusBitFlowCamera.set_device_variable()

	PhotonFocusBitFlowCamera.set_exposure()

	PhotonFocusBitFlowCamera.set_frame_format()

	PhotonFocusBitFlowCamera.set_frame_info_format()

	PhotonFocusBitFlowCamera.set_frame_info_period()

	PhotonFocusBitFlowCamera.set_frame_period()

	PhotonFocusBitFlowCamera.set_grabber_roi()

	PhotonFocusBitFlowCamera.set_image_indexing()

	PhotonFocusBitFlowCamera.set_roi()

	PhotonFocusBitFlowCamera.set_trigger_interleave()

	PhotonFocusBitFlowCamera.setup_max_baudrate()

	PhotonFocusBitFlowCamera.snap()

	PhotonFocusBitFlowCamera.start_acquisition()

	PhotonFocusBitFlowCamera.stop_acquisition()

	PhotonFocusBitFlowCamera.update_attribute_value()

	PhotonFocusBitFlowCamera.wait_for_frame()

	check_grabber_association()

	get_status_lines()

	get_status_line_position()

	remove_status_line()

	find_skipped_frames()

	StatusLineChecker
	StatusLineChecker.check_indices()

	StatusLineChecker.get_framestamp()

	Module contents

	pylablib.devices.PhysikInstrumente package
	Submodules

	pylablib.devices.PhysikInstrumente.base module
	PhysikInstrumenteError
	PhysikInstrumenteError.add_note()

	PhysikInstrumenteError.args

	PhysikInstrumenteError.with_traceback()

	PhysikInstrumenteBackendError
	PhysikInstrumenteBackendError.add_note()

	PhysikInstrumenteBackendError.args

	PhysikInstrumenteBackendError.with_traceback()

	GenericPIController
	GenericPIController.Error

	GenericPIController.open()

	GenericPIController.query()

	GenericPIController.query_axis()

	GenericPIController.set_axis()

	GenericPIController.get_id()

	GenericPIController.get_help()

	GenericPIController.is_online_enabled()

	GenericPIController.enable_online()

	GenericPIController.get_axis_parameter()

	GenericPIController.set_axis_parameter()

	GenericPIController.apply_settings()

	GenericPIController.close()

	GenericPIController.get_all_axes()

	GenericPIController.get_device_variable()

	GenericPIController.get_full_info()

	GenericPIController.get_full_status()

	GenericPIController.get_settings()

	GenericPIController.is_opened()

	GenericPIController.lock()

	GenericPIController.locking()

	GenericPIController.remap_axes()

	GenericPIController.set_device_variable()

	GenericPIController.unlock()

	PIE516
	PIE516.is_servo_enabled()

	PIE516.enable_servo()

	PIE516.is_drift_compensation_enabled()

	PIE516.enable_drift_compensation()

	PIE516.is_velocity_control_enabled()

	PIE516.enable_velocity_control()

	PIE516.get_voltage_setpoint()

	PIE516.get_voltage()

	PIE516.set_voltage()

	PIE516.get_voltage_lower_limit()

	PIE516.set_voltage_lower_limit()

	PIE516.get_voltage_upper_limit()

	PIE516.set_voltage_upper_limit()

	PIE516.get_velocity()

	PIE516.set_velocity()

	PIE516.get_position()

	PIE516.get_target_position()

	PIE516.move_to()

	PIE516.move_by()

	PIE516.stop()

	PIE516.get_position_lower_limit()

	PIE516.set_position_lower_limit()

	PIE516.get_position_upper_limit()

	PIE516.set_position_upper_limit()

	PIE516.Error

	PIE516.apply_settings()

	PIE516.close()

	PIE516.enable_online()

	PIE516.get_all_axes()

	PIE516.get_axis_parameter()

	PIE516.get_device_variable()

	PIE516.get_full_info()

	PIE516.get_full_status()

	PIE516.get_help()

	PIE516.get_id()

	PIE516.get_settings()

	PIE516.is_online_enabled()

	PIE516.is_opened()

	PIE516.lock()

	PIE516.locking()

	PIE516.open()

	PIE516.query()

	PIE516.query_axis()

	PIE516.remap_axes()

	PIE516.set_axis()

	PIE516.set_axis_parameter()

	PIE516.set_device_variable()

	PIE516.unlock()

	PIE515
	PIE515.Error

	PIE515.ReraiseError

	PIE515.open()

	PIE515.close()

	PIE515.is_online_enabled()

	PIE515.enable_online()

	PIE515.get_current_axis()

	PIE515.select_axis()

	PIE515.is_servo_enabled()

	PIE515.enable_servo()

	PIE515.get_voltage_setpoint()

	PIE515.get_voltage()

	PIE515.set_voltage()

	PIE515.get_voltage_lower_limit()

	PIE515.set_voltage_lower_limit()

	PIE515.get_voltage_upper_limit()

	PIE515.set_voltage_upper_limit()

	PIE515.get_position()

	PIE515.get_target_position()

	PIE515.move_to()

	PIE515.move_by()

	PIE515.get_position_lower_limit()

	PIE515.set_position_lower_limit()

	PIE515.get_position_upper_limit()

	PIE515.set_position_upper_limit()

	PIE515.BackendError

	PIE515.apply_settings()

	PIE515.ask()

	PIE515.flush()

	PIE515.get_all_axes()

	PIE515.get_arg_type()

	PIE515.get_device_variable()

	PIE515.get_esr()

	PIE515.get_full_info()

	PIE515.get_full_status()

	PIE515.get_id()

	PIE515.get_settings()

	PIE515.is_opened()

	PIE515.lock()

	PIE515.locking()

	PIE515.parse_array_data()

	PIE515.read()

	PIE515.read_binary_array_data()

	PIE515.reconnect()

	PIE515.remap_axes()

	PIE515.reset()

	PIE515.set_device_variable()

	PIE515.sleep()

	PIE515.unlock()

	PIE515.using_write_buffer()

	PIE515.wait()

	PIE515.wait_dev()

	PIE515.wait_sync()

	PIE515.write()

	Module contents

	pylablib.devices.PrincetonInstruments package
	Submodules

	pylablib.devices.PrincetonInstruments.picam module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	TCameraInfo
	TCameraInfo.interface

	TCameraInfo.model

	TCameraInfo.name

	TCameraInfo.serial_number

	list_cameras()

	get_cameras_number()

	TROIConstraints
	TROIConstraints.flags

	TROIConstraints.hrng

	TROIConstraints.nrois

	TROIConstraints.wrng

	TROIConstraints.xbins

	TROIConstraints.xrng

	TROIConstraints.ybins

	TROIConstraints.yrng

	PicamAttribute
	PicamAttribute.name

	PicamAttribute.kind

	PicamAttribute.exists

	PicamAttribute.relevant

	PicamAttribute.read_directly

	PicamAttribute.value_access

	PicamAttribute.writable

	PicamAttribute.default

	PicamAttribute.can_set_online

	PicamAttribute.cons_type

	PicamAttribute.cons_permanent

	PicamAttribute.cons_error

	PicamAttribute.cons_novalid

	PicamAttribute.min

	PicamAttribute.max

	PicamAttribute.inc

	PicamAttribute.cons_excluded

	PicamAttribute.cons_included

	PicamAttribute.ivalues

	PicamAttribute.values

	PicamAttribute.labels

	PicamAttribute.ilabels

	PicamAttribute.update_limits()

	PicamAttribute.truncate_value()

	PicamAttribute.get_value()

	PicamAttribute.set_value()

	TDeviceInfo
	TDeviceInfo.interface

	TDeviceInfo.model

	TDeviceInfo.name

	TDeviceInfo.serial_number

	TFrameInfo
	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.timestamp_end

	TFrameInfo.timestamp_start

	PicamCamera
	PicamCamera.Error

	PicamCamera.TimeoutError

	PicamCamera.open()

	PicamCamera.close()

	PicamCamera.is_opened()

	PicamCamera.get_attribute_value()

	PicamCamera.set_attribute_value()

	PicamCamera.get_all_attribute_values()

	PicamCamera.set_all_attribute_values()

	PicamCamera.get_device_info()

	PicamCamera.get_pixel_size()

	PicamCamera.enable_metadata()

	PicamCamera.is_metadata_enabled()

	PicamCamera.get_exposure()

	PicamCamera.set_exposure()

	PicamCamera.get_frame_period()

	PicamCamera.get_frame_timings()

	PicamCamera.get_detector_size()

	PicamCamera.get_roi()

	PicamCamera.set_roi()

	PicamCamera.get_roi_limits()

	PicamCamera.setup_acquisition()

	PicamCamera.clear_acquisition()

	PicamCamera.start_acquisition()

	PicamCamera.stop_acquisition()

	PicamCamera.acquisition_in_progress()

	PicamCamera.FrameTransferError

	PicamCamera.apply_settings()

	PicamCamera.get_acquisition_parameters()

	PicamCamera.get_all_attributes()

	PicamCamera.get_attribute()

	PicamCamera.get_data_dimensions()

	PicamCamera.get_device_variable()

	PicamCamera.get_frame_format()

	PicamCamera.get_frame_info_fields()

	PicamCamera.get_frame_info_format()

	PicamCamera.get_frame_info_period()

	PicamCamera.get_frames_status()

	PicamCamera.get_full_info()

	PicamCamera.get_full_status()

	PicamCamera.get_image_indexing()

	PicamCamera.get_new_images_range()

	PicamCamera.get_settings()

	PicamCamera.grab()

	PicamCamera.is_acquisition_setup()

	PicamCamera.pausing_acquisition()

	PicamCamera.read_newest_image()

	PicamCamera.read_oldest_image()

	PicamCamera.set_device_variable()

	PicamCamera.set_frame_format()

	PicamCamera.set_frame_info_format()

	PicamCamera.set_frame_info_period()

	PicamCamera.set_image_indexing()

	PicamCamera.snap()

	PicamCamera.wait_for_frame()

	PicamCamera.read_multiple_images()

	Module contents

	pylablib.devices.Rigol package
	Submodules

	pylablib.devices.Rigol.base module
	GenericRigolError
	GenericRigolError.add_note()

	GenericRigolError.args

	GenericRigolError.with_traceback()

	GenericRigolBackendError
	GenericRigolBackendError.add_note()

	GenericRigolBackendError.args

	GenericRigolBackendError.with_traceback()

	pylablib.devices.Rigol.power_supply module
	DP1116A
	DP1116A.Error

	DP1116A.ReraiseError

	DP1116A.is_output_enabled()

	DP1116A.enable_output()

	DP1116A.get_output_range()

	DP1116A.set_output_range()

	DP1116A.get_voltage_setpoint()

	DP1116A.get_voltage()

	DP1116A.set_voltage()

	DP1116A.get_current_setpoint()

	DP1116A.get_current()

	DP1116A.set_current()

	DP1116A.get_power()

	DP1116A.get_ovp_threshold()

	DP1116A.set_ovp_threshold()

	DP1116A.is_ovp_enabled()

	DP1116A.enable_ovp()

	DP1116A.get_ocp_threshold()

	DP1116A.set_ocp_threshold()

	DP1116A.is_ocp_enabled()

	DP1116A.enable_ocp()

	DP1116A.BackendError

	DP1116A.apply_settings()

	DP1116A.ask()

	DP1116A.close()

	DP1116A.flush()

	DP1116A.get_arg_type()

	DP1116A.get_device_variable()

	DP1116A.get_esr()

	DP1116A.get_full_info()

	DP1116A.get_full_status()

	DP1116A.get_id()

	DP1116A.get_settings()

	DP1116A.is_opened()

	DP1116A.lock()

	DP1116A.locking()

	DP1116A.open()

	DP1116A.parse_array_data()

	DP1116A.read()

	DP1116A.read_binary_array_data()

	DP1116A.reconnect()

	DP1116A.reset()

	DP1116A.set_device_variable()

	DP1116A.sleep()

	DP1116A.unlock()

	DP1116A.using_write_buffer()

	DP1116A.wait()

	DP1116A.wait_dev()

	DP1116A.wait_sync()

	DP1116A.write()

	Module contents

	pylablib.devices.SiliconSoftware package
	Submodules

	pylablib.devices.SiliconSoftware.fgrab module
	TBoardInfo
	TBoardInfo.full_name

	TBoardInfo.name

	TBoardInfo.serial

	TFullBoardInfo

	get_board_info()

	list_boards()

	get_boards_number()

	TAppletInfo
	TAppletInfo.file

	TAppletInfo.name

	TFullAppletInfo
	TFullAppletInfo.category

	TFullAppletInfo.desc

	TFullAppletInfo.file

	TFullAppletInfo.flags

	TFullAppletInfo.info

	TFullAppletInfo.name

	TFullAppletInfo.path

	TFullAppletInfo.platform

	TFullAppletInfo.tags

	TFullAppletInfo.uid

	TFullAppletInfo.version

	list_applets()

	get_applet_info()

	FGrabAttribute
	FGrabAttribute.name

	FGrabAttribute.kind

	FGrabAttribute.min

	FGrabAttribute.max

	FGrabAttribute.inc

	FGrabAttribute.ivalues

	FGrabAttribute.values

	FGrabAttribute.labels

	FGrabAttribute.ilabels

	FGrabAttribute.update_limits()

	FGrabAttribute.truncate_value()

	FGrabAttribute.get_value()

	FGrabAttribute.set_value()

	TDeviceInfo
	TDeviceInfo.applet_info

	TDeviceInfo.software_version

	TDeviceInfo.system_info

	TFrameInfo
	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.timestamp

	TFrameInfo.timestamp_long

	SiliconSoftwareFrameGrabber
	SiliconSoftwareFrameGrabber.Error

	SiliconSoftwareFrameGrabber.TimeoutError

	SiliconSoftwareFrameGrabber.open()

	SiliconSoftwareFrameGrabber.close()

	SiliconSoftwareFrameGrabber.is_opened()

	SiliconSoftwareFrameGrabber.get_all_grabber_attribute_values()

	SiliconSoftwareFrameGrabber.set_all_grabber_attribute_values()

	SiliconSoftwareFrameGrabber.get_system_info()

	SiliconSoftwareFrameGrabber.get_genicam_info_xml()

	SiliconSoftwareFrameGrabber.get_device_info()

	SiliconSoftwareFrameGrabber.set_frame_merge()

	SiliconSoftwareFrameGrabber.get_detector_size()

	SiliconSoftwareFrameGrabber.get_grabber_detector_size()

	SiliconSoftwareFrameGrabber.get_roi()

	SiliconSoftwareFrameGrabber.get_grabber_roi()

	SiliconSoftwareFrameGrabber.set_roi()

	SiliconSoftwareFrameGrabber.set_grabber_roi()

	SiliconSoftwareFrameGrabber.get_roi_limits()

	SiliconSoftwareFrameGrabber.get_grabber_roi_limits()

	SiliconSoftwareFrameGrabber.BufferManager

	SiliconSoftwareFrameGrabber.setup_camlink_pixel_format()

	SiliconSoftwareFrameGrabber.get_camlink_pixel_format()

	SiliconSoftwareFrameGrabber.get_available_camlink_pixel_formats()

	SiliconSoftwareFrameGrabber.setup_acquisition()

	SiliconSoftwareFrameGrabber.clear_acquisition()

	SiliconSoftwareFrameGrabber.start_acquisition()

	SiliconSoftwareFrameGrabber.stop_acquisition()

	SiliconSoftwareFrameGrabber.acquisition_in_progress()

	SiliconSoftwareFrameGrabber.FrameTransferError

	SiliconSoftwareFrameGrabber.apply_settings()

	SiliconSoftwareFrameGrabber.get_acquisition_parameters()

	SiliconSoftwareFrameGrabber.get_all_grabber_attributes()

	SiliconSoftwareFrameGrabber.get_data_dimensions()

	SiliconSoftwareFrameGrabber.get_device_variable()

	SiliconSoftwareFrameGrabber.get_frame_format()

	SiliconSoftwareFrameGrabber.get_frame_info_fields()

	SiliconSoftwareFrameGrabber.get_frame_info_format()

	SiliconSoftwareFrameGrabber.get_frame_info_period()

	SiliconSoftwareFrameGrabber.get_frames_status()

	SiliconSoftwareFrameGrabber.get_full_info()

	SiliconSoftwareFrameGrabber.get_full_status()

	SiliconSoftwareFrameGrabber.get_grabber_attribute()

	SiliconSoftwareFrameGrabber.get_grabber_attribute_value()

	SiliconSoftwareFrameGrabber.get_image_indexing()

	SiliconSoftwareFrameGrabber.get_new_images_range()

	SiliconSoftwareFrameGrabber.get_settings()

	SiliconSoftwareFrameGrabber.grab()

	SiliconSoftwareFrameGrabber.is_acquisition_setup()

	SiliconSoftwareFrameGrabber.pausing_acquisition()

	SiliconSoftwareFrameGrabber.read_multiple_images()

	SiliconSoftwareFrameGrabber.read_newest_image()

	SiliconSoftwareFrameGrabber.read_oldest_image()

	SiliconSoftwareFrameGrabber.set_device_variable()

	SiliconSoftwareFrameGrabber.set_frame_format()

	SiliconSoftwareFrameGrabber.set_frame_info_format()

	SiliconSoftwareFrameGrabber.set_frame_info_period()

	SiliconSoftwareFrameGrabber.set_grabber_attribute_value()

	SiliconSoftwareFrameGrabber.set_image_indexing()

	SiliconSoftwareFrameGrabber.snap()

	SiliconSoftwareFrameGrabber.wait_for_frame()

	SiliconSoftwareCamera
	SiliconSoftwareCamera.BufferManager

	SiliconSoftwareCamera.Error

	SiliconSoftwareCamera.FrameTransferError

	SiliconSoftwareCamera.TimeoutError

	SiliconSoftwareCamera.acquisition_in_progress()

	SiliconSoftwareCamera.apply_settings()

	SiliconSoftwareCamera.clear_acquisition()

	SiliconSoftwareCamera.close()

	SiliconSoftwareCamera.get_acquisition_parameters()

	SiliconSoftwareCamera.get_all_grabber_attribute_values()

	SiliconSoftwareCamera.get_all_grabber_attributes()

	SiliconSoftwareCamera.get_available_camlink_pixel_formats()

	SiliconSoftwareCamera.get_camlink_pixel_format()

	SiliconSoftwareCamera.get_data_dimensions()

	SiliconSoftwareCamera.get_detector_size()

	SiliconSoftwareCamera.get_device_info()

	SiliconSoftwareCamera.get_device_variable()

	SiliconSoftwareCamera.get_frame_format()

	SiliconSoftwareCamera.get_frame_info_fields()

	SiliconSoftwareCamera.get_frame_info_format()

	SiliconSoftwareCamera.get_frame_info_period()

	SiliconSoftwareCamera.get_frames_status()

	SiliconSoftwareCamera.get_full_info()

	SiliconSoftwareCamera.get_full_status()

	SiliconSoftwareCamera.get_genicam_info_xml()

	SiliconSoftwareCamera.get_grabber_attribute()

	SiliconSoftwareCamera.get_grabber_attribute_value()

	SiliconSoftwareCamera.get_grabber_detector_size()

	SiliconSoftwareCamera.get_grabber_roi()

	SiliconSoftwareCamera.get_grabber_roi_limits()

	SiliconSoftwareCamera.get_image_indexing()

	SiliconSoftwareCamera.get_new_images_range()

	SiliconSoftwareCamera.get_roi()

	SiliconSoftwareCamera.get_roi_limits()

	SiliconSoftwareCamera.get_settings()

	SiliconSoftwareCamera.get_system_info()

	SiliconSoftwareCamera.grab()

	SiliconSoftwareCamera.is_acquisition_setup()

	SiliconSoftwareCamera.is_opened()

	SiliconSoftwareCamera.open()

	SiliconSoftwareCamera.pausing_acquisition()

	SiliconSoftwareCamera.read_multiple_images()

	SiliconSoftwareCamera.read_newest_image()

	SiliconSoftwareCamera.read_oldest_image()

	SiliconSoftwareCamera.set_all_grabber_attribute_values()

	SiliconSoftwareCamera.set_device_variable()

	SiliconSoftwareCamera.set_frame_format()

	SiliconSoftwareCamera.set_frame_info_format()

	SiliconSoftwareCamera.set_frame_info_period()

	SiliconSoftwareCamera.set_frame_merge()

	SiliconSoftwareCamera.set_grabber_attribute_value()

	SiliconSoftwareCamera.set_grabber_roi()

	SiliconSoftwareCamera.set_image_indexing()

	SiliconSoftwareCamera.set_roi()

	SiliconSoftwareCamera.setup_acquisition()

	SiliconSoftwareCamera.setup_camlink_pixel_format()

	SiliconSoftwareCamera.snap()

	SiliconSoftwareCamera.start_acquisition()

	SiliconSoftwareCamera.stop_acquisition()

	SiliconSoftwareCamera.wait_for_frame()

	Module contents

	pylablib.devices.Sirah package
	Submodules

	pylablib.devices.Sirah.Matisse module
	TThinetCtlParameters
	TThinetCtlParameters.I

	TThinetCtlParameters.P

	TThinetCtlParameters.avg

	TThinetCtlParameters.setpoint

	TPiezoetDriveParameters
	TPiezoetDriveParameters.amplitude

	TPiezoetDriveParameters.oversamp

	TPiezoetDriveParameters.rate

	TPiezoetFeedbackParameters
	TPiezoetFeedbackParameters.P

	TPiezoetFeedbackParameters.avg

	TPiezoetFeedbackParameters.phase

	TPiezoetFeedforwardParameters
	TPiezoetFeedforwardParameters.ampl

	TPiezoetFeedforwardParameters.phase

	TSlowpiezoCtlParameters
	TSlowpiezoCtlParameters.I

	TSlowpiezoCtlParameters.P

	TSlowpiezoCtlParameters.freeP

	TSlowpiezoCtlParameters.setpoint

	TFastpiezoCtlParameters
	TFastpiezoCtlParameters.I

	TFastpiezoCtlParameters.lockpoint

	TFastpiezoCtlParameters.setpoint

	TRefcellWaveformParameters
	TRefcellWaveformParameters.lower_limit

	TRefcellWaveformParameters.mode

	TRefcellWaveformParameters.oversamp

	TRefcellWaveformParameters.upper_limit

	TScanMode
	TScanMode.falling

	TScanMode.stop_lower

	TScanMode.stop_upper

	TScanParameters
	TScanParameters.device

	TScanParameters.fall_speed

	TScanParameters.lower_limit

	TScanParameters.mode

	TScanParameters.rise_speed

	TScanParameters.upper_limit

	SirahMatisse
	SirahMatisse.Error

	SirahMatisse.ReraiseError

	SirahMatisse.ask()

	SirahMatisse.get_diode_power()

	SirahMatisse.get_diode_power_waveform()

	SirahMatisse.get_diode_power_lowlevel()

	SirahMatisse.set_diode_power_lowlevel()

	SirahMatisse.get_thinet_power()

	SirahMatisse.get_refcell_waveform()

	SirahMatisse.bifi_get_position()

	SirahMatisse.bifi_get_range()

	SirahMatisse.bifi_get_status_n()

	SirahMatisse.bifi_get_status()

	SirahMatisse.bifi_clear_errors()

	SirahMatisse.bifi_is_moving()

	SirahMatisse.bifi_wait_move()

	SirahMatisse.bifi_move_to()

	SirahMatisse.bifi_stop()

	SirahMatisse.bifi_home()

	SirahMatisse.thinet_get_position()

	SirahMatisse.thinet_get_range()

	SirahMatisse.thinet_get_status_n()

	SirahMatisse.thinet_get_status()

	SirahMatisse.thinet_clear_errors()

	SirahMatisse.thinet_is_moving()

	SirahMatisse.thinet_wait_move()

	SirahMatisse.thinet_move_to()

	SirahMatisse.thinet_stop()

	SirahMatisse.thinet_home()

	SirahMatisse.get_thinet_ctl_status()

	SirahMatisse.set_thinet_ctl_status()

	SirahMatisse.get_thinet_error_signal()

	SirahMatisse.get_thinet_ctl_params()

	SirahMatisse.set_thinet_ctl_params()

	SirahMatisse.get_piezoet_ctl_status()

	SirahMatisse.set_piezoet_ctl_status()

	SirahMatisse.get_piezoet_position()

	SirahMatisse.set_piezoet_position()

	SirahMatisse.get_piezoet_drive_params()

	SirahMatisse.set_piezoet_drive_params()

	SirahMatisse.get_piezoet_feedback_params()

	SirahMatisse.set_piezoet_feedback_params()

	SirahMatisse.get_piezoet_feedforward_params()

	SirahMatisse.set_piezoet_feedforward_params()

	SirahMatisse.get_slowpiezo_ctl_status()

	SirahMatisse.set_slowpiezo_ctl_status()

	SirahMatisse.get_slowpiezo_position()

	SirahMatisse.set_slowpiezo_position()

	SirahMatisse.get_slowpiezo_ctl_params()

	SirahMatisse.set_slowpiezo_ctl_params()

	SirahMatisse.get_fastpiezo_ctl_status()

	SirahMatisse.set_fastpiezo_ctl_status()

	SirahMatisse.is_fastpiezo_locked()

	SirahMatisse.get_fastpiezo_position()

	SirahMatisse.set_fastpiezo_position()

	SirahMatisse.get_fastpiezo_ctl_params()

	SirahMatisse.set_fastpiezo_ctl_params()

	SirahMatisse.get_refcell_position()

	SirahMatisse.set_refcell_position()

	SirahMatisse.get_refcell_waveform_params()

	SirahMatisse.set_refcell_waveform_params()

	SirahMatisse.get_scan_status()

	SirahMatisse.set_scan_status()

	SirahMatisse.wait_scan()

	SirahMatisse.get_scan_position()

	SirahMatisse.set_scan_position()

	SirahMatisse.get_scan_params()

	SirahMatisse.set_scan_params()

	SirahMatisse.BackendError

	SirahMatisse.apply_settings()

	SirahMatisse.close()

	SirahMatisse.flush()

	SirahMatisse.get_arg_type()

	SirahMatisse.get_device_variable()

	SirahMatisse.get_esr()

	SirahMatisse.get_full_info()

	SirahMatisse.get_full_status()

	SirahMatisse.get_id()

	SirahMatisse.get_settings()

	SirahMatisse.is_opened()

	SirahMatisse.lock()

	SirahMatisse.locking()

	SirahMatisse.open()

	SirahMatisse.parse_array_data()

	SirahMatisse.read()

	SirahMatisse.read_binary_array_data()

	SirahMatisse.reconnect()

	SirahMatisse.reset()

	SirahMatisse.set_device_variable()

	SirahMatisse.sleep()

	SirahMatisse.unlock()

	SirahMatisse.using_write_buffer()

	SirahMatisse.wait()

	SirahMatisse.wait_dev()

	SirahMatisse.wait_sync()

	SirahMatisse.write()

	pylablib.devices.Sirah.base module
	GenericSirahError
	GenericSirahError.add_note()

	GenericSirahError.args

	GenericSirahError.with_traceback()

	GenericSirahBackendError
	GenericSirahBackendError.add_note()

	GenericSirahBackendError.args

	GenericSirahBackendError.with_traceback()

	pylablib.devices.Sirah.tuner module
	FrequencyReadSirahError
	FrequencyReadSirahError.add_note()

	FrequencyReadSirahError.args

	FrequencyReadSirahError.with_traceback()

	MatisseTuner
	MatisseTuner.set_tune_units()

	MatisseTuner.apply_calibration()

	MatisseTuner.get_frequency()

	MatisseTuner.get_last_read_frequency()

	MatisseTuner.set_frequency_average_time()

	MatisseTuner.scan_steps()

	MatisseTuner.scan_centered()

	MatisseTuner.scan_quick()

	MatisseTuner.scan_quick_centered()

	MatisseTuner.scan_both_motors()

	MatisseTuner.scan_both_motors_quick()

	MatisseTuner.calibrate()

	MatisseTuner.unlock_all()

	MatisseTuner.set_fine_lock()

	MatisseTuner.fine_tune_to_gen()

	MatisseTuner.fine_tune_to()

	MatisseTuner.tune_to_gen()

	MatisseTuner.tune_to()

	MatisseTuner.fine_sweep_start()

	MatisseTuner.fine_sweep_stop()

	MatisseTuner.scan_coarse_gen()

	MatisseTuner.stitched_scan_gen()

	MatisseTuner.stitched_scan()

	Module contents

	pylablib.devices.SmarAct package
	Submodules

	pylablib.devices.SmarAct.MCS2 module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	list_devices()

	get_devices_number()

	get_SDK_version()

	TDeviceInfo
	TDeviceInfo.name

	TDeviceInfo.serial

	TCLMoveParams
	TCLMoveParams.acceleration

	TCLMoveParams.hold_time

	TCLMoveParams.max_step_frequency

	TCLMoveParams.velocity

	TStepMoveParams
	TStepMoveParams.amplitude

	TStepMoveParams.frequency

	TScanMoveParams
	TScanMoveParams.velocity

	MCS2
	MCS2.Error

	MCS2.open()

	MCS2.close()

	MCS2.is_opened()

	MCS2.get_property()

	MCS2.get_all_properties()

	MCS2.set_property()

	MCS2.get_device_info()

	MCS2.get_default_axis()

	MCS2.set_default_axis()

	MCS2.using_default_axis()

	MCS2.get_status_n()

	MCS2.get_status()

	MCS2.is_moving()

	MCS2.wait_move()

	MCS2.get_device_status_n()

	MCS2.get_device_status()

	MCS2.get_module_status_n()

	MCS2.get_module_status()

	MCS2.get_cl_move_parameters()

	MCS2.setup_cl_move()

	MCS2.get_step_move_parameters()

	MCS2.setup_step_move()

	MCS2.get_scan_move_parameters()

	MCS2.setup_scan_move()

	MCS2.get_range_limit()

	MCS2.set_range_limit()

	MCS2.get_position()

	MCS2.set_position_reference()

	MCS2.get_scan_position()

	MCS2.get_target_position()

	MCS2.move_to()

	MCS2.move_by()

	MCS2.move_by_steps()

	MCS2.move_scan_to()

	MCS2.move_scan_by()

	MCS2.stop()

	MCS2.home()

	MCS2.calibrate()

	MCS2.lowlevel_move()

	MCS2.lowlevel_reference()

	MCS2.lowlevel_calibrate()

	MCS2.apply_settings()

	MCS2.get_all_axes()

	MCS2.get_device_variable()

	MCS2.get_full_info()

	MCS2.get_full_status()

	MCS2.get_settings()

	MCS2.remap_axes()

	MCS2.set_device_variable()

	pylablib.devices.SmarAct.base module
	SmarActError
	SmarActError.add_note()

	SmarActError.args

	SmarActError.with_traceback()

	pylablib.devices.SmarAct.scu3d module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	TDeviceInfo
	TDeviceInfo.device_id

	TDeviceInfo.dll_version

	TDeviceInfo.firmware_version

	get_device_info()

	list_devices()

	get_devices_number()

	SCU3D
	SCU3D.Error

	SCU3D.open()

	SCU3D.close()

	SCU3D.is_opened()

	SCU3D.get_device_info()

	SCU3D.get_axis_dir()

	SCU3D.set_axis_dir()

	SCU3D.move_macrostep()

	SCU3D.move_by()

	SCU3D.get_status()

	SCU3D.wait_for_status()

	SCU3D.wait_move()

	SCU3D.is_moving()

	SCU3D.stop()

	SCU3D.apply_settings()

	SCU3D.get_all_axes()

	SCU3D.get_device_variable()

	SCU3D.get_full_info()

	SCU3D.get_full_status()

	SCU3D.get_settings()

	SCU3D.remap_axes()

	SCU3D.set_device_variable()

	Module contents

	pylablib.devices.Standa package
	Submodules

	pylablib.devices.Standa.base module
	StandaError
	StandaError.add_note()

	StandaError.args

	StandaError.with_traceback()

	StandaBackendError
	StandaBackendError.add_note()

	StandaBackendError.args

	StandaBackendError.with_traceback()

	TEngineType
	TEngineType.driver

	TEngineType.engine

	TStepperMotorCalibration
	TStepperMotorCalibration.steps_per_rev

	TStepperMotorCalibration.usteps_per_step

	TFullState
	TFullState.encoder

	TFullState.flags

	TFullState.gpio

	TFullState.ivpwr

	TFullState.ivusb

	TFullState.position

	TFullState.scmd

	TFullState.senc

	TFullState.smov

	TFullState.speed

	TFullState.spwr

	TFullState.swnd

	TFullState.temp

	TMoveParams
	TMoveParams.accel

	TMoveParams.antiplay

	TMoveParams.decel

	TMoveParams.speed

	TPowerParams
	TPowerParams.hold_current

	TPowerParams.off_delay

	TPowerParams.off_enabled

	TPowerParams.ramp_enabled

	TPowerParams.ramp_time

	TPowerParams.reduct_delay

	TPowerParams.reduct_enabled

	Standa8SMC
	Standa8SMC.Error

	Standa8SMC.query()

	Standa8SMC.pquery()

	Standa8SMC.get_engine_type()

	Standa8SMC.get_stepper_motor_calibration()

	Standa8SMC.get_status()

	Standa8SMC.is_moving()

	Standa8SMC.wait_move()

	Standa8SMC.get_position()

	Standa8SMC.get_encoder()

	Standa8SMC.set_position_reference()

	Standa8SMC.set_encoder_reference()

	Standa8SMC.move_to()

	Standa8SMC.move_by()

	Standa8SMC.stop()

	Standa8SMC.power_off()

	Standa8SMC.jog()

	Standa8SMC.home()

	Standa8SMC.get_move_parameters()

	Standa8SMC.setup_move()

	Standa8SMC.get_power_parameters()

	Standa8SMC.setup_power()

	Standa8SMC.apply_settings()

	Standa8SMC.close()

	Standa8SMC.get_device_variable()

	Standa8SMC.get_full_info()

	Standa8SMC.get_full_status()

	Standa8SMC.get_settings()

	Standa8SMC.is_opened()

	Standa8SMC.lock()

	Standa8SMC.locking()

	Standa8SMC.open()

	Standa8SMC.set_device_variable()

	Standa8SMC.unlock()

	Module contents

	pylablib.devices.Tektronix package
	Submodules

	pylablib.devices.Tektronix.base module
	TektronixError
	TektronixError.add_note()

	TektronixError.args

	TektronixError.with_traceback()

	TektronixBackendError
	TektronixBackendError.add_note()

	TektronixBackendError.args

	TektronixBackendError.with_traceback()

	muxchannel()

	TTriggerParameters
	TTriggerParameters.coupling

	TTriggerParameters.level

	TTriggerParameters.slope

	TTriggerParameters.source

	ITektronixScope
	ITektronixScope.Error

	ITektronixScope.ReraiseError

	ITektronixScope.get_channels_number()

	ITektronixScope.get_channels()

	ITektronixScope.normalize_channel_name()

	ITektronixScope.grab_single()

	ITektronixScope.wait_for_grabbing()

	ITektronixScope.grab_continuous()

	ITektronixScope.stop_grabbing()

	ITektronixScope.is_continuous()

	ITektronixScope.is_grabbing()

	ITektronixScope.get_edge_trigger_source()

	ITektronixScope.set_edge_trigger_source()

	ITektronixScope.get_edge_trigger_coupling()

	ITektronixScope.set_edge_trigger_coupling()

	ITektronixScope.get_edge_trigger_slope()

	ITektronixScope.set_edge_trigger_slope()

	ITektronixScope.get_trigger_level()

	ITektronixScope.set_trigger_level()

	ITektronixScope.setup_edge_trigger()

	ITektronixScope.get_trigger_mode()

	ITektronixScope.set_trigger_mode()

	ITektronixScope.get_trigger_state()

	ITektronixScope.force_trigger()

	ITektronixScope.get_horizontal_span()

	ITektronixScope.set_horizontal_span()

	ITektronixScope.get_horizontal_offset()

	ITektronixScope.set_horizontal_offset()

	ITektronixScope.get_vertical_span()

	ITektronixScope.set_vertical_span()

	ITektronixScope.get_vertical_position()

	ITektronixScope.set_vertical_position()

	ITektronixScope.is_channel_enabled()

	ITektronixScope.enable_channel()

	ITektronixScope.get_selected_channel()

	ITektronixScope.select_channel()

	ITektronixScope.get_coupling()

	ITektronixScope.set_coupling()

	ITektronixScope.get_probe_attenuation()

	ITektronixScope.set_probe_attenuation()

	ITektronixScope.get_points_number()

	ITektronixScope.set_points_number()

	ITektronixScope.get_data_pts_range()

	ITektronixScope.set_data_pts_range()

	ITektronixScope.set_data_format()

	ITektronixScope.get_data_format()

	ITektronixScope.get_wfmpre()

	ITektronixScope.read_raw_data()

	ITektronixScope.read_multiple_sweeps()

	ITektronixScope.read_sweep()

	ITektronixScope.BackendError

	ITektronixScope.apply_settings()

	ITektronixScope.ask()

	ITektronixScope.close()

	ITektronixScope.flush()

	ITektronixScope.get_arg_type()

	ITektronixScope.get_device_variable()

	ITektronixScope.get_esr()

	ITektronixScope.get_full_info()

	ITektronixScope.get_full_status()

	ITektronixScope.get_id()

	ITektronixScope.get_settings()

	ITektronixScope.is_opened()

	ITektronixScope.lock()

	ITektronixScope.locking()

	ITektronixScope.open()

	ITektronixScope.parse_array_data()

	ITektronixScope.read()

	ITektronixScope.read_binary_array_data()

	ITektronixScope.reconnect()

	ITektronixScope.reset()

	ITektronixScope.set_device_variable()

	ITektronixScope.sleep()

	ITektronixScope.unlock()

	ITektronixScope.using_write_buffer()

	ITektronixScope.wait()

	ITektronixScope.wait_dev()

	ITektronixScope.wait_sync()

	ITektronixScope.write()

	TDS2000
	TDS2000.BackendError

	TDS2000.Error

	TDS2000.ReraiseError

	TDS2000.apply_settings()

	TDS2000.ask()

	TDS2000.close()

	TDS2000.enable_channel()

	TDS2000.flush()

	TDS2000.force_trigger()

	TDS2000.get_arg_type()

	TDS2000.get_channels()

	TDS2000.get_channels_number()

	TDS2000.get_coupling()

	TDS2000.get_data_format()

	TDS2000.get_data_pts_range()

	TDS2000.get_device_variable()

	TDS2000.get_edge_trigger_coupling()

	TDS2000.get_edge_trigger_slope()

	TDS2000.get_edge_trigger_source()

	TDS2000.get_esr()

	TDS2000.get_full_info()

	TDS2000.get_full_status()

	TDS2000.get_horizontal_offset()

	TDS2000.get_horizontal_span()

	TDS2000.get_id()

	TDS2000.get_points_number()

	TDS2000.get_probe_attenuation()

	TDS2000.get_selected_channel()

	TDS2000.get_settings()

	TDS2000.get_trigger_level()

	TDS2000.get_trigger_mode()

	TDS2000.get_trigger_state()

	TDS2000.get_vertical_position()

	TDS2000.get_vertical_span()

	TDS2000.get_wfmpre()

	TDS2000.grab_continuous()

	TDS2000.grab_single()

	TDS2000.is_channel_enabled()

	TDS2000.is_continuous()

	TDS2000.is_grabbing()

	TDS2000.is_opened()

	TDS2000.lock()

	TDS2000.locking()

	TDS2000.normalize_channel_name()

	TDS2000.open()

	TDS2000.parse_array_data()

	TDS2000.read()

	TDS2000.read_binary_array_data()

	TDS2000.read_multiple_sweeps()

	TDS2000.read_raw_data()

	TDS2000.read_sweep()

	TDS2000.reconnect()

	TDS2000.reset()

	TDS2000.select_channel()

	TDS2000.set_coupling()

	TDS2000.set_data_format()

	TDS2000.set_data_pts_range()

	TDS2000.set_device_variable()

	TDS2000.set_edge_trigger_coupling()

	TDS2000.set_edge_trigger_slope()

	TDS2000.set_edge_trigger_source()

	TDS2000.set_horizontal_offset()

	TDS2000.set_horizontal_span()

	TDS2000.set_points_number()

	TDS2000.set_probe_attenuation()

	TDS2000.set_trigger_level()

	TDS2000.set_trigger_mode()

	TDS2000.set_vertical_position()

	TDS2000.set_vertical_span()

	TDS2000.setup_edge_trigger()

	TDS2000.sleep()

	TDS2000.stop_grabbing()

	TDS2000.unlock()

	TDS2000.using_write_buffer()

	TDS2000.wait()

	TDS2000.wait_dev()

	TDS2000.wait_for_grabbing()

	TDS2000.wait_sync()

	TDS2000.write()

	DPO2000
	DPO2000.BackendError

	DPO2000.Error

	DPO2000.ReraiseError

	DPO2000.apply_settings()

	DPO2000.ask()

	DPO2000.close()

	DPO2000.enable_channel()

	DPO2000.flush()

	DPO2000.force_trigger()

	DPO2000.get_arg_type()

	DPO2000.get_channels()

	DPO2000.get_channels_number()

	DPO2000.get_coupling()

	DPO2000.get_data_format()

	DPO2000.get_data_pts_range()

	DPO2000.get_device_variable()

	DPO2000.get_edge_trigger_coupling()

	DPO2000.get_edge_trigger_slope()

	DPO2000.get_edge_trigger_source()

	DPO2000.get_esr()

	DPO2000.get_full_info()

	DPO2000.get_full_status()

	DPO2000.get_horizontal_offset()

	DPO2000.get_horizontal_span()

	DPO2000.get_id()

	DPO2000.get_points_number()

	DPO2000.get_probe_attenuation()

	DPO2000.get_selected_channel()

	DPO2000.get_settings()

	DPO2000.get_trigger_level()

	DPO2000.get_trigger_mode()

	DPO2000.get_trigger_state()

	DPO2000.get_vertical_position()

	DPO2000.get_vertical_span()

	DPO2000.get_wfmpre()

	DPO2000.grab_continuous()

	DPO2000.grab_single()

	DPO2000.is_channel_enabled()

	DPO2000.is_continuous()

	DPO2000.is_grabbing()

	DPO2000.is_opened()

	DPO2000.lock()

	DPO2000.locking()

	DPO2000.normalize_channel_name()

	DPO2000.open()

	DPO2000.parse_array_data()

	DPO2000.read()

	DPO2000.read_binary_array_data()

	DPO2000.read_multiple_sweeps()

	DPO2000.read_raw_data()

	DPO2000.read_sweep()

	DPO2000.reconnect()

	DPO2000.reset()

	DPO2000.select_channel()

	DPO2000.set_coupling()

	DPO2000.set_data_format()

	DPO2000.set_data_pts_range()

	DPO2000.set_device_variable()

	DPO2000.set_edge_trigger_coupling()

	DPO2000.set_edge_trigger_slope()

	DPO2000.set_edge_trigger_source()

	DPO2000.set_horizontal_offset()

	DPO2000.set_horizontal_span()

	DPO2000.set_points_number()

	DPO2000.set_probe_attenuation()

	DPO2000.set_trigger_level()

	DPO2000.set_trigger_mode()

	DPO2000.set_vertical_position()

	DPO2000.set_vertical_span()

	DPO2000.setup_edge_trigger()

	DPO2000.sleep()

	DPO2000.stop_grabbing()

	DPO2000.unlock()

	DPO2000.using_write_buffer()

	DPO2000.wait()

	DPO2000.wait_dev()

	DPO2000.wait_for_grabbing()

	DPO2000.wait_sync()

	DPO2000.write()

	Module contents

	pylablib.devices.Thorlabs package
	Submodules

	pylablib.devices.Thorlabs.TLCamera module
	LibraryController
	LibraryController.close()

	LibraryController.get_opened_num()

	LibraryController.open()

	LibraryController.preinit()

	LibraryController.shutdown()

	LibraryController.temp_open()

	list_cameras()

	get_cameras_number()

	TDeviceInfo
	TDeviceInfo.firmware_version

	TDeviceInfo.model

	TDeviceInfo.name

	TDeviceInfo.serial_number

	TSensorInfo
	TSensorInfo.bit_depth

	TSensorInfo.sensor_type

	TColorInfo
	TColorInfo.correction_matrix

	TColorInfo.default_white_balance_matrix

	TColorInfo.filter_array_phase

	TColorFormat
	TColorFormat.color_format

	TColorFormat.color_space

	TFrameInfo
	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.offset

	TFrameInfo.pixelclock

	TFrameInfo.pixeltype

	ThorlabsTLCamera
	ThorlabsTLCamera.Error

	ThorlabsTLCamera.TimeoutError

	ThorlabsTLCamera.open()

	ThorlabsTLCamera.close()

	ThorlabsTLCamera.is_opened()

	ThorlabsTLCamera.get_device_info()

	ThorlabsTLCamera.get_sensor_info()

	ThorlabsTLCamera.get_color_info()

	ThorlabsTLCamera.get_white_balance_matrix()

	ThorlabsTLCamera.set_white_balance_matrix()

	ThorlabsTLCamera.set_color_format()

	ThorlabsTLCamera.get_color_format()

	ThorlabsTLCamera.RingBuffer

	ThorlabsTLCamera.get_frame_timings()

	ThorlabsTLCamera.set_exposure()

	ThorlabsTLCamera.get_frame_period_range()

	ThorlabsTLCamera.set_frame_period()

	ThorlabsTLCamera.get_trigger_mode()

	ThorlabsTLCamera.set_trigger_mode()

	ThorlabsTLCamera.get_ext_trigger_parameters()

	ThorlabsTLCamera.setup_ext_trigger()

	ThorlabsTLCamera.send_software_trigger()

	ThorlabsTLCamera.get_pixel_correction_parameters()

	ThorlabsTLCamera.setup_pixel_correction()

	ThorlabsTLCamera.get_gain_range()

	ThorlabsTLCamera.get_gain()

	ThorlabsTLCamera.set_gain()

	ThorlabsTLCamera.get_black_level_range()

	ThorlabsTLCamera.get_black_level()

	ThorlabsTLCamera.set_black_level()

	ThorlabsTLCamera.is_nir_boost_enabled()

	ThorlabsTLCamera.enable_nir_boost()

	ThorlabsTLCamera.is_cooling_enabled()

	ThorlabsTLCamera.enable_cooling()

	ThorlabsTLCamera.is_led_enabled()

	ThorlabsTLCamera.enable_led()

	ThorlabsTLCamera.get_timestamp_clock_frequency()

	ThorlabsTLCamera.setup_acquisition()

	ThorlabsTLCamera.clear_acquisition()

	ThorlabsTLCamera.start_acquisition()

	ThorlabsTLCamera.stop_acquisition()

	ThorlabsTLCamera.acquisition_in_progress()

	ThorlabsTLCamera.get_detector_size()

	ThorlabsTLCamera.get_roi()

	ThorlabsTLCamera.set_roi()

	ThorlabsTLCamera.get_roi_limits()

	ThorlabsTLCamera.read_multiple_images()

	ThorlabsTLCamera.FrameTransferError

	ThorlabsTLCamera.apply_settings()

	ThorlabsTLCamera.get_acquisition_parameters()

	ThorlabsTLCamera.get_data_dimensions()

	ThorlabsTLCamera.get_device_variable()

	ThorlabsTLCamera.get_exposure()

	ThorlabsTLCamera.get_frame_format()

	ThorlabsTLCamera.get_frame_info_fields()

	ThorlabsTLCamera.get_frame_info_format()

	ThorlabsTLCamera.get_frame_info_period()

	ThorlabsTLCamera.get_frame_period()

	ThorlabsTLCamera.get_frames_status()

	ThorlabsTLCamera.get_full_info()

	ThorlabsTLCamera.get_full_status()

	ThorlabsTLCamera.get_image_indexing()

	ThorlabsTLCamera.get_new_images_range()

	ThorlabsTLCamera.get_settings()

	ThorlabsTLCamera.grab()

	ThorlabsTLCamera.is_acquisition_setup()

	ThorlabsTLCamera.pausing_acquisition()

	ThorlabsTLCamera.read_newest_image()

	ThorlabsTLCamera.read_oldest_image()

	ThorlabsTLCamera.set_device_variable()

	ThorlabsTLCamera.set_frame_format()

	ThorlabsTLCamera.set_frame_info_format()

	ThorlabsTLCamera.set_frame_info_period()

	ThorlabsTLCamera.set_image_indexing()

	ThorlabsTLCamera.snap()

	ThorlabsTLCamera.wait_for_frame()

	pylablib.devices.Thorlabs.base module
	ThorlabsError
	ThorlabsError.add_note()

	ThorlabsError.args

	ThorlabsError.with_traceback()

	ThorlabsBackendError
	ThorlabsBackendError.add_note()

	ThorlabsBackendError.args

	ThorlabsBackendError.with_traceback()

	ThorlabsTimeoutError
	ThorlabsTimeoutError.add_note()

	ThorlabsTimeoutError.args

	ThorlabsTimeoutError.with_traceback()

	pylablib.devices.Thorlabs.elliptec module
	muxaddr()

	TDeviceInfo
	TDeviceInfo.fw_ver

	TDeviceInfo.hw_ver

	TDeviceInfo.model_no

	TDeviceInfo.pulse

	TDeviceInfo.serial_no

	TDeviceInfo.travel

	TDeviceInfo.year

	TMotorInfo
	TMotorInfo.bk_freq

	TMotorInfo.current

	TMotorInfo.fw_freq

	TMotorInfo.loop

	TMotorInfo.motor

	TMotorInfo.ramp_down

	TMotorInfo.ramp_up

	ElliptecMotor
	ElliptecMotor.Error

	ElliptecMotor.get_connected_addrs()

	ElliptecMotor.get_default_addr()

	ElliptecMotor.set_default_addr()

	ElliptecMotor.using_default_addr()

	ElliptecMotor.send_comm()

	ElliptecMotor.CommData

	ElliptecMotor.recv_comm()

	ElliptecMotor.query()

	ElliptecMotor.add_background_comm()

	ElliptecMotor.check_background_comm()

	ElliptecMotor.change_addr()

	ElliptecMotor.store_parameters()

	ElliptecMotor.get_device_info()

	ElliptecMotor.get_status()

	ElliptecMotor.get_motor_info()

	ElliptecMotor.get_scale()

	ElliptecMotor.set_scale()

	ElliptecMotor.home()

	ElliptecMotor.get_home_offset()

	ElliptecMotor.set_home_offset()

	ElliptecMotor.get_velocity()

	ElliptecMotor.set_velocity()

	ElliptecMotor.get_frequency()

	ElliptecMotor.set_frequency()

	ElliptecMotor.search_frequency()

	ElliptecMotor.get_position()

	ElliptecMotor.move_to()

	ElliptecMotor.move_by()

	ElliptecMotor.apply_settings()

	ElliptecMotor.close()

	ElliptecMotor.get_device_variable()

	ElliptecMotor.get_full_info()

	ElliptecMotor.get_full_status()

	ElliptecMotor.get_settings()

	ElliptecMotor.is_opened()

	ElliptecMotor.lock()

	ElliptecMotor.locking()

	ElliptecMotor.open()

	ElliptecMotor.set_device_variable()

	ElliptecMotor.unlock()

	pylablib.devices.Thorlabs.kinesis module
	list_kinesis_devices()

	TDeviceInfo
	TDeviceInfo.fw_ver

	TDeviceInfo.hw_type

	TDeviceInfo.hw_ver

	TDeviceInfo.mod_state

	TDeviceInfo.model_no

	TDeviceInfo.nchannels

	TDeviceInfo.notes

	TDeviceInfo.serial_no

	BasicKinesisDevice
	BasicKinesisDevice.Error

	BasicKinesisDevice.list_devices()

	BasicKinesisDevice.send_comm()

	BasicKinesisDevice.send_comm_data()

	BasicKinesisDevice.CommShort

	BasicKinesisDevice.CommData

	BasicKinesisDevice.recv_comm()

	BasicKinesisDevice.flush_comm()

	BasicKinesisDevice.query()

	BasicKinesisDevice.add_background_comm()

	BasicKinesisDevice.check_background_comm()

	BasicKinesisDevice.get_device_info()

	BasicKinesisDevice.get_number_of_channels()

	BasicKinesisDevice.blink()

	BasicKinesisDevice.apply_settings()

	BasicKinesisDevice.close()

	BasicKinesisDevice.get_device_variable()

	BasicKinesisDevice.get_full_info()

	BasicKinesisDevice.get_full_status()

	BasicKinesisDevice.get_settings()

	BasicKinesisDevice.is_opened()

	BasicKinesisDevice.lock()

	BasicKinesisDevice.locking()

	BasicKinesisDevice.open()

	BasicKinesisDevice.set_device_variable()

	BasicKinesisDevice.unlock()

	TVelocityParams
	TVelocityParams.acceleration

	TVelocityParams.max_velocity

	TVelocityParams.min_velocity

	TJogParams
	TJogParams.acceleration

	TJogParams.max_velocity

	TJogParams.min_velocity

	TJogParams.mode

	TJogParams.step_size

	TJogParams.stop_mode

	TGenMoveParams
	TGenMoveParams.backlash_distance

	THomeParams
	THomeParams.home_direction

	THomeParams.limit_switch

	THomeParams.offset_distance

	THomeParams.velocity

	TPolCtlParams
	TPolCtlParams.home_position

	TPolCtlParams.jog1

	TPolCtlParams.jog2

	TPolCtlParams.jog3

	TPolCtlParams.velocity

	TLimitSwitchParams
	TLimitSwitchParams.hw_kind_ccw

	TLimitSwitchParams.hw_kind_cw

	TLimitSwitchParams.hw_swapped

	TLimitSwitchParams.sw_kind

	TLimitSwitchParams.sw_position_ccw

	TLimitSwitchParams.sw_position_cw

	TKCubeTrigIOParams
	TKCubeTrigIOParams.trig1_mode

	TKCubeTrigIOParams.trig1_pol

	TKCubeTrigIOParams.trig2_mode

	TKCubeTrigIOParams.trig2_pol

	TKCubeTrigPosParams
	TKCubeTrigPosParams.ncycles

	TKCubeTrigPosParams.num_bk

	TKCubeTrigPosParams.num_fw

	TKCubeTrigPosParams.start_bk

	TKCubeTrigPosParams.start_fw

	TKCubeTrigPosParams.step_bk

	TKCubeTrigPosParams.step_fw

	TKCubeTrigPosParams.width

	TPZMotorDriveParams
	TPZMotorDriveParams.acceleration

	TPZMotorDriveParams.max_voltage

	TPZMotorDriveParams.velocity

	TPZMotorJogParams
	TPZMotorJogParams.acceleration

	TPZMotorJogParams.mode

	TPZMotorJogParams.step_size_bk

	TPZMotorJogParams.step_size_fw

	TPZMotorJogParams.velocity

	muxchannel()

	KinesisDevice
	KinesisDevice.get_all_channels()

	KinesisDevice.set_default_channel()

	KinesisDevice.using_channel()

	KinesisDevice.status_bits

	KinesisDevice.Error

	KinesisDevice.add_background_comm()

	KinesisDevice.apply_settings()

	KinesisDevice.blink()

	KinesisDevice.check_background_comm()

	KinesisDevice.close()

	KinesisDevice.flush_comm()

	KinesisDevice.get_all_axes()

	KinesisDevice.get_device_info()

	KinesisDevice.get_device_variable()

	KinesisDevice.get_full_info()

	KinesisDevice.get_full_status()

	KinesisDevice.get_number_of_channels()

	KinesisDevice.get_settings()

	KinesisDevice.is_opened()

	KinesisDevice.list_devices()

	KinesisDevice.lock()

	KinesisDevice.locking()

	KinesisDevice.open()

	KinesisDevice.query()

	KinesisDevice.recv_comm()

	KinesisDevice.remap_axes()

	KinesisDevice.send_comm()

	KinesisDevice.send_comm_data()

	KinesisDevice.set_device_variable()

	KinesisDevice.unlock()

	TFlipperParameters
	TFlipperParameters.io1_oper_mode

	TFlipperParameters.io1_pulse_width

	TFlipperParameters.io1_sig_mode

	TFlipperParameters.io2_oper_mode

	TFlipperParameters.io2_pulse_width

	TFlipperParameters.io2_sig_mode

	TFlipperParameters.transit_time

	MFF
	MFF.get_status_n()

	MFF.get_status()

	MFF.wait_for_status()

	MFF.move_to_state()

	MFF.get_state()

	MFF.get_flipper_parameters()

	MFF.setup_flipper()

	MFF.Error

	MFF.add_background_comm()

	MFF.apply_settings()

	MFF.blink()

	MFF.check_background_comm()

	MFF.close()

	MFF.flush_comm()

	MFF.get_all_axes()

	MFF.get_all_channels()

	MFF.get_device_info()

	MFF.get_device_variable()

	MFF.get_full_info()

	MFF.get_full_status()

	MFF.get_number_of_channels()

	MFF.get_settings()

	MFF.is_opened()

	MFF.list_devices()

	MFF.lock()

	MFF.locking()

	MFF.open()

	MFF.query()

	MFF.recv_comm()

	MFF.remap_axes()

	MFF.send_comm()

	MFF.send_comm_data()

	MFF.set_default_channel()

	MFF.set_device_variable()

	MFF.status_bits

	MFF.unlock()

	MFF.using_channel()

	KinesisMotor
	KinesisMotor.get_scale()

	KinesisMotor.get_scale_units()

	KinesisMotor.get_stage()

	KinesisMotor.set_supported_channels()

	KinesisMotor.get_status_n()

	KinesisMotor.get_status()

	KinesisMotor.wait_for_status()

	KinesisMotor.home()

	KinesisMotor.is_homing()

	KinesisMotor.is_homed()

	KinesisMotor.wait_for_home()

	KinesisMotor.get_position()

	KinesisMotor.set_position_reference()

	KinesisMotor.move_by()

	KinesisMotor.move_to()

	KinesisMotor.jog()

	KinesisMotor.is_moving()

	KinesisMotor.wait_move()

	KinesisMotor.stop()

	KinesisMotor.wait_for_stop()

	KinesisMotor.get_velocity_parameters()

	KinesisMotor.setup_velocity()

	KinesisMotor.get_jog_parameters()

	KinesisMotor.setup_jog()

	KinesisMotor.get_homing_parameters()

	KinesisMotor.setup_homing()

	KinesisMotor.get_gen_move_parameters()

	KinesisMotor.setup_gen_move()

	KinesisMotor.get_limit_switch_parameters()

	KinesisMotor.setup_limit_switch()

	KinesisMotor.get_kcube_trigio_parameters()

	KinesisMotor.setup_kcube_trigio()

	KinesisMotor.get_kcube_trigpos_parameters()

	KinesisMotor.setup_kcube_trigpos()

	KinesisMotor.get_polctl_parameters()

	KinesisMotor.setup_polctl()

	KinesisMotor.Error

	KinesisMotor.add_background_comm()

	KinesisMotor.apply_settings()

	KinesisMotor.blink()

	KinesisMotor.check_background_comm()

	KinesisMotor.close()

	KinesisMotor.flush_comm()

	KinesisMotor.get_all_axes()

	KinesisMotor.get_all_channels()

	KinesisMotor.get_device_info()

	KinesisMotor.get_device_variable()

	KinesisMotor.get_full_info()

	KinesisMotor.get_full_status()

	KinesisMotor.get_number_of_channels()

	KinesisMotor.get_settings()

	KinesisMotor.is_opened()

	KinesisMotor.list_devices()

	KinesisMotor.lock()

	KinesisMotor.locking()

	KinesisMotor.open()

	KinesisMotor.query()

	KinesisMotor.recv_comm()

	KinesisMotor.remap_axes()

	KinesisMotor.send_comm()

	KinesisMotor.send_comm_data()

	KinesisMotor.set_default_channel()

	KinesisMotor.set_device_variable()

	KinesisMotor.status_bits

	KinesisMotor.unlock()

	KinesisMotor.using_channel()

	KinesisPiezoMotor
	KinesisPiezoMotor.get_enabled_channels()

	KinesisPiezoMotor.enable_channels()

	KinesisPiezoMotor.get_status_n()

	KinesisPiezoMotor.get_status()

	KinesisPiezoMotor.wait_for_status()

	KinesisPiezoMotor.get_position()

	KinesisPiezoMotor.set_position_reference()

	KinesisPiezoMotor.move_by()

	KinesisPiezoMotor.move_to()

	KinesisPiezoMotor.jog()

	KinesisPiezoMotor.is_moving()

	KinesisPiezoMotor.wait_move()

	KinesisPiezoMotor.stop()

	KinesisPiezoMotor.get_drive_parameters()

	KinesisPiezoMotor.setup_drive()

	KinesisPiezoMotor.get_jog_parameters()

	KinesisPiezoMotor.setup_jog()

	KinesisPiezoMotor.Error

	KinesisPiezoMotor.add_background_comm()

	KinesisPiezoMotor.apply_settings()

	KinesisPiezoMotor.blink()

	KinesisPiezoMotor.check_background_comm()

	KinesisPiezoMotor.close()

	KinesisPiezoMotor.flush_comm()

	KinesisPiezoMotor.get_all_axes()

	KinesisPiezoMotor.get_all_channels()

	KinesisPiezoMotor.get_device_info()

	KinesisPiezoMotor.get_device_variable()

	KinesisPiezoMotor.get_full_info()

	KinesisPiezoMotor.get_full_status()

	KinesisPiezoMotor.get_number_of_channels()

	KinesisPiezoMotor.get_settings()

	KinesisPiezoMotor.is_opened()

	KinesisPiezoMotor.list_devices()

	KinesisPiezoMotor.lock()

	KinesisPiezoMotor.locking()

	KinesisPiezoMotor.open()

	KinesisPiezoMotor.query()

	KinesisPiezoMotor.recv_comm()

	KinesisPiezoMotor.remap_axes()

	KinesisPiezoMotor.send_comm()

	KinesisPiezoMotor.send_comm_data()

	KinesisPiezoMotor.set_default_channel()

	KinesisPiezoMotor.set_device_variable()

	KinesisPiezoMotor.status_bits

	KinesisPiezoMotor.unlock()

	KinesisPiezoMotor.using_channel()

	TQuadDetectorPIDParams
	TQuadDetectorPIDParams.d

	TQuadDetectorPIDParams.i

	TQuadDetectorPIDParams.p

	TQuadDetectorSetpoint
	TQuadDetectorSetpoint.xpos

	TQuadDetectorSetpoint.ypos

	TQuadDetectorReadings
	TQuadDetectorReadings.sum

	TQuadDetectorReadings.xdiff

	TQuadDetectorReadings.xpos

	TQuadDetectorReadings.ydiff

	TQuadDetectorReadings.ypos

	TQuadDetectorOutputParams
	TQuadDetectorOutputParams.open_loop_out

	TQuadDetectorOutputParams.route

	TQuadDetectorOutputParams.xgain

	TQuadDetectorOutputParams.xmax

	TQuadDetectorOutputParams.xmin

	TQuadDetectorOutputParams.ygain

	TQuadDetectorOutputParams.ymax

	TQuadDetectorOutputParams.ymin

	KinesisQuadDetector
	KinesisQuadDetector.get_pid_parameters()

	KinesisQuadDetector.set_pid_parameters()

	KinesisQuadDetector.get_manual_output()

	KinesisQuadDetector.set_manual_output()

	KinesisQuadDetector.get_readings()

	KinesisQuadDetector.get_operation_mode()

	KinesisQuadDetector.set_operation_mode()

	KinesisQuadDetector.get_output_parameters()

	KinesisQuadDetector.set_output_parameters()

	KinesisQuadDetector.Error

	KinesisQuadDetector.add_background_comm()

	KinesisQuadDetector.apply_settings()

	KinesisQuadDetector.blink()

	KinesisQuadDetector.check_background_comm()

	KinesisQuadDetector.close()

	KinesisQuadDetector.flush_comm()

	KinesisQuadDetector.get_device_info()

	KinesisQuadDetector.get_device_variable()

	KinesisQuadDetector.get_full_info()

	KinesisQuadDetector.get_full_status()

	KinesisQuadDetector.get_number_of_channels()

	KinesisQuadDetector.get_settings()

	KinesisQuadDetector.is_opened()

	KinesisQuadDetector.list_devices()

	KinesisQuadDetector.lock()

	KinesisQuadDetector.locking()

	KinesisQuadDetector.open()

	KinesisQuadDetector.query()

	KinesisQuadDetector.recv_comm()

	KinesisQuadDetector.send_comm()

	KinesisQuadDetector.send_comm_data()

	KinesisQuadDetector.set_device_variable()

	KinesisQuadDetector.unlock()

	pylablib.devices.Thorlabs.misc module
	TPMDeviceInfo
	TPMDeviceInfo.firmware

	TPMDeviceInfo.manufacturer

	TPMDeviceInfo.name

	TPMDeviceInfo.serial

	TPMSensorInfo
	TPMSensorInfo.calibration

	TPMSensorInfo.flags

	TPMSensorInfo.name

	TPMSensorInfo.serial

	TPMSensorInfo.subtype

	TPMSensorInfo.type

	GenericPM
	GenericPM.Error

	GenericPM.ReraiseError

	GenericPM.open()

	GenericPM.get_device_info()

	GenericPM.get_sensor_info()

	GenericPM.update_sensor_modes()

	GenericPM.get_supported_sensor_modes()

	GenericPM.get_sensor_mode()

	GenericPM.set_sensor_mode()

	GenericPM.is_autorange_enabled()

	GenericPM.enable_autorange()

	GenericPM.get_range()

	GenericPM.set_range()

	GenericPM.get_wavelength()

	GenericPM.get_wavelength_range()

	GenericPM.set_wavelength()

	GenericPM.get_reading()

	GenericPM.get_power()

	GenericPM.BackendError

	GenericPM.apply_settings()

	GenericPM.ask()

	GenericPM.close()

	GenericPM.flush()

	GenericPM.get_arg_type()

	GenericPM.get_device_variable()

	GenericPM.get_esr()

	GenericPM.get_full_info()

	GenericPM.get_full_status()

	GenericPM.get_id()

	GenericPM.get_settings()

	GenericPM.is_opened()

	GenericPM.lock()

	GenericPM.locking()

	GenericPM.parse_array_data()

	GenericPM.read()

	GenericPM.read_binary_array_data()

	GenericPM.reconnect()

	GenericPM.reset()

	GenericPM.set_device_variable()

	GenericPM.sleep()

	GenericPM.unlock()

	GenericPM.using_write_buffer()

	GenericPM.wait()

	GenericPM.wait_dev()

	GenericPM.wait_sync()

	GenericPM.write()

	PM160
	PM160.BackendError

	PM160.Error

	PM160.ReraiseError

	PM160.apply_settings()

	PM160.ask()

	PM160.close()

	PM160.enable_autorange()

	PM160.flush()

	PM160.get_arg_type()

	PM160.get_device_info()

	PM160.get_device_variable()

	PM160.get_esr()

	PM160.get_full_info()

	PM160.get_full_status()

	PM160.get_id()

	PM160.get_power()

	PM160.get_range()

	PM160.get_reading()

	PM160.get_sensor_info()

	PM160.get_sensor_mode()

	PM160.get_settings()

	PM160.get_supported_sensor_modes()

	PM160.get_wavelength()

	PM160.get_wavelength_range()

	PM160.is_autorange_enabled()

	PM160.is_opened()

	PM160.lock()

	PM160.locking()

	PM160.open()

	PM160.parse_array_data()

	PM160.read()

	PM160.read_binary_array_data()

	PM160.reconnect()

	PM160.reset()

	PM160.set_device_variable()

	PM160.set_range()

	PM160.set_sensor_mode()

	PM160.set_wavelength()

	PM160.sleep()

	PM160.unlock()

	PM160.update_sensor_modes()

	PM160.using_write_buffer()

	PM160.wait()

	PM160.wait_dev()

	PM160.wait_sync()

	PM160.write()

	pylablib.devices.Thorlabs.serial module
	ThorlabsSerialInterface
	ThorlabsSerialInterface.Error

	ThorlabsSerialInterface.ReraiseError

	ThorlabsSerialInterface.open()

	ThorlabsSerialInterface.BackendError

	ThorlabsSerialInterface.apply_settings()

	ThorlabsSerialInterface.ask()

	ThorlabsSerialInterface.close()

	ThorlabsSerialInterface.flush()

	ThorlabsSerialInterface.get_arg_type()

	ThorlabsSerialInterface.get_device_variable()

	ThorlabsSerialInterface.get_esr()

	ThorlabsSerialInterface.get_full_info()

	ThorlabsSerialInterface.get_full_status()

	ThorlabsSerialInterface.get_id()

	ThorlabsSerialInterface.get_settings()

	ThorlabsSerialInterface.is_opened()

	ThorlabsSerialInterface.lock()

	ThorlabsSerialInterface.locking()

	ThorlabsSerialInterface.parse_array_data()

	ThorlabsSerialInterface.read()

	ThorlabsSerialInterface.read_binary_array_data()

	ThorlabsSerialInterface.reconnect()

	ThorlabsSerialInterface.reset()

	ThorlabsSerialInterface.set_device_variable()

	ThorlabsSerialInterface.sleep()

	ThorlabsSerialInterface.unlock()

	ThorlabsSerialInterface.using_write_buffer()

	ThorlabsSerialInterface.wait()

	ThorlabsSerialInterface.wait_dev()

	ThorlabsSerialInterface.wait_sync()

	ThorlabsSerialInterface.write()

	FW
	FW.ask()

	FW.get_position()

	FW.set_position()

	FW.get_pcount()

	FW.set_pcount()

	FW.get_speed_mode()

	FW.set_speed_mode()

	FW.get_trigger_mode()

	FW.set_trigger_mode()

	FW.get_sensor_mode()

	FW.set_sensor_mode()

	FW.store_settings()

	FW.BackendError

	FW.Error

	FW.ReraiseError

	FW.apply_settings()

	FW.close()

	FW.flush()

	FW.get_arg_type()

	FW.get_device_variable()

	FW.get_esr()

	FW.get_full_info()

	FW.get_full_status()

	FW.get_id()

	FW.get_settings()

	FW.is_opened()

	FW.lock()

	FW.locking()

	FW.open()

	FW.parse_array_data()

	FW.read()

	FW.read_binary_array_data()

	FW.reconnect()

	FW.reset()

	FW.set_device_variable()

	FW.sleep()

	FW.unlock()

	FW.using_write_buffer()

	FW.wait()

	FW.wait_dev()

	FW.wait_sync()

	FW.write()

	FWv1
	FWv1.ask()

	FWv1.get_position()

	FWv1.set_position()

	FWv1.get_pcount()

	FWv1.get_trigger_mode()

	FWv1.set_trigger_mode()

	FWv1.BackendError

	FWv1.Error

	FWv1.ReraiseError

	FWv1.apply_settings()

	FWv1.close()

	FWv1.flush()

	FWv1.get_arg_type()

	FWv1.get_device_variable()

	FWv1.get_esr()

	FWv1.get_full_info()

	FWv1.get_full_status()

	FWv1.get_id()

	FWv1.get_settings()

	FWv1.is_opened()

	FWv1.lock()

	FWv1.locking()

	FWv1.open()

	FWv1.parse_array_data()

	FWv1.read()

	FWv1.read_binary_array_data()

	FWv1.reconnect()

	FWv1.reset()

	FWv1.set_device_variable()

	FWv1.sleep()

	FWv1.unlock()

	FWv1.using_write_buffer()

	FWv1.wait()

	FWv1.wait_dev()

	FWv1.wait_sync()

	FWv1.write()

	MDT69xA
	MDT69xA.get_voltage()

	MDT69xA.set_voltage()

	MDT69xA.get_voltage_range()

	MDT69xA.BackendError

	MDT69xA.Error

	MDT69xA.ReraiseError

	MDT69xA.apply_settings()

	MDT69xA.ask()

	MDT69xA.close()

	MDT69xA.flush()

	MDT69xA.get_arg_type()

	MDT69xA.get_device_variable()

	MDT69xA.get_esr()

	MDT69xA.get_full_info()

	MDT69xA.get_full_status()

	MDT69xA.get_id()

	MDT69xA.get_settings()

	MDT69xA.is_opened()

	MDT69xA.lock()

	MDT69xA.locking()

	MDT69xA.open()

	MDT69xA.parse_array_data()

	MDT69xA.read()

	MDT69xA.read_binary_array_data()

	MDT69xA.reconnect()

	MDT69xA.reset()

	MDT69xA.set_device_variable()

	MDT69xA.sleep()

	MDT69xA.unlock()

	MDT69xA.using_write_buffer()

	MDT69xA.wait()

	MDT69xA.wait_dev()

	MDT69xA.wait_sync()

	MDT69xA.write()

	Module contents

	pylablib.devices.Toptica package
	Submodules

	pylablib.devices.Toptica.base module
	TopticaError
	TopticaError.add_note()

	TopticaError.args

	TopticaError.with_traceback()

	TopticaBackendError
	TopticaBackendError.add_note()

	TopticaBackendError.args

	TopticaBackendError.with_traceback()

	pylablib.devices.Toptica.ibeam module
	muxchan()

	TDeviceInfo
	TDeviceInfo.serial

	TDeviceInfo.version

	TWorkHours
	TWorkHours.laser_on

	TWorkHours.power_up

	TTemperatures
	TTemperatures.baseplate

	TTemperatures.diode

	TopticaIBeam
	TopticaIBeam.Error

	TopticaIBeam.open()

	TopticaIBeam.query()

	TopticaIBeam.reboot()

	TopticaIBeam.get_device_info()

	TopticaIBeam.get_full_data()

	TopticaIBeam.get_work_hours()

	TopticaIBeam.get_channels_number()

	TopticaIBeam.is_enabled()

	TopticaIBeam.enable()

	TopticaIBeam.is_channel_enabled()

	TopticaIBeam.enable_channel()

	TopticaIBeam.get_channel_power()

	TopticaIBeam.set_channel_power()

	TopticaIBeam.get_output_power()

	TopticaIBeam.get_drive_current()

	TopticaIBeam.get_current_limits()

	TopticaIBeam.get_temperatures()

	TopticaIBeam.apply_settings()

	TopticaIBeam.close()

	TopticaIBeam.get_device_variable()

	TopticaIBeam.get_full_info()

	TopticaIBeam.get_full_status()

	TopticaIBeam.get_settings()

	TopticaIBeam.is_opened()

	TopticaIBeam.lock()

	TopticaIBeam.locking()

	TopticaIBeam.set_device_variable()

	TopticaIBeam.unlock()

	Module contents

	pylablib.devices.Trinamic package
	Submodules

	pylablib.devices.Trinamic.base module
	TrinamicError
	TrinamicError.add_note()

	TrinamicError.args

	TrinamicError.with_traceback()

	TrinamicBackendError
	TrinamicBackendError.add_note()

	TrinamicBackendError.args

	TrinamicBackendError.with_traceback()

	TrinamicTimeoutError
	TrinamicTimeoutError.add_note()

	TrinamicTimeoutError.args

	TrinamicTimeoutError.with_traceback()

	TLimitSwitchParams
	TLimitSwitchParams.left_enable

	TLimitSwitchParams.right_enable

	TVelocityParams
	TVelocityParams.accel

	TVelocityParams.pulse_divisor

	TVelocityParams.ramp_divisor

	TVelocityParams.speed

	THomeParams
	THomeParams.mode

	THomeParams.search_speed

	THomeParams.switch_speed

	TMCM1110
	TMCM1110.Error

	TMCM1110.open()

	TMCM1110.ReplyData

	TMCM1110.query()

	TMCM1110.get_axis_parameter()

	TMCM1110.set_axis_parameter()

	TMCM1110.store_axis_parameter()

	TMCM1110.get_global_parameter()

	TMCM1110.set_global_parameter()

	TMCM1110.get_general_input()

	TMCM1110.set_general_output()

	TMCM1110.move_to()

	TMCM1110.move_by()

	TMCM1110.get_position()

	TMCM1110.set_position_reference()

	TMCM1110.jog()

	TMCM1110.stop()

	TMCM1110.get_microstep_resolution()

	TMCM1110.set_microstep_resolution()

	TMCM1110.get_current_parameters()

	TMCM1110.setup_current()

	TMCM1110.get_limit_switches_parameters()

	TMCM1110.setup_limit_switches()

	TMCM1110.get_home_parameters()

	TMCM1110.setup_home()

	TMCM1110.home()

	TMCM1110.is_homing()

	TMCM1110.get_velocity_parameters()

	TMCM1110.setup_velocity()

	TMCM1110.get_velocity_factor()

	TMCM1110.get_acceleration_factor()

	TMCM1110.get_current_speed()

	TMCM1110.is_moving()

	TMCM1110.wait_move()

	TMCM1110.apply_settings()

	TMCM1110.close()

	TMCM1110.get_device_variable()

	TMCM1110.get_full_info()

	TMCM1110.get_full_status()

	TMCM1110.get_settings()

	TMCM1110.is_opened()

	TMCM1110.lock()

	TMCM1110.locking()

	TMCM1110.set_device_variable()

	TMCM1110.unlock()

	Module contents

	pylablib.devices.Voltcraft package
	Submodules

	pylablib.devices.Voltcraft.base module
	GenericVoltcraftError
	GenericVoltcraftError.add_note()

	GenericVoltcraftError.args

	GenericVoltcraftError.with_traceback()

	GenericVoltcraftBackendError
	GenericVoltcraftBackendError.add_note()

	GenericVoltcraftBackendError.args

	GenericVoltcraftBackendError.with_traceback()

	pylablib.devices.Voltcraft.multimeter module
	VC7055
	VC7055.Error

	VC7055.ReraiseError

	VC7055.get_function()

	VC7055.set_function()

	VC7055.get_range()

	VC7055.set_range()

	VC7055.is_autorange_enabled()

	VC7055.enable_autorange()

	VC7055.get_measurement_rate()

	VC7055.set_measurement_rate()

	VC7055.get_reading()

	VC7055.BackendError

	VC7055.apply_settings()

	VC7055.ask()

	VC7055.close()

	VC7055.flush()

	VC7055.get_arg_type()

	VC7055.get_device_variable()

	VC7055.get_esr()

	VC7055.get_full_info()

	VC7055.get_full_status()

	VC7055.get_id()

	VC7055.get_settings()

	VC7055.is_opened()

	VC7055.lock()

	VC7055.locking()

	VC7055.open()

	VC7055.parse_array_data()

	VC7055.read()

	VC7055.read_binary_array_data()

	VC7055.reconnect()

	VC7055.reset()

	VC7055.set_device_variable()

	VC7055.sleep()

	VC7055.unlock()

	VC7055.using_write_buffer()

	VC7055.wait()

	VC7055.wait_dev()

	VC7055.wait_sync()

	VC7055.write()

	VC880ParseError
	VC880ParseError.add_note()

	VC880ParseError.args

	VC880ParseError.with_traceback()

	TVC880Reading
	TVC880Reading.d2func

	TVC880Reading.disps

	TVC880Reading.func

	TVC880Reading.kind

	TVC880Reading.unit

	TVC880Reading.value

	VC880
	VC880.Error

	VC880.TMessage

	VC880.read_message()

	VC880.exhaust_messages()

	VC880.send_message()

	VC880.get_reading()

	VC880.enable_autorange()

	VC880.apply_settings()

	VC880.close()

	VC880.get_device_variable()

	VC880.get_full_info()

	VC880.get_full_status()

	VC880.get_settings()

	VC880.is_opened()

	VC880.lock()

	VC880.locking()

	VC880.open()

	VC880.set_device_variable()

	VC880.unlock()

	Module contents

	pylablib.devices.interface package
	Submodules

	pylablib.devices.interface.camera module
	DefaultFrameTransferError
	DefaultFrameTransferError.add_note()

	DefaultFrameTransferError.args

	DefaultFrameTransferError.with_traceback()

	TFramesStatus
	TFramesStatus.acquired

	TFramesStatus.buffer_size

	TFramesStatus.skipped

	TFramesStatus.unread

	TFrameSize
	TFrameSize.height

	TFrameSize.width

	TFramePosition
	TFramePosition.left

	TFramePosition.top

	TFrameInfo
	TFrameInfo.frame_index

	ICamera
	ICamera.Error

	ICamera.TimeoutError

	ICamera.FrameTransferError

	ICamera.is_acquisition_setup()

	ICamera.get_acquisition_parameters()

	ICamera.setup_acquisition()

	ICamera.clear_acquisition()

	ICamera.start_acquisition()

	ICamera.stop_acquisition()

	ICamera.acquisition_in_progress()

	ICamera.pausing_acquisition()

	ICamera.get_detector_size()

	ICamera.get_frames_status()

	ICamera.wait_for_frame()

	ICamera.get_image_indexing()

	ICamera.set_image_indexing()

	ICamera.get_data_dimensions()

	ICamera.get_frame_format()

	ICamera.set_frame_format()

	ICamera.get_frame_info_format()

	ICamera.set_frame_info_format()

	ICamera.get_frame_info_period()

	ICamera.set_frame_info_period()

	ICamera.get_frame_info_fields()

	ICamera.get_new_images_range()

	ICamera.read_multiple_images()

	ICamera.read_oldest_image()

	ICamera.read_newest_image()

	ICamera.grab()

	ICamera.snap()

	ICamera.apply_settings()

	ICamera.close()

	ICamera.get_device_variable()

	ICamera.get_full_info()

	ICamera.get_full_status()

	ICamera.get_settings()

	ICamera.is_opened()

	ICamera.open()

	ICamera.set_device_variable()

	acqstopped()

	acqcleared()

	trim_frames()

	FrameCounter
	FrameCounter.reset()

	FrameCounter.update_acquired_frames()

	FrameCounter.wait_start()

	FrameCounter.is_wait_done()

	FrameCounter.wait_done()

	FrameCounter.get_frames_status()

	FrameCounter.get_new_frames_range()

	FrameCounter.trim_frames_range()

	FrameCounter.advance_read_frames()

	FrameCounter.set_first_valid_frame()

	FrameNotifier
	FrameNotifier.reset()

	FrameNotifier.inc()

	FrameNotifier.wait()

	ChunkBufferManager
	ChunkBufferManager.get_ctypes_frames_list()

	ChunkBufferManager.get_frames_data()

	ChunkBufferManager.allocate()

	ChunkBufferManager.deallocate()

	IAttributeCamera
	IAttributeCamera.get_attribute()

	IAttributeCamera.get_all_attributes()

	IAttributeCamera.get_attribute_value()

	IAttributeCamera.set_attribute_value()

	IAttributeCamera.get_all_attribute_values()

	IAttributeCamera.set_all_attribute_values()

	IAttributeCamera.Error

	IAttributeCamera.FrameTransferError

	IAttributeCamera.TimeoutError

	IAttributeCamera.acquisition_in_progress()

	IAttributeCamera.apply_settings()

	IAttributeCamera.clear_acquisition()

	IAttributeCamera.close()

	IAttributeCamera.get_acquisition_parameters()

	IAttributeCamera.get_data_dimensions()

	IAttributeCamera.get_detector_size()

	IAttributeCamera.get_device_variable()

	IAttributeCamera.get_frame_format()

	IAttributeCamera.get_frame_info_fields()

	IAttributeCamera.get_frame_info_format()

	IAttributeCamera.get_frame_info_period()

	IAttributeCamera.get_frames_status()

	IAttributeCamera.get_full_info()

	IAttributeCamera.get_full_status()

	IAttributeCamera.get_image_indexing()

	IAttributeCamera.get_new_images_range()

	IAttributeCamera.get_settings()

	IAttributeCamera.grab()

	IAttributeCamera.is_acquisition_setup()

	IAttributeCamera.is_opened()

	IAttributeCamera.open()

	IAttributeCamera.pausing_acquisition()

	IAttributeCamera.read_multiple_images()

	IAttributeCamera.read_newest_image()

	IAttributeCamera.read_oldest_image()

	IAttributeCamera.set_device_variable()

	IAttributeCamera.set_frame_format()

	IAttributeCamera.set_frame_info_format()

	IAttributeCamera.set_frame_info_period()

	IAttributeCamera.set_image_indexing()

	IAttributeCamera.setup_acquisition()

	IAttributeCamera.snap()

	IAttributeCamera.start_acquisition()

	IAttributeCamera.stop_acquisition()

	IAttributeCamera.wait_for_frame()

	IGrabberAttributeCamera
	IGrabberAttributeCamera.get_grabber_attribute()

	IGrabberAttributeCamera.get_all_grabber_attributes()

	IGrabberAttributeCamera.get_grabber_attribute_value()

	IGrabberAttributeCamera.set_grabber_attribute_value()

	IGrabberAttributeCamera.get_all_grabber_attribute_values()

	IGrabberAttributeCamera.set_all_grabber_attribute_values()

	IGrabberAttributeCamera.Error

	IGrabberAttributeCamera.FrameTransferError

	IGrabberAttributeCamera.TimeoutError

	IGrabberAttributeCamera.acquisition_in_progress()

	IGrabberAttributeCamera.apply_settings()

	IGrabberAttributeCamera.clear_acquisition()

	IGrabberAttributeCamera.close()

	IGrabberAttributeCamera.get_acquisition_parameters()

	IGrabberAttributeCamera.get_data_dimensions()

	IGrabberAttributeCamera.get_detector_size()

	IGrabberAttributeCamera.get_device_variable()

	IGrabberAttributeCamera.get_frame_format()

	IGrabberAttributeCamera.get_frame_info_fields()

	IGrabberAttributeCamera.get_frame_info_format()

	IGrabberAttributeCamera.get_frame_info_period()

	IGrabberAttributeCamera.get_frames_status()

	IGrabberAttributeCamera.get_full_info()

	IGrabberAttributeCamera.get_full_status()

	IGrabberAttributeCamera.get_image_indexing()

	IGrabberAttributeCamera.get_new_images_range()

	IGrabberAttributeCamera.get_settings()

	IGrabberAttributeCamera.grab()

	IGrabberAttributeCamera.is_acquisition_setup()

	IGrabberAttributeCamera.is_opened()

	IGrabberAttributeCamera.open()

	IGrabberAttributeCamera.pausing_acquisition()

	IGrabberAttributeCamera.read_multiple_images()

	IGrabberAttributeCamera.read_newest_image()

	IGrabberAttributeCamera.read_oldest_image()

	IGrabberAttributeCamera.set_device_variable()

	IGrabberAttributeCamera.set_frame_format()

	IGrabberAttributeCamera.set_frame_info_format()

	IGrabberAttributeCamera.set_frame_info_period()

	IGrabberAttributeCamera.set_image_indexing()

	IGrabberAttributeCamera.setup_acquisition()

	IGrabberAttributeCamera.snap()

	IGrabberAttributeCamera.start_acquisition()

	IGrabberAttributeCamera.stop_acquisition()

	IGrabberAttributeCamera.wait_for_frame()

	TAcqTimings
	TAcqTimings.exposure

	TAcqTimings.frame_period

	IExposureCamera
	IExposureCamera.get_exposure()

	IExposureCamera.set_exposure()

	IExposureCamera.get_frame_period()

	IExposureCamera.get_frame_timings()

	IExposureCamera.Error

	IExposureCamera.FrameTransferError

	IExposureCamera.TimeoutError

	IExposureCamera.acquisition_in_progress()

	IExposureCamera.apply_settings()

	IExposureCamera.clear_acquisition()

	IExposureCamera.close()

	IExposureCamera.get_acquisition_parameters()

	IExposureCamera.get_data_dimensions()

	IExposureCamera.get_detector_size()

	IExposureCamera.get_device_variable()

	IExposureCamera.get_frame_format()

	IExposureCamera.get_frame_info_fields()

	IExposureCamera.get_frame_info_format()

	IExposureCamera.get_frame_info_period()

	IExposureCamera.get_frames_status()

	IExposureCamera.get_full_info()

	IExposureCamera.get_full_status()

	IExposureCamera.get_image_indexing()

	IExposureCamera.get_new_images_range()

	IExposureCamera.get_settings()

	IExposureCamera.grab()

	IExposureCamera.is_acquisition_setup()

	IExposureCamera.is_opened()

	IExposureCamera.open()

	IExposureCamera.pausing_acquisition()

	IExposureCamera.read_multiple_images()

	IExposureCamera.read_newest_image()

	IExposureCamera.read_oldest_image()

	IExposureCamera.set_device_variable()

	IExposureCamera.set_frame_format()

	IExposureCamera.set_frame_info_format()

	IExposureCamera.set_frame_info_period()

	IExposureCamera.set_image_indexing()

	IExposureCamera.setup_acquisition()

	IExposureCamera.snap()

	IExposureCamera.start_acquisition()

	IExposureCamera.stop_acquisition()

	IExposureCamera.wait_for_frame()

	TAxisROILimit
	TAxisROILimit.max

	TAxisROILimit.maxbin

	TAxisROILimit.min

	TAxisROILimit.pstep

	TAxisROILimit.sstep

	truncate_roi_axis()

	IROICamera
	IROICamera.get_roi()

	IROICamera.set_roi()

	IROICamera.get_roi_limits()

	IROICamera.Error

	IROICamera.FrameTransferError

	IROICamera.TimeoutError

	IROICamera.acquisition_in_progress()

	IROICamera.apply_settings()

	IROICamera.clear_acquisition()

	IROICamera.close()

	IROICamera.get_acquisition_parameters()

	IROICamera.get_data_dimensions()

	IROICamera.get_detector_size()

	IROICamera.get_device_variable()

	IROICamera.get_frame_format()

	IROICamera.get_frame_info_fields()

	IROICamera.get_frame_info_format()

	IROICamera.get_frame_info_period()

	IROICamera.get_frames_status()

	IROICamera.get_full_info()

	IROICamera.get_full_status()

	IROICamera.get_image_indexing()

	IROICamera.get_new_images_range()

	IROICamera.get_settings()

	IROICamera.grab()

	IROICamera.is_acquisition_setup()

	IROICamera.is_opened()

	IROICamera.open()

	IROICamera.pausing_acquisition()

	IROICamera.read_multiple_images()

	IROICamera.read_newest_image()

	IROICamera.read_oldest_image()

	IROICamera.set_device_variable()

	IROICamera.set_frame_format()

	IROICamera.set_frame_info_format()

	IROICamera.set_frame_info_period()

	IROICamera.set_image_indexing()

	IROICamera.setup_acquisition()

	IROICamera.snap()

	IROICamera.start_acquisition()

	IROICamera.stop_acquisition()

	IROICamera.wait_for_frame()

	IBinROICamera
	IBinROICamera.get_roi()

	IBinROICamera.set_roi()

	IBinROICamera.get_roi_limits()

	IBinROICamera.Error

	IBinROICamera.FrameTransferError

	IBinROICamera.TimeoutError

	IBinROICamera.acquisition_in_progress()

	IBinROICamera.apply_settings()

	IBinROICamera.clear_acquisition()

	IBinROICamera.close()

	IBinROICamera.get_acquisition_parameters()

	IBinROICamera.get_data_dimensions()

	IBinROICamera.get_detector_size()

	IBinROICamera.get_device_variable()

	IBinROICamera.get_frame_format()

	IBinROICamera.get_frame_info_fields()

	IBinROICamera.get_frame_info_format()

	IBinROICamera.get_frame_info_period()

	IBinROICamera.get_frames_status()

	IBinROICamera.get_full_info()

	IBinROICamera.get_full_status()

	IBinROICamera.get_image_indexing()

	IBinROICamera.get_new_images_range()

	IBinROICamera.get_settings()

	IBinROICamera.grab()

	IBinROICamera.is_acquisition_setup()

	IBinROICamera.is_opened()

	IBinROICamera.open()

	IBinROICamera.pausing_acquisition()

	IBinROICamera.read_multiple_images()

	IBinROICamera.read_newest_image()

	IBinROICamera.read_oldest_image()

	IBinROICamera.set_device_variable()

	IBinROICamera.set_frame_format()

	IBinROICamera.set_frame_info_format()

	IBinROICamera.set_frame_info_period()

	IBinROICamera.set_image_indexing()

	IBinROICamera.setup_acquisition()

	IBinROICamera.snap()

	IBinROICamera.start_acquisition()

	IBinROICamera.stop_acquisition()

	IBinROICamera.wait_for_frame()

	TStatusLineDescription
	TStatusLineDescription.framestamp_checker

	TStatusLineDescription.kind

	TStatusLineDescription.roi

	StatusLineChecker
	StatusLineChecker.get_framestamp()

	StatusLineChecker.check_indices()

	remove_status_line()

	extract_status_line()

	insert_status_line()

	get_status_line_roi()

	pylablib.devices.interface.stage module
	IStage
	IStage.apply_settings()

	IStage.close()

	IStage.get_device_variable()

	IStage.get_full_info()

	IStage.get_full_status()

	IStage.get_settings()

	IStage.is_opened()

	IStage.open()

	IStage.set_device_variable()

	muxaxis()

	IMultiaxisStage
	IMultiaxisStage.get_all_axes()

	IMultiaxisStage.remap_axes()

	IMultiaxisStage.apply_settings()

	IMultiaxisStage.close()

	IMultiaxisStage.get_device_variable()

	IMultiaxisStage.get_full_info()

	IMultiaxisStage.get_full_status()

	IMultiaxisStage.get_settings()

	IMultiaxisStage.is_opened()

	IMultiaxisStage.open()

	IMultiaxisStage.set_device_variable()

	Module contents

	pylablib.devices.uc480 package
	Submodules

	pylablib.devices.uc480.uc480 module
	TCameraInfo
	TCameraInfo.cam_id

	TCameraInfo.dev_id

	TCameraInfo.in_use

	TCameraInfo.model

	TCameraInfo.sens_id

	TCameraInfo.serial_number

	TCameraInfo.status

	list_cameras()

	get_cameras_number()

	find_by_serial()

	TDeviceInfo
	TDeviceInfo.cam_id

	TDeviceInfo.camera_type

	TDeviceInfo.date

	TDeviceInfo.dll_version

	TDeviceInfo.manufacturer

	TDeviceInfo.model

	TDeviceInfo.serial_number

	TDeviceInfo.usb_version

	TAcquiredFramesStatus
	TAcquiredFramesStatus.acquired

	TAcquiredFramesStatus.frameskip_events

	TAcquiredFramesStatus.transfer_missed

	TTimestamp
	TTimestamp.day

	TTimestamp.hour

	TTimestamp.millisecond

	TTimestamp.minute

	TTimestamp.month

	TTimestamp.second

	TTimestamp.year

	TFrameInfo
	TFrameInfo.flags

	TFrameInfo.frame_index

	TFrameInfo.framestamp

	TFrameInfo.io_status

	TFrameInfo.size

	TFrameInfo.timestamp

	TFrameInfo.timestamp_dev

	UC480Camera
	UC480Camera.Error

	UC480Camera.TimeoutError

	UC480Camera.FrameTransferError

	UC480Camera.find_by_serial()

	UC480Camera.open()

	UC480Camera.close()

	UC480Camera.is_opened()

	UC480Camera.get_device_info()

	UC480Camera.get_camera_id()

	UC480Camera.set_camera_id()

	UC480Camera.get_frame_timings()

	UC480Camera.set_exposure()

	UC480Camera.set_frame_period()

	UC480Camera.get_pixel_rate()

	UC480Camera.get_available_pixel_rates()

	UC480Camera.get_pixel_rates_range()

	UC480Camera.set_pixel_rate()

	UC480Camera.get_all_color_modes()

	UC480Camera.get_color_mode()

	UC480Camera.set_color_mode()

	UC480Camera.get_gains()

	UC480Camera.get_max_gains()

	UC480Camera.set_gains()

	UC480Camera.get_gain_boost()

	UC480Camera.set_gain_boost()

	UC480Camera.setup_acquisition()

	UC480Camera.clear_acquisition()

	UC480Camera.start_acquisition()

	UC480Camera.stop_acquisition()

	UC480Camera.acquisition_in_progress()

	UC480Camera.get_frames_status()

	UC480Camera.get_acquired_frame_status()

	UC480Camera.set_frameskip_behavior()

	UC480Camera.get_supported_subsampling_modes()

	UC480Camera.get_subsampling()

	UC480Camera.set_subsampling()

	UC480Camera.get_supported_binning_modes()

	UC480Camera.get_binning()

	UC480Camera.set_binning()

	UC480Camera.get_detector_size()

	UC480Camera.get_roi()

	UC480Camera.set_roi()

	UC480Camera.get_roi_limits()

	UC480Camera.apply_settings()

	UC480Camera.get_acquisition_parameters()

	UC480Camera.get_data_dimensions()

	UC480Camera.get_device_variable()

	UC480Camera.get_exposure()

	UC480Camera.get_frame_format()

	UC480Camera.get_frame_info_fields()

	UC480Camera.get_frame_info_format()

	UC480Camera.get_frame_info_period()

	UC480Camera.get_frame_period()

	UC480Camera.get_full_info()

	UC480Camera.get_full_status()

	UC480Camera.get_image_indexing()

	UC480Camera.get_new_images_range()

	UC480Camera.get_settings()

	UC480Camera.grab()

	UC480Camera.is_acquisition_setup()

	UC480Camera.pausing_acquisition()

	UC480Camera.read_newest_image()

	UC480Camera.read_oldest_image()

	UC480Camera.set_device_variable()

	UC480Camera.set_frame_format()

	UC480Camera.set_frame_info_format()

	UC480Camera.set_frame_info_period()

	UC480Camera.set_image_indexing()

	UC480Camera.snap()

	UC480Camera.wait_for_frame()

	UC480Camera.read_multiple_images()

	Module contents

	pylablib.devices.utils package
	Submodules

	pylablib.devices.utils.color module
	bayer_interpolate()

	linear_to_sRGB()

	sRGB_to_linear()

	pylablib.devices.utils.load_lib module
	get_os_lib_folder()

	get_program_files_folder()

	get_appdata_folder()

	get_environ_folder()

	load_lib()

	TLibraryOpenResult
	TLibraryOpenResult.init_result

	TLibraryOpenResult.open_result

	TLibraryOpenResult.opid

	TLibraryCloseResult
	TLibraryCloseResult.close_result

	TLibraryCloseResult.uninit_result

	LibraryController
	LibraryController.preinit()

	LibraryController.open()

	LibraryController.close()

	LibraryController.temp_open()

	LibraryController.shutdown()

	LibraryController.get_opened_num()

	Module contents

Module contents

pylablib.devices.AWG package

Submodules

pylablib.devices.AWG.generic module

	
exception pylablib.devices.AWG.generic.GenericAWGError

	Bases: DeviceError

Generic AWG error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.AWG.generic.GenericAWGBackendError(exc)

	Bases: GenericAWGError, DeviceBackendError

AWG backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.AWG.generic.GenericAWG(addr)

	Bases: SCPIDevice

Generic arbitrary wave generator, based on Agilent 33500.

With slight modifications works for many other AWGs using largely the same syntax.

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
select_current_channel(channel)

	Select current default channel

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
get_load(channel=None)

	Get the output load

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
get_offset(channel=None)

	Get output offset

	
set_offset(offset, channel=None)

	Set output offset

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
get_frequency(channel=None)

	Get output frequency

	
set_frequency(frequency, channel=None)

	Set output frequency

	
get_phase(channel=None)

	Get output phase (in degrees)

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
sync_phase()

	Synchronize phase between two channels

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

pylablib.devices.AWG.specific module

	
class pylablib.devices.AWG.specific.Agilent33500(addr, channels_number='auto')

	Bases: GenericAWG

Agilent 33500 AWG.

	Parameters:

	channels_number – number of channels; if "auto", try to determine automatically (by certain commands causing errors)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_offset(channel=None)

	Get output offset

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.Agilent33220A(addr)

	Bases: GenericAWG

Agilent 33220A AWG.

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_offset(channel=None)

	Get output offset

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.InstekAFG2225(addr)

	Bases: GenericAWG

Instek AFG2225 AWG.

Compared to 2000/2100 series, has one extra channel and a bit more capabilities
(burst trigger, pulse function)

	
get_offset(channel=None)

	Get output offset

	
set_offset(offset, channel=None)

	Set output offset

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.InstekAFG2000(addr)

	Bases: InstekAFG2225

Instek AFG2000/2100 series AWG.

Compared to AFG2225, has only one channel and fewer capabilities.

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_offset(channel=None)

	Get output offset

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.RSInstekAFG21000(addr)

	Bases: InstekAFG2000

RS Instek AFG21000 series AWG.

Compared to Instek AFG2000, it takes care of the amplitude output bug.

	
get_offset(channel=None)

	Get output offset

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.TektronixAFG1000(addr, channels_number='auto')

	Bases: GenericAWG

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_offset(channel=None)

	Get output offset

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
sync_phase()

	Synchronize phase between two channels

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.AWG.specific.RigolDG1000(addr)

	Bases: GenericAWG

Rigol DG1000 AWG.

	
sync_phase()

	Synchronize phase between two channels

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of GenericAWGError

	
ReraiseError

	alias of GenericAWGBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_burst(enabled=True, channel=None)

	Enable burst mode

	
enable_output(enabled=True, channel=None)

	Turn the output on or off

	
enable_sync_output(enabled=True, channel=None)

	Enable or disable SYNC output

	
enable_trigger_output(enabled=True, channel=None)

	Enable trigger output

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_amplitude(channel=None)

	Get output amplitude (i.e., half of the span)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_burst_mode(channel=None)

	Get burst mode.

Can be either "trig" or "gate".

	
get_burst_ncycles(channel=None)

	Get burst mode ncycles.

Infinite corresponds to a large value (>1E37).

	
get_channels_number()

	Get the number of channels

	
get_current_channel()

	Get current channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_duty_cycle(channel=None)

	Get output duty cycle (in percent).

Only applies to "square" output function.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_frequency(channel=None)

	Get output frequency

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_function(channel=None)

	Get output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
get_gate_polarity(channel=None)

	Get burst gate polarity.

Can be either "norm" or "inv".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_load(channel=None)

	Get the output load

	
get_offset(channel=None)

	Get output offset

	
get_output_polarity(channel=None)

	Get output polarity.

Can be either "norm" or "inv".

	
get_output_range(channel=None)

	Get output voltage range.

Return tuple (vmin, vmax) with the low and high voltage values (i.e., offset-amplitude and offset+amplitude).

	
get_output_trigger_slope(channel=None)

	Get output trigger slope.

Can be either "pos", or "neg".

	
get_phase(channel=None)

	Get output phase (in degrees)

	
get_pulse_width(channel=None)

	Get output pulse width (in seconds).

Only applies to "pulse" output function.

	
get_ramp_symmetry(channel=None)

	Get output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_slope(channel=None)

	Get trigger slope.

Can be either "pos", or "neg".

	
get_trigger_source(channel=None)

	Get trigger source.

Can be either "imm", "ext", or "bus".

	
is_burst_enabled(channel=None)

	Check if the burst mode is enabled

	
is_opened()

	Check if the device is connected

	
is_output_enabled(channel=None)

	Check if the output is enabled

	
is_sync_output_enabled(channel=None)

	Check if SYNC output is enabled

	
is_trigger_output_enabled(channel=None)

	Check if the trigger output is enabled

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_current_channel(channel)

	Select current default channel

	
set_amplitude(amplitude, channel=None)

	Set output amplitude (i.e., half of the span)

	
set_burst_mode(mode, channel=None)

	Set burst mode.

Can be either "trig" or "gate".

	
set_burst_ncycles(ncycles=1, channel=None)

	Set burst mode ncycles.

Infinite corresponds to None

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_duty_cycle(dcycle, channel=None)

	Set output duty cycle (in percent).

Only applies to "square" output function.

	
set_frequency(frequency, channel=None)

	Set output frequency

	
set_function(func, channel=None)

	Set output function.

Can be one of the following: "sine", "square", "ramp", "pulse", "noise", "prbs", "DC", "user", "arb".
Not all functions can be available, depending on the particular model of the generator.

	
set_gate_polarity(polarity='norm', channel=None)

	Set burst gate polarity.

Can be either "norm" or "inv".

	
set_load(load=None, channel=None)

	Set the output load (None means High-Z)

	
set_offset(offset, channel=None)

	Set output offset

	
set_output_polarity(polarity='norm', channel=None)

	Set output polarity.

Can be either "norm" or "inv".

	
set_output_range(rng, channel=None)

	Set output voltage range.

If span is less than 1E-4, automatically switch to DC mode.

	
set_output_trigger_slope(slope, channel=None)

	Set output trigger slope.

Can be either "pos", or "neg".

	
set_phase(phase, channel=None)

	Set output phase (in degrees)

	
set_pulse_width(width, channel=None)

	Set output pulse width (in seconds).

Only applies to "pulse" output function.

	
set_ramp_symmetry(rsymm, channel=None)

	Set output ramp symmetry (in percent).

Only applies to "ramp" output function.

	
set_trigger_slope(slope, channel=None)

	Set trigger slope.

Can be either "pos", or "neg".

	
set_trigger_source(src, channel=None)

	Set trigger source.

Can be either "imm", "ext", or "bus".

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.AlliedVision package

Submodules

pylablib.devices.AlliedVision.Bonito module

	
exception pylablib.devices.AlliedVision.Bonito.BonitoError

	Bases: DeviceError

Generic AlliedVision Bonito error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.AlliedVision.Bonito.TDeviceInfo(version, serial_number, grabber_info)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
grabber_info

	

	
serial_number

	

	
version

	

	
class pylablib.devices.AlliedVision.Bonito.IBonitoCamera(**kwargs)

	Bases: ICamera

	
Error

	alias of DeviceError

	
GrabberClass = None

	

	
open()

	Open the connection

	
serial_query(query, timeout=3.0)

	

	
get_serial_parameter(comm, kind='int', timeout=3.0)

	

	
set_serial_parameter(comm, value)

	

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height); as the camera does not provide this information, use the frame grabber parameters

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
get_roi_limits(hbin=1, vbin=1)

	

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
get_exposure_control_mode()

	Get the exposure control mode.

Return tuple (timing_mode, feature_mode), where timing_mode determines how the exposure and
frame period are timed (continuous, external trigger control, internal control, etc.),
and feature_mode controls additional features (permanent exposure, enhanced full well mode).
See documentation for details.

	
set_exposure_control_mode(timing_mode=None, feature_mode=None)

	Set the exposure control mode.

timing_mode determines how the exposure and frame period are timed (continuous, external trigger control, internal control, etc.),
and feature_mode controls additional features (permanent exposure, enhanced full well mode).
See documentation for details.

	
get_exposure()

	Get current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.

	
set_exposure(exposure, setup_mode=True)

	Set current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.
If setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.

	
set_frame_period(frame_period, setup_mode=True)

	Set frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.
If setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
is_status_line_enabled()

	Check if the status line is on

	
enable_status_line(enabled=True)

	Enable or disable status line

	
get_black_level_offset()

	Get the black level offset

	
set_black_level_offset(offset)

	Set the black level offset

	
get_digital_gain()

	Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

	
set_digital_gain(gain)

	Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera(imaq_name='img0')

	Bases: IBonitoCamera, IMAQFrameGrabber

IMAQ+PFCam interface to a AlliedVision Bonito camera.

	Parameters:

	imaq_name – IMAQ interface name (can be learned by IMAQ.list_cameras(); usually, but not always, starts with "img")

	
Error

	alias of DeviceError

	
GrabberClass

	alias of IMAQFrameGrabber

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822168224208'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
clear_all_triggers(reset_acquisition=True)

	Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if reset_acquisition==True, perform it automatically.

	
close()

	Close connection to the camera

	
configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None, reset_acquisition=True)

	Configure input trigger.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger source type; can be "ext", "rtsi", "iso_in", or "software"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger action; can be "none" (disable trigger), "capture" (start capturing), "stop" (stop capturing),
"buffer" (capture a single frame), or "bufflist" (capture the whole buffer list once)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – timeout in seconds; None means not timeout.

	reset_acquisition (bool [https://docs.python.org/3/library/functions.html#bool]) – if the input triggers configuration has been changed, acquisition needs to be restart;
if True, perform it automatically

	
configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')

	Configure trigger output.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_drive (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted when acquisition is done),
"unasserted" (force unasserted level), "asserted" (force asserted level),
"hsync" (asserted on start of a single line start), "vsync" (asserted on start of a frame scan),
"frame_start" (asserted when a single frame is captured), or "frame_done" (asserted when a single frame is done)

	
enable_status_line(enabled=True)

	Enable or disable status line

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_grabber_attribute_values()

	Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepresented.

	
get_black_level_offset()

	Get the black level offset

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height); as the camera does not provide this information, use the frame grabber parameters

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_digital_gain()

	Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

	
get_exposure()

	Get current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.

	
get_exposure_control_mode()

	Get the exposure control mode.

Return tuple (timing_mode, feature_mode), where timing_mode determines how the exposure and
frame period are timed (continuous, external trigger control, internal control, etc.),
and feature_mode controls additional features (permanent exposure, enhanced full well mode).
See documentation for details.

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_attribute_value(attr, default=None, kind='auto')

	Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error.
kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_serial_parameter(comm, kind='int', timeout=3.0)

	

	
get_serial_params()

	Return serial parameters as a tuple (write_term, datatype)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
is_status_line_enabled()

	Check if the status line is on

	
open()

	Open connection to the camera

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_trigger(trig_type, trig_line=0, trig_pol='high')

	Read current value of a trigger (input or output).

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", "iso_in", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	
reset()

	Reset connection to the camera

	
send_software_trigger()

	Send software trigger signal

	
serial_flush()

	Flush CameraLink serial port

	
serial_query(query, timeout=3.0)

	

	
serial_read(n, timeout=3.0, datatype=None)

	Read specified number of bytes from CameraLink serial port.

	Parameters:

	
	n – number of bytes to read

	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	
serial_readline(timeout=3.0, datatype=None, maxn=1024)

	Read bytes from CameraLink serial port until the termination character (defined in camera file) is encountered.

	Parameters:

	
	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	maxn – maximal number of bytes to read

	
serial_write(msg, timeout=3.0, term=None)

	Write message into CameraLink serial port.

	Parameters:

	
	timeout – operation timeout (in seconds)

	term – additional write terminator character to add to the message;
if None, use the value set up using setup_serial_params() (by default, no additional terminator)

	
set_black_level_offset(offset)

	Set the black level offset

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_digital_gain(gain)

	Get the digital gain (0 for 1x, 1 for 2x, 2 for 4x)

	
set_exposure(exposure, setup_mode=True)

	Set current exposure.

Note that the actual exposure might be different, depending on the exposure control mode.
If setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

	
set_exposure_control_mode(timing_mode=None, feature_mode=None)

	Set the exposure control mode.

timing_mode determines how the exposure and frame period are timed (continuous, external trigger control, internal control, etc.),
and feature_mode controls additional features (permanent exposure, enhanced full well mode).
See documentation for details.

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_period(frame_period, setup_mode=True)

	Set frame period (time between two consecutive frames in the internal trigger mode).

Note that the actual frame period might be different, depending on the exposure control mode.
If setup_mode==True, automatically set the exposure mode to take the given exposure value into account.

	
set_grabber_attribute_value(attr, value, kind='int32')

	Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
set_serial_parameter(comm, value)

	

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
setup_serial_params(write_term='', datatype='bytes')

	Setup default serial communication parameters.

	Parameters:

	
	write_term – default terminator character to be added to the sent messages

	datatype – type of the result of read commands; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
pylablib.devices.AlliedVision.Bonito.check_grabber_association(cam)

	Check if the given IMAQ frame grabber corresponds to Bonito camera.

cam should be an opened instance of IMAQCamera.

	
class pylablib.devices.AlliedVision.Bonito.TStatusLine(framestamp)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
framestamp

	

	
pylablib.devices.AlliedVision.Bonito.get_status_lines(frames)

	Get frame info from the binary status line.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D arrays.
Assume that the status line is present; if it isn’t, the returned frame info will be a random noise.
Return a 1D or 2D numpy array, where the first axis (if present) is the frame number, and the last is the status line entry.

	
class pylablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker

	Bases: StatusLineChecker

	
get_framestamp(frames)

	Get framestamps from status lines in the given frames

	
check_indices(indices, step=1)

	Check if indices are consistent with the given step

Module contents

pylablib.devices.Andor package

Submodules

pylablib.devices.Andor.AndorSDK2 module

	
class pylablib.devices.Andor.AndorSDK2.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Andor.AndorSDK2.restart_lib()

	

	
pylablib.devices.Andor.AndorSDK2.get_SDK_version()

	Get version of Andor SDK2

	
pylablib.devices.Andor.AndorSDK2.get_cameras_number()

	Get number of connected Andor cameras

	
class pylablib.devices.Andor.AndorSDK2.TDeviceInfo(controller_model, head_model, serial_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
controller_model

	

	
head_model

	

	
serial_number

	

	
class pylablib.devices.Andor.AndorSDK2.TCycleTimings(exposure, accum_cycle_time, kinetic_cycle_time)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
accum_cycle_time

	

	
exposure

	

	
kinetic_cycle_time

	

	
class pylablib.devices.Andor.AndorSDK2.TAcqProgress(frames_done, cycles_done)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cycles_done

	

	
frames_done

	

	
class pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera(idx=0, ini_path='', temperature=None, fan_mode='off', amp_mode=None)

	Bases: IBinROICamera, IExposureCamera

Andor SDK2 camera.

Due to the library features, the camera needs to set up all of the parameters to some default values upon connection.
Most of these parameters are chosen as reasonable defaults: full ROI, minimal exposure time, closed shutter,
internal trigger, fastest recommended verticals shift speed, no EMCCD gain.
However, some should be supplied during the connection: temperature setpoint (where appropriate), fan mode, and amplifier mode;
while there is still a possibility to have default values of these parameters, they might not be appropriate in some settings, and frequently need to be changed.

Caution: the manufacturer DLL is designed such that if the camera is not closed on the program termination, the allocated resources are never released.
If this happens, these resources are blocked until the complete OS restart.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – camera index (use get_cameras_number() to get the total number of connected cameras)

	ini_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to .ini file, if required by the camera

	temperature – initial temperature setpoint (in C); can also be None (select the bottom 20% of the whole range),
or "off" (turn the cooler off and set the maximal of the whole range)

	fan_mode – initial fan mode

	amp_mode – initial amplifier mode (a tuple like the one returned by get_amp_mode());
can also be None, which selects the slowest, smallest gain mode

	
Error

	alias of AndorError

	
TimeoutError

	alias of AndorTimeoutError

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera device info.

Return tuple (controller_mode, head_model, serial_number).

	
get_status()

	Get camera status.

Return either "idle" (no acquisition), "acquiring" (acquisition in progress) or "temp_cycle" (temperature cycle in progress).

	
acquisition_in_progress()

	Check if acquisition is in progress

	
get_capabilities()

	Get camera capabilities.

For description of the structure, see Andor SDK manual.

	
get_pixel_size()

	Get camera pixel size (in m)

	
is_cooler_on()

	Check if the cooler is on

	
set_cooler(on=True)

	Set the cooler on or off

	
get_temperature_status()

	Get temperature status.

Can return "off" (cooler off), "not_reached" (cooling in progress), "not_stabilized" (reached but not stabilized yet),
"stabilized" (completely stabilized) or "drifted".

	
get_temperature()

	Get the current camera temperature (in C)

	
set_temperature(temperature, enable_cooler=True)

	Change the temperature setpoint (in C).

If enable_cooler==True, turn the cooler on automatically.

	
get_temperature_setpoint()

	Get the temperature setpoint (in C)

	
get_temperature_range()

	Return the available range of temperatures (in C)

	
get_all_amp_modes()

	Get all available preamp modes.

Each preamp mode is characterized by an AD channel index, amplifier index, channel speed (horizontal scan speed) index and preamp gain index.
Return list of tuples (channel, channel_bitdepth, oamp, oamp_kind, hsspeed, hsspeed_MHz, preamp, preamp_gain),
where channel, oamp, hsspeed and preamp are indices, while channel_bitdepth, oamp_kind, hsspeed_MHz and preamp_gain are descriptions.

	
get_max_vsspeed()

	Get maximal recommended vertical scan speed

	
get_all_vsspeeds()

	Get all available vertical shift speeds modes.

Return list of the vertical shift periods in microseconds for the corresponding indices (starting from 0).

	
set_amp_mode(channel=None, oamp=None, hsspeed=None, preamp=None)

	Setup preamp mode.

Can specify AD channel index, amplifier index, channel speed (horizontal scan speed) index and preamp gain index.
None (default) means leaving the current value.

	
get_amp_mode(full=True)

	Return the current amplifier mode.

If full==True, return a full description (e.g., actual preamp gain or channel name);
otherwise, return just the essential indices information (enough to set the mode for this camera, but no explanations).

	
set_vsspeed(vsspeed)

	Set vertical scan speed index

	
get_channel()

	Get current channel index

	
get_channel_bitdepth(channel=None)

	Get channel bit depth corresponding to the given channel index (current by default)

	
get_oamp()

	Get current output amplifier index

	
get_oamp_desc(oamp=None)

	Get output amplifier kind corresponding to the given oamp index (current by default)

	
get_hsspeed()

	Get current horizontal speed index

	
get_hsspeed_frequency(hsspeed=None)

	Get horizontal scan frequency (in Hz) corresponding to the given hsspeed index (current by default)

	
get_preamp()

	Get current preamp index

	
get_preamp_gain(preamp=None)

	Get preamp gain corresponding to the given preamp index (current by default)

	
get_vsspeed()

	Get current vertical speed index

	
get_vsspeed_period(vsspeed=None)

	Get vertical scan period corresponding to the given vsspeed index (current by default)

	
get_EMCCD_gain()

	Get current EMCCD gain.

Return tuple (gain, advanced).

	
set_EMCCD_gain(gain, advanced=None)

	Set EMCCD gain.

Gain goes up to 300 if advanced==False or higher if advanced==True (in this mode the sensor can be permanently damaged by strong light).

	
init_amp_mode(mode=None)

	Initialize the camera channel, frequencies and amp settings to some default mode.

If mode is supplied, use this mode; otherwise, use the slowest, lowest gain mode (the first one returned by get_all_amp_modes()).
Also set the maximal recommended vertical shift speed and no EMCCD gain.

	
get_min_shutter_times()

	Get minimal shutter opening and closing times

	
setup_shutter(mode, ttl_mode=0, open_time=None, close_time=None)

	Setup shutter.

mode can be "auto", "open" or "closed", ttl_mode can be 0 (low is open) or 1 (high is open),
open_time and close_time specify opening and closing times (required to calculate the minimal exposure times).
By default, these time are minimal allowed times.

	
get_shutter_parameters()

	Return shutter parameters as a tuple (mode, ttl_mode, open_time, close_time)

	
get_shutter()

	Get shutter state ("auto", "open", or "closed")

	
set_fan_mode(mode)

	Set fan mode.

Can be "full", "low" or "off".

	
get_fan_mode()

	Return fan mode ("full", "low", or "off")

	
read_in_aux_port(port)

	Get state at a given auxiliary port

	
set_out_aux_port(port, state)

	Set state at a given auxiliary port

	
set_trigger_mode(mode)

	Set trigger mode.

Can be "int" (internal), "ext" (external), "ext_start" (external start), "ext_exp" (external exposure),
"ext_fvb_em" (external FVB EM), "software" (software trigger) or "ext_charge_shift" (external charge shifting).

For description, see Andor SDK manual.

	
get_trigger_mode()

	Return trigger mode

	
get_trigger_level_limits()

	Get limits on the trigger level

	
setup_ext_trigger(level=None, invert=None, term_highZ=None)

	Setup external trigger (level, inversion, and high-Z termination).

Any None values are not changed. If any returned values are None, it means that this option is not supported.

	
get_ext_trigger_parameters()

	Return external trigger parameters (level, inversion, high-Z termination).

If any returned values are None, it means that this option is not supported.

	
send_software_trigger()

	Send software trigger signal

	
set_acquisition_mode(mode, setup_params=True)

	Set the acquisition mode.

Can be "single", "accum", "kinetic", "fast_kinetic" or "cont" (continuous).
If setup_params==True, make sure that the last specified parameters for this mode are set up.
For description of each mode, see Andor SDK manual and corresponding setup_*_mode functions.

	
get_acquisition_mode()

	Get the current acquisition mode

	
setup_accum_mode(num_acc, cycle_time_acc=0)

	Switch into the accum acquisition mode and set up its parameters.

num_acc is the number of accumulated frames, cycle_time_acc is the acquisition period
(by default the minimal possible based on exposure and transfer time).

	
get_accum_mode_parameters()

	Return accum acquisition mode parameters (num_acc, cycle_time_acc)

	
setup_kinetic_mode(num_cycle, cycle_time=0.0, num_acc=1, cycle_time_acc=0, num_prescan=0)

	Switch into the kinetic acquisition mode and set up its parameters.

num_cycle is the number of kinetic cycles frames, cycle_time is the acquisition period between accum frames,
num_accum is the number of accumulated frames, cycle_time_acc is the accum acquisition period,
num_prescan is the number of prescans.

	
get_kinetic_mode_parameters()

	Return kinetic acquisition mode parameters (num_cycle, cycle_time, num_acc, cycle_time_acc, num_prescan)

	
setup_fast_kinetic_mode(num_acc, cycle_time_acc=0.0)

	Switch into the fast kinetic acquisition mode and set up its parameters.

num_acc is the number of accumulated frames, cycle_time_acc is the acquisition period
(by default the minimal possible based on exposure and transfer time).

	
get_fast_kinetic_mode_parameters()

	Return fast kinetic acquisition mode parameters (num_acc, cycle_time_acc)

	
setup_cont_mode(cycle_time=0)

	Switch into the continuous acquisition mode and set up its parameters.

cycle_time is the acquisition period (by default the minimal possible based on exposure and transfer time).

	
get_cont_mode_parameters()

	Return continuous acquisition mode parameters cycle_time

	
set_exposure(exposure)

	Set camera exposure

	
get_exposure()

	Get current exposure

	
set_frame_period(frame_period)

	Set frame acquisition period for the continuous mode

	
enable_frame_transfer_mode(enable=True)

	Enable frame transfer mode.

For description, see Andor SDK manual.

	
is_frame_transfer_enabled()

	Return whether the frame transfer mode is enabled

	
get_cycle_timings()

	Get acquisition timing.

Return tuple (exposure, accum_cycle_time, kinetic_cycle_time).
In continuous mode, the relevant cycle time is kinetic_cycle_time.

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).
Frame period is the rate of frame generation, not of internal frame acquisition
(e.g., in accumulator or kinetic mode this is the rate of generating a single accumulated frame, which is num_acc times larger than the internal frame period).

	
get_readout_time()

	Get frame readout time

	
get_keepclean_time()

	Get sensor keep-clean time

	
set_read_mode(mode)

	Set camera read mode.

Can be "fvb" (average all image vertically and return it as one row), "single_track" (read a single row or several rows averaged together),
"multi_track" (read multiple rows or averaged sets of rows), "random_track" (read several arbitrary lines),
or "image" (read a whole image or its rectangular part).

	
get_read_mode()

	Get the current read mode

	
setup_single_track_mode(center=0, width=1)

	Switch into the singe-track read mode and set up its parameters.

center and width specify selection of the rows to be averaged together.

	
get_single_track_mode_parameters()

	Return singe-track read mode parameters (center, width)

	
setup_multi_track_mode(number=1, height=1, offset=0)

	Switch into the multi-track read mode and set up its parameters.

number is the number of rows (or row sets) to read, height is number of one row set (1 for a single row),
offset is the distance between the row sets.
Return a tuple (number, height, offset, top, gap), where top is the offset of the first row from the top, and gap is the gap between the tracks.

	
get_multi_track_mode_parameters()

	Return multi-track read mode parameters (number, height, offset)

	
setup_random_track_mode(tracks=None)

	Switch into the random-track read mode and set up its parameters.

tracks is a list of tuples (start, stop) specifying track span (start are inclusive, stop are exclusive, starting from 0).
Note that it does not affect the current read mode, which should be set using set_read_mode().

	
get_random_track_mode_parameters()

	Return random-track read mode parameters, i.e., the list of track positions

	
setup_image_mode(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Switch into the image read mode and set up its parameters.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start are inclusive, stop are exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values.

	
get_image_mode_parameters()

	Return image read mode parameters, (hstart, hend, vstart, vend, hbin, vbin)

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
setup_acquisition(mode=None, nframes=None)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
get_acquisition_progress()

	Get acquisition progress.

Return tuple (frames_done, acc_done) with the number of full transferred frames
and the number of acquired sub-frames in the current accumulation cycle.

	
get_buffer_size()

	Get the size of the image ring buffer

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

pylablib.devices.Andor.AndorSDK3 module

	
class pylablib.devices.Andor.AndorSDK3.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Andor.AndorSDK3.restart_lib()

	

	
pylablib.devices.Andor.AndorSDK3.get_cameras_number()

	Get number of connected Andor cameras

	
class pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute(handle, name, kind='auto')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Andor SDK3 camera attribute.

Allows to query and set values and get additional information.
Usually created automatically by a Andor SDK3 camera instance, but could also be created manually.

	Parameters:

	
	handle – Andor SDK3 camera handle

	pid – attribute id

	kind – attribute kind; can be "float", "int", "str", "bool", "enum", or "comm" (command);
can also be "auto" (default), in which case it is obtained from the stored feature table;
newer features might be missing, in which case kind needs to be supplied explicitly, or it raises an error

	
name

	attribute name

	
kind

	attribute kind; can be "float", "int", "str", "bool", "enum", or "comm" (command)

	
implemented

	whether attribute is implemented

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
is_command

	whether attribute is a command (same as kind=="comm")

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
update_properties()

	Update all attribute properties: implemented, readable, writable, limits

	
get_value(enum_as_str=True, not_implemented_error=True, default=None)

	Get current value.

If enum_as_str==True, return enum values as strings; otherwise, return as indices.
If not_implemented_error==True and the feature is not implemented, raise AndorError;
otherwise, return default if it is not implemented.

	
set_value(value, not_implemented_error=True)

	Set current value.

If not_implemented_error==True and the feature is not implemented, raise AndorError; otherwise, do nothing.

	
call_command()

	Execute the given command

	
get_range(enum_as_str=True)

	Get allowed range of the given value.

For "int" or "float" values return tuple (min, max) (inclusive); for "enum" return list of possible values
(if enum_as_str==True, return list of string values, otherwise return list of indices).
For all other value kinds return None.

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max)

	
truncate_value(value)

	Limit value to lie within the allowed range

	
class pylablib.devices.Andor.AndorSDK3.TDeviceInfo(camera_name, camera_model, serial_number, firmware_version, software_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
camera_model

	

	
camera_name

	

	
firmware_version

	

	
serial_number

	

	
software_version

	

	
class pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus(skipped, overflows)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
overflows

	

	
skipped

	

	
class pylablib.devices.Andor.AndorSDK3.TFrameInfo(frame_index, timestamp_dev, size, pixeltype, stride)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
pixeltype

	

	
size

	

	
stride

	

	
timestamp_dev

	

	
class pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera(idx=0)

	Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Andor SDK3 camera.

	Parameters:

	idx (int [https://docs.python.org/3/library/functions.html#int]) – camera index (use get_cameras_number() to get the total number of connected cameras)

	
Error

	alias of AndorError

	
TimeoutError

	alias of AndorTimeoutError

	
FrameTransferError

	alias of AndorFrameTransferError

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
add_attribute(name, kind)

	Add a new attribute which is not currently present in the dictionary.

kind can be "float", "int", "str", "bool", "enum", or "comm" (command).

	
get_attribute(name, update_properties=False, error_on_missing=True)

	Get the camera attribute with the given name.

If update_properties==True, automatically update all attribute properties.

	
get_attribute_value(name, enum_as_str=True, update_properties=False, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If update_properties==True, automatically update all attribute properties before settings.
If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.

	
set_attribute_value(name, value, update_properties=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If update_properties==True, automatically update all attribute properties before settings.

	
get_all_attribute_values(root='', enum_as_str=True, update_properties=False)

	Get values of all attributes.

If update_properties==True, automatically update all attribute properties before settings.

	
set_all_attribute_values(settings, update_properties=True)

	Set values of all attribute in the given dictionary.

If update_properties==True, automatically update all attribute properties before settings.

	
call_command(name)

	Execute the given command

	
get_device_info()

	Get camera info.

Return tuple (camera_name, camera_model, serial_number, firmware_version, software_version).

	
get_trigger_mode()

	Get trigger mode.

	Can be "int" (internal), "ext" (external), "software" (software trigger),
	"ext_start" (external start), or "ext_exp" (external exposure).

	
set_trigger_mode(mode)

	Set trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

	
get_shutter()

	Get current shutter mode

	
set_shutter(mode)

	Set trigger mode.

Can be "open", "closed", or "auto".

	
is_cooler_on()

	Check if the cooler is on

	
set_cooler(on=True)

	Set the cooler on or off

	
get_temperature()

	Get the current camera temperature

	
get_temperature_setpoint()

	Get current temperature setpoint

	
set_temperature(temperature, enable_cooler=True)

	Change the temperature setpoint.

If enable_cooler==True, turn the cooler on automatically.

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
is_metadata_enabled()

	Check if the metadata enabled

	
enable_metadata(enable=True)

	Enable or disable metadata streaming

	
class BufferManager(cam)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

	
allocate_buffers(nbuff, size, queued_buffers=None)

	Allocate and queue buffers.

queued_buffers` specifies number of allocated buffers to keep queued at a given time (by default, all of them)

	
deallocate_buffers()

	Deallocated buffers (flushing should be done manually)

	
readn(idx, n, size=None, off=0)

	Return n buffers starting from idx, taking size bytes from each

	
reset()

	Reset counter (on frame acquisition)

	
start_loop()

	Start loop serving the given buffer manager

	
stop_loop()

	Stop the loop thread

	
get_status()

	Get the current loop status, which is the tuple (acquired,)

	
on_overflow()

	Process buffer overflow event

	
new_overflow()

	

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes determines number of frames to acquire in the single mode, or size of the ring buffer in the "sequence" mode (by default, 100).

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
get_missed_frames_status()

	Get missed frames status.

Return tuple (skipped, overflows) with the number skipped frames (sent from camera to the PC, but not read and overwritten)
and number of buffer overflows (events when the frame rate is too for the data transfer, so some unknown number of frames is skipped).

	
reset_overflows_counter()

	Reset buffer overflows counter

	
set_overflow_behavior(behavior)

	Choose the camera behavior if buffer overflow is encountered when waiting for a new frame.

Can be "error" (raise AndorFrameTransferError), "restart" (restart the acquisition), or "ignore" (ignore the overflow, which will cause the wait to time out).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Set current ROI.

By default, all non-supplied parameters take extreme values. Binning is the same for both axes.

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.

Note that the minimal ROI size depends on the current (not just supplied) binning settings.
For more accurate results, is it only after setting up the binning.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index and frame metadata, which contains timestamp, image size, pixel format, and row stride;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

pylablib.devices.Andor.Shamrock module

	
class pylablib.devices.Andor.Shamrock.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Andor.Shamrock.restart_lib()

	

	
pylablib.devices.Andor.Shamrock.list_spectrographs()

	Return list of serial numbers of all connected Shamrock spectrographs

	
pylablib.devices.Andor.Shamrock.get_spectrographs_number()

	Get number of connected Shamrock spectrographs

	
class pylablib.devices.Andor.Shamrock.TDeviceInfo(serial_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
serial_number

	

	
class pylablib.devices.Andor.Shamrock.TOpticalParameters(focal_length, angular_deviation, focal_tilt)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
angular_deviation

	

	
focal_length

	

	
focal_tilt

	

	
class pylablib.devices.Andor.Shamrock.TGratingInfo(lines, blaze_wavelength, home, offset)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
blaze_wavelength

	

	
home

	

	
lines

	

	
offset

	

	
class pylablib.devices.Andor.Shamrock.ShamrockSpectrograph(idx=0)

	Bases: IDevice

Shamrock spectrograph.

	Parameters:

	idx (int [https://docs.python.org/3/library/functions.html#int]) – spectrograph index (starting from 0; use list_spectrographs() to get the list of all connected spectrographs)

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get spectrograph device info.

Return tuple (serial_number).

	
get_optical_parameters()

	Get device optical parameters.

Return tuple (focal_length, angular_deviation, focal_tilt).

	
get_gratings_number()

	Get number of gratings

	
get_grating()

	Get current grating index (counting from 1)

	
set_grating(grating, force=False)

	Set current grating (counting from 1)

Call blocks until the grating is exchanged (up to 10-20 seconds).
If force==False and the current grating index is the same as requested, skip the call;
otherwise, call the grating set command regardless (takes about a second in the grating is unchanged).

	
get_grating_info(grating=None)

	Get info of a given grating (by default, current grating).

Return tuple (lines, blaze_wavelength, home, offset) (blazing wavelength is in nm).

	
get_grating_offset(grating=None)

	Get grating offset (in steps) for a given grating (by default, current grating)

	
set_grating_offset(offset, grating=None)

	Set grating offset (in steps) for a given grating (by default, current grating)

	
get_detector_offset()

	Get detector offset (in steps)

	
set_detector_offset(offset)

	Set detector offset (in steps)

	
get_turret()

	Get turret

	
set_turret(turret)

	Set turret

	
is_wavelength_control_present()

	Check if wavelength control is present

	
get_wavelength()

	Get current central wavelength (in m)

	
set_wavelength(wavelength)

	Get current central wavelength (in m)

	
get_wavelength_limits(grating=None)

	Get wavelength limits (in m) for a given grating (by default, current grating)

	
reset_wavelength()

	Reset current wavelength to 0 nm

	
is_at_zero_order()

	Check if current grating is at zero order

	
goto_zero_order()

	Set current grating to zero order

	
is_slit_present(slit)

	Check if the slit is present.

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct", "output_side", or "output_direct".

	
get_slit_width(slit)

	Get slit width (in m).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct", "output_side", or "output_direct".

	
set_slit_width(slit, width)

	Set slit width (in m).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct", "output_side", or "output_direct".

	
reset_slit(slit)

	Reset slit to the default width (10 um).

slit cen be either a slit index (starting from 1), or one of the following: "input_side", "input_direct", "output_side", or "output_direct".

	
is_shutter_present()

	Check if the shutter is present

	
get_shutter()

	Get shutter mode.

Can return "closed", "opened", "bnc", or "not_set".

	
is_shutter_mode_possible(mode)

	Check if the shutter mode ("closed", "opened", or "bnc") is supported

	
set_shutter(mode)

	Set shutter mode ("closed" or "opened")

	
is_filter_present()

	Check if the filter is present

	
get_filter()

	Get current filter

	
set_filter(flt)

	Set current filter

	
get_filter_info(flt)

	Get info of the given filter

	
reset_filter()

	Reset filter to default position

	
is_flipper_present(flipper)

	Check if the flipper is present.

flipper can be a flipper index (starting from 1), "input", or “output”`.

	
get_flipper_port(flipper)

	Get flipper port.

flipper can be a flipper index (starting from 1), "input", or “output”`.
Return either "direct" or "side".

	
set_flipper_port(flipper, port)

	Set flipper port.

flipper can be a flipper index (starting from 1), "input", or “output”`.
Port can be "direct" or "side".

	
reset_flipper(flipper)

	Reset flipper to the default state.

flipper can be a flipper index (starting from 1), "input", or “output”`.

	
is_accessory_present()

	Check if the accessory is present

	
get_accessory_state(line)

	Get current accessory state on a given line (1 or 2)

	
set_accessory_state(line, state)

	Set current accessory state (0 or 1) on a given line (1 or 2)

	
get_pixel_width()

	Get current set detector pixel width (in m)

	
set_pixel_width(width)

	Set current detector pixel width (in m)

	
get_number_pixels()

	Get current set detector number of pixels

	
set_number_pixels(number)

	Set current detector number of pixels

	
setup_pixels_from_camera(cam)

	Setup detector parameters (number of pixels, pixel width) from the camera

	
get_calibration()

	Get wavelength calibration.

Return numpy array which specifies wavelength (in m) corresponding to each pixel.
Prior to calling this method, the total number of pixels and the pixel width of the sensor should be set up using the corresponding methods
(set_number_pixels() and set_pixel_width(), or setup_pixels_from_camera() to set both parameters using and AndorSDK2 camera instance)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
set_device_variable(key, value)

	Set the value of a settings parameter

pylablib.devices.Andor.atcore_features module

pylablib.devices.Andor.base module

	
exception pylablib.devices.Andor.base.AndorError

	Bases: DeviceError

Generic Andor error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Andor.base.AndorTimeoutError

	Bases: AndorError

Andor timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Andor.base.AndorFrameTransferError

	Bases: AndorError

Andor frame transfer error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Andor.base.AndorNotSupportedError

	Bases: AndorError

Option not supported error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Module contents

pylablib.devices.Arcus package

Submodules

pylablib.devices.Arcus.base module

	
exception pylablib.devices.Arcus.base.ArcusError

	Bases: DeviceError

Generic Arcus error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Arcus.base.ArcusBackendError(exc)

	Bases: ArcusError, DeviceBackendError

Generic Arcus backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Arcus.performax module

	
pylablib.devices.Arcus.performax.get_usb_device_info(devid)

	Get info for the given device index (starting from 0).

Return tuple (index, serial, model, desc, vid, pid).

	
pylablib.devices.Arcus.performax.list_usb_performax_devices()

	List all performax devices.

Return list of tuples (index, serial, model, desc, vid, pid), one per device.

	
class pylablib.devices.Arcus.performax.GenericPerformaxStage(idx=0, conn=None)

	Bases: IMultiaxisStage

Generic Arcus Performax translation stage.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – stage index; if using a USB connection, specifies a USB device index; if using RS485 connection, specifies device index on the bus

	conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-to-RS485 adapters) this is a serial connection,
which either a name (e.g., "COM1"), or a tuple (name, baudrate) (e.g., ("COM1", 9600));
if conn is None, assume direct USB connection and use the manufacturer-provided DLL

	
Error

	alias of ArcusError

	
open()

	Open the connection to the stage

	
close()

	Close the connection to the stage

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get the device info

	
query(comm)

	Send a query to the stage and return the reply

	
get_device_number()

	Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

	
set_device_number(number, store=True)

	Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
store_defaults()

	Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
class pylablib.devices.Arcus.performax.Performax4EXStage(idx=0, conn=None, enable=True)

	Bases: GenericPerformaxStage

Arcus Performax 4EX/4ET translation stage.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – stage index; if using a USB connection, specifies a USB device index; if using RS485 connection, specifies device index on the bus

	conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-to-RS485 adapters) this is a serial connection,
which either a name (e.g., "COM1"), or a tuple (name, baudrate) (e.g., ("COM1", 9600));
if conn is None, assume direct USB connection and use the manufacturer-provided DLL

	enable – if True, enable all axes on startup

	
get_baudrate()

	Get current baud rate

	
set_baudrate(baudrate, store=True)

	Set current baud rate.

Acceptable values are 9600 (default), 19200, 38400, 57600, and 115200.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
enable_absolute_mode(enable=True)

	Set absolute motion mode

	
enable_limit_errors(enable=True, autoclear=True)

	Enable limit errors.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other axes;
any further motion command on this axis will raise an error (it is still possible to restart motion on other axes);
the axis motion can only be resumed by calling clear_limit_error().
If off, the limited axis still stops, but the other axes are unaffected.
If autoclear==True and enable==False, also clear the current limit errors on all exs.

	
limit_errors_enabled()

	Check if global limit errors are enabled.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other axes;
any further motion command on this axis will raise an error (it is still possible to restart motion on other axes);
the axis motion can only be resumed by calling clear_limit_error().
If off, the limited axis still stops, but the other axes are unaffected.

	
is_enabled(axis='all')

	Check if the axis output is enabled

	
enable_axis(axis='all', enable=True)

	Enable axis output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

	
get_position(axis='all')

	Get the current axis pulse position

	
set_position_reference(axis, position=0)

	Set the current axis pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

	
get_encoder(axis='all')

	Get the current axis encoder value

	
set_encoder_reference(axis, position=0)

	Set the current axis encoder value as a reference.

Re-calibrate the encoder counter so that the current position is set as position (0 by default).

	
move_to(axis, position)

	Move a given axis to a given position

	
move_by(axis, steps=1)

	Move a given axis for a given number of steps

	
jog(axis, direction)

	Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive).
The motion continues until it is explicitly stopped, or until a limit is hit.

	
stop(axis='all', immediate=False)

	Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

	
home(axis, direction, home_mode)

	Home the given axis using a given home mode.

direction can be "+" or "-"
The mode can be "only_home_input", "only_home_input_lowspeed", "only_limit_input", "only_zidx_input", or "home_and_zidx_input".
For meaning, see Arcus PMX manual.

	
get_global_speed()

	Get the global speed setting (in Hz); overridden by a non-zero axis speed

	
get_axis_speed(axis='all')

	Get the individual axis speed setting (in Hz); 0 means that the global speed is used

	
set_global_speed(speed)

	Set the global speed setting (in Hz); overridden by a non-zero axis speed

	
set_axis_speed(axis, speed)

	Set the individual axis speed setting (in Hz); 0 means that the global speed is used

	
get_current_axis_speed(axis='all')

	Get the instantaneous speed (in Hz)

	
get_status_n(axis='all')

	Get the axis status as an integer

	
get_status(axis='all')

	Get the axis status as a set of string descriptors

	
is_moving(axis='all')

	Check if a given axis is moving

	
wait_move(axis, timeout=None, period=0.05)

	Wait until motion is done

	
check_limit_error(axis='all')

	Check if the axis hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

	
clear_limit_error(axis='all')

	Clear axis limit errors

	
get_analog_input(channel)

	Get voltage (in V) at a given input (starting with 1)

	
get_digital_input(channel)

	Get value (0 or 1) at a given digital input (1 through 8)

	
get_digital_input_register()

	Get all 8 digital inputs as a single 8-bit integer

	
get_digital_output(channel)

	Get value (0 or 1) at a given digital output (1 through 8)

	
get_digital_output_register()

	Get all 8 digital inputs as a single 8-bit integer

	
set_digital_output(channel, value)

	Set value (0 or 1) at a given digital output (1 through 8)

	
set_digital_output_register(value)

	Set all 8 digital inputs as a single 8-bit integer

	
Error

	alias of ArcusError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection to the stage

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_info()

	Get the device info

	
get_device_number()

	Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection to the stage

	
query(comm)

	Send a query to the stage and return the reply

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_number(number, store=True)

	Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
store_defaults()

	Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

	
class pylablib.devices.Arcus.performax.Performax2EXStage(idx=0, conn=None, enable=True)

	Bases: Performax4EXStage

Arcus Performax 2EX/2ED translation stage.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – stage index; if using a USB connection, specifies a USB device index; if using RS485 connection, specifies device index on the bus

	conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-to-RS485 adapters) this is a serial connection,
which either a name (e.g., "COM1"), or a tuple (name, baudrate) (e.g., ("COM1", 9600));
if conn is None, assume direct USB connection and use the manufacturer-provided DLL

	enable – if True, enable all axes on startup

	
Error

	alias of ArcusError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
check_limit_error(axis='all')

	Check if the axis hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

	
clear_limit_error(axis='all')

	Clear axis limit errors

	
close()

	Close the connection to the stage

	
enable_absolute_mode(enable=True)

	Set absolute motion mode

	
enable_axis(axis='all', enable=True)

	Enable axis output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

	
enable_limit_errors(enable=True, autoclear=True)

	Enable limit errors.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other axes;
any further motion command on this axis will raise an error (it is still possible to restart motion on other axes);
the axis motion can only be resumed by calling clear_limit_error().
If off, the limited axis still stops, but the other axes are unaffected.
If autoclear==True and enable==False, also clear the current limit errors on all exs.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_analog_input(channel)

	Get voltage (in V) at a given input (starting with 1)

	
get_axis_speed(axis='all')

	Get the individual axis speed setting (in Hz); 0 means that the global speed is used

	
get_baudrate()

	Get current baud rate

	
get_current_axis_speed(axis='all')

	Get the instantaneous speed (in Hz)

	
get_device_info()

	Get the device info

	
get_device_number()

	Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_digital_input(channel)

	Get value (0 or 1) at a given digital input (1 through 8)

	
get_digital_input_register()

	Get all 8 digital inputs as a single 8-bit integer

	
get_digital_output(channel)

	Get value (0 or 1) at a given digital output (1 through 8)

	
get_digital_output_register()

	Get all 8 digital inputs as a single 8-bit integer

	
get_encoder(axis='all')

	Get the current axis encoder value

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_global_speed()

	Get the global speed setting (in Hz); overridden by a non-zero axis speed

	
get_position(axis='all')

	Get the current axis pulse position

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status(axis='all')

	Get the axis status as a set of string descriptors

	
get_status_n(axis='all')

	Get the axis status as an integer

	
home(axis, direction, home_mode)

	Home the given axis using a given home mode.

direction can be "+" or "-"
The mode can be "only_home_input", "only_home_input_lowspeed", "only_limit_input", "only_zidx_input", or "home_and_zidx_input".
For meaning, see Arcus PMX manual.

	
is_enabled(axis='all')

	Check if the axis output is enabled

	
is_moving(axis='all')

	Check if a given axis is moving

	
is_opened()

	Check if the device is connected

	
jog(axis, direction)

	Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive).
The motion continues until it is explicitly stopped, or until a limit is hit.

	
limit_errors_enabled()

	Check if global limit errors are enabled.

If on, reaching limit switch on an axis puts it into an error state, which immediately stops this an all other axes;
any further motion command on this axis will raise an error (it is still possible to restart motion on other axes);
the axis motion can only be resumed by calling clear_limit_error().
If off, the limited axis still stops, but the other axes are unaffected.

	
move_by(axis, steps=1)

	Move a given axis for a given number of steps

	
move_to(axis, position)

	Move a given axis to a given position

	
open()

	Open the connection to the stage

	
query(comm)

	Send a query to the stage and return the reply

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_axis_speed(axis, speed)

	Set the individual axis speed setting (in Hz); 0 means that the global speed is used

	
set_baudrate(baudrate, store=True)

	Set current baud rate.

Acceptable values are 9600 (default), 19200, 38400, 57600, and 115200.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
set_device_number(number, store=True)

	Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_digital_output(channel, value)

	Set value (0 or 1) at a given digital output (1 through 8)

	
set_digital_output_register(value)

	Set all 8 digital inputs as a single 8-bit integer

	
set_encoder_reference(axis, position=0)

	Set the current axis encoder value as a reference.

Re-calibrate the encoder counter so that the current position is set as position (0 by default).

	
set_global_speed(speed)

	Set the global speed setting (in Hz); overridden by a non-zero axis speed

	
set_position_reference(axis, position=0)

	Set the current axis pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

	
stop(axis='all', immediate=False)

	Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

	
store_defaults()

	Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

	
wait_move(axis, timeout=None, period=0.05)

	Wait until motion is done

	
class pylablib.devices.Arcus.performax.PerformaxDMXJSAStage(idx=0, conn=None, enable=True, autoclear=True)

	Bases: GenericPerformaxStage

Arcus Performax DMX-J-SA translation stage.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – stage index; if using a USB connection, specifies a USB device index; if using RS485 connection, specifies device index on the bus

	conn – if not None, defines a connection to RS485 connection. Usually (e.g., for USB-to-RS485 adapters) this is a serial connection,
which either a name (e.g., "COM1"), or a tuple (name, baudrate) (e.g., ("COM1", 9600));
if conn is None, assume direct USB connection and use the manufacturer-provided DLL

	enable – if True, enable all axes on startup

	autoclear – if True, automatically clear limit error before the motion start

	
enable_absolute_mode(enable=True)

	Set absolute motion mode

	
is_enabled()

	Check if the output is enabled

	
enable_axis(enable=True)

	Enable output.

If the output is disabled, the steps are generated by the controller, but not sent to the motors.

	
get_position()

	Get the current pulse position

	
set_position_reference(position=0)

	Set the current pulse position as a reference.

Re-calibrate the pulse position counter so that the current position is set as position (0 by default).

	
move_to(position)

	Move to a given position

	
move_by(steps=1)

	Move for a given number of steps

	
jog(direction)

	Jog in a given direction.

direction can be either "-" (negative) or "+" (positive).
The motion continues until it is explicitly stopped, or until a limit is hit.

	
stop(immediate=False)

	Stop motion.

If immediate==True make an abrupt stop; otherwise, slow down gradually.

	
home(direction, home_mode)

	Home using a given home mode.

direction can be "+" or "-"
The mode can be "only_home_input", "only_home_input_lowspeed", or "only_limit_input".
For meaning, see Arcus PMX manual.

	
get_axis_speed()

	Get the speed setting (in Hz)

	
set_axis_speed(speed)

	Set the speed setting (in Hz)

	
get_status_n()

	Get the status as an integer

	
get_status()

	Get the status as a set of string descriptors

	
is_moving()

	Check if motor is moving

	
wait_move(timeout=None, period=0.05)

	Wait until motion is done

	
check_limit_error()

	Check if the motor hit limit errors.

Return "" (not errors), "+" (positive limit error) or "-" (negative limit error).

	
clear_limit_error()

	Clear limit error

	
get_digital_input(channel)

	Get value (0 or 1) at a given digital input (1 through 5)

	
get_digital_input_register()

	Get all 5 digital inputs as a single 5-bit integer

	
get_digital_output(channel)

	Get value (0 or 1) at a given digital output (1 through 2)

	
get_digital_output_register()

	Get all 2 digital outputs as a single 2-bit integer

	
Error

	alias of ArcusError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection to the stage

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_info()

	Get the device info

	
get_device_number()

	Get the device number used in RS-485 communications.

Usually it is a string with the format similar to "4EX00".

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection to the stage

	
query(comm)

	Send a query to the stage and return the reply

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_number(number, store=True)

	Get the device number used in RS-485 communications.

number can be either a full device id (e.g., "4EX00"), or a single number between 0 and 99.
In order for the change to take effect, the device needs to be power-cycled.
If store==True, automatically store settings to the memory; otherwise, the settings will be lost
unless store_defaults() is called at some point before the power-cycle.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_digital_output(channel, value)

	Set value (0 or 1) at a given digital output (1 through 2)

	
store_defaults()

	Store some of the settings to the memory as defaults.

Applies to device number, baudrate, limit error behavior, polarity, and some other settings.

	
set_digital_output_register(value)

	Set all 2 digital inputs as a single 2-bit integer

Module contents

pylablib.devices.Arduino package

Submodules

pylablib.devices.Arduino.base module

	
exception pylablib.devices.Arduino.base.ArduinoError

	Bases: DeviceError

Generic Arduino devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Arduino.base.ArduinoBackendError(exc)

	Bases: ArduinoError, DeviceBackendError

Generic Arduino backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Arduino.base.IArduinoDevice(port, rate=9600, timeout=10.0, term_write='\n', term_read='\n', flush_before_op=True, dtrrts=True)

	Bases: ICommBackendWrapper

Generic Arduino device.

	Parameters:

	
	port – serial port name

	rate – baud rate

	timeout – default communication timeout

	term_write – default write terminating character (automatically appended on every sent message)

	term_read – default read terminating character (used to determine when the incoming message is received completely)

	flush_before_op – if True (default), automatically flush input buffer on comm/query

	dtrrts – determines whether to use DTR/RTS signals for communication; generally, should be set to True on newer boards (e.g., Leonardo) and to False on older boards (e.g., Uno);
settings dtrrts=True on older boards leads to the board reset upon connection, and settings dtrrts=False on newer boards leads to the communications getting frozen

	
Error

	alias of ArduinoError

	
reopen()

	Close and reopen the device connection

	
reset_board()

	Reset the board by pulsing the DTR and RTS lines

	
comm(comm, timeout=None, flush=False, flush_delay=0.02)

	Send a device command.

If timeout is not None, it specifies a custom timeout for the operation.
If flush==True, then wait for flush_delay seconds after the write and read everything returned by the device.

	
query(query, timeout=None, query_delay=0, flush=False, flush_delay=0.02)

	Send a device query and return the reply.

If timeout is not None, it specifies a custom timeout for the reply read operation.
If query_delay>0, it specifies the delay between write and subsequent read attempt.
If flush==True, then wait for flush_delay seconds after the write and read everything returned by the device.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Attocube package

Submodules

pylablib.devices.Attocube.anc300 module

	
pylablib.devices.Attocube.anc300.muxaxis(*args, **kwargs)

	

	
class pylablib.devices.Attocube.anc300.TDeviceInfo(serial, version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
serial

	

	
version

	

	
class pylablib.devices.Attocube.anc300.ANC300(conn, backend='auto', pwd='123456')

	Bases: ICommBackendWrapper, IMultiaxisStage

Attocube ANC300 controller.

	Parameters:

	
	conn – connection parameters; for Ethernet connection is a tuple (addr, port), a string "addr:port", or a string "addr" (default port 7240 us assumed)

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – communication backend; by default, try to determine from the communication parameters

	pwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – connection password for Ethernet connection (default is "123456")

	
Error

	alias of AttocubeError

	
open()

	Open the connection to the stage

	
query(msg)

	Send a query to the stage and return the reply

	
update_available_axes()

	Update the list of available axes.

Need to call only if the hardware configuration of the ANC module has changed.

	
get_device_info()

	Get the device info of the controller board: (serial, version)

	
get_axis_serial(axis='all')

	Get serial number of the controller board

	
set_mode(axis='all', mode='stp')

	Set axis mode.

axis is either an axis index (starting from 1), or "all" (all axes).
mode can be "gnd" (ground), "stp" (step), "cap" (measure capacitance, then ground),
"offs" (offset only, no stepping), "stp+" (offset with added stepping waveform), "stp-" (offset with subtracted stepping).
Note that not all modes are supported by all modules:
ANM150 doesn’t support offset voltage ("offs", "stp+", "stp-" modes),
ANM200 doesn’t support stepping ("stp", "stp+", "stp-" modes).

	
get_mode(axis='all')

	Get axis mode.

axis is either an axis index (starting from 1), or "all" (all axes).
See set_mode() for the description of the modes.

	
is_enabled(axis='all')

	Check if the axis is enabled

	
enable_axis(axis='all', mode='stp')

	Enable specific axis (set to step mode)

	
disable_axis(axis='all')

	Disable specific axis (set to ground mode)

	
measure_capacitance(axis='all', wait=True)

	Measure axis capacitance; finish in the GND mode.

If wait==True, wait until the capacitance measurement is finished (takes about a second per axis).

	
get_voltage(axis='all')

	Get axis step amplitude in Volts

	
set_voltage(axis, voltage)

	Set axis step amplitude in Volts

	
get_offset(axis='all')

	Get axis offset voltage in Volts

	
set_offset(axis, voltage)

	Set axis offset voltage in Volts

	
get_output(axis='all')

	Get axis current output voltage in Volts

	
get_frequency(axis='all')

	Get axis step frequency in Hz

	
set_frequency(axis, freq)

	Set axis step frequency in Hz

	
get_capacitance(axis='all', measure=False)

	Get capacitance measurement on the axis.

If measure==True, re-measure axis capacitance (takes about a second); otherwise, get the last measurement value.

	
get_voltage_pattern(axis, kind)

	Get axis voltage pattern.

kind be either "up" for up pattern or "down" for down pattern.
The pattern is a numpy array of 256 numbers from 0 to 255 corresponding to the output voltage from 0 to the axis voltage.
This pattern is output (repeatedly) for each step. The default is a simple linear ramp.

	
set_voltage_pattern(axis, kind, pattern=None)

	Set axis voltage pattern.

kind be either "up" for up pattern or "down" for down pattern.
The pattern is an array of 256 numbers from 0 to 255 corresponding to the output voltage from 0 to the axis voltage.
This pattern is output (repeatedly) for each step. The default is a simple linear ramp, which is set if pattern is None.

	
get_trigger_input(axis='all')

	Get trigger input lines for the given axis.

Return tuple (up, down) with values for up and down step triggers, which can be either integer with the trigger line number, or "off" if the trigger is off.

	
set_trigger_input(axis, up=None, down=None)

	Set trigger input lines for the given axis.

up and down are can be integer with the trigger line number, "off" if the trigger is off, or None (keep the value unchanged).

	
get_external_input_modes(axis='all')

	Get external BNC input modes.

Return tuple (acin, dcin) indicating whether AC-IN and DC-IN channels are enabled.

	
set_external_input_modes(axis, acin=None, dcin=None)

	Enable or disable external BNC inputs.

acin and dcin are can be boolean indicating if the corresponding input is enabled, or None (keep the value unchanged).

	
get_axis_correction(axis)

	Get axis correction factor.

The factor is automatically applied when the motion is in the negative direction.

	
set_axis_correction(axis, factor=1.0)

	Set axis correction factor.

The factor is automatically applied when the motion is in the negative direction.

	
jog(axis, direction)

	Jog continuously in the given direction ("+" or "-").

The motion will continue until another move or stop command is called.

	
move_by(axis, steps=1)

	Move a given axis for a given number of steps

	
wait_move(axis, timeout=30.0)

	Wait for a given axis to stop moving.

If the motion is not finished after timeout seconds, raise a backend error.

	
is_moving(axis)

	Check if a given axis is moving

	
stop(axis='all')

	Stop motion of a given axis

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

pylablib.devices.Attocube.anc350 module

	
pylablib.devices.Attocube.anc350.get_usb_devices_number()

	Get the number of controllers connected via USB

	
class pylablib.devices.Attocube.anc350.ANC350(conn=0, timeout=5.0)

	Bases: ICommBackendWrapper, IMultiaxisStage

Attocube ANC350 controller.

	Parameters:

	
	conn – connection parameters - index of the Attocube ANC350 in the system (for a single controller leave 0)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default operation timeout

	
Error

	alias of AttocubeError

	
class Telegram(opcode, address, index, data, corr_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
address

	

	
corr_number

	

	
data

	

	
index

	

	
opcode

	

	
class Reply(address, index, reason, data)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
address

	

	
data

	

	
index

	

	
reason

	

	
check_tell(timeout=0.01)

	Check for queued TELL (periodic value update) commands

	
set_value(address, index, value, ack=False)

	Set device value at the given address and index.

If ack==True, request ACK responds and return its value; otherwise, return immediately after set.

	
get_value(address, index, as_int=True)

	Get device value at the given address and index.

If as_int==True, convert the result into a signed integer; otherwise return raw byte string.

	
enable_updates(enabled=True)

	Enable or disable periodic TELL updates

	
get_hardware_id()

	Return device HWID (by default -1)

	
set_hardware_id(hwid, persist=False)

	Set device HWID (can be used to identify different devices).

If persist==True, the value persists after power cycling.

	
is_connected(axis='all')

	Check if axis is connected

	
is_enabled(axis='all')

	Check if axis is enabled

	
enable_axis(axis='all', enabled=True)

	Enable a specific axis or all axes

	
disable_axis(axis='all')

	Disable a specific axis or all axes

	
is_moving(axis='all')

	Move a given axis for a given number of steps

	
check_limit(axis='all')

	Check if the ent of travel has been reached.

Return None if no limits are reached, "fwd" if forward limit is reached,
"bwd" if backward limit is reached, or "both" if both are reached together (normally shouldn’t happen).

	
get_status_n(axis='all')

	Get numerical status of the axis.

For details, see ANC350 protocol.

	
status_bits = [(1, 'running'), (2, 'limit'), (256, 'sens_err'), (1024, 'sens_disconn'), (2048, 'ref_valid')]

	

	
get_status(axis='all')

	Get device status.

Return list of status strings, which can include "running" (axis is moving), "limit" (one of the limits is reached),
"sens_err" (sensor error), "sens_disconn" (sensor disconnected), or "ref_valid" (reference is valid).

	
get_target_position(axis='all')

	Get the target position for the given axis (the position towards which it is moving)

	
get_precision(axis='all')

	Get the axis precision in m (used for checking if the target is reached)

	
set_precision(axis='all', precision=1e-06)

	Set the axis precision in m (used for checking if the target is reached)

	
is_target_reached(axis='all', precision=None)

	Check if the target position is reached.

If precision is not None, it sets final position tolerance (in m).

	
get_sensor_voltage()

	Get position sensor voltage in Volts

	
set_sensor_voltage(voltage)

	Set position sensor voltage in Volts

	
get_voltage(axis='all')

	Get axis step voltage in Volts

	
set_voltage(axis, voltage)

	Set axis step voltage in Volts

	
get_offset(axis='all')

	Get axis offset voltage in Volts

	
set_offset(axis, voltage)

	Set axis offset voltage in Volts

	
get_frequency(axis='all')

	Get axis step frequency in Hz

	
set_frequency(axis, freq)

	Set axis step frequency in Hz

	
get_capacitance(axis='all', measure=False, delay=0.5)

	Get axis capacitance in F.

If measure==True, initialize the measurement and get the result after the measurement delay.
Otherwise, return the last measured value.

	
get_position(axis='all')

	Get axis position (in m)

	
move_to(axis, position, precision=None)

	Move to target position (in m).

If precision is not None, it sets final position tolerance.

	
move_by(axis, dist)

	Move along a given axis by a given distance (in m)

	
move_by_steps(axis, steps=1, delay=0)

	Move along a given axis by a given number of steps

	
wait_move(axis, precision=1e-06, timeout=10.0, period=0.01)

	Wait for a given axis to stop moving or to reach target position.

If the motion is not finished after timeout seconds, raise a backend error.
Precision sets the final positioning precision (in m).

	
stop(axis='all')

	Stop motion of a given axis

	
jog(axis, direction)

	Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive).
The motion continues until it is explicitly stopped, or until a limit is hit.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

pylablib.devices.Attocube.base module

	
exception pylablib.devices.Attocube.base.AttocubeError

	Bases: DeviceError

Generic Attocube error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Attocube.base.AttocubeBackendError(exc)

	Bases: AttocubeError, DeviceBackendError

Attocube backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Module contents

pylablib.devices.Basler package

Submodules

pylablib.devices.Basler.pylon module

	
class pylablib.devices.Basler.pylon.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Basler.pylon.restart_lib()

	

	
class pylablib.devices.Basler.pylon.TCameraInfo(name, model, serial, devclass, devversion, vendor, friendly_name, user_name, props)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
devclass

	

	
devversion

	

	
friendly_name

	

	
model

	

	
name

	

	
props

	

	
serial

	

	
user_name

	

	
vendor

	

	
pylablib.devices.Basler.pylon.get_device_info(index)

	Get Pylon camera info for a camera with the given index

	
pylablib.devices.Basler.pylon.list_cameras(desc=True)

	List all cameras available through Basler Pylon interface

If desc==True, return complete camera descriptions; otherwise, simply return the names.

	
pylablib.devices.Basler.pylon.get_cameras_number()

	Get number of connected Basler Pylon cameras

	
class pylablib.devices.Basler.pylon.BaslerPylonAttribute(node, full_name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing an Pylon GenAPI attribute.

Allows to query and set values and get additional information.
Usually created automatically by an BaslerPylonCamera instance.

	Parameters:

	
	node – pylon GenApi node handler

	full_name – if supplied, attribute’s full name, including the tree structure

	
name

	attribute name

	
kind

	attribute kind; can be "int", "float", "bool", "enum", "str",
"command", "category", or "unknown"

	
display_name

	attribute display name (short description name)

	
tooltip

	longer attribute description

	
description

	full attribute description (usually, same as tooltip)

	
visibility

	attribute visibility; can be "simple", "intermediate", "advanced", "invisible", or "unknown"

	
access

	attribute access level; can be "read_only", "write_only", "read_write",
"na" (not applicable, e.g., command), or "not_implemented"

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
implemented

	whether the attribute is implemented in the given camera (normally always True)

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
available

	whether the attribute can be changed or called

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
inc

	minimal attribute increment value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
units

	attribute units (if applicable)

	
repr

	shows what a numerical unit represents; can be "lin", "log", "bool", "pure", "hex", or "unknown"

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max, inc)

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Set attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
call_command()

	Execute the given command

	
class pylablib.devices.Basler.pylon.TDeviceInfo(name, model, serial, devclass, devversion, vendor, friendly_name, user_name, props)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
devclass

	

	
devversion

	

	
friendly_name

	

	
model

	

	
name

	

	
props

	

	
serial

	

	
user_name

	

	
vendor

	

	
class pylablib.devices.Basler.pylon.BaslerPylonCamera(idx=0, name=None)

	Bases: IROICamera, IAttributeCamera, IExposureCamera

Generic Basler pylon camera interface.

	Parameters:

	
	idx – camera index among the cameras listed using list_cameras()

	name – camera name; if specified, then idx is ignored and the camera is determined based on the provided name

	
Error = <Mock name='mock.BaslerError' id='139822142412112'>

	

	
TimeoutError = <Mock spec='str' id='139822151075536'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
post_open()

	Additional setup after camera opening

	
get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
call_command(name)

	Execute the given command

	
get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)

	Get values of all attributes with the given root

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
get_device_info()

	Get camera information.

Return tuple (name, model, serial, devclass, devversion, vendor, friendly_name, user_name, props).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
class BufferManager(strm, size, nbuff)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Buffer manager, which deals with buffer memory allocation, registering and deregistering, and retrieving the result and the leftovers

	
register()

	Register buffers

	
deregister()

	Deregister buffers

	
get_buffer(fidx)

	Get buffer corresponding to the given frame index

	
get_handle(fidx)

	Get buffer handle corresponding to the given frame index

	
get_all_handles()

	Get all buffer handles as a ctypes array

	
queue(fidx=None)

	Queue a buffer with the given index or all buffers

	
retrieve()

	Retrieve the next buffer and return its info and whether it is ready

	
flush()

	Retrieve all leftover buffers

	
class ScheduleLooper

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

	
start_loop(buff_mgr)

	Start loop serving the given buffer manager

	
stop_loop()

	Stop the loop thread

	
is_looping()

	Check if the loop is running

	
get_status()

	Get the current loop status, which is the tuple (acquired,)

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
enable_raw_readout(enable='rows')

	Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format.
Can be "frame" (return the whole frame as a 1D "u1" numpy array),
"rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default)

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

Module contents

pylablib.devices.BitFlow package

Submodules

pylablib.devices.BitFlow.BitFlow module

	
exception pylablib.devices.BitFlow.BitFlow.BitFlowError

	Bases: DeviceError

Generic BitFlow devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError

	Bases: BitFlowError

BitFlow frame timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.BitFlow.BitFlow.TDeviceInfo(idx, model, idreg)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
idreg

	

	
idx

	

	
model

	

	
pylablib.devices.BitFlow.BitFlow.list_cameras()

	List all cameras available through BitFlow interface

	
pylablib.devices.BitFlow.BitFlow.get_cameras_number()

	Get number of connected BitFlow cameras

	
class pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber(bitflow_idx=0, bitflow_camfile=None, do_open=True, **kwargs)

	Bases: IROICamera

Generic BitFlow frame grabber interface.

Compared to BitFlowCamera, has more permissive initialization arguments,
which simplifies its use as a base class for expanded cameras.

	Parameters:

	
	bitflow_idx – board index, starting from 0

	bitflow_camfile – if not None, a path to a valid camera file used for this frame grabber and camera combination;
in this case, a temporary camera file is generated based on the provided one and used to change some otherwise unavailable camera parameters
such as ROI and pixel bit depth (they are otherwise fixed to whatever is specified in the default camera file)

	do_open – if False, skip the last step of opening the device (should be opened in a subclass)

	
Error

	alias of BitFlowError

	
TimeoutError

	alias of BitFlowTimeoutError

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera model data.

Return tuple (idx, model, idreg) with the board index, model number and the setting of the ID switch on the board

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
class BufferManager(cam)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and buffer overflow events

	
reset()

	Reset counter (on frame acquisition)

	
start_loop()

	Start buffer scheduling loop

	
stop_loop()

	Stop buffer scheduling loop

	
is_running()

	Check if the buffer loop is running

	
get_status()

	Get counter status: tuple (acquired,)

	
setup_acquisition(mode='sequence', nframes=100, frame_merge=1)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frames in the acquisition buffer.
frame_merge specifies the number of frames to merge together to from one buffer; if it is larger than 1,
several camera frames will be merged into a single frame grabber “super-frame” for acquisition, to lower the effective frame rate
(which is capped at 2-4kFPS due to the necessity of Python loops). This is done transparently for the user, so the only visible change
is the fact that the number of acquired frames is always updated in quanta of frame_merge.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.BitFlow.BitFlow.BitFlowCamera(idx=0, camfile=None)

	Bases: BitFlowFrameGrabber

Generic BitFlow camera interface.

	Parameters:

	idx – board index, starting from 0

	
class BufferManager(cam)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and buffer overflow events

	
get_status()

	Get counter status: tuple (acquired,)

	
is_running()

	Check if the buffer loop is running

	
reset()

	Reset counter (on frame acquisition)

	
start_loop()

	Start buffer scheduling loop

	
stop_loop()

	Stop buffer scheduling loop

	
Error

	alias of BitFlowError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of BitFlowTimeoutError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
close()

	Close connection to the camera

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (idx, model, idreg) with the board index, model number and the setting of the ID switch on the board

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open connection to the camera

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
setup_acquisition(mode='sequence', nframes=100, frame_merge=1)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frames in the acquisition buffer.
frame_merge specifies the number of frames to merge together to from one buffer; if it is larger than 1,
several camera frames will be merged into a single frame grabber “super-frame” for acquisition, to lower the effective frame rate
(which is capped at 2-4kFPS due to the necessity of Python loops). This is done transparently for the user, so the only visible change
is the fact that the number of acquired frames is always updated in quanta of frame_merge.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.BitFlow.BitFlow.CameraFileEditor

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Camera file editor based on XML ElementTree parser.

Provides methods for loading and saving the tree, and to change basic parameters in the default operational mode.

	
load(path, clean=True)

	Load file from the given path and optionally check the structure remove the non-default modes

	
save(path)

	Save file to the given path

	
clean_modes()

	Check the loaded tree structure and remove non-default operational modes

	
get_mode_parameters()

	Get default operational mode parameters.

Return tuple (size, fmt, bpp) with the acquisition size (xsize, ysize), format (e.g., "1X2-1Y") and the number of bits per pixel.
If the tree is not loaded or mode is not present, return None.

	
set_mode_parameters(size=None, fmt=None, bpp=None)

	Get default operational mode parameters.

size is the acquisition size (xsize, ysize), fmt is the tap format (e.g., "1X2-1Y"), and bpp is the number of bits per pixel.
Parameters set to None stay unchanged.
Return True if any parameters have changed their values and False otherwise.

Module contents

pylablib.devices.Conrad package

Submodules

pylablib.devices.Conrad.base module

	
exception pylablib.devices.Conrad.base.ConradError

	Bases: DeviceError

Generic Conrad devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Conrad.base.ConradBackendError(exc)

	Bases: ConradError, DeviceBackendError

Generic Conrad backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Conrad.base.RelayBoard(conn, start_addr=1)

	Bases: ICommBackendWrapper

Conrad relay board controller

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	start_addr – address which is assigned to the first board in the chain upon initialization; all following boards increase the address by 1

	
Error

	alias of ConradError

	
open()

	Open the connection to the board

	
class TMessage(comm, addr, data)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
addr

	

	
comm

	

	
data

	

	
query(comm, addr=1, data=0, multi_result=False)

	Send a query with the given command, address and data.

If multi_result==False, read a single reply frame;
otherwise, keep reading until reply with the same command as sent is received (used in initialization and broadcast queries).

	
get_all_relays(addr=1)

	Get all relay states.

If addr is not 0, return dictionary {relay:value}, where relay is the relay index on the board (between 1 and 8 inclusive).
If addr==0 (broadcast), return dictionary {addr:board_state}, where board_state is in turn a state dictionary is described above.

	
set_all_relays(values, addr=1)

	Set all relay states.

values can be a list (listing relay states from lowest to highest), or a dictionary {relay:value}, where relays are numbered from 1 to 8.
Relays without values are kept unchanged.
If addr==0, broadcast to all boards

	
get_relay(relay, addr=1)

	Get the state at a given relay (indexed from 1 to 8 inclusive)

	
set_relay(relay, enable=True, addr=1)

	Get the state at a given relay (indexed from 1 to 8 inclusive)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Cryocon package

Submodules

pylablib.devices.Cryocon.base module

	
exception pylablib.devices.Cryocon.base.CryoconError

	Bases: DeviceError

Generic Cryocon devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Cryocon.base.CryoconBackendError(exc)

	Bases: CryoconError, DeviceBackendError

Generic Lakeshore backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Cryocon.base.Cryocon1x(conn, nchannels='auto')

	Bases: SCPIDevice

Cryocon 1x series (12C, 14C, 18C) temperature controller.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of CryoconError

	
ReraiseError

	alias of CryoconBackendError

	
get_number_of_channels()

	Return total number of channels in the device (2, 4, or 8)

	
get_display_units(channel)

	

	
set_display_units(channel, units)

	

	
get_temperature(channel, display_units=False)

	Get a reading on a given channel.

If display_units==True, return reading in the display units; otherwise, return reading in Kelvin.
If in this case the display units are "S" (sensor), set them to Kelvin to get the reading.
If sensor is disconnected, return None.

	
get_all_temperatures(display_units=False)

	Get readings on all channels.

If display_units==True, return reading in the display units; otherwise, return reading in Kelvin.
If in this case the display units are "S" (sensor), set them to Kelvin to get the reading.
If sensor is disconnected, return None.

	
get_sensor_reading(channel)

	Get readings (in sensor units) on a given channel (1 to 8)

	
get_all_sensor_readings()

	Get readings (in sensor units) on all channels

	
get_sensor_kind(channel)

	Get sensor kind of a given channel (1 to 8)

	
get_all_sensor_kinds()

	Get readings (in sensor units) on all channels

	
set_sensor_kind(channel, kind)

	Set sensor kind of a given channel (1 to 8).

Can be an integer using internal classification (see manual),
or one of "none", "S900", "DT670", "DT470", "S950", "SI410", "Pt100", "Pt1k", "Pt10k", "ThFe", "RO105", "RO600".
Setting kind to "none" disables the sensor.

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.Cryomagnetics package

Submodules

pylablib.devices.Cryomagnetics.base module

	
exception pylablib.devices.Cryomagnetics.base.CryomagneticsError

	Bases: DeviceError

Generic Cryomagnetics devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError(exc)

	Bases: CryomagneticsError, DeviceBackendError

Generic Cryomagnetics backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Cryomagnetics.base.LM500(conn)

	Bases: SCPIDevice

Cryomagnetics LM500/510 level monitor.

Channels are enumerated from 1.
To abort filling or reset a timeout, call SCPIDevice.reset() method.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of CryomagneticsError

	
ReraiseError

	alias of CryomagneticsBackendError

	
close()

	Close connection to the device

	
get_channel()

	Get current measurement channel

	
select_channel(channel=1)

	Select the current measurement channel

	
get_type(channel=None)

	Get type of a given channel ("lhe" or "ln")

	
get_mode(channel=None)

	Get measurement mode at the given channel (None for the currently selected channel).

Can be either 'sample_hold', or 'continuous'.

	
set_mode(mode, channel=None)

	Set measurement mode at the given channel (None for the current channel).

Can be either 'sample_hold', or 'continuous'.

	
get_interval(channel=None)

	Get measurement interval (in seconds) in sample/hold mode at the given channel (None for the current channel)

	
set_interval(intvl, channel=None)

	Set measurement interval (in seconds) in sample/hold mode at the given channel (None for the current channel)

	
start_measurement(channel=None)

	Initialize measurement on a given channel

	
wait_for_measurement(channel=None, timeout=None)

	Wait for the measurement on a given channel to finish

	
get_level(channel=None)

	Get level reading on a given channel

	
measure_level(channel=None)

	Measure the level (perform the measurement and return the result) on a given channel

	
start_fill(channel=None)

	Initialize filling at a given channel (None for the current channel)

	
get_fill_status(channel=None)

	Get filling status at a given channels (None for the current channel).

Return either "off" (filling is off), "timeout" (filling timed out) or a float (time since filling started, in seconds).

	
get_low_level(channel=None)

	Get low level (automated refill start) setting on a given channel (None for the current channel)

	
set_low_level(level, channel=None)

	Set low level (automated refill start) setting on a given channel (None for the current channel)

	
get_high_level(channel=None)

	Get high level (automated refill stop) setting on a given channel (None for the current channel)

	
set_high_level(level, channel=None)

	Set high level (automated refill stop) setting on a given channel (None for the current channel)

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Cryomagnetics.base.LM510(conn)

	Bases: LM500

Cryomagnetics 510 level monitor.

Compared to LM500, adds additional specific methods to enable/disable automatic refill.

Channels are enumerated from 1.
To abort filling or reset a timeout, call SCPIDevice.reset() method.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
set_control_mode(mode, channel=None)

	Set automated refill mode on a given channel (None for the current channel); can be "off" or "auto"

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of CryomagneticsError

	
ReraiseError

	alias of CryomagneticsBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close connection to the device

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_channel()

	Get current measurement channel

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_fill_status(channel=None)

	Get filling status at a given channels (None for the current channel).

Return either "off" (filling is off), "timeout" (filling timed out) or a float (time since filling started, in seconds).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_high_level(channel=None)

	Get high level (automated refill stop) setting on a given channel (None for the current channel)

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_interval(channel=None)

	Get measurement interval (in seconds) in sample/hold mode at the given channel (None for the current channel)

	
get_level(channel=None)

	Get level reading on a given channel

	
get_low_level(channel=None)

	Get low level (automated refill start) setting on a given channel (None for the current channel)

	
get_mode(channel=None)

	Get measurement mode at the given channel (None for the currently selected channel).

Can be either 'sample_hold', or 'continuous'.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_type(channel=None)

	Get type of a given channel ("lhe" or "ln")

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
measure_level(channel=None)

	Measure the level (perform the measurement and return the result) on a given channel

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_channel(channel=1)

	Select the current measurement channel

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_high_level(level, channel=None)

	Set high level (automated refill stop) setting on a given channel (None for the current channel)

	
set_interval(intvl, channel=None)

	Set measurement interval (in seconds) in sample/hold mode at the given channel (None for the current channel)

	
set_low_level(level, channel=None)

	Set low level (automated refill start) setting on a given channel (None for the current channel)

	
set_mode(mode, channel=None)

	Set measurement mode at the given channel (None for the current channel).

Can be either 'sample_hold', or 'continuous'.

	
sleep(delay)

	Wait for delay seconds

	
start_fill(channel=None)

	Initialize filling at a given channel (None for the current channel)

	
start_measurement(channel=None)

	Initialize measurement on a given channel

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_for_measurement(channel=None, timeout=None)

	Wait for the measurement on a given channel to finish

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.DCAM package

Submodules

pylablib.devices.DCAM.DCAM module

	
class pylablib.devices.DCAM.DCAM.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.DCAM.DCAM.restart_lib()

	

	
pylablib.devices.DCAM.DCAM.get_cameras_number()

	Get number of connected DCAM cameras

	
class pylablib.devices.DCAM.DCAM.DCAMAttribute(handle, pid)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

DCAM camera attribute.

Allows to query and set values and get additional information.
Usually created automatically by a DCAM camera instance, but could also be created manually.

	Parameters:

	
	handle – DCAM camera handle

	pid – attribute id

	
name

	attribute name

	
kind

	attribute kind; can be "int", "float", "enum", or "none" (can’t determine)

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
step

	attribute value step (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
unit

	attribute units (index value)

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
as_text(value=None)

	Get the given attribute value as text (by default, current value)

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max)

	
get_value(enum_as_str=False)

	Get current attribute value.

If enum_as_str==True, try to represent enums as their string values;
otherwise, return their integer values (only integers can be used for setting).

	
set_value(value)

	Set attribute value

	
class pylablib.devices.DCAM.DCAM.TDeviceInfo(vendor, model, serial_number, camera_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
camera_version

	

	
model

	

	
serial_number

	

	
vendor

	

	
class pylablib.devices.DCAM.DCAM.TFrameInfo(frame_index, framestamp, timestamp_us, camerastamp, position, pixeltype)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
camerastamp

	

	
frame_index

	

	
framestamp

	

	
pixeltype

	

	
position

	

	
timestamp_us

	

	
class pylablib.devices.DCAM.DCAM.DCAMCamera(idx=0)

	Bases: IBinROICamera, IExposureCamera, IAttributeCamera

	
Error = <Mock name='mock.DCAMError' id='139822135411344'>

	

	
TimeoutError = <Mock spec='str' id='139822151200656'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera model data.

Return tuple (vendor, model, serial_number, camera_version).

	
get_attribute_value(name, enum_as_str=False, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If enum_as_str==True, try to represent enums as their string values;
otherwise, return their integer values (only integers can be used for setting).

	
set_attribute_value(name, value, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.

	
get_all_attribute_values(root='', enum_as_str=False)

	Get values of all attributes.

If enum_as_str==True, try to represent enums as their string values;
otherwise, return their integer values (only integers can be used for setting).

	
set_all_attribute_values(settings)

	Set values of all attribute in the given dictionary

	
set_trigger_mode(mode)

	Set trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

	
get_trigger_mode()

	Get trigger mode.

Can be "int" (internal), "ext" (external), or "software" (software trigger).

	
get_all_trigger_modes()

	Return the list of all available trigger modes

	
setup_ext_trigger(invert=False, delay=0.0)

	Setup external trigger (inversion and delay)

	
get_ext_trigger_parameters()

	Return external trigger parameters (inversion and delay)

	
send_software_trigger()

	Send software trigger signal

	
set_exposure(exposure)

	Set camera exposure

	
get_exposure()

	Set current exposure

	
set_readout_speed(speed='fast')

	Set readout speed (can be "fast" or "slow")

	
get_readout_speed()

	Set current readout speed

	
get_all_readout_speeds()

	Return the list of all available readout speeds

	
get_frame_readout_time()

	Set current frame readout time

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_defect_correct_mode()

	Check if the defect pixel correction mode is on

	
set_defect_correct_mode(enabled=True)

	Enable or disable the defect pixel correction mode

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Set current ROI.

By default, all non-supplied parameters take extreme values.
Binning is the same for both axes, so value of vbin is ignored (it is left for compatibility).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes determines number of frames to acquire in the single mode, or size of the ring buffer in the "sequence" mode (by default, 100).

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
get_status()

	Get acquisition status.

Can be "busy" (capturing in progress), "ready" (ready for capturing),
"stable" (not prepared for capturing), "unstable" (can’t be prepared for capturing), or "error" (some other error).

	
acquisition_in_progress()

	Check if acquisition is in progress

	
get_transfer_info()

	Get frame transfer info.

Return tuple (last_buff, frame_count), where last_buff is the index of the last filled buffer,
and frame_count is the total number of acquired frames.

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index, framestamp and timestamp, camera stamp, frame location on the sensor, and pixel type;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

Module contents

pylablib.devices.ElektroAutomatik package

Submodules

pylablib.devices.ElektroAutomatik.base module

	
exception pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError

	Bases: DeviceError

Generic Elektro Automatik device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError(exc)

	Bases: ElektroAutomatikError, DeviceBackendError

Generic Elektro Automatik backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.ElektroAutomatik.base.TDeviceInfo(model, manufacturer, serial_no, article_no, sw_ver)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
article_no

	

	
manufacturer

	

	
model

	

	
serial_no

	

	
sw_ver

	

	
class pylablib.devices.ElektroAutomatik.base.TOutputLimits(voltage, current, power)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
current

	

	
power

	

	
voltage

	

	
class pylablib.devices.ElektroAutomatik.base.TStatus(enabled, mode, ovp, ocp, opp, otp)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
enabled

	

	
mode

	

	
ocp

	

	
opp

	

	
otp

	

	
ovp

	

	
class pylablib.devices.ElektroAutomatik.base.PS2000B(conn, remote_mode='force')

	Bases: ICommBackendWrapper

Elektro Automatik PS2000B series power supply.

	Parameters:

	
	conn – serial connection parameters (usually, COM-port address)

	remote_mode – approach to setting the remote mode; can be "force" (enable on connection, disable on disconnection)
or "manual" (do nothing about it, should be enabled or disabled automatically).
In the remote mode the device is controlled from the PC (front panel controls are disabled),
while in the local mode it can only be queried remotely, but not changed.

	
Error

	alias of ElektroAutomatikError

	
class TTelegram(obj, data, dnode)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
data

	

	
dnode

	

	
obj

	

	
open()

	Open the backend

	
close()

	Close the backend

	
query(obj, dlen, dnode=0, kind='raw')

	Query value of the given object.

dlen specifies the value length and dnode sets the device node (only relevant for multi-source models).
kind specifies the result kind; can be "raw" (raw bytes), "str" (string), "int" (2-byte integer) or "float" (r-byte float).

	
comm(obj, value, dnode=0, kind='int')

	Set value of the given object.

dnode sets the device node (only relevant for multi-source models).
kind specifies the value kind; can be "raw" (raw bytes), or "int" (2-byte integer).

	
get_device_info()

	Get device information.

Return tuple (model, manufacturer, serial_no, article_no, sw_ver).

	
get_output_limits()

	Get nominal output limits.

Return tuple (voltage, current, power).

	
is_remote_enabled()

	Check if the remote-control mode is enabled (if it is disabled, output and limit values can be read but not set)

	
enable_remote(enable=True)

	Enable or disable the remote-control mode (if it is disabled, output and limit values can be read but not set)

	
is_output_enabled()

	Check if the output is enabled

	
enable_output(enable=True)

	Enable or disable the output

	
get_status()

	Get device status.

Return tuple (mode, ovp, ocp, opp, otp), where mode is the output mode ("cv" or "cc")
and the rest of the values show if the corresponding protection is tripped.

	
get_voltage_setpoint()

	Get output voltage setpoint

	
get_voltage()

	Get the actual output voltage

	
set_voltage(value)

	Set output voltage setpoint

	
get_current_setpoint()

	Get output current setpoint

	
get_current()

	Get the actual output current

	
set_current(value)

	Set output current setpoint

	
get_ovp_threshold()

	Get over-voltage protection threshold

	
set_ovp_threshold(value)

	Set over-voltage protection threshold

	
get_ocp_threshold()

	Get over-current protection threshold

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_ocp_threshold(value)

	Set over-current protection threshold

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.HighFinesse package

Submodules

pylablib.devices.HighFinesse.wlm module

	
pylablib.devices.HighFinesse.wlm.muxchannel(*args, **kwargs)

	Multiplex the function over its channel argument

	
class pylablib.devices.HighFinesse.wlm.TDeviceInfo(model, serial_number, revision_number, compilation_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
compilation_number

	

	
model

	

	
revision_number

	

	
serial_number

	

	
class pylablib.devices.HighFinesse.wlm.WLM(version=None, dll_path=None, app_path=None, autostart=True)

	Bases: IDevice

Generic HighFinesse wavemeter.

	Parameters:

	
	version (int [https://docs.python.org/3/library/functions.html#int]) – wavemeter version; if None, use any available version

	dll_path – path to wlmData.dll; if None, use standard locations or search based on the version

	app_path – path to the wavemeter server application (looks like wlm_ws.exe or wlm_ws7.exe);
if None, try to autodetect, or rely on the server already running

	autostart – if True, start measurements automatically
(if the wavemeter server app is not running, it will launch with the measurements stopped).

	
Error = <Mock name='mock.HighFinesseError' id='139822121653584'>

	

	
open()

	Open the connection to the wavemeter

	
close()

	Close the connection to the wavemeter

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get the wavemeter info.

Return tuple (model, serial_number, revision_number, compilation_number).

	
start_measurement()

	Start wavemeter measurement

	
stop_measurement()

	Stop wavemeter measurement

	
is_measurement_running()

	Check if the measurement is running

	
set_read_mode(mode)

	Set value read mode, which applies to get_frequency() and get_wavelength().

Can be "latest" (always return the latest measurement result; default),
or "single" (if there’s no new measurement since the last call, the result is "noval"
which, depending on the arguments, causes wait, is returned as is, or raises an error).

	
get_read_mode()

	Get value read mode, which applies to get_frequency() and get_wavelength().

Can be "latest" (always return the latest measurement result; default),
or "single" (if there’s no new measurement since the last call, the result is "noval"
which, depending on the arguments, causes wait, is returned as is, or raises an error).

	
get_channels_number(refresh=True)

	Get number of channels in the wavemeter

	
get_default_channel()

	Get the default channel (starting from 1) which is used for querying

	
set_default_channel(channel)

	Set the default channel (starting from 1) which is used for querying

	
get_frequency(channel=None, error_on_invalid=True, wait=True, timeout=5.0)

	Get the wavemeter readings (in Hz) on a given channel.

channel is the measurement channel (starting from 1); if None, use the default channel.
If error_on_invalid==True, raise an error if the measurement is invalid (e.g., over- or underexposure);
otherwise, the method can return "under" if the meter is underexposed or "over" is it is overexposed,
"badsig" if there is no calculable signal, "noval" if there are no values acquired yet, "nosig" if there is no signal,
or "nowlm" if there is no connection to the wavemeter.
If wait==True and the result is "noval" (e.g., if the read mode is "single" and no new value has been acquired since the last call),
wait for at most timeout until a new value appears; if the timeout has passed, use the default behavior (error or "noval" result).

	
get_wavelength(channel=None, error_on_invalid=True, wait=True, timeout=5.0)

	Get the wavemeter readings (in m, and in vacuum).

channel is the measurement channel (starting from 1); if None, use the default channel.
If error_on_invalid==True, raise an error if the measurement is invalid (e.g., over- or underexposure);
otherwise, the method can return "under" if the meter is underexposed or "over" is it is overexposed,
"badsig" if there is no calculable signal, "noval" if there are no values acquired yet, "nosig" if there is no signal,
or "nowlm" if there is no connection to the wavemeter.
If wait==True and the result is "noval" (e.g., if the read mode is "single" and no new value has been acquired since the last call),
wait for at most timeout until a new value appears; if the timeout has passed, use the default behavior (error or "noval" result).

	
get_exposure_mode(channel=None)

	Get the exposure mode ("manual" or "auto") at the given channel

	
set_exposure_mode(mode='auto', channel=None)

	Set the exposure mode ("manual" or "auto") at the given channel

	
get_exposure(sensor=1, channel=None)

	Get the exposure for a given channel and sensor (starting from 1)

	
set_exposure(exposure, sensor=1, channel=None)

	Manually set the exposure for a given channel and sensor (starting from 1)

	
get_switcher_mode()

	Get the switcher mode ("off" for manual switching or "on" for cycling mode)

	
set_switcher_mode(mode='on')

	Set the switcher mode ("off" for manual switching or "on" for cycling mode)

	
get_active_channel()

	Get the current active channel

	
set_active_channel(channel, automode=True)

	Set the current switcher channel.

Only makes sense in the manual ("off") switcher mode. If automode==True, switch to this mode automatically.

	
is_switcher_channel_enabled(channel, automode=True)

	Check whether the switcher channel enabled.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

	
is_switcher_channel_shown(channel, automode=True)

	Check whether the switcher channel is shown in the wavemeter control application.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

	
enable_switcher_channel(channel, enable=True, show=None, automode=True)

	Enable or disable the current switcher channel in the switch mode.

Only works in the cycling ("on") switcher mode. If automode==True, switch to this mode automatically.

	
get_pulse_mode()

	Get the current pulse mode.

Can be "cw" (CW laser mode), "int" (standard single-laser internally triggered mode),
"ext" (single- or double-laser mode with external TTL trigger),
or "opt" (double-laser mode with optical triggering).

	
set_pulse_mode(mode)

	Set the current pulse mode.

Can be "cw" (CW laser mode), "int" (standard single-laser internally triggered mode),
"ext" (single- or double-laser mode with external TTL trigger),
or "opt" (double-laser mode with optical triggering).

	
get_precision_mode()

	Set the current precision mode ("fine", "wide", or "grating")

	
set_precision_mode(mode)

	Set the current precision mode ("fine", "wide", or "grating")

	
get_measurement_interval()

	Set measurement interval (per channel), or None if the interval mode is off

	
set_measurement_interval(interval=None)

	Set measurement interval (per channel).

None means that the interval mode is off.

	
calibrate(source_type, source_frequency, channel=None)

	Initialize the calibration.

source_type is the calibration source type, which can be "hene_633" (HeNe 633nm laser), "hene_1152" (HeNe 1152nm laser),
"hene_free" (free-running HeNe laser), "nel" (Ne lamp), or "other" (other source).
source_frequency is the exact source frequency (in Hz) sent through the given channel.

	
get_autocalibration_parameters()

	Get up the automatic calibration parameters.

Return tuple (enable, unit, period), where enable determines if it is enabled,
and unit and period together specify the calibration period.
unit can be "start" (once on the measurement start; period is irrelevant here),
"meas" (once every period frequency measurements),
"min" (once every period minutes), "hours", or "days".

	
setup_autocalibration(enable=True, unit=None, period=None)

	Set up the automatic calibration parameters.

enable determines if it is enabled.
unit and period together specify the calibration period.
unit can be "start" (once on the measurement start; period is irrelevant here),
"meas" (once every period frequency measurements),
"min" (once every period minutes), "hours", or "days".
Any None parameters are kept at the present value.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
set_device_variable(key, value)

	Set the value of a settings parameter

Module contents

pylablib.devices.IMAQ package

Submodules

pylablib.devices.IMAQ.IMAQ module

	
pylablib.devices.IMAQ.IMAQ.list_cameras()

	List all cameras available through IMAQ interface

	
pylablib.devices.IMAQ.IMAQ.get_cameras_number()

	Get number of connected IMAQ cameras

	
class pylablib.devices.IMAQ.IMAQ.TDeviceInfo(serial_number, interface)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
interface

	

	
serial_number

	

	
class pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber(imaq_name='img0', do_open=True, **kwargs)

	Bases: IROICamera

Generic IMAQ frame grabber interface.

Compared to IMAQCamera, has more permissive initialization arguments,
which simplifies its use as a base class for expanded cameras.

	Parameters:

	
	imaq_name – interface name (can be learned by list_cameras(); usually, but not always, starts with "cam" or "img")

	do_open – if False, skip the last step of opening the device (should be opened in a subclass)

	
Error = <Mock name='mock.IMAQError' id='139822185646928'>

	

	
TimeoutError = <Mock spec='str' id='139822168224208'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
reset()

	Reset connection to the camera

	
is_opened()

	Check if the device is connected

	
get_grabber_attribute_value(attr, default=None, kind='auto')

	Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error.
kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
set_grabber_attribute_value(attr, value, kind='int32')

	Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
get_all_grabber_attribute_values()

	Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepresented.

	
get_device_info()

	Get camera model data.

Return tuple (serial, interface) with the board serial number and an the interface type (e.g., "1430" for NI PCIe-1430)

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None, reset_acquisition=True)

	Configure input trigger.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger source type; can be "ext", "rtsi", "iso_in", or "software"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger action; can be "none" (disable trigger), "capture" (start capturing), "stop" (stop capturing),
"buffer" (capture a single frame), or "bufflist" (capture the whole buffer list once)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – timeout in seconds; None means not timeout.

	reset_acquisition (bool [https://docs.python.org/3/library/functions.html#bool]) – if the input triggers configuration has been changed, acquisition needs to be restart;
if True, perform it automatically

	
send_software_trigger()

	Send software trigger signal

	
configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')

	Configure trigger output.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_drive (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted when acquisition is done),
"unasserted" (force unasserted level), "asserted" (force asserted level),
"hsync" (asserted on start of a single line start), "vsync" (asserted on start of a frame scan),
"frame_start" (asserted when a single frame is captured), or "frame_done" (asserted when a single frame is done)

	
read_trigger(trig_type, trig_line=0, trig_pol='high')

	Read current value of a trigger (input or output).

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", "iso_in", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	
clear_all_triggers(reset_acquisition=True)

	Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if reset_acquisition==True, perform it automatically.

	
setup_serial_params(write_term='', datatype='bytes')

	Setup default serial communication parameters.

	Parameters:

	
	write_term – default terminator character to be added to the sent messages

	datatype – type of the result of read commands; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)

	
get_serial_params()

	Return serial parameters as a tuple (write_term, datatype)

	
serial_write(msg, timeout=3.0, term=None)

	Write message into CameraLink serial port.

	Parameters:

	
	timeout – operation timeout (in seconds)

	term – additional write terminator character to add to the message;
if None, use the value set up using setup_serial_params() (by default, no additional terminator)

	
serial_read(n, timeout=3.0, datatype=None)

	Read specified number of bytes from CameraLink serial port.

	Parameters:

	
	n – number of bytes to read

	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	
serial_readline(timeout=3.0, datatype=None, maxn=1024)

	Read bytes from CameraLink serial port until the termination character (defined in camera file) is encountered.

	Parameters:

	
	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	maxn – maximal number of bytes to read

	
serial_flush()

	Flush CameraLink serial port

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.IMAQ.IMAQ.IMAQCamera(name='img0')

	Bases: IMAQFrameGrabber

Generic IMAQ camera interface.

	Parameters:

	name – interface name (can be learned by list_cameras(); usually, but not always, starts with "cam" or "img")

	
Error = <Mock name='mock.IMAQError' id='139822185646928'>

	

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822168224208'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
clear_all_triggers(reset_acquisition=True)

	Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if reset_acquisition==True, perform it automatically.

	
close()

	Close connection to the camera

	
configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None, reset_acquisition=True)

	Configure input trigger.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger source type; can be "ext", "rtsi", "iso_in", or "software"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger action; can be "none" (disable trigger), "capture" (start capturing), "stop" (stop capturing),
"buffer" (capture a single frame), or "bufflist" (capture the whole buffer list once)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – timeout in seconds; None means not timeout.

	reset_acquisition (bool [https://docs.python.org/3/library/functions.html#bool]) – if the input triggers configuration has been changed, acquisition needs to be restart;
if True, perform it automatically

	
configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')

	Configure trigger output.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_drive (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted when acquisition is done),
"unasserted" (force unasserted level), "asserted" (force asserted level),
"hsync" (asserted on start of a single line start), "vsync" (asserted on start of a frame scan),
"frame_start" (asserted when a single frame is captured), or "frame_done" (asserted when a single frame is done)

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_grabber_attribute_values()

	Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepresented.

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (serial, interface) with the board serial number and an the interface type (e.g., "1430" for NI PCIe-1430)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_attribute_value(attr, default=None, kind='auto')

	Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error.
kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_serial_params()

	Return serial parameters as a tuple (write_term, datatype)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open connection to the camera

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_trigger(trig_type, trig_line=0, trig_pol='high')

	Read current value of a trigger (input or output).

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", "iso_in", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	
reset()

	Reset connection to the camera

	
send_software_trigger()

	Send software trigger signal

	
serial_flush()

	Flush CameraLink serial port

	
serial_read(n, timeout=3.0, datatype=None)

	Read specified number of bytes from CameraLink serial port.

	Parameters:

	
	n – number of bytes to read

	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	
serial_readline(timeout=3.0, datatype=None, maxn=1024)

	Read bytes from CameraLink serial port until the termination character (defined in camera file) is encountered.

	Parameters:

	
	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	maxn – maximal number of bytes to read

	
serial_write(msg, timeout=3.0, term=None)

	Write message into CameraLink serial port.

	Parameters:

	
	timeout – operation timeout (in seconds)

	term – additional write terminator character to add to the message;
if None, use the value set up using setup_serial_params() (by default, no additional terminator)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_grabber_attribute_value(attr, value, kind='int32')

	Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
setup_serial_params(write_term='', datatype='bytes')

	Setup default serial communication parameters.

	Parameters:

	
	write_term – default terminator character to be added to the sent messages

	datatype – type of the result of read commands; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

pylablib.devices.IMAQ.niimaq_attrtypes module

Module contents

pylablib.devices.IMAQdx package

Submodules

pylablib.devices.IMAQdx.IMAQdx module

	
class pylablib.devices.IMAQdx.IMAQdx.TCameraInfo(name, type, version, flags, serial_number, bus, vendor, model, camera_file, attr_url)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
attr_url

	

	
bus

	

	
camera_file

	

	
flags

	

	
model

	

	
name

	

	
serial_number

	

	
type

	

	
vendor

	

	
version

	

	
pylablib.devices.IMAQdx.IMAQdx.list_cameras(connected=True, desc=True)

	List all cameras available through IMAQdx interface

If desc==True, return complete camera descriptions; otherwise, simply return the names.

	
pylablib.devices.IMAQdx.IMAQdx.get_cameras_number()

	Get number of connected dx cameras

	
class pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute(sid, name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing an IMAQdx camera parameter.

Allows to query and set values and get additional information.
Usually created automatically by an IMAQdxCamera instance, but could be created manually.

	Parameters:

	
	sid – camera session ID

	name – attribute text name

	
name

	attribute name

	
kind

	attribute kind; can be "u32", "i64", "f64", "str", "enum",
"bool", "command", or "blob"

	
display_name

	attribute display name (short description name)

	
tooltip

	longer attribute description

	
description

	full attribute description (usually, same as tooltip)

	
units

	attribute units (if applicable)

	
visibility

	attribute visibility ("simple", "intermediate", or "advanced")

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
inc

	minimal attribute increment value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max, inc)

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
class pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo(vendor, model, serial_number, bus_type)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
bus_type

	

	
model

	

	
serial_number

	

	
vendor

	

	
class pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera(name='cam0', mode='controller', visibility='advanced')

	Bases: IROICamera, IAttributeCamera

Generic IMAQdx camera interface.

	Parameters:

	
	name – interface name (can be learned by list_cameras(); usually, but not always, starts with "cam")

	mode – connection mode; can be "controller" (full control) or "listener" (only reading)

	visibility – attribute visibility when listing attributes;
can be "simple", "intermediate" or "advanced" (higher mode exposes more attributes).

	
Error = <Mock name='mock.IMAQdxError' id='139822117181904'>

	

	
TimeoutError = <Mock spec='str' id='139822117936400'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
reset()

	Reset connection to the camera

	
is_opened()

	Check if the device is connected

	
post_open()

	Additional setup after camera opening

	
get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)

	Get values of all attributes with the given root

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
get_device_info()

	Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
class CallbackManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
get_callback_ptr()

	

	
register(sid)

	

	
reset()

	

	
start()

	

	
stop()

	

	
get_nbuff()

	

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQdxCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
refresh_acquisition(delay=0.005)

	Stop and restart the acquisition, waiting delay seconds in between

	
enable_raw_readout(enable='rows', bytes_per_pixel=None, bytes_per_image=None)

	Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format.
Can be "frame" (return the whole frame as a 1D "u1" numpy array),
"rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default).
In addition, for cameras which incorrectly implement "PayloadSize" parameter, one can explicitly specify the number
of bytes per pixel (possibly fractional) which will be used to calculate the total byte size of the frame,
or the total number of bytes per image (if specified, takes priority over bytes_per_pixel).
Both bytes_per_pixel and bytes_per_image only apply if enable is set to "frame" or "rows".

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera(name='cam0', mode='controller', visibility='advanced', small_packet=False)

	Bases: IMAQdxCamera

LAN-controlled IMAQdx camera.

Compared to the standard camera, has an option of automatically switching to a smaller TCP/IP packet size
(can be useful if the PC network adapter can’t handle jumbo packets).

	Parameters:

	
	name – interface name (can be learned by list_cameras(); usually, but not always, starts with "cam")

	mode – connection mode; can be "controller" (full control) or "listener" (only reading)

	visibility – default attribute visibility when listing attributes;
can be "simple", "intermediate" or "advanced" (higher mode exposes more attributes).

	small_packet – if True, automatically set small packet size (1500 bytes).

	
post_open()

	Additional setup after camera opening

	
class CallbackManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
get_callback_ptr()

	

	
get_nbuff()

	

	
register(sid)

	

	
reset()

	

	
start()

	

	
stop()

	

	
Error = <Mock name='mock.IMAQdxError' id='139822117181904'>

	

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822117936400'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close connection to the camera

	
enable_raw_readout(enable='rows', bytes_per_pixel=None, bytes_per_image=None)

	Enable raw frame transfer.

Should be used if the camera uses unsupported pixel format.
Can be "frame" (return the whole frame as a 1D "u1" numpy array),
"rows" (return a 2D array, where each row corresponds to a single image row),
or False (convert to image data, or raise an error if the format is not supported; default).
In addition, for cameras which incorrectly implement "PayloadSize" parameter, one can explicitly specify the number
of bytes per pixel (possibly fractional) which will be used to calculate the total byte size of the frame,
or the total number of bytes per image (if specified, takes priority over bytes_per_pixel).
Both bytes_per_pixel and bytes_per_image only apply if enable is set to "frame" or "rows".

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attribute_values(root='', enum_as_str=True, ignore_errors=True)

	Get values of all attributes with the given root

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open connection to the camera

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
refresh_acquisition(delay=0.005)

	Stop and restart the acquisition, waiting delay seconds in between

	
reset()

	Reset connection to the camera

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQdxCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

Module contents

pylablib.devices.KJL package

Submodules

pylablib.devices.KJL.base module

	
exception pylablib.devices.KJL.base.KJLError

	Bases: DeviceError

Generic KJL device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.KJL.base.KJLBackendError(exc)

	Bases: KJLError, DeviceBackendError

Generic KJL backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.KJL.base.TKJL300DeviceInfo(swver)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
swver

	

	
class pylablib.devices.KJL.base.KJL300(conn, addr=1)

	Bases: ICommBackendWrapper

KJL300 series pressure gauge.

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	addr – RS485 address (required both for RS-485 and for RS-232 communication; factory default is 1)

	
Error

	alias of KJLError

	
comm(msg)

	Send a command to the device

	
query(msg)

	

	
get_device_info()

	Get device info (a tuple (swver))

	
reset(confirm_addr=False)

	Reset the controller.

If confirm_addr==True, set current RS485 address again (required for resetting after some commands).

	
get_pressure()

	Get current pressure in Pa

	
get_relay_setpoints(relay=1)

	Get relay setpoints (in Pa).

relay is the relay index (either 1 or 2).
Return tuple (on, off) for on-below and off-above pressures (on is always smaller than off)

	
set_relay_setpoints(relay=1, on=None, off=None, reset=True)

	Set relay setpoints (in Pa).

relay is the relay index (either 1 or 2). on and off are on-below and off-above pressures (on is always smaller than off).
If reset==True, reset the device after changing the setpoints (required to take effect).
None values are left unchanged.

	
set_zero(pressure=0)

	Set vacuum calibration point (in Pa)

	
set_span(pressure=100000.0)

	Set atmosphere calibration point (in Pa)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Keithley package

Submodules

pylablib.devices.Keithley.base module

	
exception pylablib.devices.Keithley.base.GenericKeithleyError

	Bases: DeviceError

Generic Keithley error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Keithley.base.GenericKeithleyBackendError(exc)

	Bases: GenericKeithleyError, DeviceBackendError

Keithley backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Keithley.multimeter module

	
class pylablib.devices.Keithley.multimeter.TGenericFunctionParameters(rng, resolution, autorng)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
autorng

	

	
resolution

	

	
rng

	

	
class pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters(rng, aperture)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
aperture

	

	
rng

	

	
class pylablib.devices.Keithley.multimeter.TConfigurationParameters(function, rng, resolution)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
function

	

	
resolution

	

	
rng

	

	
class pylablib.devices.Keithley.multimeter.TAveragingParameters(mode, count, enabled)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
count

	

	
enabled

	

	
mode

	

	
class pylablib.devices.Keithley.multimeter.Keithley2110(addr)

	Bases: SCPIDevice

Keithley 2110 bench-top multimeter.

	Parameters:

	addr – device address (usually a VISA name).

	
Error

	alias of GenericKeithleyError

	
ReraiseError

	alias of GenericKeithleyBackendError

	
get_function(channel='primary')

	Get measurement function for the given measurement channel ("primary" or "secondary", or "all" for both channels)

	
set_function(function, channel='primary', reset_secondary=True)

	Set measurement function for the given measurement channel ("primary", "secondary", or "all" for both channels).

If reset_secondary==True and the primary function is changed, set the secondary function to "none" to avoid conflicts.

	
get_vcr_function_parameters(function=None)

	Get parameters for the given voltage, current or resistance measurement function.

Supported functions are "volt_dc", "volt_ac", "curr_dc", "curr_ac", "res", and "fres".
Return tuple (rng, resolution, autorng) with, correspondingly, measurement range, resolution, and whether autorange is enabled.

	
get_cap_function_parameters(function=None)

	Get parameters for the given capacitance measurement function.

The only supported function is "cap".
Return tuple (rng, autorng) with, correspondingly, measurement range and whether autorange is enabled.

	
get_freq_function_parameters(function=None)

	Set parameters for the given frequency or period measurement function.

Supported functions are "freq_volt", "freq_curr", "per_volt", "per_curr".
Return tuple (rng, aperture) with, correspondingly, measurement range, and the averaging aperture.

	
get_function_parameters(function=None)

	Get function parameters for any supported function.

Result depends on the function kind. See get_vcr_function_parameters(), get_cap_function_parameters() and get_freq_function_parameters() for details.

	
set_vcr_function_parameters(function=None, rng=None, resolution=None, autorng=None)

	Set parameters for the given voltage, current or resistance measurement function.

Supported functions are "volt_dc", "volt_ac", "curr_dc", "curr_ac", "res", and "fres".
rng, resolution and autorng are correspondingly, measurement range, resolution, and whether autorange is enabled.
rng and resolution can also have values "min", "max" or "def" for, correspondingly, minimal possible, maximal possible, and default value.

	
set_cap_function_parameters(function=None, rng=None, autorng=None)

	Set parameters for the given capacitance measurement function.

The only supported function is "cap".
rng and autorng are correspondingly, measurement range and whether autorange is enabled.
rng can also have values "min", "max" or "def" for, correspondingly, minimal possible, maximal possible, and default value.

	
set_freq_function_parameters(function=None, rng=None, aperture=None)

	Set parameters for the given frequency or period measurement function.

Supported functions are "freq_volt", "freq_curr", "per_volt", "per_curr".
rng and aperture are correspondingly, measurement range and the averaging aperture.
rng and aperture can also have values "min", "max" or "def" for, correspondingly, minimal possible, maximal possible, and default value.

	
set_function_parameters(function=None, **kwargs)

	Set function parameters for any supported function.

Arguments depend on the function kind. See set_vcr_function_parameters(), set_cap_function_parameters() and set_freq_function_parameters() for details.

	
get_configuration()

	Get current measurement configuration on the primary channel.

Return tuple (function, rng, resolution) with, correspondingly, measurement function, measurement range and resolution.

	
set_configuration(function=None, rng=None, resolution=None)

	Set current measurement configuration on the primary channel.

function, rng and resolution are, correspondingly, measurement function, measurement range and resolution.

	
get_reading(channel='primary')

	Initiate and return the reading of the given measurement channel ("primary", "secondary", or "all" for both channels)

	
get_averaging_parameters()

	Get result averaging parameters.

Return tuple (mode, count, enabled) with, correspondingly, averaging mode ("moving" or "repeat"), number of counts to average, and whether it is enabled.

	
setup_averaging(mode=None, count=None, enabled=None)

	Set result averaging parameters.

mode, count and enabled are , correspondingly, averaging mode ("moving" or "repeat"), number of counts to average, and whether it is enabled.

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.Lakeshore package

Submodules

pylablib.devices.Lakeshore.base module

	
exception pylablib.devices.Lakeshore.base.LakeshoreError

	Bases: DeviceError

Generic Lakeshore devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Lakeshore.base.LakeshoreBackendError(exc)

	Bases: LakeshoreError, DeviceBackendError

Generic Lakeshore backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings(bipolar, mode, channel, source, high_value, low_value, man_value)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
bipolar

	

	
channel

	

	
high_value

	

	
low_value

	

	
man_value

	

	
mode

	

	
source

	

	
class pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings(enabled, points, window)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
enabled

	

	
points

	

	
window

	

	
class pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader(name, serial, fmt, limit, coeff)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
coeff

	

	
fmt

	

	
limit

	

	
name

	

	
serial

	

	
class pylablib.devices.Lakeshore.base.Lakeshore218(conn)

	Bases: SCPIDevice

Lakeshore 218 temperature controller.

The channels are enumerated from 1 to 8 and are split into 2 groups: "A" for 1-4 and "B" for 5-8.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of LakeshoreError

	
ReraiseError

	alias of LakeshoreBackendError

	
is_enabled(channel)

	Check if a given channel is enabled

	
set_enabled(channel, enabled=True)

	Enable or disable a given channel

	
get_sensor_type(group)

	Get sensor type for a given group ("A" for sensors 1-4 or "B" for sensors 5-8).

For types, see INTYPE command description in the Lakeshore 218 programming manual.

	
set_sensor_type(group, sensor_type)

	Set sensor type for a given group ("A" for sensors 1-4 or "B" for sensors 5-8).

For types, see INTYPE command description in the Lakeshore 218 programming manual.

	
get_sensor_curve_index(channel)

	Get sensor curve index for a given channel (1 to 8).

For curve descriptions, see INCRV command description in the Lakeshore 218 programming manual.

	
set_sensor_curve_index(channel, index)

	Get sensor curve index for a given channel (1 to 8).

For curve descriptions, see INCRV command description in the Lakeshore 218 programming manual.

	
get_curve_header(index)

	Get header of a given curve (1-9 or 21-28).

Return tuple (name, serial, fmt, limit, coeff).
For values descriptions, see CRVHDR command description in the Lakeshore 218 programming manual.

	
set_curve_header(index, name=None, serial=None, fmt=None, limit=None, coeff=None)

	Set header of a given user curve (21-28).

For values descriptions, see CRVHDR command description in the Lakeshore 218 programming manual.

	
get_curve(index, trim_zeros=True)

	Get values of a given curve (1-9 or 21-28).

Return 2-column numpy array with up to 200 points, where the first column is sensor reading, and the second is temperature;
for associated sensor units, see get_curve_header().
If trim_zeros==True, trim the trailing zero-valued points.
Note, that it takes about 10 seconds to complete.

	
set_curve(index, curve)

	Set values of a given user curve (21-28).

curve is a 2-column numpy array with up to 200 points, where the first column is sensor reading, and the second is temperature;
for associated sensor units, see get_curve_header().
Note, that it takes about 20 seconds to complete.

	
get_temperature(channel)

	Get readings (in Kelvin) on a given channel (1 to 8)

	
get_all_temperatures()

	Get readings (in Kelvin) on all channels

	
get_sensor_reading(channel)

	Get readings (in sensor units) on a given channel (1 to 8)

	
get_all_sensor_readings()

	Get readings (in sensor units) on all channels

	
get_analog_output_settings(output)

	Get analog output settings for a given output (1 or 2).

For parameters, see setup_analog_output() and ANALOG command description in the Lakeshore 218 programming manual.

	
setup_analog_output(output, bipolar=None, mode=None, channel=None, source=None, high_value=None, low_value=None, man_value=None)

	Setup analog output settings for a given output (1 or 2).

For parameters, see ANALOG command description in the Lakeshore 218 programming manual.
Value of None means keeping the current parameter value.

	
set_analog_output_value(output, value, bipolar=False, enabled=True)

	Set manual analog output value.

A simplified version of setup_analog_output().

	
get_analog_output(output)

	Get value (in percents of the total range) at a given output (1 or 2)

	
get_filter_settings(channel)

	Get input filter settings for a given channel (1 to 8).

For parameters, see setup_filter() and FILTER command description in the Lakeshore 218 programming manual.

	
setup_filter(channel, enabled=None, points=None, window=None)

	Setup input filter settings for a given channel (1 to 8).

For parameters, see FILTER command description in the Lakeshore 218 programming manual.
Value of None means keeping the current parameter value.

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings(exc_mode, exc_range, res_range, autorange, enable)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
autorange

	

	
enable

	

	
exc_mode

	

	
exc_range

	

	
res_range

	

	
class pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings(bipolar, mode, channel, source, high_value, low_value, man_value)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
bipolar

	

	
channel

	

	
high_value

	

	
low_value

	

	
man_value

	

	
mode

	

	
source

	

	
class pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings(enabled, settle_time, window)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
enabled

	

	
settle_time

	

	
window

	

	
class pylablib.devices.Lakeshore.base.Lakeshore370(conn)

	Bases: SCPIDevice

Lakeshore 370 resistance bridge / temperature controller.

All channels are enumerated from 0.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of LakeshoreError

	
ReraiseError

	alias of LakeshoreBackendError

	
get_temperature(channel)

	Get temperature readings (in K) on a given channel

	
get_resistance(channel)

	Get resistance readings (in Ohm) on a given channel

	
get_sensor_power(channel)

	Get dissipated power (in W) on a given channel

	
select_channel(channel)

	Select measurement channel

	
get_channel()

	Get current measurement channel

	
get_channel_range_settings(channel)

	Setup the current measurement channel range parameters.

For parameters, see setup_channel_range() and RDGRNG command description in the Lakeshore 370 programming manual.

	
setup_channel_range(channel=None, exc_mode='v', exc_range=1, res_range=22, autorange=True, enable=True)

	Setup the measurement channel range (all channels by default).

exc_mode is the excitation mode ("i" or "v"), exc_range is the excitation range (1 is smallest), res_range is the resistance range (1 is smallest).
For range descriptions, see Lakeshore 370 programming manual.

	
get_analog_output_settings(output)

	Get analog output settings for a given output (1 or 2).

For parameters, see setup_analog_output() and ANALOG command description in the Lakeshore 370 programming manual.

	
setup_analog_output(output, bipolar=None, mode=None, channel=None, source=None, high_value=None, low_value=None, man_value=None)

	Setup analog output settings for a given output (1 or 2).

For parameters, see ANALOG command description in the Lakeshore 370 programming manual.
Value of None means keeping the current parameter value.

	
set_analog_output_value(output, value, bipolar=False, enabled=True)

	Set manual analog output value.

A simplified version of setup_analog_output().

	
get_analog_output(output)

	Get value (in percents of the total range) at a given output (1 or 2)

	
get_filter_settings(channel)

	Get input filter settings for a given channel (1 to 16).

For parameters, see setup_filter() and FILTER command description in the Lakeshore 370 programming manual.

	
setup_filter(channel, enabled=None, settle_time=None, window=None)

	Setup input filter settings for a given channel (1 to 16).

For parameters, see FILTER command description in the Lakeshore 370 programming manual.
Value of None means keeping the current parameter value.

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.LaserQuantum package

Submodules

pylablib.devices.LaserQuantum.base module

	
exception pylablib.devices.LaserQuantum.base.LaserQuantumError

	Bases: DeviceError

Generic Laser Quantum devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.LaserQuantum.base.LaserQuantumBackendError(exc)

	Bases: LaserQuantumError, DeviceBackendError

Generic Laser Quantum backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.LaserQuantum.base.TDeviceInfo(serial, software_version, cal_date)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cal_date

	

	
serial

	

	
software_version

	

	
class pylablib.devices.LaserQuantum.base.TWorkHours(psu, laser_enabled, laser_threshold)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
laser_enabled

	

	
laser_threshold

	

	
psu

	

	
class pylablib.devices.LaserQuantum.base.TTemperatures(head, psu)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
head

	

	
psu

	

	
class pylablib.devices.LaserQuantum.base.Finesse(conn)

	Bases: ICommBackendWrapper

Laser Quantum Finesse pump laser.

	Parameters:

	conn – serial connection parameters (usually port)

	
Error

	alias of LaserQuantumError

	
query(comm, reply_lines=1)

	Send a query to the device and read the reply.

reply_lines specify the number of lines to read as a reply (almost all queries have only one line).

	
get_device_info()

	Get device information (serial, software_version, cal_date)

	
get_work_hours()

	Get the work hours (PSU run time, laser run time, laser above threshold time)

	
get_temperatures()

	Get device status, head temperature, and PSU temperature

	
get_output_status()

	Get output status.

Can be "enabled" or "disabled".

	
get_interlock_status()

	Get manual interlock status

	
get_shutter_status()

	Get the shutter status

	
is_shutter_opened()

	Check if shutter is opened

	
set_shutter(opened=True)

	Open or close the shutter

	
is_enabled()

	Check if the output is enabled

	
enable(enabled=True)

	Turn the output on or off

	
get_output_power()

	Get the output power (in Watts)

	
get_output_setpoint()

	Get the output setpoint power (in Watts)

	
set_output_power(level)

	Set the output power setpoint (in Watts)

	
get_current()

	Get the laser drive current (in %)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Leybold package

Submodules

pylablib.devices.Leybold.base module

	
exception pylablib.devices.Leybold.base.LeyboldError

	Bases: DeviceError

Generic Leybold device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Leybold.base.LeyboldBackendError(exc)

	Bases: LeyboldError, DeviceBackendError

Generic Leybold backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Leybold.base.TDeviceInfo(sensor, page, swver)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
page

	

	
sensor

	

	
swver

	

	
class pylablib.devices.Leybold.base.TUpdateValue(value, display_units, status, error, device_info)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
device_info

	

	
display_units

	

	
error

	

	
status

	

	
value

	

	
class pylablib.devices.Leybold.base.GenericITR(conn)

	Bases: ICommBackendWrapper

Generic Leybold ITR pressure gauge.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of LeyboldError

	
get_update(refresh=True)

	Get device state update.

Return tuple (value, display_units, status, error, device_info), where value is the pressure in Pa,
display_units are display units ("pa", "mbar", or "torr"),
status is the devices status (e.g., emission status), error is the device error ("ok" if no errors),
and device_info is a tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

If refresh==True, get the latest update value; otherwise, get the latest read value.

	
send_command(byte1, byte2, byte3)

	Send command to the device.

Arguments represent the three command bytes. Values of these bytes for different commands are described in the manual.

	
get_device_info()

	Get device info.

Return tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

	
get_units()

	Get device readout units ("mbar", "pa", or "torr")

	
get_pressure(display_units=False)

	Get pressure.

If display_units==False, return result in Pa; otherwise, use display units obtained using get_units().

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.Leybold.base.TITR90Status(emission, atm_adj)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
atm_adj

	

	
emission

	

	
class pylablib.devices.Leybold.base.ITR90(conn)

	Bases: GenericITR

Leybold ITR90 pressure gauge.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
set_units(units, store=True)

	Get device readout units ("mbar", "pa", or "torr").

If store==True, store the value in the non-volatile power-independent memory.

	
start_degas()

	Start degas (turns off automatically after 3 minutes)

	
stop_degas()

	Stop degas

	
Error

	alias of LeyboldError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_info()

	Get device info.

Return tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_pressure(display_units=False)

	Get pressure.

If display_units==False, return result in Pa; otherwise, use display units obtained using get_units().

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_units()

	Get device readout units ("mbar", "pa", or "torr")

	
get_update(refresh=True)

	Get device state update.

Return tuple (value, display_units, status, error, device_info), where value is the pressure in Pa,
display_units are display units ("pa", "mbar", or "torr"),
status is the devices status (e.g., emission status), error is the device error ("ok" if no errors),
and device_info is a tuple (sensor, page, swver) with the sensor kind ID, data page, and software version.

If refresh==True, get the latest update value; otherwise, get the latest read value.

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
send_command(byte1, byte2, byte3)

	Send command to the device.

Arguments represent the three command bytes. Values of these bytes for different commands are described in the manual.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.LighthousePhotonics package

Submodules

pylablib.devices.LighthousePhotonics.base module

	
exception pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError

	Bases: DeviceError

Generic Lighthouse Photonics devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError(exc)

	Bases: LighthousePhotonicsError, DeviceBackendError

Generic Lighthouse Photonics backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.LighthousePhotonics.base.TDeviceInfo(product, version, serial, configuration)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
configuration

	

	
product

	

	
serial

	

	
version

	

	
class pylablib.devices.LighthousePhotonics.base.TWorkHours(controller, laser)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
controller

	

	
laser

	

	
class pylablib.devices.LighthousePhotonics.base.SproutG(conn)

	Bases: ICommBackendWrapper

Lighthouse Photonics Sprout G laser.

	Parameters:

	conn – serial connection parameters (usually port)

	
Error

	alias of LighthousePhotonicsError

	
query(comm, allowed_replies=('0',))

	Send a query to the device and parse the reply

	
get_device_info()

	Get device information (product name, product version, serial number, configuration)

	
get_work_hours()

	Return device operation hours (controller on) and run hours (laser on)

	
get_warning_status()

	Get device warnings

	
get_interlock_status()

	Get manual interlock status

	
get_shutter_status()

	Get manual shutter status ("open" or "close")

	
get_output_mode()

	Get output mode.

Can be "on", "off", "idle" (power standby mode), "calibrate",
"interlock" (manual interlock is off), "warmup" (warmup mode), or "calibration" (calibration mode).

	
set_output_mode(mode='on')

	Set output mode.

mode can be "on", "off", "idle" (power standby mode), or "calibrate" (calibration mode).

	
is_enabled()

	Check if the output is on (idle or warmup don’t count as on)

	
enable(enabled=True)

	Turn the output on or off

	
get_output_power()

	Set the actual output power (in Watts)

	
get_output_setpoint()

	Get the output setpoint power (in Watts)

	
set_output_power(level)

	Get the output power setpoint (in Watts)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Lumel package

Submodules

pylablib.devices.Lumel.base module

	
class pylablib.devices.Lumel.base.TDeviceInfo(model)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
model

	

	
class pylablib.devices.Lumel.base.LumelRE72Controller(conn, daddr=1)

	Bases: GenericModbusRTUDevice

Lumel RE72 temperature controller.

	Parameters:

	
	conn – serial connection parameters for RS485 adapter (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

	daddr – default device Modbus address

	
get_device_info()

	Return device info as a tuple (model)

	
get_reg(address, kind='auto')

	Get value of a register at the given address.

kind is a register kind and can be "int" (2-byte signed integer), "uint" (2-byte unsigned integer), "float" (4-byte float),
or "auto" (either signed integer or float depending on the address).

	
set_reg(address, value)

	Set value of an integer register at the given address

	
get_measurementf()

	Return measurement value as a floating point number.

The result is returned in the current display units.

	
get_setpointf(setpoint=None)

	Get setpoint value as a floating point number.

The result is returned in the current display units.
setpoint specifies the setpoint kind and can be None (current), 1, or 2.

	
get_outputf(output=1)

	Get output value in percents.

output specifies the output channel and can be 1 or 2.

	
get_measurementi()

	Return measurement value as an integer number

The result is returned in the current display units.
For temperature units (C and F) this value is degrees multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point position.

	
get_setpointi(setpoint=None)

	Get setpoint value as an integer point number.

The result is returned in the current display units.
For temperature units (C and F) this value is degrees multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point position.
setpoint specifies the setpoint kind and can be None (current), or an integer from 1 to 4.

	
set_setpointi(value, setpoint=None)

	Get setpoint value as an integer point number.

The result is returned in the current display units.
For temperature units (C and F) this value is degrees multiplied by 10, while for the physical units (A, V) this relation is determined by the decimal point position.
setpoint specifies the setpoint kind and can be None (current), or an integer from 1 to 4.

	
Error

	alias of ModbusError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
mb_get_default_address()

	Get device address used by default in Modbus methods

	
mb_get_device_id(daddr=None)

	Get Modbus device ID (function 17)

	
mb_read_coils(address, quantity=1, daddr=None)

	Read Modbus one-bit discrete coils with the given starting address and quantity

	
mb_read_discrete_inputs(address, quantity, daddr=None)

	Read Modbus one-bit discrete inputs with the given starting address and quantity

	
mb_read_holding_registers(address, quantity, daddr=None)

	Read Modbus two-byte holding registers with the given starting address and quantity

	
mb_read_input_registers(address, quantity, daddr=None)

	Read Modbus two-byte input registers with the given starting address and quantity

	
mb_scan_devices(daddrs='all', timeout=0.1, func=1, payload=b'')

	Scan for devices on the bus by sending a specified command and waiting for the reply.

daddrs is a list of addresses to check ("all" means all addresses from 1 to 247 inclusive)
timeout is the timeout to wait for each device reply.
func and payload specify the message to send (by default, ‘read coil’ command with no arguments, which should always return and error)
Since the addresses are polled consecutively, this function can take a long time (~25s for the default settings).

	
mb_set_default_address(daddr)

	Set device address used by default in Modbus methods

	
mb_using_address(daddr)

	Context manager for temporary using a different default device address

	
mb_write_multiple_coils(address, value, quantity=None, daddr=None)

	Write multiple Modbus one-bit discrete coils with the given starting address and quantity.

value is a bytes object with the bit values listed LSB first.

	
mb_write_multiple_holding_registers(address, value, daddr=None)

	Write a multiple Modbus two-byte holding registers at the given address.

value is a bytes object with the values listed LSB first.

	
mb_write_single_coil(address, value, daddr=None)

	Write a single Modbus one-bit discrete coil at the given address

	
mb_write_single_holding_register(address, value, daddr=None)

	Write a single Modbus two-byte holding register at the given address

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.M2 package

Submodules

pylablib.devices.M2.base module

	
exception pylablib.devices.M2.base.M2Error

	Bases: DeviceError

Generic M2 error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.M2.base.M2ParseError(*args, code=None)

	Bases: M2Error

M2 parse error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.M2.base.M2CommunicationError(exc)

	Bases: M2Error, DeviceBackendError

M2 network communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.M2.base.ICEBlocDevice(addr, port, timeout=5.0, start_link=True)

	Bases: IDevice

Generic M2 Ice Bloc device.

	Parameters:

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – IP address of the Ice Bloc device.

	port (int [https://docs.python.org/3/library/functions.html#int]) – port of the Ice Bloc device.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default timeout of synchronous operations.

	start_link (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, initialize device link on creation.

	
Error

	alias of M2Error

	
ReraiseError

	alias of M2CommunicationError

	
BackendError

	alias of OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
set_timeout(timeout)

	Set timeout for connecting or sending/receiving

	
flush()

	Flush read buffer

	
noreply(exhaust_when_done=False)

	Context manager within which the code switches to the no-reply mode,
where it does not wait for a reply to certain commands (usually element setting commands).
This allows for faster command issuing, but ignores possible errors returned by the commands.
If exhaust_when_done==True, receive all sent replies upon exiting the context;
otherwise, receive them the next time a communication with the device is done.

	
query(op, params, reply_op='auto', report=False, allow_noreply=False)

	Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply").
If report==True, request completion report (does not apply to all operation).
If allow_noreply==True, allow skipping the reply, which allows for faster consecutive command issuing;
this only works if the no-reply mode is also activated using noreply().
Return tuple (command, args) with the reply command name and the corresponding arguments
(in no-reply mode return (None, None)).

	
update_reports(timeout=0.0, ignore_replies=None, max_replies=None)

	Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list of replies which do not raise an error.
If max_replies is supplied, it is the maximal number of replies to read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

	
get_last_report(op)

	Get the latest report for the given operation

	
check_report(op)

	Check and return the latest report for the given operation

	
wait_for_report(op, error_msg=None, timeout=None)

	Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

	
start_link()

	Initialize device link (called automatically on creation)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
set_device_variable(key, value)

	Set the value of a settings parameter

pylablib.devices.M2.emm module

	
class pylablib.devices.M2.emm.EMM(addr, port, timeout=5.0, start_link=True)

	Bases: ICEBlocDevice

M2 EMM Ice Bloc device.

	Parameters:

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – IP address of the Ice Bloc device.

	port (int [https://docs.python.org/3/library/functions.html#int]) – port of the Ice Bloc device.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default timeout of synchronous operations.

	start_link (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, initialize device link on creation.

	
get_laser_status()

	Get the device system status

	
fine_tune_wavelength(wavelength, beam='visible', sync=True, timeout=None)

	Fine-tune the wavelength.

If sync==True, wait until the operation is complete (might take from several seconds up to several minutes).

	
check_fine_tuning_report()

	Check wavelength fine-tuning report

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

	
wait_for_fine_tuning(timeout=None)

	Wait until wavelength fine-tuning is complete

	
is_fine_tuning()

	check if fine tuning is in progress

	
get_fine_tuning_status()

	Get fine-tuning status.

Return either "idle" (no tuning or locking) or "active" (tuning in progress).

	
get_fine_wavelength()

	Get fine-tuned wavelength

	
stop_fine_tuning()

	Stop fine wavelength tuning

	
setup_terascan(scan_type, scan_range, rate, trunc_rate=True)

	Setup terascan.

	Parameters:

	
	scan_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – scan type. Can be "medium" (BRF+etalon, rate from 100 GHz/s to 1 GHz/s),
"fine" (all elements, rate from 20 GHz/s to 1 MHz/s), "ir_medium" or "ir_fine" (same as "medium" or "fine", but defined for the IR laser)

	scan_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (start, stop) with the scan range (in Hz).

	rate (float [https://docs.python.org/3/library/functions.html#float]) – scan rate (in Hz/s).

	trunc_rate (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, truncate the scan rate to the nearest available rate (otherwise, incorrect rate would raise an error).

	
start_terascan(scan_type, sync=False, sync_done=False)

	Start terascan.

Scan parameters are set up separately using setup_terascan().
Scan type can be "medium" (BRF+etalon, rate from 100 GHz/s to 1 GHz/s), "fine" (all elements, rate from 20 GHz/s to 1 MHz/s),
"ir_medium" or "ir_fine" (same as "medium" or "fine", but defined for the IR laser)
If sync==True, wait until the scan is set up (not until the whole scan is complete).
If sync_done==True, wait until the whole scan is complete (not recommended, as it can take hours).

	
enable_terascan_updates(enable=True, update_period=0.01, update_delay=0)

	Enable sending periodic terascan updates.

If enabled, laser will send updates in the beginning and in the end of every terascan segment.
If update_period!=0, it will also send updates every update_period percents of the segment (this option is not currently supported by M2 firmware).

	
check_terascan_update()

	Check the latest terascan update.

Return None if none are available, or a dictionary {"wavelength":current_wavelength, "activity":op},
where op is "scanning" (scanning in progress), "stitching" (stitching in progress), or "repeat" (segment is repeated).

	
wait_for_terascan_update()

	Wait until a new terascan update is available

	
check_terascan_start_report()

	Check report on terascan start.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

	
stop_terascan(scan_type, sync=False)

	Stop terascan of the given type.

If sync==True, wait until the operation is complete.

	
get_terascan_status(scan_type)

	Get status of a terascan of a given type (or all statuses if scan_type=="all").

	Return a dictionary with 3 items:
	"current": current laser frequency (or None if no scan is in progress)
"range": tuple with the fill scan range (or None if no frequency is available)
"status": can be "stopped" (scan is not in progress), "scanning" (scan is in progress),
or "stitching" (scan is in progress, but currently stitching)

	
stop_all_operation(repeated=True, attempt=0)

	Stop all laser operations (tuning and scanning).

If repeated==True, repeat trying to stop the operations until succeeded (more reliable, but takes more time).
If attempt>0, it can supply the number of already tried attempts to stop (with repeated=False);
the more attempts failed, the more drastic measures will be taken to stop (e.g., initialize short terascan)
Return True if the operation is success and False otherwise.

	
BackendError

	alias of OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	
Error

	alias of M2Error

	
ReraiseError

	alias of M2CommunicationError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
check_report(op)

	Check and return the latest report for the given operation

	
close()

	Close the connection

	
flush()

	Flush read buffer

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_last_report(op)

	Get the latest report for the given operation

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
noreply(exhaust_when_done=False)

	Context manager within which the code switches to the no-reply mode,
where it does not wait for a reply to certain commands (usually element setting commands).
This allows for faster command issuing, but ignores possible errors returned by the commands.
If exhaust_when_done==True, receive all sent replies upon exiting the context;
otherwise, receive them the next time a communication with the device is done.

	
open()

	Open the connection

	
query(op, params, reply_op='auto', report=False, allow_noreply=False)

	Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply").
If report==True, request completion report (does not apply to all operation).
If allow_noreply==True, allow skipping the reply, which allows for faster consecutive command issuing;
this only works if the no-reply mode is also activated using noreply().
Return tuple (command, args) with the reply command name and the corresponding arguments
(in no-reply mode return (None, None)).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_timeout(timeout)

	Set timeout for connecting or sending/receiving

	
start_link()

	Initialize device link (called automatically on creation)

	
update_reports(timeout=0.0, ignore_replies=None, max_replies=None)

	Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list of replies which do not raise an error.
If max_replies is supplied, it is the maximal number of replies to read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

	
wait_for_report(op, error_msg=None, timeout=None)

	Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

pylablib.devices.M2.solstis module

	
class pylablib.devices.M2.solstis.Solstis(addr, port, timeout=5.0, start_link=True, use_websocket='auto', use_cavity=True)

	Bases: ICEBlocDevice

M2 Solstis Ice Bloc device.

	Parameters:

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – IP address of the Ice Bloc device.

	port (int [https://docs.python.org/3/library/functions.html#int]) – port of the Ice Bloc device.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default timeout of synchronous operations.

	start_link (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, initialize device link on creation.

	use_websocket (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, use websocket interface (same as used by the web interface) for additional functionality
(wavemeter connection, etalon value, improved operation stopping);
"auto" enables it if websocket package is installed, and disables otherwise

	use_cavity – if False and any reference cavity methods are used, either ignore them, or use closest available methods instead

	
connect_wavemeter(sync=True)

	Connect to the wavemeter (if sync==True, wait until the connection is established)

	
disconnect_wavemeter(sync=True)

	Disconnect from the wavemeter (if sync==True, wait until the connection is broken)

	
is_wavemeter_connected()

	Check if the wavemeter is connected

	
get_system_status()

	Get the device system status

	
get_full_web_status()

	Get full websocket status.

Return a large dictionary containing all the information available in the web interface.

	
get_full_fine_tuning_status()

	Get full fine-tuning status (see M2 Solstis JSON protocol manual for "poll_wave_m" command)

	
lock_wavemeter(lock=True, sync=True, error_on_fail=True)

	Lock or unlock the laser to the wavemeter (if sync==True, wait until the operation is complete)

	
is_wavemeter_lock_on()

	Check if the laser is locked to the wavemeter

	
fine_tune_wavelength(wavelength, sync=True, timeout=None)

	Fine-tune the wavelength.

Only works if the wavemeter is connected.
If sync==True, wait until the operation is complete (might take from several seconds up to several minutes).

	
check_fine_tuning_report()

	Check wavelength fine-tuning report

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

	
wait_for_fine_tuning(timeout=None)

	Wait until wavelength fine-tuning is complete

	
get_fine_tuning_status()

	Get fine-tuning status.

Return either "idle" (no tuning or locking), "nolink" (no wavemeter link),
"tuning" (tuning in progress), or "locked" (tuned and locked to the wavemeter).

	
get_fine_wavelength()

	Get fine-tuned wavelength.

Only works if the wavemeter is connected.

	
stop_fine_tuning()

	Stop fine wavelength tuning

	
coarse_tune_wavelength(wavelength, sync=True)

	Coarse-tune the wavelength.

Only works if the wavemeter is disconnected.
If sync==True, wait until the operation is complete.

	
get_full_coarse_tuning_status()

	Get full coarse-tuning status (see M2 M2 Solstis JSON protocol manual for "poll_move_wave_t" command)

	
get_coarse_tuning_status()

	Get coarse-tuning status.

Return either "done" (tuning is done), "tuning" (tuning in progress), or "fail" (tuning failed).

	
get_coarse_wavelength()

	Get course-tuned wavelength.

Only works if the wavemeter is disconnected.

	
stop_coarse_tuning()

	Stop coarse wavelength tuning

	
tune_etalon(value, sync=True)

	Tune the etalon to value percent.

Only works if the wavemeter is disconnected.
If sync==True, wait until the operation is complete.

	
lock_etalon(sync=True)

	Lock the etalon.

If sync==True, wait until the operation is complete.

	
unlock_etalon(sync=True)

	Unlock the etalon .

If sync==True, wait until the operation is complete.
Automatically unlock the reference cavity first (otherwise the operation fails).

	
get_etalon_lock_status()

	Get etalon lock status.

Return either "off" (lock is off), "on" (lock is on), "debug" (lock in debug condition),
"error" (lock had an error), "search" (lock is searching), or "low" (lock is off due to low output).

	
tune_laser_resonator(value, fine=False, sync=True)

	Tune the laser cavity to value percent.

If fine==True, adjust fine tuning; otherwise, adjust coarse tuning.
Only works if the wavemeter is disconnected.
If sync==True, wait until the operation is complete.

	
tune_reference_cavity(value, fine=False, sync=True)

	Tune the reference cavity to value percent.

If fine==True, adjust fine tuning; otherwise, adjust coarse tuning.
Only works if the wavemeter is disconnected.
If sync==True, wait until the operation is complete.
If reference cavity is disabled by setting use_cavity=False on creation, do nothing.

	
lock_reference_cavity(sync=True)

	Lock the laser to the reference cavity.

Automatically lock etalon first (otherwise the operation fails).
If sync==True, wait until the operation is complete.
If reference cavity is disabled by setting use_cavity=False on creation, do nothing.

	
unlock_reference_cavity(sync=True)

	Unlock the laser from the reference cavity.

If sync==True, wait until the operation is complete.
If reference cavity is disabled by setting use_cavity=False on creation, do nothing.

	
get_reference_cavity_lock_status()

	Get the reference cavity lock status.

Return either "off" (lock is off), "on" (lock is on), "debug" (lock in debug condition),
"error" (lock had an error), "search" (lock is searching), "low" (lock is off due to low output),
or "disabled" (reference cavity is disabled by setting use_cavity=False on creation).

	
setup_terascan(scan_type, scan_range, rate, trunc_rate=True)

	Setup terascan.

	Parameters:

	
	scan_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – scan type. Can be "medium" (BRF+etalon, rate from 100 GHz/s to 1 GHz/s),
"fine" (all elements, rate from 20 GHz/s to 1 MHz/s), or "line" (all elements, rate from 20 GHz/s to 50 kHz/s).

	scan_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple (start, stop) with the scan range (in Hz).

	rate (float [https://docs.python.org/3/library/functions.html#float]) – scan rate (in Hz/s).

	trunc_rate (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, truncate the scan rate to the nearest available rate (otherwise, incorrect rate would raise an error).

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use "fine" instead.

	
start_terascan(scan_type, sync=False, sync_done=False)

	Start terascan.

Scan parameters are set up separately using setup_terascan().
Scan type can be "medium" (BRF+etalon, rate from 100 GHz/s to 1 GHz/s),
"fine" (all elements, rate from 20 GHz/s to 1 MHz/s), or "line" (all elements, rate from 20 GHz/s to 50 kHz/s).
If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use "fine" instead.
If sync==True, wait until the scan is set up (not until the whole scan is complete).
If sync_done==True, wait until the whole scan is complete (not recommended, as it can take hours).

	
enable_terascan_updates(enable=True, update_period=0)

	Enable sending periodic terascan updates.

If enabled, laser will send updates in the beginning and in the end of every terascan segment.
If update_period!=0, it will also send updates every update_period percents of the segment (this option is not currently supported by M2 firmware).

	
check_terascan_update()

	Check the latest terascan update.

Return None if none are available, or a dictionary {"wavelength":current_wavelength, "activity":op},
where op is "scanning" (scanning in progress), "stitching" (stitching in progress), "finished" (scan is finished), or "repeat" (segment is repeated).

	
wait_for_terascan_update()

	Wait until a new terascan update is available

	
check_terascan_start_report()

	Check report on terascan start.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

	
stop_terascan(scan_type, sync=False)

	Stop terascan of the given type.

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use "fine" instead.
If sync==True, wait until the operation is complete.

	
get_terascan_status(scan_type, web_status=True)

	Get status of a terascan of a given type.

	Return a dictionary with 4 items:
	"current": current laser frequency (or None if no scan is in progress)
"range": tuple with the fill scan range (or None if no frequency is available)
"status": can be "stopped" (scan is not in progress), "scanning" (scan is in progress),
or "stitching" (scan is in progress, but currently stitching)
"web": whether scan is running in web interface (some failure modes still report "scanning" through the usual interface);
only available if the laser web connection is on and if web_status==True.

If reference cavity is disabled by setting use_cavity=False on creation and scan_type is "line", use "fine" instead.

	
start_fast_scan(scan_type, width, period, sync=False, setup_locks=True)

	Setup and start fast scan.

	Parameters:

	
	scan_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – scan type. Can be "cavity_continuous", "cavity_single", "cavity_triangular",
"etalon_continuous", "etalon_single",
"resonator_continuous", "resonator_single", "resonator_ramp", "resonator_triangular",
"ecd_continuous", "ecd_ramp", or "fringe_test" (see M2 Solstis JSON protocol manual for details)

	width (float [https://docs.python.org/3/library/functions.html#float]) – scan width (in Hz).

	period (float [https://docs.python.org/3/library/functions.html#float]) – scan time/period (in s).

	sync (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, wait until the scan is set up (not until the whole scan is complete).

	setup_locks (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, automatically setup etalon and reference cavity locks in the appropriate states for etalon, cavity, or resonator scans.

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of cavity scans.

	
check_fast_scan_start_report()

	Check fast scan start report.

Return "success" or "fail" if the operation is complete, or None if it is still in progress.

	
stop_fast_scan(scan_type, return_to_start=True, sync=False)

	Stop fast scan of the given type.

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of cavity scans.
If return_to_start==True, return to the center frequency after stopping; otherwise, stay at the current instantaneous frequency.
If sync==True, wait until the operation is complete.

	
get_fast_scan_status(scan_type)

	Get status of a fast scan of a given type.

	Return dictionary with 2 items:
	"status": can be "stopped" (scan is not in progress), "scanning" (scan is in progress).
"value": current tuner value (in percent); does not necessary correspond to the scan progress.

If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of cavity scans.

	
stop_scan_web(scan_type)

	Stop scan of the current type (terascan or fine scan) using web interface.

More reliable than native programming interface, but requires activated web interface.
If reference cavity is disabled by setting use_cavity=False on creation, use resonator scans instead of cavity scans.

	
stop_all_operation(repeated=True, attempt=0)

	Stop all laser operations (tuning and scanning).

More reliable than native programming interface, but requires activated web interface.
If repeated==True, repeat trying to stop the operations until succeeded (more reliable, but takes more time).
If attempt>0, it can supply the number of already tried attempts to stop (with repeated=False);
the more attempts failed, the more drastic measures will be taken to stop (e.g., initialize short terascan or a fast scan, cycle wavemeter connection, etc.)
Return True if the operation is success and False otherwise.

	
BackendError

	alias of OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	
Error

	alias of M2Error

	
ReraiseError

	alias of M2CommunicationError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
check_report(op)

	Check and return the latest report for the given operation

	
close()

	Close the connection

	
flush()

	Flush read buffer

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_last_report(op)

	Get the latest report for the given operation

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
noreply(exhaust_when_done=False)

	Context manager within which the code switches to the no-reply mode,
where it does not wait for a reply to certain commands (usually element setting commands).
This allows for faster command issuing, but ignores possible errors returned by the commands.
If exhaust_when_done==True, receive all sent replies upon exiting the context;
otherwise, receive them the next time a communication with the device is done.

	
open()

	Open the connection

	
query(op, params, reply_op='auto', report=False, allow_noreply=False)

	Send a query using the standard device interface.

reply_op is the name of the reply operation (by default, its the operation name plus "_reply").
If report==True, request completion report (does not apply to all operation).
If allow_noreply==True, allow skipping the reply, which allows for faster consecutive command issuing;
this only works if the no-reply mode is also activated using noreply().
Return tuple (command, args) with the reply command name and the corresponding arguments
(in no-reply mode return (None, None)).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_timeout(timeout)

	Set timeout for connecting or sending/receiving

	
start_link()

	Initialize device link (called automatically on creation)

	
update_reports(timeout=0.0, ignore_replies=None, max_replies=None)

	Check for fresh operation reports.

By default, only receive reports and raise an error on replies; if ignore_replies is supplies, it is a list of replies which do not raise an error.
If max_replies is supplied, it is the maximal number of replies to read before stopping (by default, no limit, i.e., wait a read leads to a timeout).

	
wait_for_report(op, error_msg=None, timeout=None)

	Wait for a report for the given operation

error_msg specifies the exception message if the report results in an error.

Module contents

pylablib.devices.Mightex package

Submodules

pylablib.devices.Mightex.MightexSSeries module

	
class pylablib.devices.Mightex.MightexSSeries.TCameraInfo(idx, model, serial)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
idx

	

	
model

	

	
serial

	

	
class pylablib.devices.Mightex.MightexSSeries.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Mightex.MightexSSeries.restart_lib()

	

	
pylablib.devices.Mightex.MightexSSeries.list_cameras()

	List all cameras available through Mightex S-series interface

	
pylablib.devices.Mightex.MightexSSeries.get_cameras_number()

	Get number of connected Mightex S-series cameras

	
class pylablib.devices.Mightex.MightexSSeries.TDeviceInfo(model, serial)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
model

	

	
serial

	

	
class pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera(idx=1)

	Bases: IBinROICamera, IExposureCamera

Generic Mightex S Series camera interface.

	Parameters:

	idx – camera index among the cameras listed using list_cameras(), starting with 1

	
Error

	alias of MightexError

	
TimeoutError

	alias of MightexTimeoutError

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera information.

Return tuple (model, serial).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_pixel_clock()

	Get pixel clock speed ("slow", "medium", or "fast")

	
set_pixel_clock(pixel_clock)

	Set pixel clock speed ("slow", "medium", or "fast")

	
get_hblanking()

	Get hblanking speed ("normal", "longer", or "longest")

	
set_hblanking(hblanking)

	Set hblanking speed ("normal", "longer", or "longest")

	
send_software_trigger()

	Send software trigger signal

	
class ReceiveLooper

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
enable_callback()

	Register and enable the frame callback

	
disable_callback()

	Stop and deregister the frame callback

	
is_looping()

	Check if the loop is running

	
get_status()

	Get the current loop status, which is the tuple (acquired,)

	
allocate(nbuff, size)

	Allocate given number of buffers of the given size

	
deallocate()

	Deallocate the buffers

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

pylablib.devices.Mightex.base module

	
exception pylablib.devices.Mightex.base.MightexError

	Bases: DeviceError

Generic Mightex error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Mightex.base.MightexTimeoutError

	Bases: MightexError

Mightex frame timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Module contents

pylablib.devices.Modbus package

Submodules

pylablib.devices.Modbus.modbus module

	
exception pylablib.devices.Modbus.modbus.ModbusError

	Bases: DeviceError

Generic Modbus device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Modbus.modbus.ModbusBackendError(exc)

	Bases: ModbusError, DeviceBackendError

Generic Modbus backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Modbus.modbus.TModbusFrame(address, function, data)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
address

	

	
data

	

	
function

	

	
class pylablib.devices.Modbus.modbus.GenericModbusRTUDevice(conn, daddr=1)

	Bases: ICommBackendWrapper

Generic Modbus-connected RTU protocol device.

	Parameters:

	
	conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

	daddr – default device address

	
Error

	alias of ModbusError

	
mb_get_default_address()

	Get device address used by default in Modbus methods

	
mb_set_default_address(daddr)

	Set device address used by default in Modbus methods

	
mb_using_address(daddr)

	Context manager for temporary using a different default device address

	
mb_read_coils(address, quantity=1, daddr=None)

	Read Modbus one-bit discrete coils with the given starting address and quantity

	
mb_read_discrete_inputs(address, quantity, daddr=None)

	Read Modbus one-bit discrete inputs with the given starting address and quantity

	
mb_read_holding_registers(address, quantity, daddr=None)

	Read Modbus two-byte holding registers with the given starting address and quantity

	
mb_read_input_registers(address, quantity, daddr=None)

	Read Modbus two-byte input registers with the given starting address and quantity

	
mb_write_single_coil(address, value, daddr=None)

	Write a single Modbus one-bit discrete coil at the given address

	
mb_write_single_holding_register(address, value, daddr=None)

	Write a single Modbus two-byte holding register at the given address

	
mb_write_multiple_coils(address, value, quantity=None, daddr=None)

	Write multiple Modbus one-bit discrete coils with the given starting address and quantity.

value is a bytes object with the bit values listed LSB first.

	
mb_write_multiple_holding_registers(address, value, daddr=None)

	Write a multiple Modbus two-byte holding registers at the given address.

value is a bytes object with the values listed LSB first.

	
mb_get_device_id(daddr=None)

	Get Modbus device ID (function 17)

	
mb_scan_devices(daddrs='all', timeout=0.1, func=1, payload=b'')

	Scan for devices on the bus by sending a specified command and waiting for the reply.

daddrs is a list of addresses to check ("all" means all addresses from 1 to 247 inclusive)
timeout is the timeout to wait for each device reply.
func and payload specify the message to send (by default, ‘read coil’ command with no arguments, which should always return and error)
Since the addresses are polled consecutively, this function can take a long time (~25s for the default settings).

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.NI package

Submodules

pylablib.devices.NI.daq module

	
exception pylablib.devices.NI.daq.NIError

	Bases: DeviceError

Generic NI error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.NI.daq.NIDAQmxError(exc)

	Bases: NIError, DeviceBackendError

NI DAQmx backend operation error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.NI.daq.TDeviceInfo(name, model, serial_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
model

	

	
name

	

	
serial_number

	

	
class pylablib.devices.NI.daq.TVoltageOutputClockParameters(rate, sync_with_ai, continuous, samps_per_chan, autoloop)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
autoloop

	

	
continuous

	

	
rate

	

	
samps_per_chan

	

	
sync_with_ai

	

	
pylablib.devices.NI.daq.get_device_info(name)

	Get device info.

Return tuple (name, model, serial).

	
pylablib.devices.NI.daq.list_devices()

	List all connected NI DAQ devices

	
class pylablib.devices.NI.daq.NIDAQ(dev_name='dev0', rate=100.0, buffer_size=100000.0, reset=False)

	Bases: IDevice

National Instruments DAQ device interface (wrapper around nidaqmx library).

Simplified interface to NI DAQ devices.
Supports voltage, digital, and counter inputs (all synchronized to the same clock), and digital and voltage outputs (asynchronous).

	Parameters:

	
	dev_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – root device name.

	rate (float [https://docs.python.org/3/library/functions.html#float]) – analog input sampling rate (can be adjusted later).

	buffer_size (int [https://docs.python.org/3/library/functions.html#int]) – size of the input buffer.

	reset (int [https://docs.python.org/3/library/functions.html#int]) – if True, reset the device upon connection.

	
Error

	alias of NIError

	
ReraiseError

	alias of NIDAQmxError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_opened()

	Check if the device is connected

	
reset()

	Reset the device. All channels will be removed

	
get_device_info()

	Get device info.

Return tuple (name, model, serial).

	
setup_clock(rate, src=None)

	Setup analog input clock (which is the main system clock).

If src==None, use internal clock with the given rate; otherwise use src terminal as a clock source
(in this case, rate should be higher than the expected source rate).

	
get_clock_parameters()

	Get analog input clock configuration.

Return tuple (rate, src).

	
export_clock(terminal)

	Export system clock to the given terminal (None to disconnect all terminals)

Only terminal one can be active at a time.

	
get_export_clock_terminal()

	Return terminal which outputs system clock (None if none is connected)

	
add_voltage_input(name, channel, rng=(-10, 10), terminal_cfg='default')

	Add analog voltage input.

Readout is synchronized to the system clock.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – channel name to refer to it later.

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal name (e.g., "ai0").

	rng – voltage range

	terminal_cfg – terminal configuration; can be "default",
"rse" (single-ended, referenced to AI SENSE input), "nrse" (single-ended, referenced to AI GND),
"diff" (differential), or "pseudodiff" (see NI DAQ manual for details).

	
add_counter_input(name, counter, terminal, clk_src='ai/SampleClock', output_format='rate')

	Add counter input (value is related to the number of counts).

Readout is synchronized to the system clock.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – channel name.

	counter (str [https://docs.python.org/3/library/stdtypes.html#str]) – on-board counter name (e.g., "ctr0").

	terminal (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal name (e.g., "pfi0").

	clk_src (str [https://docs.python.org/3/library/stdtypes.html#str]) – source of the counter sampling clock. By default it is the analog input clock,
which requires at least one voltage input channel (could be a dummy channel) to be set up first.

	output_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – output format. Can be "acc" (return accumulated number of counts since the sampling start),
"diff" (return number of counts passed between the two consecutive sampling points; essentially, a derivative of "acc"),
or "rate" (return count rate based on the "diff" samples).

	
add_clock_period_input(counter, clk_src='ai/SampleClock')

	Add clock period counter.

Useful when using external sample clock with unknown period.
The clock input can be returned during read() operation, and it is used to calculate counter inputs in "rate" mode.
Readout is synchronized to the system clock.

	Parameters:

	
	counter (str [https://docs.python.org/3/library/stdtypes.html#str]) – on-board counter name (e.g., "ctr0") to be used for clock measure.

	clk_src (str [https://docs.python.org/3/library/stdtypes.html#str]) – source of the counter sampling clock. By default it is the analog input clock,
which requires at least one voltage input channel (could be dummy channel) to operate.

	
add_digital_input(name, channel)

	Add digital input.

Readout is synchronized to the system clock.
:param name: channel name.
:type name: str
:param channel: terminal name (e.g., "port0/line12").
:type channel: str

	
get_input_channels(include=('ai', 'ci', 'di'))

	Get names of all input channels (voltage input and counter input).

include specifies which channel types to include into the list
("ai" for voltage inputs, "ci" for counter inputs, "di" for digital inputs, "cpi" for clock period channel).
The channels order is always fixed: first voltage inputs, then counter inputs, then digital inputs.

	
get_voltage_input_parameters()

	Get parameters (names, channels, output ranges, and terminal configurations) of all analog voltage input channels

	
get_counter_input_parameters()

	Get parameters (names, counters, terminals, clock sources, and output formats) of all counter input channels

	
get_digital_input_parameters()

	Get parameters (names and channels) of all digital input channels

	
get_clock_period_input_parameters()

	Get parameters (counter input) of the clock period input channel

	
start(flush_read=0, finite=None)

	Start the sampling and output task.

flush_read specifies number of samples to read and discard after start.
If finite is not None, it specifies finite number of sample to acquire before stopping.

If counter channels are used, the first sample is usually unreliable, so flush_read=1 is recommended;
however, if exactly finite pulses are required at the clock export channel, flush_read=0 is needed (the total number of pulses is flush_read+finite).

	
stop()

	Stop the sampling task

	
is_running()

	Check if the task is running

	
available_samples()

	Get number of available samples to read (return 0 if the task is not running)

	
get_buffer_size()

	Get the sampling buffer size

	
wait_for_sample(num=1, timeout=10.0, wait_time=0.001)

	Wait until at least num samples are available.

If they are not available immediately, loop while checking every wait_time interval until enough samples are accumulated.
Return the number of available samples if successful, or 0 if the execution timed out.

	
read(n=1, flush_read=0, timeout=10.0, include=('ai', 'ci', 'di'))

	Read n samples. If the task is not running, automatically start before reading and stop after.

	Parameters:

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of samples to read. If n<=0, read all available samples.

	flush_read (int [https://docs.python.org/3/library/functions.html#int]) – number of initial samples to skip if the task is currently stopped and needs to be started.
If counter channels are used, the first sample is usually unreliable, so flush_read=1 is recommended;
however, if exactly n pulses are required at the clock export channel, flush_read=0 is needed.

	include (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – specifies which channel types to include into the list
("ai" for voltage inputs, "ci" for counter inputs, "di" for digital inputs, "cpi" for clock period channel).

	Returns:

	2D numpy array of values arranged according to get_input_channels() order with the given include parameter.

	
add_digital_output(name, channel)

	Add digital output.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – channel name.

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal name (e.g., "do0").

	
get_digital_output_channels()

	Get names of all digital output channels

	
get_digital_output_parameters()

	Get parameters (names and channels) of all digital output channels

	
set_digital_outputs(names, values)

	Set values of one or several digital outputs.

	Parameters:

	
	names (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – name or list of names of outputs.

	values – output value or list of values.

	
get_digital_outputs(names=None)

	Get values of one or several digital outputs.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – name or list of names of outputs (None means all outputs).

Return list of values ordered by names (or by get_digital_output_channels() if names==None).

	
add_voltage_output(name, channel, rng=(-10, 10), initial_value=0.0)

	Add analog voltage output.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – channel name.

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal name (e.g., "ao0").

	rng – voltage range.

	initial_value (float [https://docs.python.org/3/library/functions.html#float]) – initial output value (has to be initialized).

	
get_voltage_output_channels()

	Get names of all analog voltage output channels

	
get_voltage_output_parameters()

	Get parameters (names, channels and output ranges) of all analog voltage output channels

	
set_voltage_outputs(names, values, minsamp=1, force_restart=True, single_shot=0)

	Set values of one or several analog voltage outputs.

	Parameters:

	
	names (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]]) – name or list of names of outputs.

	values – output value or list values.
These can be single numbers, or arrays if the output clock is setup (see setup_voltage_output_clock()).
In the latter case it sets up the output waveforms; note that waveforms for all channels must have the same length
(a single number signifying a constant output is also allowed)
If the analog output is set up to the finite mode (continuous==False), the finite waveform output happens right away,
with the number of samples determined by samps_per_channel parameter of setup_voltage_output_clock().
In this case, if the supplied waveform is shorter than the number of samples, it gets repeated; if it’s longer, it gets cut off.

	minsamp – in non-autoloop mode, specifies the minimal number of samples to write to the output buffer; if the length of values is
less than this number, than the waveform is repeated by a required integer number of times to produce at least minsamp samples

	force_restart – if True, restart the output after writing to immediately start outputting the new waveforms;
otherwise, add it to the end of the buffer; only applies in non-autoloop mode (autoloop mode always restarts)

	single_shot – specifies some number of samples from the start as “single-shot”, so whenever the waveform is repeated
(either to reach minsamp samples, or when fill_voltage_output_buffer() is called), this part is ignored, and only the rest is repeated

	
get_voltage_output_buffer_fill()

	Get the number of samples still in the output buffer.

Only applies to non-autoloop mode, and return None otherwise.

	
fill_voltage_output_buffer(minsamp=1)

	Add samples to the output buffer until there are at least minsamp samples there.

Only applies to non-autoloop mode, and does nothing otherwise. The added samples are determined based
on the last data written by set_voltage_outputs() and the single_shot argument specified there.

	
get_voltage_outputs(names=None)

	Get values of one or several analog voltage outputs.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str] or [str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – name or list of names of outputs (None means all outputs).

Return list of values ordered by names (or by get_voltage_output_channels() if names==None).
For continuous waveforms, return the array containing a single repetition of the waveform.
For finite waveforms, repeat the array containing the last outputted waveform.

	
setup_voltage_output_clock(rate=0, sync_with_ai=False, continuous=True, samps_per_chan=1000, autoloop=True, minsamp=1)

	Setup analog output clock configuration.

	Parameters:

	
	rate – clock rate; if 0, assume constant voltage output (default)

	sync_with_ai – if True, the clock is synchronized to the analog input clock (the main clock);
note that in this case output changes only when the analog read task is running

	continuous – if True, any written waveform gets repeated continuously; otherwise, it outputs written waveform only once,
and then latches the output on the last value

	samps_per_chan – if continuous==False, it determines number of samples to output before stopping;
otherwise, it determines the size of the output buffer

	autoloop – if it is True, then the specified output waveforms are automatically repeated to create a periodic output signal
(referred to as “regeneration mode” in NI DAQ terminology); otherwise, written output data is “exhausted” once sent to the output,
so the application needs to continuously write output waveforms to avoid output buffer from running empty (which causes an error).
This mode gives better control over the output and allows to seamlessly adjust it in real time, but it is more demanding on the application.

	minsamp – if the waveform has been specified before, this argument sets the minimal number of samples to write to the output buffer
after the clock is set up and the output is restarted

	
get_voltage_output_clock_parameters()

	Get analog output clock configuration.

Return tuple (rate, sync_with_ai, continuous, samps_per_chan, autoloop).

	
add_pulse_output(name, counter, terminal, kind='time', on=0.001, off=0.001, clk_src=None, continuous=True, samps=1000)

	Add counter pulse input.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – channel name.

	counter (str [https://docs.python.org/3/library/stdtypes.html#str]) – on-board counter name (e.g., "ctr0").

	terminal (str [https://docs.python.org/3/library/stdtypes.html#str]) – output terminal name (e.g., "pfi0").

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – pulse output kind; can be either "time" (use internal timebase; specify the pulse on and off times in seconds)
or "ticks" (use internal or external timebase; specify the pulse on and off times in number of ticks of the clock)

	on – on time or number of ticks for the pulse

	off – off time or number of ticks for the pulse

	clk_src (str [https://docs.python.org/3/library/stdtypes.html#str]) – source of the counter sampling clock. By default it is the device timebase (usually 100MHz);
can be a name of an external terminal (e.g., "pfi1"), or "ai" to use the analog input sampling clock

	continuous (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the pulses are generated as long as the output is running;
otherwise, output the number of samples specified in samps and then stop

	samps – number of samples to output if continuous==False

	
get_pulse_output_channels()

	Get names of all pulse output channels

	
get_pulse_output_parameters()

	Get parameters (names, counters, terminals, kinds, on times, off times, clock sources, continuous, number of samples) of all pulse output channels

	
set_pulse_output(name, on=None, off=None, continuous=None, samps=None, terminal=None, restart=True)

	Change pulse output parameters.

Parameter meanings are the same as in add_pulse_output(). Parameters with values if None are left unchanged.
If any parameters are not None, the output pulse task is stopped before parameter changing.
If the task is currently running and restart==True, restart the task after changing the parameters.

	
start_pulse_output(names=None, autostop=True)

	Start specified pulse output or a set of outputs (by default, all of them)

	
stop_pulse_output(names=None)

	Stop specified pulse output or a set of outputs (by default, all of them)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_pulse_output_running(names=None)

	Check if pulse outputs with the given name or set of names are running

	
set_device_variable(key, value)

	Set the value of a settings parameter

Module contents

pylablib.devices.NKT package

Submodules

pylablib.devices.NKT.interbus module

	
exception pylablib.devices.NKT.interbus.InterbusError

	Bases: DeviceError

Generic Interbus device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.NKT.interbus.InterbusBackendError(exc)

	Bases: InterbusError, DeviceBackendError

Generic Interbus backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.NKT.interbus.TInterbusTelegram(dest, src, typ, payload)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
dest

	

	
payload

	

	
src

	

	
typ

	

	
class pylablib.devices.NKT.interbus.GenericInterbusDevice(conn)

	Bases: ICommBackendWrapper

Generic Interbus-connected device.

	Parameters:

	conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

	
Error

	alias of InterbusError

	
ib_get_default_address()

	Get destination address used by default in Interbus methods

	
ib_set_default_address(dest)

	Set destination address used by default in Interbus methods

	
ib_using_address(dest)

	Context manager for temporary using a different default destination address

	
ib_get_reg(dest, address, dtype='raw', array='auto')

	Get register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string),
"u8", "u16", "u32", "i8", "i16", "i32" (different integer values).

	
ib_set_reg(dest, address, value, dtype='raw', array='auto', echo=True)

	Set register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string),
"u8", "u16", "u32", "i8", "i16", "i32" (different integer values).

If echo==True, return the subsequent value of the register.

	
ib_scan_devices(dests='all', timeout=0.05)

	Scan for devices on the bus and return their addresses and types.

dests is a list of addresses to check ("all" means all addresses from 1 to 48 inclusive)
timeout is the timeout to wait for each device reply.
func and payload specify the message to send (by default, ‘read coil’ command with no arguments, which should always return and error)
Since the addresses are polled consecutively, this function can take a long time (~25s for the default settings).

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.NKT.interbus.IInterbusModule(ib_device, dest)

	Bases: IDevice

Specific Interbus module.

Deals with specific registers available for this module.

	Parameters:

	
	ib_device – instance of the generic Interbus controller used to access the module.

	dest – module address on the bus.

	
get_register(name)

	Get value of the given register based on its name

	
get_all_registers()

	Get values of all defined registers

	
set_register(name, value)

	Set value of the given register based on its name

	
get_status()

	Get device status as a set of set bits

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
class pylablib.devices.NKT.interbus.GenericInterbusModule(ib_device, dest)

	Bases: IInterbusModule

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_all_registers()

	Get values of all defined registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_register(name)

	Get value of the given register based on its name

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status()

	Get device status as a set of set bits

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_register(name, value)

	Set value of the given register based on its name

	
class pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule(ib_device, dest)

	Bases: IInterbusModule

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_all_registers()

	Get values of all defined registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_register(name)

	Get value of the given register based on its name

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status()

	Get device status as a set of set bits

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_register(name, value)

	Set value of the given register based on its name

	
class pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule(ib_device, dest)

	Bases: IInterbusModule

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_all_registers()

	Get values of all defined registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_register(name)

	Get value of the given register based on its name

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status()

	Get device status as a set of set bits

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_register(name, value)

	Set value of the given register based on its name

	
class pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule(ib_device, dest)

	Bases: IInterbusModule

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_all_registers()

	Get values of all defined registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_register(name)

	Get value of the given register based on its name

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status()

	Get device status as a set of set bits

	
i = 7

	

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_register(name, value)

	Set value of the given register based on its name

	
class pylablib.devices.NKT.interbus.SuperKSelectInterbusModule(ib_device, dest)

	Bases: IInterbusModule

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_all_registers()

	Get values of all defined registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_register(name)

	Get value of the given register based on its name

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_status()

	Get device status as a set of set bits

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_register(name, value)

	Set value of the given register based on its name

	
class pylablib.devices.NKT.interbus.InterbusSystem(conn, modules='auto')

	Bases: GenericInterbusDevice

A collection of NKT modules connected to the same Interbus.

	Parameters:

	
	conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 9600, 8, 'N', 1))

	modules – Interbus modules identifiers; can be "auto" (detect all connected modules),
a list of module addresses, or a dictionary {addr: name} of the aliases for the modules
(e.g., {'laser':15, 'varia':18})

	
m

	dictionary of modules, defined either by their address or by their name (if provided upon creation)

	
Error

	alias of InterbusError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_all_module_registers()

	Get all registers

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
ib_get_default_address()

	Get destination address used by default in Interbus methods

	
ib_get_reg(dest, address, dtype='raw', array='auto')

	Get register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string),
"u8", "u16", "u32", "i8", "i16", "i32" (different integer values).

	
ib_scan_devices(dests='all', timeout=0.05)

	Scan for devices on the bus and return their addresses and types.

dests is a list of addresses to check ("all" means all addresses from 1 to 48 inclusive)
timeout is the timeout to wait for each device reply.
func and payload specify the message to send (by default, ‘read coil’ command with no arguments, which should always return and error)
Since the addresses are polled consecutively, this function can take a long time (~25s for the default settings).

	
ib_set_default_address(dest)

	Set destination address used by default in Interbus methods

	
ib_set_reg(dest, address, value, dtype='raw', array='auto', echo=True)

	Set register value at the given destination device and register address.

dtype is the register type, which can be "raw" (raw bytes), "str" (string),
"u8", "u16", "u32", "i8", "i16", "i32" (different integer values).

If echo==True, return the subsequent value of the register.

	
ib_using_address(dest)

	Context manager for temporary using a different default destination address

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Newport package

Submodules

pylablib.devices.Newport.base module

	
exception pylablib.devices.Newport.base.NewportError

	Bases: DeviceError

Generic Newport device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Newport.base.NewportBackendError(exc)

	Bases: NewportError, DeviceBackendError

Newport backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Newport.picomotor module

	
pylablib.devices.Newport.picomotor.get_usb_devices_number()

	Get the number of controllers connected via USB

	
pylablib.devices.Newport.picomotor.muxaddr(*args, **kwargs)

	Multiplex the function over its addr argument

	
class pylablib.devices.Newport.picomotor.TDeviceInfo(id)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
id

	

	
class pylablib.devices.Newport.picomotor.Picomotor8742(conn=0, backend='auto', timeout=5.0, multiaddr=False, scan=True)

	Bases: ICommBackendWrapper, IMultiaxisStage

Picomotor 8742 4-axis controller.

	Parameters:

	
	conn – connection parameters; can be an index (starting from 0) for USB devices,
or an IP address (e.g., "192.168.0.2") or host name (e.g., "8742-12345") for Ethernet devices

	backend – communication backend; by default, try to determine from the communication parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default operation timeout

	multiaddr – if True, assume that there are several daisy-chained devices connected to the current one;
in this case, get_device_info and related methods return dictionaries {addr: value} for all connected controllers
instead of simply values for the given controller

	scan – if True and multiaddr==True, scan for all connected devices (call scan_devices()) upon connection

	
Error

	alias of NewportError

	
query(comm, axis=None, addr=None, read_reply=None)

	

	
get_id(addr=None)

	Get the device identification string

	
get_device_info(addr=None)

	Get the device info of the controller board: (id_string,)

	
reset(addr=None)

	Restart the device.

Reboots the CPU and restores all saved settings from the parameter memory.

	
save_parameters(addr=None)

	Store current parameters to the non-volatile memory.

Affects axes speed and acceleration, motor types, and Ethernet parameters.

	
restore_parameters(src='memory', addr=None)

	Restore parameters from the non-volatile memory (if src=="memory") for factory parameters (if src=="factory").

Affects axes speed and acceleration, motor types, and Ethernet parameters.

	
scan_devices(reassign='conflict', sync=True)

	Scan for devices connected to the current host device via RS-485 daisy-chaining.

reassign controls how device addresses are assigned during the scan;
can be "none" (keep current values; can lead to conflicts if several devices have the same address),
"conflict" (change conflicting addresses), or "all" (assigned all new addresses in sequence starting from the host)

If sync==True, wait until the scan is done (might take several seconds).

	
get_addr_map()

	Get address map for devices connected to the current host device via RS-485 daisy-chaining.

Return tuple (addresses, conflict), where addresses is the list of all device addresses,
and conflict==True if there address conflicts (several devices having the same address).

	
wait_for_scan(timeout=10.0)

	Wait for the device connection scan to finish

	
get_addr(addr=None)

	Get RS-485 address of the given device (host if addr is None)

	
set_addr(new_addr, addr=None)

	Set RS-485 address of the given device (host if addr is None)

	
get_ethernet_parameters(addr=None)

	Get Ethernet connection parameters.

Return tuple (hostname, ipaddr, ipmode, gateway, netmask).

	
setup_ethernet(hostname=None, ipmode=None, ipaddr=None, gateway=None, netmask=None, addr=None)

	Setup Ethernet connection parameters.

Any None value remains unchanged.
Note that these settings only take effect after saving parameters to the memory (save_parameters())
and restarting the device (reset()). If the connection is made through Ethernet, then it will likely be invalidated,
in which case a new device object with the updated parameters should be created after reset.

	
autodetect_motors(addr=None)

	Autodetect connected motors.

The command involves sending single-step commands to the motors, so it requires all axes to be stopped,
and it might slightly affect the current position.
After the detection the types can be stored in the memory via save_parameters().

	
get_motor_type(axis='all', addr=None)

	Get type of the given axis motor

	
set_motor_type(axis='all', motor_type='standard', addr=None)

	Manually set type of the given axis motor

	
move_to(axis, position, addr=None)

	Move to a given position

	
move_by(axis, steps=1, addr=None)

	Move by a given number of steps

	
get_position(axis='all', addr=None)

	Get the current axis position

	
set_position_reference(axis, position=0, addr=None)

	Set the current axis position as a reference (the actual motor position stays the same)

	
jog(axis, direction, addr=0)

	Jog a given axis in a given direction.

direction can be either "-" (negative) or "+" (positive).
The motion continues until it is explicitly stopped.

	
is_moving(axis='all', addr=None)

	Check if the axis is moving

	
wait_move(axis='all', addr=None)

	Wait until axis motion is done

	
stop(axis='all', immediate=False, addr=None)

	Stop motion of a given axis.

If immediate==True make an abrupt stop; otherwise, slow down gradually.
Note that immediate stop has to stop all axes simultaneously, so it only takes axis=="all".

	
get_velocity_parameters(axis='all', addr=None)

	Return velocity parameters (speed, accel) for the given axis and controller.

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration in steps/s and steps/s^2.

	
setup_velocity(axis='all', speed=None, accel=None, addr=None)

	Setup velocity parameters (speed, accel) for the given axis and controller.

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration in steps/s and steps/s^2.
None values are left unchanged.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.OZOptics package

Submodules

pylablib.devices.OZOptics.base module

	
exception pylablib.devices.OZOptics.base.OZOpticsError

	Bases: DeviceError

Generic OZOptics devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.OZOptics.base.OZOpticsBackendError(exc)

	Bases: OZOpticsError, DeviceBackendError

Generic OZOptics backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.OZOptics.base.OZOpticsDevice(conn, timeout=20.0)

	Bases: ICommBackendWrapper

Generic OZOptics device.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of OZOpticsError

	
query(comm, prefix=None, prefix_line=None, timeout=None)

	Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the reply.
If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised.
If prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not such line is present).

	
restart()

	Restart the device

	
get_config()

	Get device configuration

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.OZOptics.base.TF100(conn, timeout=20.0)

	Bases: OZOpticsDevice

OZOptics TF100 tunable filter.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
get_wavelength_correction()

	Get the current wavelength correction parameters (shift, scale).

The relation between the set/get wavelength and the wavelength set to the device is calculated as
device_wavelength = set_wavelength*scale + shift

	
set_wavelength_correction(shift=0.0, scale=1.0)

	Set the wavelength correction parameters.

The relation between the set/get wavelength and the wavelength set to the device is calculated as
device_wavelength = set_wavelength*scale + shift

	
home()

	Home the motor (needs to be called first after startup)

	
get_wavelength()

	Get the currently set wavelength (or None if unknown / not homed)

	
set_wavelength(wavelength)

	Set the current wavelength

	
Error

	alias of OZOpticsError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_config()

	Get device configuration

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(comm, prefix=None, prefix_line=None, timeout=None)

	Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the reply.
If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised.
If prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not such line is present).

	
restart()

	Restart the device

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.OZOptics.base.DD100(conn, timeout=20.0)

	Bases: OZOpticsDevice

OZOptics DD100 variable attenuator.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
home()

	Home the motor (needs to be called first after startup)

	
get_min_attenuation()

	Get the minimal possible attenuation (i.e., insertion loss)

	
get_max_attenuation()

	Get the maximal possible possible attenuation in dB

	
get_attenuation()

	Get the current attenuation in dB

	
set_attenuation(att)

	Set the current attenuation in dB

	
Error

	alias of OZOpticsError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_config()

	Get device configuration

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(comm, prefix=None, prefix_line=None, timeout=None)

	Query the device.

If prefix is not None, it can specify a string which should be at the beginning of the prefix_line line of the reply.
If it is present, it is removed and the rest of that line is returned; otherwise, an error is raised.
If prefix_line is None, return the first reply line beginning with the given prefix value (or raise an error if not such line is present).

	
restart()

	Restart the device

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.OZOptics.base.EPC04(conn, timeout=20.0)

	Bases: ICommBackendWrapper

OZOptics EPC04 polarization controller.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of OZOpticsError

	
query(comm)

	

	
get_voltages()

	Get all voltages

	
set_voltage(channel, voltage)

	Set voltage at a given channel (0 through 3)

	
set_all_voltages(voltages)

	Set all channel voltages.

voltages is a list of size 4 containing the voltage values.

	
step_voltage(channel, step)

	Step voltage at the given channel by the given step

	
get_mode()

	Get current operating mode.

Can be "dc" (constant voltage) or "ac" (scrambling).

	
set_mode(mode='dc')

	Set current operating mode.

Can be "dc" (constant voltage) or "ac" (scrambling).

	
get_frequencies()

	Get all scrambling frequencies

	
set_frequency(channel, frequency)

	Set scrambling frequency a given channel (0 through 3)

	
set_all_frequencies(frequencies)

	Set all channel scrambling frequencies.

frequencies is a list of size 4 containing the frequency values.

	
get_waveform()

	Get current scrambling waveform.

Can be "sin" (sine wave) or "tri" (triangle wave).

	
set_waveform(waveform)

	Set current scrambling waveform.

Can be "sin" (sine wave) or "tri" (triangle wave).

	
save_preset()

	Save current state as a power-up preset

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Ophir package

Submodules

pylablib.devices.Ophir.base module

	
exception pylablib.devices.Ophir.base.OphirError

	Bases: DeviceError

Generic Ophir device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Ophir.base.OphirBackendError(exc)

	Bases: OphirError, DeviceBackendError

Generic Ophir backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Ophir.base.OphirDevice(conn)

	Bases: ICommBackendWrapper

Generic Ophir device.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of OphirError

	
query(comm)

	Send a query to the device and parse the reply

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.Ophir.base.THeadInfo(type, serial, name, capabilities)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
capabilities

	

	
name

	

	
serial

	

	
type

	

	
class pylablib.devices.Ophir.base.TDeviceInfo(id, serial, name, rom_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
id

	

	
name

	

	
rom_version

	

	
serial

	

	
class pylablib.devices.Ophir.base.TWavelengthInfo(mode, rng, curr_idx, presets, curr_wavelength)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
curr_idx

	

	
curr_wavelength

	

	
mode

	

	
presets

	

	
rng

	

	
class pylablib.devices.Ophir.base.TRangeInfo(curr_idx, ranges, curr_range)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
curr_idx

	

	
curr_range

	

	
ranges

	

	
class pylablib.devices.Ophir.base.VegaPowerMeter(conn)

	Bases: OphirDevice

Ophir Vega power meter.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
get_head_info()

	Get head information.

Return tuple (type, serial, name, capabilities).

	
get_device_info()

	Get device information.

Return tuple (id, serial, name, rom_version).

	
reset()

	Reset the device

	
get_power()

	Get the current power readings.

Return either measured power, or "over", if the power is overrange.

	
get_energy()

	Get the current energy readings.

Return either measured energy, or "over", if the energy is overrange.

	
get_frequency()

	Get the current frequency readings.

Return either measured frequency, or "over", if the power is overrange.

	
get_units()

	Get device reading units

	
get_wavelength_info()

	Get wavelength setting info.

Return tuple (mode, rng, curr_idx, presets, curr_wavelength), where
mode is the measurement mode ("continuous" or "discrete"),
rng is a 2-tuple with the full wavelength range (in m) for continuous mode or a set of all wavelengths for discrete mode,
curr_idx is the current wavelength preset index,
presets is the list of all preset wavelengths (in m) for continuous mode or a set of all wavelengths for discrete mode,
and curr_wavelength is the current measurement wavelength (in m) for continuous mode or the current wavelength name for discrete mode.

	
get_wavelength()

	Get current wavelength (in nm)

	
set_wavelength(wavelength)

	Set current wavelength (in nm).

wavelength is either a wavelength (in m) for the continuous mode, or a wavelength preset (as a string) for a discrete mode.

	
get_range_info()

	Get power range info.

Return tuple (curr_idx, ranges, curr_range), where curr_idx is the current power range index,
ranges is the list of ranges (in W) for all indices and curr_range is the current range (in W).

	
get_range()

	Get current power range (maximal power in W)

	
get_range_idx()

	Get current power range index

Index goes from 0 (highest) to maximal (lowest); auto-ranging is -1.

	
set_range_idx(rng_idx)

	Set current range index.

rng_idx is the range index from 0 (highest) to maximal (lowest); auto-ranging is -1.
The corresponding ranges are given by get_range_info().

	
set_range(rng)

	Set current power range.

Select the smallest available range which is larger than rng (or maximal range, if the requested range is too large)
If rng is "auto", enable autorange; if rng is None, set to the maximal range.

	
get_battery_condition()

	Check if the batter is OK

	
get_baudrate()

	Get current baud rate

	
get_supported_baudrates()

	Get a list of all supported baud rates

	
set_baudrate(baudrate)

	Set current baud rate.

If the baudrate is different from the current one, close the device connection.
The device object will need to be re-created with the newly specified baud rate.

	
is_filter_in()

	Check if the filter is set to be on at the power meter

	
set_filter(filter_in=True)

	Change the filter setting at the power meter (on or off)

	
is_diffuser_in()

	Check if the diffuser is set to be on at the power meter

	
set_diffuser(diffuser_in=True)

	Change the diffuser setting at the power meter (on or off)

	
Error

	alias of OphirError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(comm)

	Send a query to the device and parse the reply

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.PCO package

Submodules

pylablib.devices.PCO.SC2 module

	
pylablib.devices.PCO.SC2.list_cameras(cam_interface=None)

	List camera connections (interface kind and camera index).

If cam_interface is supplied, it defines one of camera interfaces to check (e.g., "usb3" or "clhs").
Otherwise, check all interfaces.

	
pylablib.devices.PCO.SC2.get_cameras_number(cam_interface=None)

	Get the total number of connected PCOSC2 cameras.

If cam_interface is supplied, it defines one of camera interfaces to check (e.g., "usb3" or "clhs").
Otherwise, check all interfaces.

	
pylablib.devices.PCO.SC2.reset_api()

	Reset API.

All cameras must be closed; otherwise, the prompt to reboot will appear.

	
class pylablib.devices.PCO.SC2.TDeviceInfo(model, interface, sensor, serial_number)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
interface

	

	
model

	

	
sensor

	

	
serial_number

	

	
class pylablib.devices.PCO.SC2.TCameraStatus(status, warnings, errors)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
errors

	

	
status

	

	
warnings

	

	
class pylablib.devices.PCO.SC2.TInternalBufferStatus(scheduled, scheduled_max, overruns)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
overruns

	

	
scheduled

	

	
scheduled_max

	

	
class pylablib.devices.PCO.SC2.TFrameInfo(frame_index)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
class pylablib.devices.PCO.SC2.PCOSC2Camera(idx=0, cam_interface=None, reboot_on_fail=True)

	Bases: IBinROICamera, IExposureCamera

PCO SC2 camera.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – camera index (use get_cameras_number() to get the total number of connected cameras)

	cam_interface – camera interface; if it is None, get the first available connected camera (in this case idx is ignored);
if not, then value of idx is used to connect to a particular camera (interfaces and indices can be obtain from list_cameras())

	reboot_on_fail (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and the camera raised an error during initialization (but after opening), reboot the camera and try to connect again
useful when the camera is in a broken state (e.g., wrong ROI or pixel clock settings)

	
Error = <Mock name='mock.PCOSC2Error' id='139822075573968'>

	

	
TimeoutError = <Mock spec='str' id='139822086376848'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
reboot(wait=True)

	Reboot the camera.

If wait==True, wait for the recommended time (10 seconds) after reboot for the camera to fully restart;
attempt to open the camera before that can lead to an error.

	
get_full_camera_data()

	Get a dictionary the all camera data available through the SDK

	
update_full_data()

	Update internal full camera data settings.

Takes some time (about 50ms), so more specific function are preferable for specific parameters.

	
get_device_info()

	Get camera model data.

Return tuple (model, interface, sensor, serial_number).

	
get_capabilities()

	Get camera capabilities.

For description of the capabilities, see PCO SC2 manual.

	
get_camera_status(full=False)

	Get camera status.

If full==True, return current camera status as a set of enabled status states;
otherwise, return tuple (status, warnings, errors) with additional information about warnings and error.

	
get_temperature()

	Get the current camera temperature

Return tuple (CCD, cam, power) with temperatures of the sensor, camera, and power supply respectively.

	
get_conversion_factor()

	Get camera conversion factor (electrons per pixel value)

	
get_trigger_mode()

	Get current trigger mode (see set_trigger_mode() for description)

	
set_trigger_mode(mode)

	Set trigger mode.

Can be "int" (internal), "software" (software), "ext" (external+software), "ext_exp" (external exposure), "ext_sync" (external PLL sync),
"ext_exp_fast" (fast external exposure), "ext_cds" (external CDS control),
"ext_exp_slow" (slow external exposure)`, or "ext_sync_hdsdi" (external synchronized SD/HDI).

For description, see PCO SDK manual.

	
send_software_trigger()

	Send software trigger signal

	
class ScheduleLooper

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Cython-based schedule loop manager.

Runs the loop function and provides callback storage.

	
loop(handle, nbuff, buffers, buffer_size, set_idx)

	

	
reset()

	

	
notify()

	

	
class BufferManager(nbuff, size, metadata_size=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frame buffer managers.

Stores and accesses frame buffer and status arrays and buffer info.

	
get_buffer_ptr(n)

	Get address of n’th frame buffer

	
get_internal_buffer_status()

	Get the status of the internal smaller API buffer, showing the number of scheduled frames there, and the maximal number that can be scheduled

	
set_exposure(exposure)

	Set camera exposure

	
get_exposure()

	Get current exposure

	
set_frame_delay(frame_delay)

	Set camera frame delay

	
get_frame_delay()

	Get current frame delay

	
set_frame_period(frame_time=0, adjust_exposure=False)

	Set frame time (frame acquisition period).

If the time can’t be achieved even with zero frame delay and adjust_exposure==True, try to reduce the exposure to get the desired frame time;
otherwise, keep the exposure the same.

	
get_frame_period()

	Get current frame time (frame acquisition period)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_pixel_rate()

	Get camera pixel rate (in Hz)

	
get_available_pixel_rates()

	Get all available pixel rates

	
set_pixel_rate(rate=None)

	Set camera pixel rate (in Hz)

The rate is always rounded to the closest available.
If rate is None, set the maximal possible rate.

	
setup_acquisition(nframes=100)

	Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition.

Clears buffers as well, so any readout afterwards is impossible.

	
acquisition_in_progress()

	Check if the acquisition is in progress

	
clear_acquisition()

	Clear acquisition settings

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1, symmetric=False)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).
If symmetric==True and camera requires symmetric ROI (see requires_symmetric_roi()), respect this symmetry in the resulting ROI;
otherwise, try to use software ROI feature to set up the required ranges
(note: while software ROI does affect the size of the read out frame, it does not change the readout time, which would be the same as with symmetric==True).

	
requires_symmetric_roi()

	Check if the camera requires horizontally or vertically symmetric ROI.

Return a tuple (horizontal, vertical).
If True, one might still set up an asymmetric ROI for some cameras using the software ROI feature, but it does not affect camera readout rate

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
enable_pixel_correction(enable=True)

	Enable or disable hotpixel correction

	
is_pixel_correction_enabled()

	Check if hotpixel correction is enabled

	
get_noise_filter_mode()

	Get the noise filter mode (for details, see set_noise_filter_mode())

	
set_noise_filter_mode(mode='on')

	Set the noise filter mode.

Can be "off", "on", or "on_hpc" (on + hot pixel correction).

	
set_status_line_mode(binary=True, text=False)

	Set status line mode.

binary determines if the binary line is present (it occupies first 14 pixels of the image).
text determines if the text line is present (it is plane text timestamp, which takes first 8 rows and about 300 columns).

It is recommended to always have binary option on, since it is used to determine frame index for checking if there are any missing frames.

	
get_status_line_mode()

	Get status line mode.

Return tuple (binary, text) (see set_status_line_mode() for description)

	
get_bit_alignment()

	Get data bit alignment

Can be "LSB" (normal alignment) or "MSB" (if camera data is less than 16 bit, it is padded with zeros on the right to match 16 bit).

	
set_bit_alignment(mode)

	Get data bit alignment

Can be "LSB" (normal alignment) or "MSB" (if camera data is less than 16 bit, it is padded with zeros on the right to match 16 bit).

	
set_metadata_mode(mode=True)

	Set metadata mode

	
get_metadata_mode()

	Get metadata mode.

Return tuple (enabled, size, version)

	
get_double_image_mode()

	Check if the double image mode is active

	
set_double_image_mode(enable)

	Enable or disable the double image mode

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.PCO.SC2.TStatusLine(framestamp)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
framestamp

	

	
pylablib.devices.PCO.SC2.get_status_line(frame)

	Get frame info from the binary status line.

Assume that the status line is present; if it isn’t, the returned frame info will be a random noise.

	
pylablib.devices.PCO.SC2.get_status_lines(frames)

	Get frame info from the binary status line.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D arrays.
Assume that the status line is present; if it isn’t, the returned frame info will be a random noise.
Return a 1D or 2D numpy array, where the first axis (if present) is the frame number, and the last is the status line entry.

	
class pylablib.devices.PCO.SC2.StatusLineChecker

	Bases: StatusLineChecker

	
get_framestamp(frames)

	Get framestamps from status lines in the given frames

	
check_indices(indices, step=1)

	Check if indices are consistent with the given step

Module contents

pylablib.devices.Pfeiffer package

Submodules

pylablib.devices.Pfeiffer.base module

	
exception pylablib.devices.Pfeiffer.base.PfeifferError

	Bases: DeviceError

Generic Pfeiffer device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Pfeiffer.base.PfeifferBackendError(exc)

	Bases: PfeifferError, DeviceBackendError

Generic Pfeiffer backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings(channel, low_thresh, high_thresh)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
channel

	

	
high_thresh

	

	
low_thresh

	

	
class pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings(activation_control, deactivation_control, on_thresh, off_thresh)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
activation_control

	

	
deactivation_control

	

	
off_thresh

	

	
on_thresh

	

	
class pylablib.devices.Pfeiffer.base.TPG260(conn)

	Bases: ICommBackendWrapper

TPG260 series (TPG261/262) pressure gauge.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of PfeifferError

	
comm(msg)

	Send a command to the device

	
query(msg, data_type='str')

	Send a query to the device and return the reply

	
get_units()

	Get device units for indication/reading ("mbar", "torr", or "pa")

	
set_units(units)

	Set device units for indication/reading ("mbar", "torr", or "pa")

	
to_Pa(value, units=None)

	Convert value in the given units to Pa.

If units is None, use the current display units.

	
from_Pa(value, units=None)

	Convert value in the given units from Pa.

If units is None, use the current display units.

	
get_display_channel()

	Get controller display channel

	
set_display_channel(channel=1)

	Set controller display channel

	
get_display_resolution()

	Get controller display resolution (number of digits)

	
set_display_resolution(resolution=2)

	Set controller display resolution (number of digits)

	
is_enabled(channel=1)

	Check if the gauge at the given channel is enabled.

If the gauge cannot be turned on/off (e.g., not connected), return None.

	
enable(enable=True, channel=1)

	Enable or disable the gauge at the given channel

	
get_channel_status(channel=1)

	Get channel status.

Can be "ok", "under" (underrange), "over" (overrange), "sensor_error", "sensor_off", "no_sensor", or "id_error".

	
get_pressure(channel=1, display_units=False, status_error=True)

	Get pressure at a given channel.

If display_units==False, return result in Pa; otherwise, use display units obtained using get_units().
If status_error==True and the channel status is not "ok", raise and error; otherwise, return None.

	
get_gauge_kind(channel=1)

	

	
get_measurement_filter(channel=1)

	Get gauge measurement filter ("fast", "medium", or "slow")

	
set_measurement_filter(meas_filter, channel=1)

	Set gauge measurement filter ("fast", "medium", or "slow")

	
get_calibration_factor(channel=1)

	Get gauge calibration factor

	
set_calibration_factor(coefficient, channel=1)

	Set gauge calibration factor

	
get_switch_settings(switch_function)

	Get settings for the given switch function (between 1 and 4).

Return tuple (channel, low_thresh, high_thresh). The thresholds are given in Pa.

	
setup_switch(switch_function, channel, low_thresh, high_thresh)

	Get settings for the given switch function (between 1 and 4).

Return tuple (channel, low_thresh, high_thresh). The thresholds are given in Pa.

	
get_switch_status()

	Return status of the 4 switch functions

	
get_gauge_control_settings(channel)

	Get settings for the gauge control on the given channel.

Return tuple (activation_control, deactivation_control, on_thresh, off_thresh). The thresholds are given in Pa.

	
setup_gauge_control(channel, activation_control, deactivation_control, on_thresh, off_thresh)

	Setup gauge control on the given channel.

Return tuple (activation_control, deactivation_control, on_thresh, off_thresh). The thresholds are given in Pa.

	
get_current_errors()

	Get a list of all present error messages.

If there are no errors, return a single-element list ["no_error"].

	
reset_error()

	Cancel currently active errors and return to measurement mode.

Return the list of currently present errors.
If there are no errors, return a single-element list ["no_error"].

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.Pfeiffer.base.DPG202(conn)

	Bases: ICommBackendWrapper

DPG202/TPG202 control unit.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of PfeifferError

	
query(parameter, value='=?', action=0, address=1, send_type=None, recv_type=None)

	Send a query to the device and parse the reply.

	Parameters:

	
	parameter – parameter number

	value – value to send ("=?" for a value request)

	action – request action (0 for value request, 1 for a command)

	address – unit address

	send_type – data type for the sent value (ignored for value requests)

	recv_type – data type for the received value (None means returning a raw string value)

	
get_value(parameter, data_type, address=1)

	Send a data request to the device.

	Parameters:

	
	parameter – parameter number

	data_type – data type for the received value

	address – unit address

	
comm(parameter, value, data_type, address=1)

	Send a control command to the device.

	Parameters:

	
	parameter – parameter number

	value – associated command value

	data_type – data type for the sent value

	address – unit address

	
get_pressure(address=1)

	Get pressure at a given unit address

	
get_error_code(address=1)

	Get the current error code at a given unit address

	
get_software_version(address=1)

	Get the software version at a given unit address

	
get_device_name(address=1)

	Get the name of the gauge at a given unit address

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Photometrics package

Submodules

pylablib.devices.Photometrics.pvcam module

	
class pylablib.devices.Photometrics.pvcam.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Photometrics.pvcam.list_cameras()

	List all cameras available through Pvcam interface

	
pylablib.devices.Photometrics.pvcam.get_cameras_number()

	Get number of connected Pvcam cameras

	
class pylablib.devices.Photometrics.pvcam.PvcamAttribute(handle, pid, cam=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing an Pvcam camera parameter.

Allows to query and set values and get additional information.
Usually created automatically by an PvcamCamera instance, but could be created manually.

	Parameters:

	
	handle – camera handle

	pid – parameter id of the attribute

	
name

	attribute name

	
kind

	attribute kind; can be "INT8", "INT16", "INT32", "INT64",
"UNS8", "UNS16", "UNS32", "UNS64", "FLT32", "FLT64",
"ENUM", "BOOLEAN", or "CHAR_PTR"

	
available

	whether attribute is available on the current hardware

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
inc

	minimal attribute increment value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
default

	default values of the attribute

	
update_limits()

	Update attribute constraints

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True, error_on_noacq=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Set attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
class pylablib.devices.Photometrics.pvcam.TDeviceInfo(vendor, product, chip, system, part, serial)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
chip

	

	
part

	

	
product

	

	
serial

	

	
system

	

	
vendor

	

	
class pylablib.devices.Photometrics.pvcam.TFrameInfo(frame_index, timestamp_start_ns, timestamp_end_ns, framestamp, flags, exposure_ns)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
exposure_ns

	

	
flags

	

	
frame_index

	

	
framestamp

	

	
timestamp_end_ns

	

	
timestamp_start_ns

	

	
class pylablib.devices.Photometrics.pvcam.TReadoutInfo(port_idx, port_name, speed_idx, speed_freq, gain_idx, gain_name)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
gain_idx

	

	
gain_name

	

	
port_idx

	

	
port_name

	

	
speed_freq

	

	
speed_idx

	

	
class pylablib.devices.Photometrics.pvcam.PvcamCamera(name=None)

	Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Generic Pvcam camera interface.

	Parameters:

	serial_number – camera serial number; if None, connect to the first non-used camera

	
Error = <Mock name='mock.PvcamError' id='139822067609168'>

	

	
TimeoutError = <Mock spec='str' id='139822072452112'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_attribute_value(name, error_on_missing=True, error_on_noacq=False, default=None, enum_as_str=True)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
get_all_attribute_values(root='', enum_as_str=True, error_on_noacq=False)

	Get values of all attributes with the given root

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
get_attribute_range(name, error_on_missing=True, default=None, parameter=None)

	Return attribute range.

For numerical attributes it is a tuple (min, max), while for enum attributes it is a dictionary {index: name}.
If parameter is specified, it is a parameter class used to convert the index for a enum attribute.

	
get_all_readout_modes()

	Get a list of all possible readout modes.

Return a list of tuples (port_idx, port_name, speed_idx, speed_freq, gain_idx, gain_name).
The indices (port, speed, and gain) can be used to set up a particular mode using set_readout_mode().

	
get_readout_mode(full=True)

	Get current readout mode.

If full==True, return a full tuple (port_idx, port_name, speed_idx, speed_freq, gain_idx, gain_name) containing the descriptions;
otherwise, return only indices (port_idx, speed_idx, gain_idx).

	
set_readout_mode(port_idx=None, speed_idx=None, gain_idx=None)

	Set the readout mode.

Any None value stays unchanged.

	
get_device_info()

	Get camera information.

Return tuple (vendor, product, chip, system, part, serial).

	
get_pixel_size()

	Get camera pixel size (in m)

	
get_pixel_distance()

	Get camera pixel distance (in m)

	
get_temperature_setpoint()

	Get the temperature setpoint (in C)

	
get_temperature()

	Get the current camera temperature (in C)

	
set_temperature(temp)

	Change the temperature setpoint (in C)

	
get_fan_mode()

	Get current fan mode

	
set_fan_mode(fan_mode='high')

	Set current fan mode

	
is_metadata_enabled()

	Check if metadata is enabled

	
enable_metadata(enable=True)

	Enable or disable metadata

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_clear_mode()

	Get sensor clear mode

	
set_clear_mode(mode)

	Set sensor clear mode

	
get_clear_cycles()

	Get sensor clear cycles

	
set_clear_cycles(ncycles)

	Set sensor clear cycles

	
get_clearing_time()

	Get sensor clearing time (regardless of the mode)

	
get_readout_time(include_clear=True)

	Get frame readout time.

If include_clear==True and the clear mode is per-exposure ("Pre-Exposure" or "Pre-Exposure and Post-Sequence"), include it into this time.

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_trigger_mode()

	Get trigger mode

	
set_trigger_mode(mode, out_mode=None)

	Set trigger mode

	
send_software_trigger()

	Send software trigger signal and return whether it has been accepted

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_supported_binning_modes()

	Get all possible binning combinations as a list [(hbin, vbin)]

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index and frame metadata, which contains start and stop timestamps, framestamp, frame flags, and exposure;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
pylablib.devices.Photometrics.pvcam.get_roi_parameters(buffer)

	Extract ROI parameters from the buffer.

buffer is the buffer represented as bytes numpy byte array.
Return numpy array with one row per ROI and 4 columns:
data offset from the frame start, data bytes per pixel, ROI height, and ROI width.

	
pylablib.devices.Photometrics.pvcam.parse_metainfo_v1(buffer, nframes, stride)

	Extract frames metainfo for frames with v1 or v2 header.

buffer is the buffer represented as bytes numpy byte array, nframes is the number of frames in it,
and stride is the frame stride (in bytes).

Return a 2D array with nframes rows and 7 columns:
framestamp, timestampBOF, timestampEOF, timestampRes, exposure, exposureRes, flags.

	
pylablib.devices.Photometrics.pvcam.parse_metainfo_v3(buffer, nframes, stride)

	Extract frames metainfo for frames with v3 header.

buffer is the buffer represented as bytes numpy byte array, nframes is the number of frames in it,
and stride is the frame stride (in bytes).

Return a 2D array with nframes rows and 5 columns:
framestamp, timestampBOF, timestampEOF, exposure, flags.

Module contents

pylablib.devices.PhotonFocus package

Submodules

pylablib.devices.PhotonFocus.PhotonFocus module

	
class pylablib.devices.PhotonFocus.PhotonFocus.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.PhotonFocus.PhotonFocus.query_camera_name(port)

	Query cameras name at a given port in PFCam interface

	
class pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo(manufacturer, port, version, type)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
manufacturer

	

	
port

	

	
type

	

	
version

	

	
pylablib.devices.PhotonFocus.PhotonFocus.list_cameras(only_supported=True)

	List all cameras available through PFCam interface.

If only_supported==True, only return cameras which support PFCam protocol
(this check only works if the camera is not currently accessed by some other software).
Return a list [(port, info)], where port is the pfcam port given to IPhotonFocusCamera and its subclasses,
and info is the information returned by query_camera_name().

	
pylablib.devices.PhotonFocus.PhotonFocus.get_cameras_number(only_supported=True)

	Get the total number of connected PFCam cameras

	
pylablib.devices.PhotonFocus.PhotonFocus.get_port_index(manufacturer, port)

	Find PhotonFocus port index based on the manufacturer and port

	
class pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute(port, name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

PFCam camera attribute.

Allows to query and set values and get additional information.
Usually created automatically by a PhotonFocus camera instance, but could also be created manually.

	Parameters:

	
	sid – camera session ID

	name – attribute text name

	
name

	attribute name

	
kind

	attribute kind; can be "INT", "UINT", "FLOAT", "BOOL", "MODE", "STRING", or "COMMAND"

	
readable

	whether attribute is readable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
writable

	whether attribute is writable

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_command

	whether attribute is a command

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max)

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
call_command(arg=0)

	If attribute is a command, call it with a given argument; otherwise, raise an error

	
class pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo(model, serial_number, grabber_info)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
grabber_info

	

	
model

	

	
serial_number

	

	
class pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera(pfcam_port=0, **kwargs)

	Bases: IAttributeCamera

Generic PFCam interface to a PhotonFocus camera.
Does not handle frames acquisition, so needs to be mixed with a frame grabber class to be fully operational.
In this mixing, the class attribute GrabberClass should be set to this frame grabber class.

	Parameters:

	
	pfcam_port – port number for pfcam interface (can be learned by list_cameras(); port number is the first element of the camera data tuple)
can also be a tuple (manufacturer, port), e.g., ("National Instruments", "port0").

	kwargs – keyword arguments passed to the frame grabber initialization

	
Error

	alias of DeviceError

	
GrabberClass = None

	

	
setup_max_baudrate()

	Setup the maximal available baudrate

	
get_baudrate()

	Get the current baud rate

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If enum_as_str==True, try to represent enums as their string values;
If name points at a dictionary branch, return a dictionary with all values in this branch.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
get_all_attribute_values(root='', enum_as_str=True)

	Get values of all attributes with the given root

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
update_attribute_value(name, value, error_on_missing=True, truncate=True)

	Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms).
Arguments are the same as set_attribute_value().

	
call_command(name, arg=0, error_on_missing=True)

	Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
fast_shift_roi(hstart=0, vstart=0)

	Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which might lead to errors later.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
get_roi_limits(hbin=1, vbin=1)

	

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set current exposure

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
is_CFR_enabled()

	Check if the constant frame rate mode is enabled

	
enable_CFR(enabled=True)

	Enable constant frame rate mode

	
get_trigger_interleave()

	Check if the trigger interleave is on

	
set_trigger_interleave(enabled)

	Set the trigger interleave option on or off

	
is_status_line_enabled()

	Check if the status line is on

	
enable_status_line(enabled=True)

	Enable or disable status line

	
get_black_level_offset()

	Get the black level offset

	
set_black_level_offset(offset)

	Set the black level offset

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera(imaq_name='img0', pfcam_port=0)

	Bases: IPhotonFocusCamera, IMAQFrameGrabber

IMAQ+PFCam interface to a PhotonFocus camera.

	Parameters:

	
	imaq_name – IMAQ interface name (can be learned by IMAQ.list_cameras(); usually, but not always, starts with "img")

	pfcam_port – port number for pfcam interface (can be learned by list_cameras(); port number is the first element of the camera data tuple)
can also be a tuple (manufacturer, port), e.g., ("National Instruments", "port0").

	
Error

	alias of DeviceError

	
GrabberClass

	alias of IMAQFrameGrabber

	
open()

	Open connection to the camera

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822168224208'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
call_command(name, arg=0, error_on_missing=True)

	Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
clear_all_triggers(reset_acquisition=True)

	Disable all triggers of the session

If the input triggers configuration has been changed, acquisition needs to be restart; if reset_acquisition==True, perform it automatically.

	
close()

	Close connection to the camera

	
configure_trigger_in(trig_type, trig_line=0, trig_pol='high', trig_action='none', timeout=None, reset_acquisition=True)

	Configure input trigger.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger source type; can be "ext", "rtsi", "iso_in", or "software"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger action; can be "none" (disable trigger), "capture" (start capturing), "stop" (stop capturing),
"buffer" (capture a single frame), or "bufflist" (capture the whole buffer list once)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – timeout in seconds; None means not timeout.

	reset_acquisition (bool [https://docs.python.org/3/library/functions.html#bool]) – if the input triggers configuration has been changed, acquisition needs to be restart;
if True, perform it automatically

	
configure_trigger_out(trig_type, trig_line=0, trig_pol='high', trig_drive='disable')

	Configure trigger output.

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	trig_drive (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger output signal; can be "disable" (disable drive),
"acq_in_progress" (asserted when acquisition is started), "acq_done" (asserted when acquisition is done),
"unasserted" (force unasserted level), "asserted" (force asserted level),
"hsync" (asserted on start of a single line start), "vsync" (asserted on start of a frame scan),
"frame_start" (asserted when a single frame is captured), or "frame_done" (asserted when a single frame is done)

	
enable_CFR(enabled=True)

	Enable constant frame rate mode

	
enable_status_line(enabled=True)

	Enable or disable status line

	
fast_shift_roi(hstart=0, vstart=0)

	Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which might lead to errors later.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attribute_values(root='', enum_as_str=True)

	Get values of all attributes with the given root

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_all_grabber_attribute_values()

	Get a dictionary of all readable attributes.

The attributes types are autodetected, and some of the types of uncommon attributes may be misrepresented.

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If enum_as_str==True, try to represent enums as their string values;
If name points at a dictionary branch, return a dictionary with all values in this branch.

	
get_baudrate()

	Get the current baud rate

	
get_black_level_offset()

	Get the black level offset

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_exposure()

	Get current exposure

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_attribute_value(attr, default=None, kind='auto')

	Get value of an attribute with a given name or index.

If default is not None, return default if the attribute is not supported; otherwise, raise an error.
kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_serial_params()

	Return serial parameters as a tuple (write_term, datatype)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_interleave()

	Check if the trigger interleave is on

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_CFR_enabled()

	Check if the constant frame rate mode is enabled

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
is_status_line_enabled()

	Check if the status line is on

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_trigger(trig_type, trig_line=0, trig_pol='high')

	Read current value of a trigger (input or output).

	Parameters:

	
	trig_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger drive destination type; can be "ext", "rtsi", "iso_in", or "iso_out"

	trig_line (int [https://docs.python.org/3/library/functions.html#int]) – trigger line number

	trig_pol (str [https://docs.python.org/3/library/stdtypes.html#str]) – trigger polarity; can be "high" or "low"

	
reset()

	Reset connection to the camera

	
send_software_trigger()

	Send software trigger signal

	
serial_flush()

	Flush CameraLink serial port

	
serial_read(n, timeout=3.0, datatype=None)

	Read specified number of bytes from CameraLink serial port.

	Parameters:

	
	n – number of bytes to read

	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	
serial_readline(timeout=3.0, datatype=None, maxn=1024)

	Read bytes from CameraLink serial port until the termination character (defined in camera file) is encountered.

	Parameters:

	
	timeout – operation timeout (in seconds)

	datatype – return datatype; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)
if None, use the value set up using setup_serial_params() (by default, "bytes")

	maxn – maximal number of bytes to read

	
serial_write(msg, timeout=3.0, term=None)

	Write message into CameraLink serial port.

	Parameters:

	
	timeout – operation timeout (in seconds)

	term – additional write terminator character to add to the message;
if None, use the value set up using setup_serial_params() (by default, no additional terminator)

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
set_black_level_offset(offset)

	Set the black level offset

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_exposure(exposure)

	Set current exposure

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
set_grabber_attribute_value(attr, value, kind='int32')

	Set value of an attribute with a given name or index.

kind is the attribute kind, and it can be "uint32", "uint64", "double",
or "auto" (autodetect based on the stored list of attribute kinds).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
set_trigger_interleave(enabled)

	Set the trigger interleave option on or off

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
setup_max_baudrate()

	Setup the maximal available baudrate

	
setup_serial_params(write_term='', datatype='bytes')

	Setup default serial communication parameters.

	Parameters:

	
	write_term – default terminator character to be added to the sent messages

	datatype – type of the result of read commands; can be "bytes" (return raw bytes), or "str" (convert into UTF-8 string)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
update_attribute_value(name, value, error_on_missing=True, truncate=True)

	Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms).
Arguments are the same as set_attribute_value().

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera(siso_board, siso_applet=None, siso_port=0, pfcam_port=0)

	Bases: IPhotonFocusCamera, SiliconSoftwareFrameGrabber

IMAQ+PFCam interface to a PhotonFocus camera.

	Parameters:

	
	siso_board – Silicon Software board index, starting from 0; available boards can be learned by fgrab.list_boards()

	siso_applet – Silicon Software applet name, which can be learned by fgrab.list_applets();
usually, a simple applet like "DualLineGray16" or "MediumLineGray16 are most appropriate;
can be either an applet name, or a direct path to the applet DLL

	siso_port – Silicon Software port number, if several ports are supported by the camera and the applet

	pfcam_port – port number for pfcam interface (can be learned by list_cameras(); port number is the first element of the camera data tuple)
can also be a tuple (manufacturer, port), e.g., ("National Instruments", "port0").

	
Error

	alias of DeviceError

	
GrabberClass

	alias of SiliconSoftwareFrameGrabber

	
open()

	Open connection to the camera

	
class BufferManager(fg, siso_port)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

	
allocate(nframes, frame_size)

	Allocate and schedule buffers with the given number and size

	
deallocate()

	Deallocate and remove the buffers

	
get_frames_data(idx, nframes=1)

	Get buffer chunk addresses for the given number of frames starting from the given index

	
get_status()

	Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

	
start_loop(run_nframes)

	Start the copying loop and, optionally, run the acquisition loop with the given number of frames

	
stop_loop()

	Stop the copying loop

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822061823376'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
call_command(name, arg=0, error_on_missing=True)

	Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
close()

	Close connection to the camera

	
enable_CFR(enabled=True)

	Enable constant frame rate mode

	
enable_status_line(enabled=True)

	Enable or disable status line

	
fast_shift_roi(hstart=0, vstart=0)

	Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which might lead to errors later.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attribute_values(root='', enum_as_str=True)

	Get values of all attributes with the given root

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_all_grabber_attribute_values(root='', **kwargs)

	Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

	
get_all_grabber_attributes(copy=False)

	Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If enum_as_str==True, try to represent enums as their string values;
If name points at a dictionary branch, return a dictionary with all values in this branch.

	
get_available_camlink_pixel_formats()

	Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

	
get_baudrate()

	Get the current baud rate

	
get_black_level_offset()

	Get the black level offset

	
get_camlink_pixel_format()

	Get CamLink pixel format and the output pixel format as a tuple

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_exposure()

	Get current exposure

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_genicam_info_xml()

	Get description in Genicam-compatible XML format

	
get_grabber_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)

	Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default.
If default is not None, automatically assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
Additional arguments are passed to get_value methods of the individual attribute.

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_system_info()

	Get the dictionary with all system information parameters

	
get_trigger_interleave()

	Check if the trigger interleave is on

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_CFR_enabled()

	Check if the constant frame rate mode is enabled

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
is_status_line_enabled()

	Check if the status line is on

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
set_all_grabber_attribute_values(settings, root='', **kwargs)

	Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
set_black_level_offset(offset)

	Set the black level offset

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_exposure(exposure)

	Set current exposure

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_merge(frame_merge=1)

	

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)

	Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
Additional arguments are passed to set_value methods of the individual attribute.

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
set_trigger_interleave(enabled)

	Set the trigger interleave option on or off

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None, bit_alignment='right_custom')

	Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the format;
otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel
if fmt is None, or 16 bit grayscale otherwise.
bit_alignment can specify the alignment of the resulting data (applicable when bits_per_pixel is not divisible by 8);
can be "left", "right", "right_custom" (explicitly calculate and set the number of bits to shift by whenever possible;
this solves some issues on ME5 cards), or an integer specifying the number of bits to shift.

	
setup_max_baudrate()

	Setup the maximal available baudrate

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
update_attribute_value(name, value, error_on_missing=True, truncate=True)

	Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms).
Arguments are the same as set_attribute_value().

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera(bitflow_idx=0, bitflow_camfile=None, pfcam_port=0)

	Bases: IPhotonFocusCamera, BitFlowFrameGrabber

BitFlow+PFCam interface to a PhotonFocus camera.

	Parameters:

	
	bitflow_idx – board index, starting from 0

	bitflow_camfile – if not None, a path to a valid camera file used for this frame grabber and camera combination;
in this case, a temporary camera file is generated based on the provided one and used to change some otherwise unavailable camera parameters
such as ROI and pixel bit depth (they are otherwise fixed to whatever is specified in the default camera file)

	pfcam_port – port number for pfcam interface (can be learned by list_cameras(); port number is the first element of the camera data tuple)
can also be a tuple (manufacturer, port), e.g., ("National Instruments", "port0").

	
Error

	alias of DeviceError

	
GrabberClass

	alias of BitFlowFrameGrabber

	
open()

	Open connection to the camera

	
setup_acquisition(mode='sequence', nframes=100, frame_merge=None)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
class BufferManager(cam)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Buffer manager: stores, constantly reads and re-schedules buffers, keeps track of acquired frames and buffer overflow events

	
get_status()

	Get counter status: tuple (acquired,)

	
is_running()

	Check if the buffer loop is running

	
reset()

	Reset counter (on frame acquisition)

	
start_loop()

	Start buffer scheduling loop

	
stop_loop()

	Stop buffer scheduling loop

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of BitFlowTimeoutError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
call_command(name, arg=0, error_on_missing=True)

	Execute the given command with the given argument.

If the command doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
close()

	Close connection to the camera

	
enable_CFR(enabled=True)

	Enable constant frame rate mode

	
enable_status_line(enabled=True)

	Enable or disable status line

	
fast_shift_roi(hstart=0, vstart=0)

	Shift ROI by only changing its origin, but keeping the shape the same.

Note that if the ROI is invalid, it won’t be truncated (as is the standard behavior of set_roi()), which might lead to errors later.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attribute_values(root='', enum_as_str=True)

	Get values of all attributes with the given root

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_attribute_value(name, enum_as_str=True, error_on_missing=True, default=None)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If enum_as_str==True, try to represent enums as their string values;
If name points at a dictionary branch, return a dictionary with all values in this branch.

	
get_baudrate()

	Get the current baud rate

	
get_black_level_offset()

	Get the black level offset

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (model, serial_number, grabber_info).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_exposure()

	Get current exposure

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_interleave()

	Check if the trigger interleave is on

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_CFR_enabled()

	Check if the constant frame rate mode is enabled

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
is_status_line_enabled()

	Check if the status line is on

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
set_black_level_offset(offset)

	Set the black level offset

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_exposure(exposure)

	Set current exposure

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_period(frame_period)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

By default, all non-supplied parameters take extreme values.

	
set_trigger_interleave(enabled)

	Set the trigger interleave option on or off

	
setup_max_baudrate()

	Setup the maximal available baudrate

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
update_attribute_value(name, value, error_on_missing=True, truncate=True)

	Set value of the attribute with a given name, but only if it’s different from the current value.

Can take less time on some version of PFRemote (where single attribute setting is about 50ms).
Arguments are the same as set_attribute_value().

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
pylablib.devices.PhotonFocus.PhotonFocus.check_grabber_association(cam)

	Check if PhotonFocus camera has correct association between the frame grabber and the PFRemote interface.

cam should be an opened instance of PhotonFocusIMAQCamera or PhotonFocusSiSoCamera.
Note that this function changes camera parameters such as exposure, frame period, ROI, trigger source, and status line.

	
pylablib.devices.PhotonFocus.PhotonFocus.get_status_lines(frames, check_transposed=True, drop_magic=True)

	Extract status lines (up to first 6 entries) from the given frames.

frames can be 2D array (one frame), 3D array (stack of frames, first index is frame number), or list of 1D or 2D arrays.
Automatically check if the status line is present; return None if it’s not.
If check_transposed==True, check for the case where the image is transposed (i.e., line becomes a column).
If drop_magic==True, remove the first status line entry, which is simply a special number marking the status line presence.
Return a 1D or 2D numpy array, where the first axis (if present) is the frame number, and the last is the status line entry
The entries after the magic are the frame index, timestamp (in us), missed trigger counters (up to 255),
average frame value, and the integration time (in pixel clock cycles, which depend on the camera).

	
pylablib.devices.PhotonFocus.PhotonFocus.get_status_line_position(frame, check_transposed=True)

	Check whether status line is present in the frame, and return its location.

Return tuple (row, transposed), where row is the status line row (can be -1 or -2)
and transposed is True if the line is present in the transposed image.
If no status line is found, return None.
If check_transposed==True, check for the case where the image is transposed (i.e., line becomes a column).

	
pylablib.devices.PhotonFocus.PhotonFocus.remove_status_line(frame, sl_pos='calculate', policy='duplicate', copy=True)

	Remove status line from the frame.

	Parameters:

	
	frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame number)

	sl_pos – status line position (returned by get_status_line_position()); if equal to "calculate", calculate here;
for a 3D array, assumed to be the same for all frames

	policy – determines way to deal with the status line;
can be "keep" (keep as is), "cut" (cut off the status line row), "zero" (set it to zero),
"median" (set it to the image median), or "duplicate" (set it equal to the previous row; default)

	copy – if True, make copy of the original frames; otherwise, attempt to remove the line in-place

	
pylablib.devices.PhotonFocus.PhotonFocus.find_skipped_frames(lines, step=1)

	Check if there are skipped frames based on status line reading.

step specifies expected index step between neighboring frames.

Return list [(idx, skipped)], where idx is the index after which skipped frames were skipped.

	
class pylablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker

	Bases: StatusLineChecker

	
check_indices(indices, step=1)

	Check if indices are consistent with the given step

	
get_framestamp(frames)

	Get framestamps from status lines in the given frames

Module contents

pylablib.devices.PhysikInstrumente package

Submodules

pylablib.devices.PhysikInstrumente.base module

	
exception pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError

	Bases: DeviceError

Generic Physik Instrumente error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError(exc)

	Bases: PhysikInstrumenteError, DeviceBackendError

Generic Physik Instrumente backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.PhysikInstrumente.base.GenericPIController(conn, auto_online=True)

	Bases: ICommBackendWrapper, IMultiaxisStage

Generic Physik Instrumente controller.

	Parameters:

	
	conn – connection parameters (usually port or a tuple containing port and baudrate)

	auto_online – if True, switch to the online mode upon connection;
in this online mode controller parameters are controlled remotely instead of the front panel (including external voltages),
while in the offline mode most of the parameters are still controlled manually, and the remote connection is mostly used for readout

	
Error

	alias of PhysikInstrumenteError

	
open()

	Open the backend

	
query(comm, multiline=False, reply=True)

	Query a single command to the controller.

If multiline==True, expect a multi-line reply and return a list with separate reply lines;
otherwise, expect a single-line reply and raise an error if multi-line reply is received.

If reply==False, expect no reply at all (used for, e.g., set commands).

	
query_axis(comm, axis=None, subidx=None, kind='str')

	Query the given command for the given axis.

axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes.
If axis is a single axis, simply return the corresponding value; otherwise, return a dict {axis: value}.
kind can specify value kind: "str" (return as is), "float", "int", or "bool".

	
set_axis(comm, value, axis=None, subidx=None, reply=False)

	Query the given value for the given axis.

value can be a single value (set the same for all specified axes), a list of values (one per axis), or a dict {axis: value}.
axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes.
If reply==False, expect no reply.

	
get_id()

	Get the device ID string

	
get_help()

	Get the help for all commands; might take a long time on low-speed serial connections

	
is_online_enabled()

	Check if online mode is enabled

	
enable_online(enable=True)

	Enable or disable online mode

	
get_axis_parameter(pid, axis=None, kind='str')

	Get value of the given parameter id for the given axis (all axes by default)

	
set_axis_parameter(pid, value, axis=None, kind='str')

	Get value of the given parameter id for the given axis (all axes by default)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.PhysikInstrumente.base.PIE516(conn, auto_online=True)

	Bases: GenericPIController

Physik Instrumente E-516 controller.

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	auto_online – if True, switch to the online mode upon connection;
in this online mode controller parameters such as voltages or positions are controlled remotely instead of the front panel (including external voltages),
while in the offline mode most of the parameters are still controlled manually, and the remote connection is mostly used for readout

	
is_servo_enabled(axis=None)

	Check if the servo is enabled on the given axis (all axes by default)

	
enable_servo(enable=True, axis=None)

	Enable or disable servo on the given axis (all axes by default)

	
is_drift_compensation_enabled(axis=None)

	Check if the drift compensation is enabled on the given axis (all axes by default)

	
enable_drift_compensation(enable=True, axis=None)

	Enable or disable drift compensation on the given axis (all axes by default)

	
is_velocity_control_enabled(axis=None)

	Check if the velocity control is enabled on the given axis (all axes by default)

	
enable_velocity_control(enable=True, axis=None)

	Enable or disable velocity control on the given axis (all axes by default)

	
get_voltage_setpoint(axis=None)

	Get the current voltage setpoint on the given axis (all axes by default)

	
get_voltage(axis=None)

	Get the actual voltage value on the given axis (all axes by default)

	
set_voltage(voltage, axis=None)

	Get the target voltage on the given axis (all axes by default)

	
get_voltage_lower_limit(axis=None)

	Get the lower output voltage limit on the given axis (all axes by default)

	
set_voltage_lower_limit(voltage, axis=None)

	Get the lower output voltage limit on the given axis (all axes by default)

	
get_voltage_upper_limit(axis=None)

	Get the upper output voltage limit on the given axis (all axes by default)

	
set_voltage_upper_limit(voltage, axis=None)

	Get the upper output voltage limit on the given axis (all axes by default)

	
get_velocity(axis=None)

	Get velocity on the given axis (all axes by default)

	
set_velocity(velocity, axis=None)

	Set velocity on the given axis (all axes by default)

	
get_position(axis=None)

	Get the current position on the given axis

	
get_target_position(axis=None)

	Get the target motion position on the given axis

	
move_to(position, axis=None)

	Move the given axis to the given position

	
move_by(distance, axis=None)

	Move the given axis by the given distance

	
stop(axis=None)

	Stop motion on the given axis (all axes by default)

	
get_position_lower_limit(axis=None)

	Get the lower position limit on the given axis (all axes by default)

	
set_position_lower_limit(position, axis=None)

	Get the lower position limit on the given axis (all axes by default)

	
get_position_upper_limit(axis=None)

	Get the upper position limit on the given axis (all axes by default)

	
set_position_upper_limit(position, axis=None)

	Get the upper position limit on the given axis (all axes by default)

	
Error

	alias of PhysikInstrumenteError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
enable_online(enable=True)

	Enable or disable online mode

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_axis_parameter(pid, axis=None, kind='str')

	Get value of the given parameter id for the given axis (all axes by default)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_help()

	Get the help for all commands; might take a long time on low-speed serial connections

	
get_id()

	Get the device ID string

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_online_enabled()

	Check if online mode is enabled

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(comm, multiline=False, reply=True)

	Query a single command to the controller.

If multiline==True, expect a multi-line reply and return a list with separate reply lines;
otherwise, expect a single-line reply and raise an error if multi-line reply is received.

If reply==False, expect no reply at all (used for, e.g., set commands).

	
query_axis(comm, axis=None, subidx=None, kind='str')

	Query the given command for the given axis.

axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes.
If axis is a single axis, simply return the corresponding value; otherwise, return a dict {axis: value}.
kind can specify value kind: "str" (return as is), "float", "int", or "bool".

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_axis(comm, value, axis=None, subidx=None, reply=False)

	Query the given value for the given axis.

value can be a single value (set the same for all specified axes), a list of values (one per axis), or a dict {axis: value}.
axis can be a single axis name (e.g., "A"), a list of axes, or None, which queries all axes.
If reply==False, expect no reply.

	
set_axis_parameter(pid, value, axis=None, kind='str')

	Get value of the given parameter id for the given axis (all axes by default)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.PhysikInstrumente.base.PIE515(conn, auto_online=True)

	Bases: IMultiaxisStage, SCPIDevice

Physik Instrumente E-515 controller.

	Parameters:

	
	conn – connection parameters (usually port or a tuple containing port and baudrate)

	auto_online – if True, switch to the online mode upon connection;
in this online mode controller parameters are controlled remotely instead of the front panel (including external voltages),
while in the offline mode most of the parameters are still controlled manually, and the remote connection is mostly used for readout

	
Error

	alias of PhysikInstrumenteError

	
ReraiseError

	alias of PhysikInstrumenteBackendError

	
open()

	Open the connection

	
close()

	Close the connection

	
is_online_enabled()

	Check if online mode is enabled

	
enable_online(enable=True, safe=False)

	Enable or disable online mode.

If safe==True and enable==True, set the current voltage and position setpoints to be equal to the currently read values;
this avoids sudden change of output voltages when enabling the online mode. Note that this only works if all servo modes are off
(enabling online mode always forcibly turns them off, which might lead to the output voltage jump).

	
get_current_axis()

	Select the current measurement channel

	
select_axis(axis)

	Select the current default axis

	
is_servo_enabled(axis=None)

	Check if the servo is enabled on the given axis (current axis by default)

	
enable_servo(enable=True, axis=None)

	Enable or disable servo on the given axis (current axis by default)

	
get_voltage_setpoint(axis=None)

	Get the current voltage setpoint on the given axis (current axis by default)

	
get_voltage(axis=None)

	Get the actual voltage value on the given axis (current axis by default)

	
set_voltage(voltage, axis=None)

	Get the target voltage on the given axis (current axis by default)

	
get_voltage_lower_limit(axis=None)

	Get the lower output voltage limit on the given axis (current axis by default)

	
set_voltage_lower_limit(voltage, axis=None)

	Get the lower output voltage limit on the given axis (current axis by default)

	
get_voltage_upper_limit(axis=None)

	Get the upper output voltage limit on the given axis (current axis by default)

	
set_voltage_upper_limit(voltage, axis=None)

	Get the upper output voltage limit on the given axis (current axis by default)

	
get_position(axis=None)

	Get current measured position on the given axis (current axis by default)

	
get_target_position(axis=None)

	Get the target motion position on the given axis

	
move_to(position, axis=None)

	Move the given axis to the given position

	
move_by(distance, axis=None)

	Move the given axis by the given distance

	
get_position_lower_limit(axis=None)

	Get the lower position limit on the given axis (current axis by default)

	
set_position_lower_limit(position, axis=None)

	Get the lower position limit on the given axis (current axis by default)

	
get_position_upper_limit(axis=None)

	Get the upper position limit on the given axis (current axis by default)

	
set_position_upper_limit(position, axis=None)

	Get the upper position limit on the given axis (current axis by default)

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.PrincetonInstruments package

Submodules

pylablib.devices.PrincetonInstruments.picam module

	
class pylablib.devices.PrincetonInstruments.picam.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
class pylablib.devices.PrincetonInstruments.picam.TCameraInfo(name, serial_number, model, interface)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
interface

	

	
model

	

	
name

	

	
serial_number

	

	
pylablib.devices.PrincetonInstruments.picam.list_cameras()

	List all cameras available through Picam interface

	
pylablib.devices.PrincetonInstruments.picam.get_cameras_number()

	Get number of connected Picam cameras

	
class pylablib.devices.PrincetonInstruments.picam.TROIConstraints(flags, nrois, xrng, wrng, xbins, yrng, hrng, ybins)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
flags

	

	
hrng

	

	
nrois

	

	
wrng

	

	
xbins

	

	
xrng

	

	
ybins

	

	
yrng

	

	
class pylablib.devices.PrincetonInstruments.picam.PicamAttribute(handle, pid)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing an Picam camera parameter.

Allows to query and set values and get additional information.
Usually created automatically by an PicamCamera instance, but could be created manually.

	Parameters:

	
	handle – camera handle

	pid – parameter id of the attribute

	
name

	attribute name

	
kind

	attribute kind; can be "Integer", "Large Integer", "Floating Point",
"Enumeration", "Boolean", or "Rois"

	
exists

	whether attribute is available on the current hardware

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
relevant

	whether attribute value is applicable to the hardware

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
read_directly

	whether value can be read directly from the device;
if True, then get_value() will automatically use the appropriate method

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
value_access

	value access kind, which shows whether value can be written

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
writable

	whether value is read-only

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
default

	default parameter value (only for writable parameters)

	
can_set_online

	whether value can be changed during acquisition

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cons_type

	constraint type, e.g., "Collection", "Range", or "None"

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cons_permanent

	whether the constraint is permanent, or dependent on other parameters;
if False, then use update_limits() to update the constraints

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cons_error

	whether setting the out-of-range parameter causes error or just warning

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cons_novalid

	whether no parameter value is valid

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
inc

	minimal attribute increment value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
cons_excluded

	list of special parameters which are within the range but are excluded

	
cons_included

	list of special parameters which are outside the range but are included

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
update_limits(force=False)

	Update attribute constraints.

If force==False and the constraints are permanent, skip the update.

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
class pylablib.devices.PrincetonInstruments.picam.TDeviceInfo(name, serial_number, model, interface)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
interface

	

	
model

	

	
name

	

	
serial_number

	

	
class pylablib.devices.PrincetonInstruments.picam.TFrameInfo(frame_index, timestamp_start, timestamp_end, framestamp)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
framestamp

	

	
timestamp_end

	

	
timestamp_start

	

	
class pylablib.devices.PrincetonInstruments.picam.PicamCamera(serial_number=None)

	Bases: IBinROICamera, IExposureCamera, IAttributeCamera

Generic Picam camera interface.

	Parameters:

	serial_number – camera serial number; if None, connect to the first non-used camera

	
Error = <Mock name='mock.PicamError' id='139822051567568'>

	

	
TimeoutError = <Mock spec='str' id='139822059941904'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_attribute_value(name, error_on_missing=True, default=None, enum_as_str=True)

	Get value of an attribute with the given name.

If the value doesn’t exist or can not be read and error_on_missing==True, raise error; otherwise, return default.
If default is not None, assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_attribute_value(name, value, truncate=True, error_on_missing=True)

	Set value of an attribute with the given name.

If the value doesn’t exist or can not be written and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
If truncate==True, truncate value to lie within attribute range.

	
get_all_attribute_values(root='', enum_as_str=True)

	Get values of all attributes with the given root

	
set_all_attribute_values(settings, root='', truncate=True)

	Set values of all attributes with the given root.

If truncate==True, truncate value to lie within attribute range.

	
get_device_info()

	Get camera information.

Return tuple (vendor, model, serial_number, bus_type).

	
get_pixel_size()

	Get camera pixel size (in m)

	
enable_metadata(enable=True)

	Enable or disable metadata

	
is_metadata_enabled(individual=False)

	Check if metadata is enabled.

If individual==True, return individual metadata info
(time_stamp_start, time_stamp_end, frame_stamp, gate_delay, modulation_phase).
Otherwise, return simply True or False depending on whether the basic group (time- and frame-stamps) is enabled.
In this case, if the value is inconsistent with either for the groups, fix this to be consistent.

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_period(per_readout=False)

	Get frame period (time between two consecutive frames in the internal trigger mode)

If per_readout==True, return time difference between readouts, which can contain more than one frame;
otherwise, return average time per frame (keep in mind that the frames still come in single unbroken readout).

	
get_frame_timings(per_readout=False)

	Get acquisition timing.

Return tuple (exposure, frame_period).
If per_readout==True, frame period difference between readouts, which can contain more than one frame;
otherwise, it is the time per frame (keep in mind that the frames still come in single unbroken readout).

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
nframes sets up number of frame buffers. If there are multiple frames per readout, it still means the number of frames,
and the number of readouts is set up to contain all required frames (e.g., 10 frames per readout and 15 frames result in 2 readouts).

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index and frame metadata, which contains start and stop timestamps, and framestamp;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

Module contents

pylablib.devices.Rigol package

Submodules

pylablib.devices.Rigol.base module

	
exception pylablib.devices.Rigol.base.GenericRigolError

	Bases: DeviceError

Generic Rigol error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Rigol.base.GenericRigolBackendError(exc)

	Bases: GenericRigolError, DeviceBackendError

Rigol backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Rigol.power_supply module

	
class pylablib.devices.Rigol.power_supply.DP1116A(addr)

	Bases: SCPIDevice

Rigol DP1116A DC power supply.

	Parameters:

	addr – device address (usually a VISA name).

	
Error

	alias of GenericRigolError

	
ReraiseError

	alias of GenericRigolBackendError

	
is_output_enabled()

	Check if the output is enabled

	
enable_output(enable=True)

	Enable or disable the output

	
get_output_range()

	Get output range.

Can be either "16V" (16V/10A) or "32V" (32V/5A).

	
set_output_range(value='16V')

	Set output range.

Can be either "16V" (16V/10A) or "32V" (32V/5A).

	
get_voltage_setpoint()

	Get output voltage setpoint

	
get_voltage()

	Get the actual output voltage

	
set_voltage(value)

	Set output voltage setpoint

	
get_current_setpoint()

	Get output current setpoint

	
get_current()

	Get the actual output current

	
set_current(value)

	Set output current setpoint

	
get_power()

	Get the actual output power

	
get_ovp_threshold()

	Get over-voltage protection threshold

	
set_ovp_threshold(value)

	Set over-voltage protection threshold

	
is_ovp_enabled()

	Check if the over-voltage protection is enabled

	
enable_ovp(enable=True)

	Enable or disable the over-voltage protection

	
get_ocp_threshold()

	Get over-current protection threshold

	
set_ocp_threshold(value)

	Set over-current protection threshold

	
is_ocp_enabled()

	Check if the over-current protection is enabled

	
enable_ocp(enable=True)

	Enable or disable the over-current protection

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.SiliconSoftware package

Submodules

pylablib.devices.SiliconSoftware.fgrab module

	
class pylablib.devices.SiliconSoftware.fgrab.TBoardInfo(name, full_name, serial)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
full_name

	

	
name

	

	
serial

	

	
pylablib.devices.SiliconSoftware.fgrab.TFullBoardInfo

	alias of TBoardInfo

	
pylablib.devices.SiliconSoftware.fgrab.get_board_info(board, full_desc=False)

	Get board info for a given index (starting from 0)

	
pylablib.devices.SiliconSoftware.fgrab.list_boards(full_desc=False)

	List all boards available through Silicon Software interface

	
pylablib.devices.SiliconSoftware.fgrab.get_boards_number()

	List number of connected Silicon Software boards

	
class pylablib.devices.SiliconSoftware.fgrab.TAppletInfo(name, file)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
file

	

	
name

	

	
class pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo(name, uid, desc, category, platform, tags, version, path, file, flags, info)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
category

	

	
desc

	

	
file

	

	
flags

	

	
info

	

	
name

	

	
path

	

	
platform

	

	
tags

	

	
uid

	

	
version

	

	
pylablib.devices.SiliconSoftware.fgrab.list_applets(board, full_desc=False, valid=True, on_board=False)

	List all applets available for this board.

board is the board index (starting from 0) given by its position in the list returned by list_boards().
If full_desc==True, return full description for each applet; otherwise, return only name and file name.
If valid==True, list only valid and compatible applets; otherwise, list all applets.
If on_board==True, list applets running on board; otherwise, list all applets contained in the system.

	
pylablib.devices.SiliconSoftware.fgrab.get_applet_info(board, **kwargs)

	Return full information for an applet with the given parameters (e.g., name, or full path)

	
class pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute(fg, aid, port=0, system=False, idx=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object representing an Silicon Software frame grabber parameter.

Allows to query and set values and get additional information.
Usually created automatically by an :class:`` instance, but could be created manually.

	Parameters:

	
	fg – opened frame grabber handle

	aid – attribute ID

	port – camera port within the frame grabber

	system – if True, this is a system attribute; otherwise, it is a camera attribute

	idx – if system==True and fg is None, it can specify a board index for a not yet opened grabber

	
name

	attribute name

	
kind

	attribute kind; can be "i32", "i64", "u32", "u64", "f64", or "str"

	
min

	minimal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
max

	maximal attribute value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
inc

	minimal attribute increment value (if applicable)

	Type:

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
ivalues

	list of possible integer values for enum attributes

	
values

	list of possible text values for enum attributes

	
labels

	dict {label: index} which shows all possible values of an enumerated attribute and their corresponding numerical values

	
ilabels

	dict {index: label} which shows labels corresponding to numerical values of an enumerated attribute

	
update_limits()

	Update minimal and maximal attribute limits and return tuple (min, max, inc)

	
truncate_value(value)

	Truncate value to lie within attribute limits

	
get_value(enum_as_str=True)

	Get attribute value.

If enum_as_str==True, return enum-style values as strings; otherwise, return corresponding integer values.

	
set_value(value, truncate=True)

	Get attribute value.

If truncate==True, automatically truncate value to lie within allowed range.

	
class pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo(applet_info, system_info, software_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
applet_info

	

	
software_version

	

	
system_info

	

	
class pylablib.devices.SiliconSoftware.fgrab.TFrameInfo(frame_index, framestamp, timestamp, timestamp_long)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
framestamp

	

	
timestamp

	

	
timestamp_long

	

	
class pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber(siso_board=0, siso_applet=None, siso_port=0, siso_detector_size=None, do_open=True, **kwargs)

	Bases: IGrabberAttributeCamera, IROICamera

Generic Silicon Software frame grabber interface.

Compared to SiliconSoftwareCamera, has more permissive initialization arguments,
which simplifies its use as a base class for expanded cameras.

	Parameters:

	
	siso_board – board index, starting from 0; available boards can be learned by list_boards()

	siso_applet – applet name, which can be learned by list_applets();
usually, a simple applet like "DualLineGray16" or "MediumLineGray16 are most appropriate;
can be either an applet name, or a direct path to the applet DLL

	siso_port – port number, if several ports are supported by the grabber and the applet

	siso_detector_size – if not None, can specify the maximal detector size;
by default, use the maximal available for the frame grabber (usually, 16384x16384)

	
Error = <Mock name='mock.SiliconSoftwareError' id='139822060405648'>

	

	
TimeoutError = <Mock spec='str' id='139822061823376'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_all_grabber_attribute_values(root='', **kwargs)

	Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

	
set_all_grabber_attribute_values(settings, root='', **kwargs)

	Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

	
get_system_info()

	Get the dictionary with all system information parameters

	
get_genicam_info_xml()

	Get description in Genicam-compatible XML format

	
get_device_info()

	Get camera model data.

Return tuple (applet_info, system_info, software_version) with the board serial number and an the interface type (e.g., "1430" for NI PCIe-1430)

	
set_frame_merge(frame_merge=1)

	

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
class BufferManager(fg, siso_port)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

	
allocate(nframes, frame_size)

	Allocate and schedule buffers with the given number and size

	
deallocate()

	Deallocate and remove the buffers

	
start_loop(run_nframes)

	Start the copying loop and, optionally, run the acquisition loop with the given number of frames

	
stop_loop()

	Stop the copying loop

	
get_status()

	Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

	
get_frames_data(idx, nframes=1)

	Get buffer chunk addresses for the given number of frames starting from the given index

	
setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None, bit_alignment='right_custom')

	Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the format;
otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel
if fmt is None, or 16 bit grayscale otherwise.
bit_alignment can specify the alignment of the resulting data (applicable when bits_per_pixel is not divisible by 8);
can be "left", "right", "right_custom" (explicitly calculate and set the number of bits to shift by whenever possible;
this solves some issues on ME5 cards), or an integer specifying the number of bits to shift.

	
get_camlink_pixel_format()

	Get CamLink pixel format and the output pixel format as a tuple

	
get_available_camlink_pixel_formats()

	Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_grabber_attributes(copy=False)

	Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_grabber_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)

	Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default.
If default is not None, automatically assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
Additional arguments are passed to get_value methods of the individual attribute.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)

	Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
Additional arguments are passed to set_value methods of the individual attribute.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera(board, applet=None, port=0, detector_size=None)

	Bases: SiliconSoftwareFrameGrabber

Generic Silicon Software frame grabber interface.

	Parameters:

	
	board – board index, starting from 0; available boards can be learned by list_boards()

	applet – applet name, which can be learned by list_applets();
usually, a simple applet like "DualLineGray16" or "MediumLineGray16 are most appropriate;
can be either an applet name, or a direct path to the applet DLL

	port – port number, if several ports are supported by the camera and the applet

	detector_size – if not None, can specify the maximal detector size;
by default, use the maximal available for the frame grabber (usually, 16384x16384)

	
class BufferManager(fg, siso_port)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frame buffer manager which controls and schedules the buffer and the buffer copying loop

	
allocate(nframes, frame_size)

	Allocate and schedule buffers with the given number and size

	
deallocate()

	Deallocate and remove the buffers

	
get_frames_data(idx, nframes=1)

	Get buffer chunk addresses for the given number of frames starting from the given index

	
get_status()

	Get acquisition status.

Return tuple (nread, oldest_valid_buffer, nacq, debug_info)

	
start_loop(run_nframes)

	Start the copying loop and, optionally, run the acquisition loop with the given number of frames

	
stop_loop()

	Stop the copying loop

	
Error = <Mock name='mock.SiliconSoftwareError' id='139822060405648'>

	

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError = <Mock spec='str' id='139822061823376'>

	

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear all acquisition details and free all buffers

	
close()

	Close connection to the camera

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_all_grabber_attribute_values(root='', **kwargs)

	Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

	
get_all_grabber_attributes(copy=False)

	Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_available_camlink_pixel_formats()

	Get all available CamLink pixel formats and the output pixel formats as a tuple of 2 lists

	
get_camlink_pixel_format()

	Get CamLink pixel format and the output pixel format as a tuple

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_info()

	Get camera model data.

Return tuple (applet_info, system_info, software_version) with the board serial number and an the interface type (e.g., "1430" for NI PCIe-1430)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_genicam_info_xml()

	Get description in Genicam-compatible XML format

	
get_grabber_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)

	Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default.
If default is not None, automatically assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
Additional arguments are passed to get_value methods of the individual attribute.

	
get_grabber_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_grabber_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_grabber_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_system_info()

	Get the dictionary with all system information parameters

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open connection to the camera

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_all_grabber_attribute_values(settings, root='', **kwargs)

	Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_merge(frame_merge=1)

	

	
set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)

	Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
Additional arguments are passed to set_value methods of the individual attribute.

	
set_grabber_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
setup_acquisition(mode='sequence', nframes=100)

	Setup acquisition mode.

mode can be either "snap" (single frame or a fixed number of frames) or "sequence" (continuous acquisition).
(note that IMAQCamera.acquisition_in_progress() would still return True in this case, even though new frames are no longer acquired).
nframes sets up number of frame buffers.

	
setup_camlink_pixel_format(bits_per_pixel=8, taps=1, output_fmt=None, fmt=None, bit_alignment='right_custom')

	Set up CameraLink pixel format.

If fmt is None, use supplied bits_per_pixel (8, 10, 12, 14, or 16) and taps (1 or 2) to figure out the format;
otherwise, fmt should be a numerical (e.g., 210) or string (e.g., "FG_CL_MEDIUM_10_BIT") format.
output_fmt specifies the result frame format; if None, use grayscale with the given bits_per_pixel
if fmt is None, or 16 bit grayscale otherwise.
bit_alignment can specify the alignment of the resulting data (applicable when bits_per_pixel is not divisible by 8);
can be "left", "right", "right_custom" (explicitly calculate and set the number of bits to shift by whenever possible;
this solves some issues on ME5 cards), or an integer specifying the number of bits to shift.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

Module contents

pylablib.devices.Sirah package

Submodules

pylablib.devices.Sirah.Matisse module

	
class pylablib.devices.Sirah.Matisse.TThinetCtlParameters(setpoint, P, I, avg)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
I

	

	
P

	

	
avg

	

	
setpoint

	

	
class pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters(amplitude, rate, oversamp)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
amplitude

	

	
oversamp

	

	
rate

	

	
class pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters(P, avg, phase)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
P

	

	
avg

	

	
phase

	

	
class pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters(ampl, phase)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
ampl

	

	
phase

	

	
class pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters(setpoint, P, I, freeP)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
I

	

	
P

	

	
freeP

	

	
setpoint

	

	
class pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters(setpoint, I, lockpoint)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
I

	

	
lockpoint

	

	
setpoint

	

	
class pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters(lower_limit, upper_limit, oversamp, mode)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
lower_limit

	

	
mode

	

	
oversamp

	

	
upper_limit

	

	
class pylablib.devices.Sirah.Matisse.TScanMode(falling, stop_lower, stop_upper)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
falling

	

	
stop_lower

	

	
stop_upper

	

	
class pylablib.devices.Sirah.Matisse.TScanParameters(device, mode, lower_limit, upper_limit, rise_speed, fall_speed)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
device

	

	
fall_speed

	

	
lower_limit

	

	
mode

	

	
rise_speed

	

	
upper_limit

	

	
class pylablib.devices.Sirah.Matisse.SirahMatisse(addr)

	Bases: SCPIDevice

Sirah Matisse laser control.

	Parameters:

	addr – device address (usually a VISA name).

	
Error

	alias of GenericSirahError

	
ReraiseError

	alias of GenericSirahBackendError

	
ask(*args, **kwargs)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
get_diode_power()

	Get the current laser resonator power

	
get_diode_power_waveform()

	Get the current laser resonator power waveform

	
get_diode_power_lowlevel()

	Get the low-level cutoff current laser resonator power

	
set_diode_power_lowlevel(cutoff)

	Set the low-level cutoff current laser resonator power

	
get_thinet_power()

	Get the current thin etalon reflex power

	
get_refcell_waveform()

	Get the reference cell signal waveform

	
bifi_get_position()

	Get the current position of the birefringent filter motor

	
bifi_get_range()

	Get the maximum position of the birefringent filter motor

	
bifi_get_status_n()

	Get the numerical status of the birefringent filter motor

	
bifi_get_status()

	Get the parsed status of the birefringent filter motor.

Return tuple (code, bits) with, correspondingly, the general status/error code (e.g., "idle", "moving_abs", or "position_out_of_range"),
and a set of active status bits (e.g., "moving", "error", or "limit_sw1").

	
bifi_clear_errors()

	Clear the indicated errors of the birefringent filter motor

	
bifi_is_moving()

	Check if the birefringent filter is moving

	
bifi_wait_move(timeout=30.0)

	Wait until birefringent filter is done moving

	
bifi_move_to(position, wait=True, wait_timeout=30.0)

	Move the birefringent filter to the current position

	
bifi_stop()

	Stop the birefringent filter motor

	
bifi_home(wait=True, wait_timeout=30.0)

	Home the birefringent filter motor

	
thinet_get_position()

	Get the current position of the thin etalon motor

	
thinet_get_range()

	Get the maximum position of the thin etalon motor

	
thinet_get_status_n()

	Get the numerical status of the thin etalon motor

	
thinet_get_status()

	Get the parsed status of the thin etalon motor.

Return tuple (code, bits) with, correspondingly, the general status/error code (e.g., "idle", "moving_abs", or "position_out_of_range"),
and a set of active status bits (e.g., "moving", "error", or "limit_sw1").

	
thinet_clear_errors()

	Clear the indicated errors of the thin etalon motor

	
thinet_is_moving()

	Check if the thin etalon is moving

	
thinet_wait_move(timeout=30.0)

	Wait until thin etalon is done moving

	
thinet_move_to(position, wait=True, wait_timeout=30.0)

	Move the thin etalon to the current position

	
thinet_stop()

	Stop the thin etalon motor

	
thinet_home(wait=True, wait_timeout=30.0)

	Home the thin etalon motor

	
get_thinet_ctl_status()

	Get thin etalon lock status ("run" or "stop")

	
set_thinet_ctl_status(status='run')

	Set thin etalon lock status ("run" or "stop")

	
get_thinet_error_signal()

	Get error signal of the thin etalon lock (emulated when not available on older firmware)

	
get_thinet_ctl_params()

	Get thin etalon lock control parameters.

Return tuple (setpoint, P, I, avg).

	
set_thinet_ctl_params(setpoint=None, P=None, I=None, avg=None)

	Set thin etalon lock control parameters.

Any parameters which are None remain unchanged.

	
get_piezoet_ctl_status()

	Get piezo etalon lock status ("run" or "stop")

	
set_piezoet_ctl_status(status='run')

	Set piezo etalon lock status ("run" or "stop")

	
get_piezoet_position()

	Get piezo etalon DC position

	
set_piezoet_position(value)

	Set piezo etalon lock DC position

	
get_piezoet_drive_params()

	Get piezo etalon drive parameters.

Return tuple (amplitude, rate, oversamp).

	
set_piezoet_drive_params(amplitude=None, rate=None, oversamp=None)

	Set piezo etalon drive parameters.

oversamp should be between 8 and 32.
rate can take values "8k", "32k", "48k", or "96k".
Any parameters which are None remain unchanged.

	
get_piezoet_feedback_params()

	Get piezo etalon feedback parameters.

Return tuple (P, avg, phase) (phase is integer between 0 and oversampling).

	
set_piezoet_feedback_params(P=None, avg=None, phase=None)

	Set piezo etalon feedback parameters.

Phase is integer between 0 and oversampling.
Any parameters which are None remain unchanged.

	
get_piezoet_feedforward_params()

	Get piezo etalon feedforward parameters.

Return tuple (amp, phase) (phase is integer between 0 and oversampling).

	
set_piezoet_feedforward_params(amp=None, phase=None)

	Set piezo etalon feedforward parameters.

Phase is integer between 0 and oversampling.
Any parameters which are None remain unchanged.

	
get_slowpiezo_ctl_status()

	Get slow piezo lock status ("run" or "stop")

	
set_slowpiezo_ctl_status(status='run')

	Set slow piezo lock status ("run" or "stop")

	
get_slowpiezo_position()

	Get slow piezo DC position

	
set_slowpiezo_position(value)

	Set slow piezo DC position

	
get_slowpiezo_ctl_params()

	Get slow piezo lock control parameters.

Return tuple (setpoint, P, I, freeP).

	
set_slowpiezo_ctl_params(setpoint=None, P=None, I=None, freeP=None)

	Set slow piezo lock control parameters.

Any parameters which are None remain unchanged.

	
get_fastpiezo_ctl_status()

	Get fast piezo lock status ("run" or "stop")

	
set_fastpiezo_ctl_status(status='run')

	Set fast piezo lock status ("run" or "stop")

	
is_fastpiezo_locked()

	Check if the fast piezo is locked (output is between 5% and 95%)

	
get_fastpiezo_position()

	Get fast piezo DC position between 0 and 1

	
set_fastpiezo_position(value)

	Set fast piezo DC position between 0 and 1

	
get_fastpiezo_ctl_params()

	Get fast piezo lock control parameters.

Return tuple (setpoint, I, lockpoint).

	
set_fastpiezo_ctl_params(setpoint=None, I=None, lockpoint=None)

	Set fast piezo lock control parameters.

Any parameters which are None remain unchanged.

	
get_refcell_position()

	Get reference cell DC position between 0 and 1

	
set_refcell_position(value)

	Set reference cell DC position between 0 and 1

	
get_refcell_waveform_params()

	Get reference cell waveform parameters.

Return tuple (lower_limit, upper_limit, oversamp, mode).
mode can be "none", "avg", "min", or "max".

	
set_refcell_waveform_params(lower_limit=None, upper_limit=None, oversamp=None, mode=None)

	Set reference cell waveform parameters.

Any parameters which are None remain unchanged.
mode can be "none", "avg", "min", or "max".
oversamp should be between 4 and 512.

	
get_scan_status()

	Get scan status ("run" or "stop")

	
set_scan_status(status='run')

	Set scan status ("run" or "stop")

	
wait_scan(timeout=None)

	Wait until scan is stopped

	
get_scan_position()

	Get scan position

	
set_scan_position(value)

	Set scan position

	
get_scan_params()

	Get scan parameters.

Return tuple (device, mode, lower_limit, upper_limit, rise_speed, fall_speed).
device can be "none", "slow_piezo", or "ref_cell".
mode is a tuple (falling, stop_lower, stop_upper).

	
set_scan_params(device=None, mode=None, lower_limit=None, upper_limit=None, rise_speed=None, fall_speed=None)

	Set slow piezo lock control parameters.

device can be "none", "slow_piezo", or "ref_cell".
mode is a tuple (falling, stop_lower, stop_upper).
Any parameters which are None remain unchanged.

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

pylablib.devices.Sirah.base module

	
exception pylablib.devices.Sirah.base.GenericSirahError

	Bases: DeviceError

Generic Sirah error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Sirah.base.GenericSirahBackendError(exc)

	Bases: GenericSirahError, DeviceBackendError

Sirah backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Sirah.tuner module

	
exception pylablib.devices.Sirah.tuner.FrequencyReadSirahError(timeout=None)

	Bases: GenericSirahError

Sirah error indicating an error while trying to read frequency value

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Sirah.tuner.MatisseTuner(laser, wavemeter, calibration=None, ref_cell=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Matisse tuner.

Helps to coordinate with an external wavemeter to perform more complicated tasks: motors calibration, fine frequency tuning, and stitching scans.

	Parameters:

	
	laser – opened Matisse laser object

	wavemeter – opened wavemeter object (currently only HighFinesse wavemeters are supported)

	calibration – either a calibration dictionary, or a path to the calibration dictionary file

	
set_tune_units(units='int')

	Set default units for fine tuning and sweeping (fine sweep or stitched scan).

Can be either "int" (internal units between 0 and 1) or "freq" (frequency units; requires calibration).

	
apply_calibration(calibration)

	Apply the given calibration.

calibration is either a calibration dictionary, or a path to the calibration dictionary file.
Contains information about the relation between bifi motor and wavelength, thin etalon motor span,
slow piezo tuning rate (frequency to internal units) and its maximal sweep rate,
ref cell tuning rate (frequency to internal units) and its maximal sweep rate.

	
get_frequency(timeout=1.0)

	Get current frequency reading.

The only method relying on the wavemeter. Can be extended or overloaded to support different wavemeters.

	
get_last_read_frequency(max_delay=1.0)

	Get the last valid read frequency, or None if none has been acquired yet

	
set_frequency_average_time(avg_time=0)

	Set averaging time for frequency measurements (reduces measured frequency jitter)

	
scan_steps(motor, start, stop, step)

	Scan the given motor ("bifi" or "thinet") in discrete steps within the given range with a given step.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
scan_centered(motor, span, step)

	Scan the given motor ("bifi" or "thinet") in discrete steps in a given span around the current position.

After the scan, return the motor to the original position.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
scan_quick(motor, start, stop, autodir=True)

	Do a quick continuous scan of the given motor ("bifi" or "thinet") within the given range.

Compared to scan_steps(), which does a series of discrete defined moves, this method does a single continuous move and records values in its progress.
This is quicker, but does not allow for the step size control, and results in non-uniform recorded positions.
If autodir==False, first initialize the motor to start and then move to stop; otherwise, initialize to whichever border is closer.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
scan_quick_centered(motor, span)

	Do a quick continuous scan of the given motor ("bifi" or "thinet") in a given span around the current position.

After the scan, return the motor to the original position.

Return a 4-column numpy array containing motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
scan_both_motors(bifi_rng, te_rng, verbose=False)

	Perform a 2D grid scan changing positions of both birefringent filter and thin etalon motors.

bifi_rng and te_rng are both 3-tuples (start, stop, step) specifying the scan ranges.
If verbose==True, print a message per every birefringent filter position indicating the scan progress.

Return a 5-column numpy array containing birefringent filter motor position, thin etalon motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
scan_both_motors_quick(bifi_rng, te_rng, verbose=False)

	Perform a quick 2D grid scan changing positions of both birefringent filter and thin etalon motors.

For each discrete position of a birefringent filter motor perform a quick scan of the thin etalon motor.
bifi_rng is a 3-tuple (start, stop, step), while te_rng is a 2-tuple (start, stop) specifying the scan ranges.
If verbose==True, print a message per every birefringent filter position indicating the scan progress.

Return a 5-column numpy array containing birefringent filter motor position, thin etalon motor position, internal diode power, thin etalon reflection power, and wavemeter frequency.

	
calibrate(motors=True, slow_piezo=True, slow_piezo_speeds=None, ref_cell=True, ref_cell_speeds=None, verbose=True, bifi_range=None, thinet_range=None, return_scans=True)

	Calibrate the laser and return the calibration results.

If motors==True, perform motors calibration (bifi range and wavelengths, thin etalon range).
If slow_piezo==True, perform slow piezo calibration (ratio between internal tuning units and frequency shift).
If slow_piezo_speeds is not None, it defines a list of slow piezo tuning speeds to use for the calibration (in case it depends on the speed).
If ref_cell==True, perform ref cell calibration (ratio between internal tuning units and frequency shift).
If ref_cell_speeds is not None, it defines a list of ref cell tuning speeds to use for the calibration (in case it depends on the speed).
If bifi_range is specified, it is a tuple (start, stop, step) defining the tested bifi positions (default is between 100000 and 400000 with a step of 400).
If thinet_range is specified, it is a tuple (start, stop) defining the tested thin etalon position range.
IF verbose==True, print the progress updates during scan.
If return_scans==True, return a tuple (calibration, scans), where scans is a tuple (motor_scan, slow_piezo_scan, ref_cell) containing detail scan result tables;
otherwise, return just the calibration dictionary.

	
unlock_all()

	Unlock all relevant locks (slow piezo, fast piezo, piezo etalon, thin etalon)

	
set_fine_lock(device='slow_piezo')

	Set fine lock (slow and fast piezo) parameters for the given device ("low_piezo" or "ref_cell")

	
fine_tune_to_gen(target, device='slow_piezo', method='auto', tolerance=None)

	Same as fine_tune_to(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.

	
fine_tune_to(target, device='slow_piezo', method='auto', tolerance=None)

	Fine tune the laser to the given target frequency using only fine tuning.

device specifies the device used for fine tuning: either "slow_piezo", or "ref_cell".
method can be "step" for step-based binary search method, or "cal" for slope-based method using the fine tuning calibration (frequency detuning per element position shift).
(generally faster, but requires a known calibration). If method=="auto", use "cal" when the calibration is available and "step" otherwise.
tolerance gives the final frequency tolerance for the "cal" tuning method; if None, use the standard value (50MHz by default).

	
tune_to_gen(target, level='full', fine_device='slow_piezo', tolerance=None, local_level='none')

	Same as tune_to(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.

	
tune_to(target, level='full', fine_device='slow_piezo', tolerance=None, local_level='none')

	Tune the laser to the given frequency (in Hz) using multiple elements (bifi, thin etalon, piezo etalon, slow piezo / ref cell).

level can be "bifi" (only tune the bifi motor), "thinet" (tune bifi motor and thin etalon),
or "full" (full tuning using all elements).
fine_device specifies the device used for fine tuning: either "slow_piezo", or "ref_cell".
tolerance gives the final fine tuning frequency tolerance; if None, use the standard value (50MHz by default).
local_level defines the level on which to start adjustment; can be "fine" (start with the slow piezo or the ref cell, if the laser is within their tuning range),
"thinet" (start with the thin etalon), or "none" (start with the bifi; default). If using just the finer control does not work, progressively move to the coarser ones.

	
fine_sweep_start(span, up_speed, down_speed=None, device='slow_piezo', kind='cont_up', current_pos=0.5)

	Start a fine sweep using the slow piezo or the ref cell.

span is a sweep span, up_speed and down_speed are the corresponding speeds (if down_speed is None, use the same as up_speed),
device is the scan device ("slow_piezo" or "ref_cell"),
kind is the sweep kind ("cont_up", "cont_down", "single_up", or "single_down"),
and current_pos is the relative position of the current position withing the sweep range (0 means that it’s the lowest position of the sweep,
1 means it’s the highest, 0.5 means that it’s in the center).

	
fine_sweep_stop(return_to_start=True, start_point=None)

	Stop currently running fast sweep.

If return_to_start==True, return to the original start tuning position after the sweeps is stopped;
otherwise, stay at the current position.

	
scan_coarse_gen(bifi_rng, te_rng)

	Perform a 2D grid scan changing positions of both birefringent filter and thin etalon motors.

bifi_rng and te_rng are both 3-tuples (start, stop, step) specifying the scan ranges.

Yields a tuple ((bifi_idx, bifi_npos), (te_idx, te_npos)),
where bifi_idx and te_idx are the indices of the current birefringent filter and thin etalon motor positions,
and bifi_npos and te_npos are the corresponding total numbers of positions.

	
stitched_scan_gen(full_rng, single_span, speed, device='slow_piezo', overlap=0.1, freq_step=None)

	Same as stitched_scan(), but made as a generator which yields occasionally.

Can be used to run this scan in parallel with some other task, or to be able to interrupt it in the middle.
Yields True whenever the main scanning region is passing, and False during the stitching intervals.

	
stitched_scan(full_rng, single_span, speed, device='slow_piezo', overlap=0.1, freq_step=None)

	Perform a stitched laser scan.

	Parameters:

	
	full_rng – 2-tuple (start, stop) with the full frequency scan range.

	single_span – magnitude of a single continuous scan segment given in the slow piezo scan units (between 0 and 1)

	speed – single segment scan speed

	device – the scan device ("slow_piezo" or "ref_cell")

	overlap – overlap of consecutive segments, as a fraction of single_span

	freq_step – if None, the start of the next segment is calculated based on the end of the previous segment and overlap;
otherwise, it specifies a fixed frequency step between segments.

Module contents

pylablib.devices.SmarAct package

Submodules

pylablib.devices.SmarAct.MCS2 module

	
class pylablib.devices.SmarAct.MCS2.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.SmarAct.MCS2.list_devices()

	List all connected SmarAct MCS2 devices

	
pylablib.devices.SmarAct.MCS2.get_devices_number()

	Get number of connected SmarAct MCS2 controller

	
pylablib.devices.SmarAct.MCS2.get_SDK_version()

	Get version of MCS2 SDK

	
class pylablib.devices.SmarAct.MCS2.TDeviceInfo(serial, name)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
name

	

	
serial

	

	
class pylablib.devices.SmarAct.MCS2.TCLMoveParams(velocity, acceleration, max_step_frequency, hold_time)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acceleration

	

	
hold_time

	

	
max_step_frequency

	

	
velocity

	

	
class pylablib.devices.SmarAct.MCS2.TStepMoveParams(frequency, amplitude)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
amplitude

	

	
frequency

	

	
class pylablib.devices.SmarAct.MCS2.TScanMoveParams(velocity)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
velocity

	

	
class pylablib.devices.SmarAct.MCS2.MCS2(locator)

	Bases: IMultiaxisStage

SmarAct MCS2 translation stage controller.

	Parameters:

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – controller locator (returned by get_devices_number() function)

	
Error

	alias of SmarActError

	
open()

	Open the connection to the stage

	
close()

	Close the connection to the stage

	
is_opened()

	Check if the device is connected

	
get_property(name, idx=0)

	Get stage property with the given name and index

	
get_all_properties(scope='all', idx='all')

	Get all controller properties within the given scope and for the given index.

scope can be "dev" (device properties), "mod" (module properties), "cha" (channel properties), or "api" (api properties);
it can also be a list of several scopes, or "all", which includes all properties.
idx is the index and usually applies to "cha" or "mod" scopes; for other scopes it should be set to 0 or "all".

	
set_property(name, value, idx=0)

	Set stage property with the given name and index

	
get_device_info()

	Get the device info of the controller board.

Return tuple (serial, name).

	
get_default_axis()

	Get the default axis (the one automatically applied to channel-related methods)

	
set_default_axis(axis)

	Set the default axis (the one automatically applied to channel-related methods).

Can be a zero-based axis index or "all"

	
using_default_axis(axis)

	Context manager for temporarily changing the default axis

	
get_status_n(axis=None)

	Get axis status as an integer

	
get_status(axis=None)

	Get axis status as a set of string descriptors

	
is_moving(axis=None)

	Check if a given axis is moving (including referencing and calibrating)

	
wait_move(axis, timeout=30.0)

	Wait for a given axis to stop moving

	
get_device_status_n()

	Get device status as an integer

	
get_device_status()

	Get axis status as a set of string descriptors

	
get_module_status_n(index=0)

	Get module status as an integer

	
get_module_status(index)

	Get module status as a set of string descriptors

	
get_cl_move_parameters(axis=None)

	Get closed-loop move parameters.

Return tuple (velocity, acceleration, max_step_frequency, hold_time) with the maximal move velocity (in m/s or deg/s),
move acceleration (in m/s^2 or deg/s^2), maximal step frequency (in Hz), and position hold time (in s, or "inf" if it is infinite)

	
setup_cl_move(velocity=None, acceleration=None, max_step_frequency=None, hold_time=None, axis=None)

	Set closed-loop move parameters.

For the meaning of the parameters, see get_cl_move_parameters().
Note that changing the hold time will only apply after the next move command.
To apply it without actual moving, you can call move_by() method with distance=0 for the appropriate axis.
If any parameter is None, use the current value.

	
get_step_move_parameters(axis=None)

	Get step move parameters.

Return tuple (frequency, amplitude) with the step frequency (in Hz) and step amplitude (normalized between 0 and 1).

	
setup_step_move(frequency=None, amplitude=None, axis=None)

	Set step move parameters.

For the meaning of the parameters, see get_step_move_parameters().
If any parameter is None, use the current value.

	
get_scan_move_parameters(axis=None)

	Get scan move parameters.

Return tuple (velocity) with the move velocity (amplitude per second; amplitude is normalized between 0 and 1).

	
setup_scan_move(velocity=None, axis=None)

	Set scan move parameters.

For the meaning of the parameters, see get_scan_move_parameters().
If any parameter is None, use the current value.

	
get_range_limit(axis=None)

	Get the movement range limit (in m or deg) for the given axis.

Return (min, max) if the limit is active or None otherwise.

	
set_range_limit(limit, axis=None)

	Set the movement range limit (in m or deg) for the given axis.

limit is either a tuple (min, max) if the limit is active, or None otherwise.

	
get_position(axis=None)

	Get current position (in m or deg) at the given axis

	
set_position_reference(position=0, axis=None)

	Get the current position (in m or deg) at the given axis.

This method simply shifts the position sensor reference; the stage does not move.

	
get_scan_position(axis=None)

	Get current scan position (piezo voltage; normalized between 0 and 1) at the given axis

	
get_target_position(axis=None)

	Get current target position (in m or deg) at the given axis

	
move_to(position, axis=None)

	Move to the given position (in m or deg) at the given axis

	
move_by(distance, axis=None)

	Move by the given distance (in m or deg) at the given axis

	
move_by_steps(steps, axis=None)

	Move by the given number of steps at the given axis

	
move_scan_to(position, axis=None)

	Move to the given open-loop position (piezo voltage; normalized between 0 and 1) using just a piezo deflection at the given axis

	
move_scan_by(distance, axis=None)

	Move by the given open-loop distance (piezo voltage; normalized between -1 and 1) using just a piezo deflection at the given axis

	
stop(axis=None)

	Stop motion at the given axis

	
home(axis=None, sync=True, start_direction='+', reverse_direction=False, abort_on_stop=False, auto_zero=False, continue_on_found=False, stop_on_found=False)

	Home (reference) the given axis.

If sync==True, wait until the homing is done.
The other parameters are flags setting up the referencing behavior. See MCS2 programming manual section on reference marks for the details.

	
calibrate(axis=None, sync=True, direction='+', detect_code_inversion=False, advanced_sensor_correction=False, limited_stage_range=False)

	Calibrate the given axis.

If sync==True, wait until the calibration is done.
The other parameters are flags setting up the calibration behavior. See MCS2 programming manual section on calibrating for the details.

	
lowlevel_move(value, axis=None)

	Execute the low-level movement command with the given integer value.

The meaning of the value depends on the devices properties (see MCS2 programming manual for the details).
This is a low-level method, whose high-level functionality is covered by other move methods.

	
lowlevel_reference(axis=None)

	Execute the low-level reference command with the given integer value.

Exact procedure depends on the devices properties (see MCS2 programming manual for the details).
This is a low-level method, whose high-level functionality is covered by the home() method.

	
lowlevel_calibrate(axis=None)

	Execute the low-level calibration command with the given integer value.

Exact procedure depends on the devices properties (see MCS2 programming manual for the details).
This is a low-level method, whose high-level functionality is covered by the calibrate() method.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

pylablib.devices.SmarAct.base module

	
exception pylablib.devices.SmarAct.base.SmarActError

	Bases: DeviceError

Generic SmarAct error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.SmarAct.scu3d module

	
class pylablib.devices.SmarAct.scu3d.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
class pylablib.devices.SmarAct.scu3d.TDeviceInfo(device_id, firmware_version, dll_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
device_id

	

	
dll_version

	

	
firmware_version

	

	
pylablib.devices.SmarAct.scu3d.get_device_info(idx)

	Get info of the devices with the given index.

Return tuple (device_id, firmware_version, dll_version).

	
pylablib.devices.SmarAct.scu3d.list_devices()

	List all connected devices

	
pylablib.devices.SmarAct.scu3d.get_devices_number()

	Get number of connected SCU3D controller

	
class pylablib.devices.SmarAct.scu3d.SCU3D(idx=0, axis_dir='+++')

	Bases: IMultiaxisStage

SmarAct SCU3D translation stage controller.

	Parameters:

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – stage index

	axis_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – 3-symbol string specifying default directions of the axes (each symbol be "+" or "-")

	
Error = <Mock name='mock.SmarActError' id='139822029731472'>

	

	
open()

	Open the connection to the stage

	
close()

	Close the connection to the stage

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get info of the devices with the given index.

Return tuple (device_id, firmware_version, dll_version).

	
get_axis_dir()

	Get axis direction convention (a string of 3 symbols which are either "+" or "-" determining if the axis direction is flipped)

	
set_axis_dir(axis_dir)

	Set axis direction convention (a string of 3 symbols which are either "+" or "-" determining if the axis direction is flipped)

	
move_macrostep(axis, steps, voltage, frequency)

	Move along a given axis by a single “macrostep”, which consists of several regular steps.

voltage (in Volts) and frequency (in Hz) specify the motion parameters.
This simulates the controller operation, where one “step” at large step sizes consists of several small steps.

	
move_by(axis, steps=1, stepsize=10)

	Move along a given axis with a given number of macrosteps using one of the predefined step size.

stepsize can range from 1 (smallest) to 20 (largest), and roughly corresponds to the handheld controller parameters.

	
get_status(axis='all')

	Get the axis status.

Can be "stopped" (default state), "setting_amplitude" (setting open-loop step amplitude),
"moving" (open-loop movement), "targeting" (closed-loop movement),
"holding" (closed-loop position holding), "calibrating" (sensor calibration),
or "moving_to_reference" (calibrating position sensor).

	
wait_for_status(axis, status='stopped', timeout=30.0)

	Wait until the axis reaches a given status.

By default wait for "stopped" status (i.e., wait until the motion is finished).

	
wait_move(axis, timeout=30.0)

	Wait for a given axis to stop moving

	
is_moving(axis='all')

	Check if a given axis is moving

	
stop(axis='all')

	Stop motion at a given axis

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
set_device_variable(key, value)

	Set the value of a settings parameter

Module contents

pylablib.devices.Standa package

Submodules

pylablib.devices.Standa.base module

	
exception pylablib.devices.Standa.base.StandaError

	Bases: DeviceError

Generic Standa device StandaError

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Standa.base.StandaBackendError(exc)

	Bases: StandaError, DeviceBackendError

Generic Standa backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Standa.base.TEngineType(engine, driver)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
driver

	

	
engine

	

	
class pylablib.devices.Standa.base.TStepperMotorCalibration(steps_per_rev, usteps_per_step)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
steps_per_rev

	

	
usteps_per_step

	

	
class pylablib.devices.Standa.base.TFullState(smov, scmd, spwr, senc, swnd, position, encoder, speed, ivpwr, ivusb, temp, flags, gpio)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
encoder

	

	
flags

	

	
gpio

	

	
ivpwr

	

	
ivusb

	

	
position

	

	
scmd

	

	
senc

	

	
smov

	

	
speed

	

	
spwr

	

	
swnd

	

	
temp

	

	
class pylablib.devices.Standa.base.TMoveParams(speed, accel, decel, antiplay)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
accel

	

	
antiplay

	

	
decel

	

	
speed

	

	
class pylablib.devices.Standa.base.TPowerParams(hold_current, reduct_enabled, reduct_delay, off_enabled, off_delay, ramp_enabled, ramp_time)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
hold_current

	

	
off_delay

	

	
off_enabled

	

	
ramp_enabled

	

	
ramp_time

	

	
reduct_delay

	

	
reduct_enabled

	

	
class pylablib.devices.Standa.base.Standa8SMC(conn)

	Bases: ICommBackendWrapper, IStage

Generic Standa 8SMC4/8SMC5 controller device.

	Parameters:

	conn – serial connection parameters (usually port, a tuple containing port and baudrate,
or a tuple with full specification such as ("COM1", 115200, 8, 'N', 2))

	
Error

	alias of StandaError

	
query(cmd, data=b'', retlen=None)

	

	
pquery(cmd, *args)

	

	
get_engine_type()

	Get engine and driver type

	
get_stepper_motor_calibration()

	Get stepper motor calibration parameters.

Return tuple (steps_per_rev, usteps_per_step).

	
get_status()

	Get device status.

Return tuple (smov, scmd, spwr, senc, swnd, position, encoder, speed, ivpwr, ivusb, temp, flags, gpio)
with the moving state (whether motor is moving, reached speed, etc.), command state (last issued command and its status),
power state, encoder state, winding state (currently not used), step position, encoder position, current speed,
current and voltage of the power supply, current and voltage of the USB source, temperature (in C), and additional state and GPIO flags.

	
is_moving()

	Check if the motor is moving

	
wait_move(timeout=None)

	Wait until motion is done

	
get_position()

	Return step position (in steps for a DC motor, in microsteps for a stepper motor)

	
get_encoder()

	Return encoder position

	
set_position_reference(position=0)

	Set position reference (in steps for a DC motor, in microsteps for a stepper motor).

Actual motor position stays the same.

	
set_encoder_reference(position=0)

	Set encoder reference.

Actual motor position stays the same.

	
move_to(position)

	Move to the given position (in steps for a DC motor, in microsteps for a stepper motor)

	
move_by(distance)

	Move by the given distance (in steps for a DC motor, in microsteps for a stepper motor)

	
stop(immediate=False)

	

	
power_off(stop='soft')

	

	
jog(direction)

	Start moving in a given direction ("+" or "-")

	
home(sync=True, timeout=30.0)

	Home the motor.

If sync==True, wait until the homing is complete, or until timeout expires.

	
get_move_parameters()

	Get moving parameters.

Return tuple (speed, accel, decel, antiplay).

	
setup_move(speed=None, accel=None, decel=None, antiplay=None)

	Setup moving parameters.

If any parameter is None, use the current value.

	
get_power_parameters()

	Get power parameters.

Return tuple (hold_current, reduct_enabled, reduct_delay, off_enabled, off_delay, ramp_enabled, ramp_time).

	
setup_power(hold_current=None, reduct_enabled=None, reduct_delay=None, off_enabled=None, off_delay=None, ramp_enabled=None, ramp_time=None)

	Setup power parameters.

If any parameter is None, use the current value.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Tektronix package

Submodules

pylablib.devices.Tektronix.base module

	
exception pylablib.devices.Tektronix.base.TektronixError

	Bases: DeviceError

Generic Tektronix devices error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Tektronix.base.TektronixBackendError(exc)

	Bases: TektronixError, DeviceBackendError

Generic Tektronix backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
pylablib.devices.Tektronix.base.muxchannel(*args, **kwargs)

	Multiplex the function over its channel argument

	
class pylablib.devices.Tektronix.base.TTriggerParameters(source, level, coupling, slope)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
coupling

	

	
level

	

	
slope

	

	
source

	

	
class pylablib.devices.Tektronix.base.ITektronixScope(addr, nchannels='auto')

	Bases: SCPIDevice

Generic Tektronix oscilloscope.

	Parameters:

	
	addr – device address; usually a VISA address string such as "USB0::0x0699::0x0364::C000000::INSTR"

	nchannels – can specify number of channels on the oscilloscope; by default, autodetect number of channels (might take several seconds on connection)

	
Error

	alias of TektronixError

	
ReraiseError

	alias of TektronixBackendError

	
get_channels_number()

	Get the number of channels

	
get_channels(only_main=False)

	Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

	
normalize_channel_name(channel)

	Normalize channel name as represented by the oscilloscope

	
grab_single(wait=True, software_trigger=False, wait_timeout=None)

	Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately.
if software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately regardless of the input).

	
wait_for_grabbing(timeout=None)

	Wait until the acquisition is complete

	
grab_continuous(enable=True)

	Start or stop continuous grabbing

	
stop_grabbing()

	Stop grabbing or waiting (equivalent to self.grab_continuous(False))

	
is_continuous()

	Check if grabbing is continuous or single

	
is_grabbing()

	Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False if the acquisition is stopped.
To check if the trigger has been triggered, use get_trigger_state().

	
get_edge_trigger_source()

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
set_edge_trigger_source(channel)

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
get_edge_trigger_coupling()

	Get edge trigger coupling ("ac" or "dc")

	
set_edge_trigger_coupling(coupling)

	Set edge trigger coupling ("ac" or "dc")

	
get_edge_trigger_slope()

	Get edge trigger slope ("fall" or "rise")

	
set_edge_trigger_slope(slope)

	Set edge trigger slope ("fall" or "rise")

	
get_trigger_level()

	Get edge trigger level (in Volts)

	
set_trigger_level(level)

	Set edge trigger level (in Volts)

	
setup_edge_trigger(source, level, coupling='dc', slope='rise')

	Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

	
get_trigger_mode()

	Get trigger mode.

Can be either "auto" or "norm".

	
set_trigger_mode(trigger_mode='auto')

	Set trigger mode.

Can be either "auto" or "norm".

	
get_trigger_state()

	Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger" (triggered, acquiring the rest of the waveform),
"auto" ("auto" mode trigger is acquiring data in the absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

	
force_trigger()

	Force trigger event

	
get_horizontal_span()

	Get horizontal span (in seconds)

	
set_horizontal_span(span)

	Set horizontal span (in seconds)

	
get_horizontal_offset()

	Get horizontal offset (position of the center of the sweep; in seconds)

	
set_horizontal_offset(offset=0.0)

	Set horizontal offset (position of the center of the sweep; in seconds)

	
get_vertical_span(channel)

	Get channel vertical span (in V)

	
set_vertical_span(channel, span)

	Set channel vertical span (in V)

	
get_vertical_position(channel)

	Get channel vertical position (offset of the zero volt line; in V)

	
set_vertical_position(channel, position)

	Set channel vertical position (offset of the zero volt line; in V)

	
is_channel_enabled(channel)

	Check if channel is enabled

	
enable_channel(channel, enabled=True)

	Enable or disable given channel

	
get_selected_channel()

	Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

	
select_channel(channel)

	Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

	
get_coupling(channel)

	Get channel coupling.

Can be "ac", "dc", or "gnd".

	
set_coupling(channel, coupling='dc')

	Set channel coupling.

Can be "ac", "dc", or "gnd".

	
get_probe_attenuation(channel)

	Get channel probe attenuation

	
set_probe_attenuation(channel, attenuation)

	Set channel probe attenuation

	
get_points_number(kind='send')

	Get number of datapoints in various context.

kind defines the context.
It can be "acq" (number of points acquired),
"trace" (number of points in the source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source is not a channel data),
or "send" (number of points in the sent waveform; can be lower than "trace" if get_data_pts_range() is used to specify and incomplete range).
Not all kinds are defined for all scope model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

	
set_points_number(pts_num, reset_limits=True)

	Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range.
The actual set value (returned by this method) can be different from the requested value.

	
get_data_pts_range()

	Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

	
set_data_pts_range(rng=None)

	Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number() with kind="acq").
If rng is None, set the full range.

	
set_data_format(fmt='default')

	Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

	
get_data_format()

	Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

	
get_wfmpre(channel=None, enable=True)

	Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

Can be acquired once and used in subsequent multiple reads to save time on re-requesting.
If channel is None, use the currently selected channel.
If enable==True, make sure that the requested channel is enabled; getting preamble for disabled channels raises an error.

	
read_raw_data(channel=None, fmt=None, timeout=None)

	Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default",
which uses the default oscilloscope format (usually binary with smallest appropriate byte size).
If fmt is None, use the current format.
If channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

	
read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None, return_wfmpres=None)

	Read data from a multiple channels channel.

	Parameters:

	
	channels – list of channel indices or names

	wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can be used for further sweep readouts.

	
read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)

	Read data from a single channel.

	Parameters:

	
	channel – channel index or name

	wfmpre – optional preamble dictionary (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Tektronix.base.TDS2000(addr, nchannels='auto')

	Bases: ITektronixScope

Tektronix TDS2000 series oscilloscope.

	Parameters:

	
	addr – device address; usually a VISA address string such as "USB0::0x0699::0x0364::C000000::INSTR"

	nchannels – can specify number of channels on the oscilloscope; by default, autodetect number of channels (might take several seconds on connection)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of TektronixError

	
ReraiseError

	alias of TektronixBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_channel(channel, enabled=True)

	Enable or disable given channel

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
force_trigger()

	Force trigger event

	
static get_arg_type(arg)

	Autodetect argument type

	
get_channels(only_main=False)

	Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

	
get_channels_number()

	Get the number of channels

	
get_coupling(channel)

	Get channel coupling.

Can be "ac", "dc", or "gnd".

	
get_data_format()

	Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

	
get_data_pts_range()

	Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_edge_trigger_coupling()

	Get edge trigger coupling ("ac" or "dc")

	
get_edge_trigger_slope()

	Get edge trigger slope ("fall" or "rise")

	
get_edge_trigger_source()

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_horizontal_offset()

	Get horizontal offset (position of the center of the sweep; in seconds)

	
get_horizontal_span()

	Get horizontal span (in seconds)

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_points_number(kind='send')

	Get number of datapoints in various context.

kind defines the context.
It can be "acq" (number of points acquired),
"trace" (number of points in the source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source is not a channel data),
or "send" (number of points in the sent waveform; can be lower than "trace" if get_data_pts_range() is used to specify and incomplete range).
Not all kinds are defined for all scope model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

	
get_probe_attenuation(channel)

	Get channel probe attenuation

	
get_selected_channel()

	Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_level()

	Get edge trigger level (in Volts)

	
get_trigger_mode()

	Get trigger mode.

Can be either "auto" or "norm".

	
get_trigger_state()

	Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger" (triggered, acquiring the rest of the waveform),
"auto" ("auto" mode trigger is acquiring data in the absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

	
get_vertical_position(channel)

	Get channel vertical position (offset of the zero volt line; in V)

	
get_vertical_span(channel)

	Get channel vertical span (in V)

	
get_wfmpre(channel=None, enable=True)

	Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

Can be acquired once and used in subsequent multiple reads to save time on re-requesting.
If channel is None, use the currently selected channel.
If enable==True, make sure that the requested channel is enabled; getting preamble for disabled channels raises an error.

	
grab_continuous(enable=True)

	Start or stop continuous grabbing

	
grab_single(wait=True, software_trigger=False, wait_timeout=None)

	Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately.
if software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately regardless of the input).

	
is_channel_enabled(channel)

	Check if channel is enabled

	
is_continuous()

	Check if grabbing is continuous or single

	
is_grabbing()

	Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False if the acquisition is stopped.
To check if the trigger has been triggered, use get_trigger_state().

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
normalize_channel_name(channel)

	Normalize channel name as represented by the oscilloscope

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None, return_wfmpres=None)

	Read data from a multiple channels channel.

	Parameters:

	
	channels – list of channel indices or names

	wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can be used for further sweep readouts.

	
read_raw_data(channel=None, fmt=None, timeout=None)

	Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default",
which uses the default oscilloscope format (usually binary with smallest appropriate byte size).
If fmt is None, use the current format.
If channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

	
read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)

	Read data from a single channel.

	Parameters:

	
	channel – channel index or name

	wfmpre – optional preamble dictionary (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_channel(channel)

	Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

	
set_coupling(channel, coupling='dc')

	Set channel coupling.

Can be "ac", "dc", or "gnd".

	
set_data_format(fmt='default')

	Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

	
set_data_pts_range(rng=None)

	Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number() with kind="acq").
If rng is None, set the full range.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_edge_trigger_coupling(coupling)

	Set edge trigger coupling ("ac" or "dc")

	
set_edge_trigger_slope(slope)

	Set edge trigger slope ("fall" or "rise")

	
set_edge_trigger_source(channel)

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
set_horizontal_offset(offset=0.0)

	Set horizontal offset (position of the center of the sweep; in seconds)

	
set_horizontal_span(span)

	Set horizontal span (in seconds)

	
set_points_number(pts_num, reset_limits=True)

	Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range.
The actual set value (returned by this method) can be different from the requested value.

	
set_probe_attenuation(channel, attenuation)

	Set channel probe attenuation

	
set_trigger_level(level)

	Set edge trigger level (in Volts)

	
set_trigger_mode(trigger_mode='auto')

	Set trigger mode.

Can be either "auto" or "norm".

	
set_vertical_position(channel, position)

	Set channel vertical position (offset of the zero volt line; in V)

	
set_vertical_span(channel, span)

	Set channel vertical span (in V)

	
setup_edge_trigger(source, level, coupling='dc', slope='rise')

	Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

	
sleep(delay)

	Wait for delay seconds

	
stop_grabbing()

	Stop grabbing or waiting (equivalent to self.grab_continuous(False))

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_for_grabbing(timeout=None)

	Wait until the acquisition is complete

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Tektronix.base.DPO2000(addr, nchannels='auto')

	Bases: ITektronixScope

Tektronix DPO2000 series oscilloscope.

	Parameters:

	
	addr – device address; usually a VISA address string such as "USB0::0x0699::0x0364::C000000::INSTR"

	nchannels – can specify number of channels on the oscilloscope; by default, autodetect number of channels (might take several seconds on connection)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of TektronixError

	
ReraiseError

	alias of TektronixBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_channel(channel, enabled=True)

	Enable or disable given channel

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
force_trigger()

	Force trigger event

	
static get_arg_type(arg)

	Autodetect argument type

	
get_channels(only_main=False)

	Get the list of all input channels (if only_main==True) or all available channels (if only_main==False)

	
get_channels_number()

	Get the number of channels

	
get_coupling(channel)

	Get channel coupling.

Can be "ac", "dc", or "gnd".

	
get_data_format()

	Get data transfer format.

Return a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").

	
get_data_pts_range()

	Get range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number()).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_edge_trigger_coupling()

	Get edge trigger coupling ("ac" or "dc")

	
get_edge_trigger_slope()

	Get edge trigger slope ("fall" or "rise")

	
get_edge_trigger_source()

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_horizontal_offset()

	Get horizontal offset (position of the center of the sweep; in seconds)

	
get_horizontal_span()

	Get horizontal span (in seconds)

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_points_number(kind='send')

	Get number of datapoints in various context.

kind defines the context.
It can be "acq" (number of points acquired),
"trace" (number of points in the source of the read-out trace; can be lower than "acq" if the data resolution is reduced, or if the source is not a channel data),
or "send" (number of points in the sent waveform; can be lower than "trace" if get_data_pts_range() is used to specify and incomplete range).
Not all kinds are defined for all scope model (e.g., "trace" is not defined for TDS2000 series oscilloscopes).

For length of read-out trace, see also get_data_pts_range().

	
get_probe_attenuation(channel)

	Get channel probe attenuation

	
get_selected_channel()

	Get selected source channel.

Return number if it is a real channel, or a string name otherwise.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_trigger_level()

	Get edge trigger level (in Volts)

	
get_trigger_mode()

	Get trigger mode.

Can be either "auto" or "norm".

	
get_trigger_state()

	Get trigger state.

Can be "armed" (acquiring pretrigger), "ready" (pretrigger acquired, wait for trigger event), "trigger" (triggered, acquiring the rest of the waveform),
"auto" ("auto" mode trigger is acquiring data in the absence of trigger), "save" (acquisition is stopped), or "scan" (oscilloscope in the scan mode)

	
get_vertical_position(channel)

	Get channel vertical position (offset of the zero volt line; in V)

	
get_vertical_span(channel)

	Get channel vertical span (in V)

	
get_wfmpre(channel=None, enable=True)

	Get preamble dictionary describing all scaling and format data for the given channel or a list of channels.

Can be acquired once and used in subsequent multiple reads to save time on re-requesting.
If channel is None, use the currently selected channel.
If enable==True, make sure that the requested channel is enabled; getting preamble for disabled channels raises an error.

	
grab_continuous(enable=True)

	Start or stop continuous grabbing

	
grab_single(wait=True, software_trigger=False, wait_timeout=None)

	Set single waveform grabbing and wait for acquisition.

If wait==True, wait until the acquisition is complete; otherwise, return immediately.
if software_trigger==True, send the software trigger after setup (i.e., the device triggers immediately regardless of the input).

	
is_channel_enabled(channel)

	Check if channel is enabled

	
is_continuous()

	Check if grabbing is continuous or single

	
is_grabbing()

	Check if acquisition is in progress.

Return True if the oscilloscope is recording data, or if the trigger is armed/ready and waiting; return False if the acquisition is stopped.
To check if the trigger has been triggered, use get_trigger_state().

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
normalize_channel_name(channel)

	Normalize channel name as represented by the oscilloscope

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
read_multiple_sweeps(channels, wfmpres=None, ensure_fmt=False, timeout=None, return_wfmpres=None)

	Read data from a multiple channels channel.

	Parameters:

	
	channels – list of channel indices or names

	wfmpres – optional list or dictionary of preambles (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	return_wfmpres – if True, return tuple (sweeps, wfmpres), where wfmpres can be used for further sweep readouts.

	
read_raw_data(channel=None, fmt=None, timeout=None)

	Request, read and parse raw data at a given channel.

fmt is data format (e.g., "i1", "<i2", or "ascii") or "default",
which uses the default oscilloscope format (usually binary with smallest appropriate byte size).
If fmt is None, use the current format.
If channel is None, use the currently selected channel.

Returned data is raw (i.e., not scaled and without x axis).

	
read_sweep(channel, wfmpre=None, ensure_fmt=True, timeout=None)

	Read data from a single channel.

	Parameters:

	
	channel – channel index or name

	wfmpre – optional preamble dictionary (obtained using get_wfmpre());
if it is None, obtain during reading, which slows down the data acquisition a bit

	ensure_fmt – if True, make sure that oscilloscope data format agrees with the one in wfmpre

	timeout – read timeout

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
select_channel(channel)

	Select a channel to read data.

Doesn’t need to be called explicitly, if read_multiple_sweeps() or read_sweep() are used.

	
set_coupling(channel, coupling='dc')

	Set channel coupling.

Can be "ac", "dc", or "gnd".

	
set_data_format(fmt='default')

	Set data transfer format.

fmt is a string describing the format; can be either "ascii", or a numpy-style format string (e.g., "<u2").
If "default", use the oscilloscope default format (usually binary with smallest appropriate byte size).

	
set_data_pts_range(rng=None)

	Set range of data points to read.

The range is defined from 1 to the points number (returned by get_points_number() with kind="acq").
If rng is None, set the full range.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_edge_trigger_coupling(coupling)

	Set edge trigger coupling ("ac" or "dc")

	
set_edge_trigger_slope(slope)

	Set edge trigger slope ("fall" or "rise")

	
set_edge_trigger_source(channel)

	Get edge trigger source.

Can be an integer indicating channel number or a name of a special channel.

	
set_horizontal_offset(offset=0.0)

	Set horizontal offset (position of the center of the sweep; in seconds)

	
set_horizontal_span(span)

	Set horizontal span (in seconds)

	
set_points_number(pts_num, reset_limits=True)

	Set number of datapoints to record when acquiring a trace.

If reset_limits==True, reset the datapoints range (set_data_pts_range()) to the full range.
The actual set value (returned by this method) can be different from the requested value.

	
set_probe_attenuation(channel, attenuation)

	Set channel probe attenuation

	
set_trigger_level(level)

	Set edge trigger level (in Volts)

	
set_trigger_mode(trigger_mode='auto')

	Set trigger mode.

Can be either "auto" or "norm".

	
set_vertical_position(channel, position)

	Set channel vertical position (offset of the zero volt line; in V)

	
set_vertical_span(channel, span)

	Set channel vertical span (in V)

	
setup_edge_trigger(source, level, coupling='dc', slope='rise')

	Setup edge trigger.

Set source, level, coupling and slope (see corresponding methods for details).

	
sleep(delay)

	Wait for delay seconds

	
stop_grabbing()

	Stop grabbing or waiting (equivalent to self.grab_continuous(False))

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_for_grabbing(timeout=None)

	Wait until the acquisition is complete

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.Thorlabs package

Submodules

pylablib.devices.Thorlabs.TLCamera module

	
class pylablib.devices.Thorlabs.TLCamera.LibraryController(lib)

	Bases: LibraryController

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
get_opened_num()

	Get number of opened devices

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
shutdown()

	Close all opened connections and shutdown the library

	
temp_open()

	Context for temporarily opening a new device connection

	
pylablib.devices.Thorlabs.TLCamera.list_cameras()

	List connected TLCamera cameras

	
pylablib.devices.Thorlabs.TLCamera.get_cameras_number()

	Get number of connected TLCamera cameras

	
class pylablib.devices.Thorlabs.TLCamera.TDeviceInfo(model, name, serial_number, firmware_version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
firmware_version

	

	
model

	

	
name

	

	
serial_number

	

	
class pylablib.devices.Thorlabs.TLCamera.TSensorInfo(sensor_type, bit_depth)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
bit_depth

	

	
sensor_type

	

	
class pylablib.devices.Thorlabs.TLCamera.TColorInfo(filter_array_phase, correction_matrix, default_white_balance_matrix)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
correction_matrix

	

	
default_white_balance_matrix

	

	
filter_array_phase

	

	
class pylablib.devices.Thorlabs.TLCamera.TColorFormat(color_format, color_space)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
color_format

	

	
color_space

	

	
class pylablib.devices.Thorlabs.TLCamera.TFrameInfo(frame_index, framestamp, pixelclock, pixeltype, offset)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
framestamp

	

	
offset

	

	
pixelclock

	

	
pixeltype

	

	
class pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera(serial=None)

	Bases: IBinROICamera, IExposureCamera

Thorlabs TSI camera.

	Parameters:

	serial (str [https://docs.python.org/3/library/stdtypes.html#str]) – camera serial number; can be either a string obtained using list_cameras() function,
or None, which means connecting to the first available camera (not recommended unless only one camera is connected)

	
Error = <Mock name='mock.ThorlabsTLCameraError' id='139822070864208'>

	

	
TimeoutError = <Mock spec='str' id='139822070079568'>

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera model data.

Return tuple (model, name, serial_number, firmware_version).

	
get_sensor_info()

	Get camera sensor info.

Return tuple (sensor_type, bit_depth), where sensor type is "mono", "bayer", or "mono_pol",
and bit depth is an integer.

	
get_color_info()

	Get camera color info.

Return tuple (filter_array_phase, correction_matrix, default_white_balance_matrix), or None if the sensor type is not "bayer".

	
get_white_balance_matrix()

	Get the white balance matrix

	
set_white_balance_matrix(matrix=None)

	Set the white balance matrix.

Can be None (the default matrix), a 3-number 1D array (multipliers for RGB), or a full 3x3 matrix.

	
set_color_format(color_output='auto', color_space='linear')

	Set camera color format.

color_output determines the output frame format, and can be "raw" (raw pixel values without debayering),
"rgb" (color images with the color corresponding to the last array axis), "grayscale" (average of the colored images),
or "auto" ("rgb" for cameras supporting color and "raw" otherwise). Note that setting "rgb" for monochrome cameras is not allowed.
color_space defines the output color space, and can be "linear" (linear in the pixel values),
or "srgb" (sRGB color space, which is a non-linear transformation of the linear values).

	
get_color_format()

	Get camera color format as a tuple (color_output, color_space)

	
class RingBuffer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frames ring buffer.

Reacts to each new frame and stores it in the internal buffer.

	
reset()

	Reset buffer and internal counters

	
setup(buffsize, frame_dim)

	Setup a new buffer with the given maximal number of frames and frame dimensions

	
cleanup()

	Cleanup the buffer

	
new_frame(handle, buffer, idx, metadata, metadata_size, context)

	Callback for receiving a new frame

	
wait_for_frame(idx=None, timeout=None)

	Wait for a new frame acquisition

	
get_frame(idx)

	Get the frame with the given index (or None if it is outside the buffer range)

	
get_status()

	Get buffer status (acquired, missed, stored)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_period_range()

	Get minimal and maximal frame period (s)

	
set_frame_period(frame_period)

	Set camera frame period.

If it is 0 or None, set to the auto-rate mode, which automatically selects the highest frame rate.

	
get_trigger_mode()

	Get trigger mode.

Can be "int" (internal/software), "ext" (external/hardware), or "bulb" (bulb trigger).

	
set_trigger_mode(mode)

	Set trigger mode.

Can be "int" (internal/software), "ext" (external/hardware), or "bulb" (bulb trigger).

	
get_ext_trigger_parameters()

	Return external trigger polarity

	
setup_ext_trigger(polarity)

	Setup external trigger polarity ("rise" or "fall")

	
send_software_trigger()

	Send software trigger signal

	
get_pixel_correction_parameters()

	Return pixel correction parameters (enabled, threshold)

	
setup_pixel_correction(enable=True, threshold=None)

	Enable or disable hotpixel correction and set its threshold (None means keep unchanged)

	
get_gain_range()

	Return the available gain range (in dB)

	
get_gain()

	Return the current gain (in dB)

	
set_gain(gain, truncate=True)

	Set the current gain (in dB).

If truncate==True, truncate the value to lie within the allowed range; otherwise, out-of-range values cause an error.

	
get_black_level_range()

	Return the available black level range

	
get_black_level()

	Return the current black level

	
set_black_level(level, truncate=True)

	Set the current black level.

If truncate==True, truncate the value to lie within the allowed range; otherwise, out-of-range values cause an error.

	
is_nir_boost_enabled()

	Check if NIR boost is enabled

	
enable_nir_boost(enable=True)

	Enable or disable NIR boost

	
is_cooling_enabled()

	Check if cooling is enabled

	
enable_cooling(enable=True)

	Enable or disable cooling

	
is_led_enabled()

	Check if led is enabled

	
enable_led(enable=True)

	Enable or disable led

	
get_timestamp_clock_frequency()

	Return frequency of the frame timestamp clock (in Hz)

	
setup_acquisition(nframes=100)

	Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(frames_per_trigger='default', auto_start=True, nframes=None)

	Start camera acquisition.

	Parameters:

	
	frames_per_trigger – number of frames to acquire per trigger (software of hardware); None means unlimited number;
by default, set to None for software trigger (i.e., run until stopped), and 1 for hardware trigger (i.e., one frame per trigger pulse)

	auto_start – if True and the trigger is set into software mode, automatically start recording;
otherwise, only start recording when send_software_trigger() is called explicitly;
this value is meaningless in the hardware or bulb trigger mode

	nframes – number of frames in the ring buffer

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index and frame metadata, which contains framestamp, pixel clock, pixel format, and pixel offset;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
FrameTransferError

	alias of DefaultFrameTransferError

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_exposure()

	Get current exposure

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

pylablib.devices.Thorlabs.base module

	
exception pylablib.devices.Thorlabs.base.ThorlabsError

	Bases: DeviceError

Generic Thorlabs error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Thorlabs.base.ThorlabsBackendError(exc)

	Bases: ThorlabsError, DeviceBackendError

Thorlabs backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Thorlabs.base.ThorlabsTimeoutError

	Bases: ThorlabsError

Thorlabs timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Thorlabs.elliptec module

	
pylablib.devices.Thorlabs.elliptec.muxaddr(*args, argname='addr', **kwargs)

	Multiplex the function over its addr argument

	
class pylablib.devices.Thorlabs.elliptec.TDeviceInfo(serial_no, model_no, year, fw_ver, hw_ver, travel, pulse)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
fw_ver

	

	
hw_ver

	

	
model_no

	

	
pulse

	

	
serial_no

	

	
travel

	

	
year

	

	
class pylablib.devices.Thorlabs.elliptec.TMotorInfo(loop, motor, current, ramp_up, ramp_down, fw_freq, bk_freq)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
bk_freq

	

	
current

	

	
fw_freq

	

	
loop

	

	
motor

	

	
ramp_down

	

	
ramp_up

	

	
class pylablib.devices.Thorlabs.elliptec.ElliptecMotor(conn, addrs='all', default_addr=None, scale='stage', timeout=3.0, valid_status=('ok', 'mech_timeout'))

	Bases: ICommBackendWrapper

Basic Elliptec stage device.

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	addrs – list of device addresses (between 0 and 15) connected to this serial port; if "all", automatically detect all connected devices

	default_addr – address used by default when not supplied; by default, use the first address among the connected

	scale – scale of the position units to the internals units;
can be "stage" (use stage units such as mm or deg based on its internal calibration),
"step" (directly use step units), or a number which multiplies user-supplied units to produce steps

	timeout – default communication timeout

	valid_status – status which are considered valid and do not raise an error on status check

	
Error

	alias of ThorlabsError

	
get_connected_addrs()

	Get a list of all connected device addresses

	
get_default_addr()

	Get the current default address

	
set_default_addr(addr)

	Set the current default address

	
using_default_addr(addr)

	Context manager which temporarily changes the default address

	
send_comm(comm, data='', addr=None)

	Send a message with the given data to the devices at a given address.

For details, see ELLx communications protocol.

	
class CommData(comm, data, addr)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
addr

	

	
comm

	

	
data

	

	
recv_comm(comm=None, addr=None, datalen='auto', timeout=None)

	Receive a message.

comm, addr, and datalen can specify the expected return command, address, or the length of the data field
(if "auto", determine based on the return command).
timeout specifies the waiting timeout (by default, same as supplied upon the device connection).

For details, see ELLx communications protocol.

	
query(comm, data='', addr=None, reply_comm=None, reply_addr='auto', reply_datalen='auto', timeout=None)

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().

	
add_background_comm(comm)

	Mark given comm as a ‘background’ message, which can be sent by the device at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm or query operations, it is ignored, and the corresponding counter is increased.

	
check_background_comm(comm, addr=None)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message received from the given address

	
change_addr(newaddr, addr=None)

	Change the device address to a new value (between 0 and 15)

	
store_parameters(addr=None)

	Store current device parameters (e.g., frequencies) to the energy-independent memory

	
get_device_info(addr=None)

	Get device info.

Return tuple (serial_no, model_no, year, fw_ver, hw_ver, travel, pulse).

	
get_status(addr=None)

	Get device status

	
get_motor_info(motor=1, addr=None)

	Get info for a given motor (between 1 and 3).

Return tuple (loop_ena, motor_ena, current, ramp_up, ramp_down, fw_freq, bk_freq).

	
get_scale(addr=None)

	Get scale parameter for the specified address.

Can be "stage", "step", or a proportionality coefficient.

	
set_scale(scale, addr=None)

	Set scale parameter for the specified address.

Can be "stage", "step", or a proportionality coefficient.

	
home(home_dir='cw', paddles='all', addr=None)

	Home the device.

The operation is synchronous, i.e., it will not finish until the homing is done.
If the device is a rotary stage, then home_dir specifies homing direction ("cw" or "ccw").
If the device is a paddle polarization controller, then paddles is a list of all paddle indices (1 to 3) to home ("all" is the same as [1,2,3]).

	
get_home_offset(addr=None)

	Get homing offset

	
set_home_offset(offset, addr=None)

	Set homing offset (note: the manufacturer advises against it)

	
get_velocity(addr=None)

	Get velocity as a percentage from the maximal velocity (0 to 100)

	
set_velocity(velocity=100, addr=None)

	Set velocity as a percentage from the maximal velocity (0 to 100)

	
get_frequency(motor=1, addr=None)

	Get frequencies at a given motor as a tuple (fw_freq, bk_freq)

	
set_frequency(fw_freq=None, bk_freq=None, motor=1, addr=None)

	Set frequencies at a given motor.

Values set as None stay the same.

	
search_frequency(motor=1, addr=None)

	Run the automated frequency search on a given motor.

The position might change slightly throughout the process.

	
get_position(addr=None)

	Get the current position

	
move_to(position, addr=None, timeout=30.0)

	Move to the given position.

The operation is synchronous, i.e., it will not finish until the motion is stopped.
Return True if the position was reached successfully or False otherwise.

	
move_by(distance, addr=None, timeout=30.0)

	Move by the given distance.

The operation is synchronous, i.e., it will not finish until the motion is stopped.
Return True if the position was reached successfully or False otherwise.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

pylablib.devices.Thorlabs.kinesis module

	
pylablib.devices.Thorlabs.kinesis.list_kinesis_devices(filter_ids=True)

	List all Thorlabs APT/Kinesis devices connected to this PC.

	Return list of tuples (conn, description).
	If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
class pylablib.devices.Thorlabs.kinesis.TDeviceInfo(serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
fw_ver

	

	
hw_type

	

	
hw_ver

	

	
mod_state

	

	
model_no

	

	
nchannels

	

	
notes

	

	
serial_no

	

	
class pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice(conn, timeout=3.0, is_rack_system=False)

	Bases: ICommBackendWrapper

Generic Kinesis device.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

	Parameters:

	
	conn – serial connection parameters (usually an 8-digit device serial number).

	is_rack_system – specify whether the device is a rack system or a standalone USB device (default mode).

	
Error

	alias of ThorlabsError

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
class CommShort(messageID, param1, param2, source, dest)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
dest

	

	
messageID

	

	
param1

	

	
param2

	

	
source

	

	
class CommData(messageID, data, source, dest)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
data

	

	
dest

	

	
messageID

	

	
source

	

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_number_of_channels()

	Get number of channels on the device

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.Thorlabs.kinesis.TVelocityParams(min_velocity, acceleration, max_velocity)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acceleration

	

	
max_velocity

	

	
min_velocity

	

	
class pylablib.devices.Thorlabs.kinesis.TJogParams(mode, step_size, min_velocity, acceleration, max_velocity, stop_mode)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acceleration

	

	
max_velocity

	

	
min_velocity

	

	
mode

	

	
step_size

	

	
stop_mode

	

	
class pylablib.devices.Thorlabs.kinesis.TGenMoveParams(backlash_distance)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
backlash_distance

	

	
class pylablib.devices.Thorlabs.kinesis.THomeParams(home_direction, limit_switch, velocity, offset_distance)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
home_direction

	

	
limit_switch

	

	
offset_distance

	

	
velocity

	

	
class pylablib.devices.Thorlabs.kinesis.TPolCtlParams(velocity, home_position, jog1, jog2, jog3)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
home_position

	

	
jog1

	

	
jog2

	

	
jog3

	

	
velocity

	

	
class pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams(hw_kind_cw, hw_kind_ccw, hw_swapped, sw_position_cw, sw_position_ccw, sw_kind)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
hw_kind_ccw

	

	
hw_kind_cw

	

	
hw_swapped

	

	
sw_kind

	

	
sw_position_ccw

	

	
sw_position_cw

	

	
class pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams(trig1_mode, trig1_pol, trig2_mode, trig2_pol)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
trig1_mode

	

	
trig1_pol

	

	
trig2_mode

	

	
trig2_pol

	

	
class pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams(start_fw, step_fw, num_fw, start_bk, step_bk, num_bk, width, ncycles)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
ncycles

	

	
num_bk

	

	
num_fw

	

	
start_bk

	

	
start_fw

	

	
step_bk

	

	
step_fw

	

	
width

	

	
class pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams(max_voltage, velocity, acceleration)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acceleration

	

	
max_voltage

	

	
velocity

	

	
class pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams(mode, step_size_fw, step_size_bk, velocity, acceleration)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acceleration

	

	
mode

	

	
step_size_bk

	

	
step_size_fw

	

	
velocity

	

	
pylablib.devices.Thorlabs.kinesis.muxchannel(*args, **kwargs)

	

	
class pylablib.devices.Thorlabs.kinesis.KinesisDevice(conn, timeout=3.0, default_channel=1, is_rack_system=False)

	Bases: IMultiaxisStage, BasicKinesisDevice

Overarching Kinesis class containing all of the necessary private methods.

Subclasses are expected to make some of them visible by renaming, and to define device variables and opening behavior accordingly.

	Parameters:

	
	conn – serial connection parameters (usually an 8-digit device serial number).

	timeout – device communication timeout.

	default_channel – starting default channel used when no channel is supplied to a channel-level command (such as move_to or get_position).

	is_rack_system – specify whether the device is a rack system or a standalone USB device (default mode).

	
get_all_channels()

	Get the list of all available channels; alias of get_all_axes method

	
set_default_channel(channel)

	Set the default channel for all channel-related methods

	
using_channel(channel)

	Context manager for temporarily using a different default channel

	
status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8, 'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128, 'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048, 'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'), (32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144, 'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152, 'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'), (33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728, 'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824, 'error'), (2147483648, 'enabled')]

	

	
Error

	alias of ThorlabsError

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
close()

	Close the backend

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_number_of_channels()

	Get number of channels on the device

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
class pylablib.devices.Thorlabs.kinesis.TFlipperParameters(transit_time, io1_oper_mode, io1_sig_mode, io1_pulse_width, io2_oper_mode, io2_sig_mode, io2_pulse_width)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
io1_oper_mode

	

	
io1_pulse_width

	

	
io1_sig_mode

	

	
io2_oper_mode

	

	
io2_pulse_width

	

	
io2_sig_mode

	

	
transit_time

	

	
class pylablib.devices.Thorlabs.kinesis.MFF(conn)

	Bases: KinesisDevice

MFF (Motorized Filter Flip Mount) device.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

	Parameters:

	conn – serial connection parameters (usually 8-digit device serial number).

	
get_status_n(channel=None)

	Get numerical status of the device.

For details, see APT communications protocol.

	
get_status(channel=None)

	Get device status.

Return list of status strings, which can include "hw_fw_lim" (forward hardware limit switch reached), "hw_bk_lim" (backward hardware limit switch reached),
"sw_fw_lim" (forward software limit switch reached), "sw_bk_lim" (backward software limit switch reached),
"moving_fw" (moving forward), "moving_bk" (moving backward), "jogging_fw" (jogging forward), "jogging_bk" (jogging backward),
"connected" (motor is connected), "homing" (homing), "homed" (homing done), "initializing" (3-phase motor phase initialization),
"tracking" (position is within trajectory), "settled" (position has been stable),
"motion_error" (excessive position error), "instr_error" (legacy instrument command error), "interlock" (interlock is on), "overtemp" (temperature above limit),
"volt_supply_fault" (supply voltage is too low), "commutation_error" (3-phase motor commutation error),
"digio1" (state of digital input 1), "digio2" (state of digital input 2), "digio3" (state of digital input 3), "digio4" (state of digital input 4),
"current_limit" (motor current limit exceeded for a long time), "encoder_fault" (encoder problems), "overcurrent" (motor current limit exceeded temporarily),
"curr_supply_fault" (current drawn from supply is too high), "power_ok" (power is ok), "active" (moving), "error" (any error), "enabled" (motor is enabled).

	
wait_for_status(status, enabled, channel=None, timeout=None, period=0.05)

	Wait until the given status (or list of status bits) is in the desired state.

status is a string or a list of strings describing the status bits to monitor; for possible values, see get_status().
If enabled==True, wait until one of the given statuses is enabled; otherwise, wait until all given statuses are disabled.
period specifies status checking period (in s).

	
move_to_state(state, channel=None)

	Move to the given flip mount state (either 0 or 1)

	
get_state(channel=None)

	Get the flip mount state (either 0 or 1).

Return None if the mount is current moving (i.e., the state os undefined)

	
get_flipper_parameters(channel=None)

	Get current flipper parameters (transit_time, io1_oper_mode, io1_sig_mode, io1_pulse_width, io2_oper_mode, io2_sig_mode, io2_pulse_width)

transit_time specifies transit time (in seconds between 0.3 and 2.8);
io*_oper_mode specifies operation mode (in vs. out and position vs. motion input/indication),
io*_sig_mode specifies signal mode (button input, voltage edge input, edge output or pulse output).
io*_pulse_width specifies output pulse width if the corresponding output mode is selected.
For detailed mode description, see the flip mirror or APT manual.

	
setup_flipper(transit_time=None, io1_oper_mode=None, io1_sig_mode=None, io1_pulse_width=None, io2_oper_mode=None, io2_sig_mode=None, io2_pulse_width=None, channel=None)

	Set flipper parameters.

transit_time specifies transit time (in seconds between 0.3 and 2.8);
io*_oper_mode specifies operation mode (in vs. out and position vs. motion input/indication),
io*_sig_mode specifies signal mode (button input, voltage edge input, edge output or pulse output).
io*_pulse_width specifies output pulse width if the corresponding output mode is selected.
If any parameter is None, use the current value.
For detailed mode description, see the flip mirror or APT manual.

	
Error

	alias of ThorlabsError

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
close()

	Close the backend

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_all_channels()

	Get the list of all available channels; alias of get_all_axes method

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_number_of_channels()

	Get number of channels on the device

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
set_default_channel(channel)

	Set the default channel for all channel-related methods

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8, 'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128, 'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048, 'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'), (32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144, 'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152, 'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'), (33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728, 'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824, 'error'), (2147483648, 'enabled')]

	

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_channel(channel)

	Context manager for temporarily using a different default channel

	
class pylablib.devices.Thorlabs.kinesis.KinesisMotor(conn, scale='step', default_channel=1, is_rack_system=False)

	Bases: KinesisDevice

Thorlabs motor controller.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

The physical units are encoder steps for position (ratio to m or degrees depends on the connected stage),
steps/sec for velocity, and steps/sec^2 for acceleration.

	Parameters:

	
	conn (str [https://docs.python.org/3/library/stdtypes.html#str]) – serial connection parameters (usually an 8-digit device serial number).

	scale – scale of the position, velocity, and acceleration units to the internals units;
can be "stage" (attempt to autodetect motor and stage parameters),
a string with the name of the stage, e.g., "MTS50-Z8" or "DDR100"
(use the stage name to extract the scale; determine velocity and acceleration from this scale and the motor model),
"step" (use encoder/motor steps as units; determine velocity and acceleration from this scale and the motor model),
a single number (use this as the ratio of internal steps to physical units; determine velocity and acceleration from this scale and the motor model),
or a 3-tuple of numbers (position_scale, velocity_scale, acceleration_scale) which gives the ratio of internal units to physical units
(useful for new or unrecognized controllers or stages, as no autodetection is required);
in the case of unrecognized devices, use internal units (same as setting scale=(1,1,1));
if the scale can’t be autodetected, it can be obtained from the APT manual knowing the device and the stage model

	default_channel – starting default channel used when no channel is supplied to a channel-level command (such as move_to or get_position).

	is_rack_system – specify whether the device is a rack system or a standalone USB device (default mode).

	
get_scale()

	Get the scaling coefficients.

Return a tuple (position_scale, velocity_scale, acceleration_scale) for scaling of the physical units in terms of internal units.
To get the coefficients source and physical units, use get_scale_units().

	
get_scale_units()

	Get units used for calculating scaled position, velocity and acceleration values.

Can be "deg" (autodetected rotational stage: deg, deg/s and deg/s^2),
"m" (autodetected translational stage: m, m/sec and m/sec^2),
"step" (autodetected driver but not detected step scale: steps, steps/sec and steps/sec^2)
"user_step" (autodetected driver and user supplied step scale: user-supplied step scale for position,
same units per sec or sec^2 for velocity and acceleration), 'user" (all three scales are supplied by user),
or "internal" (no scales are supplied or detected, use device internal units)

	
get_stage()

	Return the name of the stage which was supplied by the usr or autodetected.

If the stake is unknown, return None

	
set_supported_channels(channels=1)

	Set the channels in the device.

Can be either a list of channels, a single number defining the number of channels numbered from 1 to channels (inclusive).

	
get_status_n(channel=None)

	Get numerical status of the device.

For details, see APT communications protocol.

	
get_status(channel=None)

	Get device status.

Return list of status strings, which can include "hw_fw_lim" (forward hardware limit switch reached), "hw_bk_lim" (backward hardware limit switch reached),
"sw_fw_lim" (forward software limit switch reached), "sw_bk_lim" (backward software limit switch reached),
"moving_fw" (moving forward), "moving_bk" (moving backward), "jogging_fw" (jogging forward), "jogging_bk" (jogging backward),
"connected" (motor is connected), "homing" (homing), "homed" (homing done), "initializing" (3-phase motor phase initialization),
"tracking" (position is within trajectory), "settled" (position has been stable),
"motion_error" (excessive position error), "instr_error" (legacy instrument command error), "interlock" (interlock is on), "overtemp" (temperature above limit),
"volt_supply_fault" (supply voltage is too low), "commutation_error" (3-phase motor commutation error),
"digio1" (state of digital input 1), "digio2" (state of digital input 2), "digio3" (state of digital input 3), "digio4" (state of digital input 4),
"current_limit" (motor current limit exceeded for a long time), "encoder_fault" (encoder problems), "overcurrent" (motor current limit exceeded temporarily),
"curr_supply_fault" (current drawn from supply is too high), "power_ok" (power is ok), "active" (moving), "error" (any error), "enabled" (motor is enabled).

	
wait_for_status(status, enabled, channel=None, timeout=None, period=0.05)

	Wait until the given status (or list of status bits) is in the desired state.

status is a string or a list of strings describing the status bits to monitor; for possible values, see get_status().
If enabled==True, wait until one of the given statuses is enabled; otherwise, wait until all given statuses are disabled.
period specifies status checking period (in s).

	
home(sync=True, force=False, channel=None, timeout=None)

	Home the device.

If sync==True, wait until homing is done (with the given timeout).
If force==False, only home if the device isn’t homed already.

	
is_homing(channel=None)

	Check if homing is in progress

	
is_homed(channel=None)

	Check if the device is homed

	
wait_for_home(channel=None, timeout=None)

	Wait until the device is homed

	
get_position(channel=None, scale=True)

	Get current position.

If scale==True, return value in the physical units (see class description); otherwise, return it in the device internal units (steps).

	
set_position_reference(position=0, channel=None, scale=True)

	Set position reference (actual motor position stays the same).

If scale==True, assume that the position is in the physical units (see class description); otherwise, assume it is in the device internal units (steps).

	
move_by(distance=1, channel=None, scale=True)

	Move by a given amount (positive or negative) from the current position.

If scale==True, assume that the distance is in the physical units (see class description); otherwise, assume it is in the device internal units (steps).

	
move_to(position, channel=None, scale=True)

	Move to position (positive or negative).

If scale==True, assume that the position is in the physical units (see class description); otherwise, assume it is in the device internal units (steps).

	
jog(direction, channel=None, kind='continuous')

	Jog in the given direction ("+" or "-").

If kind=="continuous", simply start motion in the given direction at the maximal speed
until either the motor is stopped explicitly, or the limit is reached (this uses MOT_MOVE_VELOCITY command).
If kind=="builtin", use the built-in MOT_MOVE_JOG command, whose parameters are specified by get_jog_parameters().

	
is_moving(channel=None)

	Check if motion is in progress

	
wait_move(channel=None, timeout=None)

	Wait until motion command is done

	
stop(immediate=False, sync=True, channel=None, timeout=None)

	Stop the motion.

If immediate==True make an abrupt stop; otherwise, slow down gradually.
If sync==True, wait until the motion is stopped.

	
wait_for_stop(channel=None, timeout=None)

	Wait until motion or homing is done

	
get_velocity_parameters(channel=None, scale=True)

	Get current velocity parameters (min_velocity, acceleration, max_velocity)

If scale==True, return values in the physical units (see class description); otherwise, return it in the device internal units.

	
setup_velocity(min_velocity=None, acceleration=None, max_velocity=None, channel=None, scale=True)

	Set velocity parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified values are in the physical units (see class description); otherwise, assume it is in the device internal units.

	
get_jog_parameters(channel=None, scale=True)

	Get current jog parameters (mode, step_size, min_velocity, acceleration, max_velocity, stop_mode)

If scale==True, return values in the physical units (see class description); otherwise, return it in the device internal units.

	
setup_jog(mode=None, step_size=None, min_velocity=None, acceleration=None, max_velocity=None, stop_mode=None, channel=None, scale=True)

	Set jog parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified values are in the physical units (see class description); otherwise, assume it is in the device internal units.

	
get_homing_parameters(channel=None, scale=True)

	Get current homing parameters (home_direction, limit_switch, velocity, offset_distance)

If scale==True, return values are in the physical units (see class description); otherwise, return it in the device internal units.

	
setup_homing(home_direction=None, limit_switch=None, velocity=None, offset_distance=None, channel=None, scale=True)

	Set homing parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified values are in the physical units (see class description); otherwise, assume it is in the device internal units.

	
get_gen_move_parameters(channel=None, scale=True)

	Get general move parameters parameters (backlash_distance)

If scale==True, return values in the physical units (see class description); otherwise, return it in the device internal units.

	
setup_gen_move(backlash_distance=None, channel=None, scale=True)

	Set jog parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified value is in the physical units (see class description); otherwise, assume it is in the device internal units.

	
get_limit_switch_parameters(channel=None, scale=True)

	Get current limit switch parameters (hw_kind_cw, hw_kind_ccw, hw_flipped, sw_position_cw, sw_position_ccw, sw_kind)

If scale==True, return values in the physical units (see class description); otherwise, return it in the device internal units (steps).

	
setup_limit_switch(hw_kind_cw=None, hw_kind_ccw=None, hw_swapped=None, sw_position_cw=None, sw_position_ccw=None, sw_kind=None, channel=None, scale=True)

	Set limit switch parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified values are in the physical units (see class description); otherwise, assume it is in the device internal units (Steps).

	
get_kcube_trigio_parameters()

	Get KCube trigger IO parameters (trig1_pol, trig1_pol, trig2_mode, trig2_pol)

	
setup_kcube_trigio(trig1_mode=None, trig1_pol=None, trig2_mode=None, trig2_pol=None)

	Set KCube trigger IO parameters.

If any parameter is None, use the current value.

	
get_kcube_trigpos_parameters(scale=True)

	Get KCube trigger position parameters (start_fw, step_fw, num_fw, start_bk, step_bk, num_bk, width, ncycles).

If scale==True, return positions and steps in the physical units (see class description); otherwise, return it in the device internal units (steps).
Pulse width is always defined in seconds.

	
setup_kcube_trigpos(start_fw=None, step_fw=None, num_fw=None, start_bk=None, step_bk=None, num_bk=None, width=None, ncycles=None, scale=True)

	Set KCube trigger IO parameters.

If any parameter is None, use the current value.

If scale==True, return positions and steps in the physical units (see class description); otherwise, return it in the device internal units (steps).
Pulse width is always defined in seconds.

	
get_polctl_parameters(scale=True)

	Get current polarizer controller parameters (velocity, home_position, jog1, jog2, jog3)

If scale==True, return values in the physical units (see class description); otherwise, return it in the device internal units.
velocity is always returned in percent units (0 to 100).

	
setup_polctl(velocity=None, home_position=None, jog1=None, jog2=None, jog3=None, scale=True)

	Set polarizer controller parameters.

If any parameter is None, use the current value.
If scale==True, assume that the specified values are in the physical units (see class description); otherwise, assume it is in the device internal units.
velocity is always set in percent units (0 to 100).

	
Error

	alias of ThorlabsError

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
close()

	Close the backend

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_all_channels()

	Get the list of all available channels; alias of get_all_axes method

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_number_of_channels()

	Get number of channels on the device

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
set_default_channel(channel)

	Set the default channel for all channel-related methods

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8, 'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128, 'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048, 'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'), (32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144, 'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152, 'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'), (33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728, 'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824, 'error'), (2147483648, 'enabled')]

	

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_channel(channel)

	Context manager for temporarily using a different default channel

	
class pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor(conn, default_channel=1)

	Bases: KinesisDevice

Thorlabs piezo motor (TIM/KIM series) controller.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

	Parameters:

	conn (str [https://docs.python.org/3/library/stdtypes.html#str]) – serial connection parameters (usually an 8-digit device serial number).

	
get_enabled_channels()

	Check which specific piezo motor channels are enabled.

Can be None (none enabled), or a tuple with either one or two channels:
(1,) to (4,), (1,2) or (3,4).

	
enable_channels(channel)

	Enable specific piezo motor channel.

Can be None (none enabled), and integer 1 to 4,
or a tuple (1,2) or (3,4) (enable 2 channel simultaneously).

	
get_status_n(channel=None)

	Get numerical status of the piezo motor.

For details, see APT communications protocol.

	
get_status(channel=None)

	Get piezo motor status.

Return list of status strings, which can include "sw_fw_lim" (forward limit switch reached), "sw_bk_lim" (backward limit switch reached),
"moving_fw" (moving forward), "moving_bk" (moving backward), "jogging_fw" (jogging forward), "jogging_bk" (jogging backward),
"homing" (homing), "homed" (homing done), "tracking", "settled",
"motion_error" (excessive position error), "current_limit" (motor current limit exceeded), or "enabled" (motor is enabled).

	
wait_for_status(status, enabled, timeout=None, period=0.05, channel=None)

	

	
get_position(channel=None)

	Get current piezo-motor position

	
set_position_reference(position=0, channel=None)

	Set piezo-motor position reference (actual position stays the same)

	
move_by(distance=1, auto_enable=True, channel=None)

	Move piezo-motor by a given distance (positive or negative)

	
move_to(position, auto_enable=True, channel=None)

	Move piezo-motor to position (positive or negative)

	
jog(direction, kind='continuous', auto_enable=True, channel=None)

	Jog piezo motor in the given direction ("+" or "-").

If kind=="continuous", simply start motion in the given direction at the standard jog speed
until either the motor is stopped explicitly, or the limit is reached.
If kind=="builtin", use the built-in jog command, whose parameters are specified by get_jog_parameters().
Note that kind=="continuous" is still implemented through the builtin jog, so it changes its parameters;
hence, afterwards the jog parameters need to be manually restored.

	
is_moving(channel=None)

	Check if motion is in progress

	
wait_move(channel=None, timeout=None)

	Wait until motion command is done

	
stop(channel=None, sync=True)

	Stop the piezo motor motion

	
get_drive_parameters(channel=None)

	Get current piezo-motor drive parameters (max_voltage, velocity, acceleration)

Voltage is defined in volts, velocity in steps/s, and acceleration in steps/s^2.

	
setup_drive(max_voltage=None, velocity=None, acceleration=None, channel=None)

	Set piezo-motor drive parameters.

If any parameter is None, use the current value.
Voltage is defined in volts, velocity in steps/s, and acceleration in steps/s^2.

	
get_jog_parameters(channel=None)

	Get current piezo-motor jog parameters (mode, step_size_fw, step_size_bk, velocity, acceleration)

Step size is defined in piezo steps, velocity in steps/s, and acceleration in step/s^2.

	
setup_jog(mode=None, step_size_fw=None, step_size_bk=None, velocity=None, acceleration=None, channel=None)

	Set piezo-motor jog parameters.

If any parameter is None, use the current value.
Step size is defined in piezo steps, velocity in steps/s, and acceleration in step/s^2.
TIM-series controllers do not support separate step size, so step_size_bk is ignored for them.

	
Error

	alias of ThorlabsError

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
close()

	Close the backend

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
get_all_channels()

	Get the list of all available channels; alias of get_all_axes method

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_number_of_channels()

	Get number of channels on the device

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
set_default_channel(channel)

	Set the default channel for all channel-related methods

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
status_bits = [(1, 'hw_bk_lim'), (2, 'hw_fw_lim'), (4, 'sw_bk_lim'), (8, 'sw_fw_lim'), (16, 'moving_bk'), (32, 'moving_fw'), (64, 'jogging_bk'), (128, 'jogging_fw'), (256, 'connected'), (512, 'homing'), (1024, 'homed'), (2048, 'initializing'), (4096, 'tracking'), (8192, 'settled'), (16384, 'motion_error'), (32768, 'instr_error'), (65536, 'interlock'), (131072, 'overtemp'), (262144, 'volt_supply_fault'), (524288, 'commutation_error'), (1048576, 'digio1'), (2097152, 'digio2'), (4194304, 'digio3'), (8388608, 'digio4'), (16777216, 'current_limit'), (33554432, 'encoder_fault'), (67108864, 'overcurrent'), (134217728, 'curr_supply_fault'), (268435456, 'power_ok'), (536870912, 'active'), (1073741824, 'error'), (2147483648, 'enabled')]

	

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_channel(channel)

	Context manager for temporarily using a different default channel

	
class pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams(p, i, d)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
d

	

	
i

	

	
p

	

	
class pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint(xpos, ypos)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
xpos

	

	
ypos

	

	
class pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings(xdiff, ydiff, sum, xpos, ypos)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
sum

	

	
xdiff

	

	
xpos

	

	
ydiff

	

	
ypos

	

	
class pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams(xmin, xmax, ymin, ymax, xgain, ygain, route, open_loop_out)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
open_loop_out

	

	
route

	

	
xgain

	

	
xmax

	

	
xmin

	

	
ygain

	

	
ymax

	

	
ymin

	

	
class pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector(conn, timeout=3.0)

	Bases: BasicKinesisDevice

Kinesis quadrature detectors: KPA101, TPA101, TQD001.

Implements FTDI chip connectivity via pyft232 (virtual serial interface).

	Parameters:

	conn (str [https://docs.python.org/3/library/stdtypes.html#str]) – serial connection parameters (usually an 8-digit device serial number).

	
get_pid_parameters()

	Get current PID gain parameters (p, i, d)

	
set_pid_parameters(p=None, i=None, d=None)

	Set current PID gain parameters (p, i, d).

If any parameter is None, use the current value.

	
get_manual_output()

	Get current manual output values (xpos, ypos) (used in open loop mode)

	
set_manual_output(xpos=None, ypos=None)

	Set current manual output values (used in open loop mode).

If any parameter is None, use the current value.

	
get_readings()

	Get current readings (xdiff, ydiff, sum, xpos, ypos)

	
get_operation_mode()

	Get current operation mode: "monitor", "open_loop", "closed_loop", or "auto_loop"

	
set_operation_mode(mode)

	Set current operation mode: "monitor", "open_loop", "closed_loop", or "auto_loop"

	
get_output_parameters()

	Get current output parameters (xmin, xmax, ymin, ymax, xgain, ygain, route, open_loop_out)

	
set_output_parameters(xmin=None, xmax=None, ymin=None, ymax=None, xgain=None, ygain=None, route=None, open_loop_out=None)

	Set current PID gain parameters (xmin, xmax, ymin, ymax, xgain, ygain, route, open_loop_out).

xmin, xmax, ymin, and ymax specify output limits, xgain and ygain specify additional separate gain (between -1 and 1),
route sets where output is routed in the closed loop mode (either "sma_only" or "sma_hub"),
open_loop_out specifies the output source in the open loop mode (either "zero" or "fixed").
If any parameter is None, use the current value.

	
Error

	alias of ThorlabsError

	
add_background_comm(messageID)

	Mark given messageID as a ‘background’ message, which can be sent at any point without prompt (e.g., some operation confirmation).

If it is received instead during recv_comm_ operations, it is ignored, and the corresponding counter is increased.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
blink(channel=1, dest='host')

	Identify the physical device (by, e.g., blinking status LED or screen)

	
check_background_comm(messageID)

	Return message counter and the last message value (None if not message received yet) of a given ‘background’ message

	
close()

	Close the backend

	
flush_comm(nmax=1000)

	Flush any commands in the queue.

if nmax is not None, it specifies the maximal number of commands to flush.

	
get_device_info(dest='host')

	Get device info.

Return tuple (serial_no, model_no, fw_ver, hw_type, hw_ver, mod_state, nchannels, notes).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_number_of_channels()

	Get number of channels on the device

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
static list_devices(filter_ids=True)

	List all connected devices.

Return list of tuples (conn, description).
If filter_ids==True, only leave devices with Thorlabs-like IDs (8-digit numbers).
Otherwise, show all devices (some of them might not be Thorlabs-related).

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
query(messageID, param1=0, param2=0, source=1, dest='host', replyID=-1, flush='auto')

	Send a query to the device and receive the reply.

A combination of send_comm() and recv_comm().
If replyID is not None, specifies the expected reply message ID; if -1 (default), set to te be messageID+1 (the standard convention).
flush specifies whether input queue will be flushed before reading; "auto" means that it will be flushed if the expected reply is among the background
messages, i.e., it could be already present in the queue.

	
recv_comm(expected_id=None, timeout=None)

	Receive a message.

Return either BasicKinesisDevice.CommShort or BasicKinesisDevice.CommData depending on the message type
(fixed length with two parameters, or variable length with associated data).
If expected_id is not None and the received message ID is different from expected_id, raise an error.
If timeout is not None, it can specify the timeout to read the command header (the rest is done with the usual timeout).
For details, see APT communications protocol.

	
send_comm(messageID, param1=0, param2=0, source=1, dest='host')

	Send a message with no associated data.

For details, see APT communications protocol.

	
send_comm_data(messageID, data, source=1, dest='host')

	Send a message with associated data.

For details, see APT communications protocol.

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

pylablib.devices.Thorlabs.misc module

	
class pylablib.devices.Thorlabs.misc.TPMDeviceInfo(manufacturer, name, serial, firmware)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
firmware

	

	
manufacturer

	

	
name

	

	
serial

	

	
class pylablib.devices.Thorlabs.misc.TPMSensorInfo(name, serial, calibration, type, subtype, flags)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
calibration

	

	
flags

	

	
name

	

	
serial

	

	
subtype

	

	
type

	

	
class pylablib.devices.Thorlabs.misc.GenericPM(addr)

	Bases: SCPIDevice

Generic Thorlabs optical Power Meter.

	Parameters:

	addr – connection address (usually, a VISA connection string or a COM port for bluetooth devices)

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
open()

	Open the backend

	
get_device_info()

	Get device info.

Return tuple (manufacturer, name, serial, firmware).

	
get_sensor_info()

	Get sensor info.

Return tuple (name, serial, calibration, type, subtype, flags).
For devices with integrated sensors (e.g., PM160) the sensor name is the same as the device name.

	
update_sensor_modes()

	Update the list of supported sensor modes (only makes sense if the sensor has been changed since the connection was opened)

	
get_supported_sensor_modes()

	Get a list of supported sensor modes.

Can contain "power", "energy", "voltage", "current", or "frequency".

	
get_sensor_mode()

	Get current sensor mode.

Can be "power", "energy", "voltage", "current", or "frequency".

	
set_sensor_mode(sensor_mode='power')

	Set current sensor mode.

Can be one of the modes returned by get_supported_sensor_modes().

	
is_autorange_enabled(sensor_mode=None)

	Check if autorange is enabled for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

	
enable_autorange(enable=True, sensor_mode=None)

	Enable or disable autorange for the given sensor mode.

If sensor_mode is None, set value for the current sensor mode.

	
get_range(sensor_mode=None)

	Get measurement range for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

	
set_range(rng=None, sensor_mode=None)

	Set measurement range for the given sensor mode.

If rng is None or "full", set the maximal range.
If sensor_mode is None, return value for the current sensor mode.

	
get_wavelength()

	Get current wavelength (in nm)

	
get_wavelength_range()

	Get available wavelength range (in nm)

	
set_wavelength(wavelength)

	Set current wavelength (in nm)

	
get_reading(sensor_mode=None, measure=True, overrng='keep')

	Get the reading in a given mode.

If sensor_mode is None, return reading in the currently set up mode (get_sensor_mode()); otherwise, set the sensor mode to the requested one.
If measure==True, initiate a new measurement; otherwise, return the last measured value.
overrng describes behavior if the power readings are outside of the current range;
can be "keep" (keep the default device behavior, which returns a very large number, about 9.9E37),
"error" (raise an error), or "max" (trim to the maximal value for the current range).

	
get_power()

	Measure and return the optical power

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Thorlabs.misc.PM160(addr)

	Bases: GenericPM

Thorlabs PM160 optical Power Meter.

	Parameters:

	addr – connection address (usually, a VISA connection string or a COM port for bluetooth devices)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
enable_autorange(enable=True, sensor_mode=None)

	Enable or disable autorange for the given sensor mode.

If sensor_mode is None, set value for the current sensor mode.

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_info()

	Get device info.

Return tuple (manufacturer, name, serial, firmware).

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_power()

	Measure and return the optical power

	
get_range(sensor_mode=None)

	Get measurement range for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

	
get_reading(sensor_mode=None, measure=True, overrng='keep')

	Get the reading in a given mode.

If sensor_mode is None, return reading in the currently set up mode (get_sensor_mode()); otherwise, set the sensor mode to the requested one.
If measure==True, initiate a new measurement; otherwise, return the last measured value.
overrng describes behavior if the power readings are outside of the current range;
can be "keep" (keep the default device behavior, which returns a very large number, about 9.9E37),
"error" (raise an error), or "max" (trim to the maximal value for the current range).

	
get_sensor_info()

	Get sensor info.

Return tuple (name, serial, calibration, type, subtype, flags).
For devices with integrated sensors (e.g., PM160) the sensor name is the same as the device name.

	
get_sensor_mode()

	Get current sensor mode.

Can be "power", "energy", "voltage", "current", or "frequency".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_supported_sensor_modes()

	Get a list of supported sensor modes.

Can contain "power", "energy", "voltage", "current", or "frequency".

	
get_wavelength()

	Get current wavelength (in nm)

	
get_wavelength_range()

	Get available wavelength range (in nm)

	
is_autorange_enabled(sensor_mode=None)

	Check if autorange is enabled for the given sensor mode.

If sensor_mode is None, return value for the current sensor mode.

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_range(rng=None, sensor_mode=None)

	Set measurement range for the given sensor mode.

If rng is None or "full", set the maximal range.
If sensor_mode is None, return value for the current sensor mode.

	
set_sensor_mode(sensor_mode='power')

	Set current sensor mode.

Can be one of the modes returned by get_supported_sensor_modes().

	
set_wavelength(wavelength)

	Set current wavelength (in nm)

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
update_sensor_modes()

	Update the list of supported sensor modes (only makes sense if the sensor has been changed since the connection was opened)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

pylablib.devices.Thorlabs.serial module

	
class pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface(conn)

	Bases: SCPIDevice

Generic Thorlabs device interface using Serial communication.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
open()

	Open the backend

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Thorlabs.serial.FW(conn, respect_bound=True)

	Bases: ThorlabsSerialInterface

Thorlabs FW102/212 motorized filter wheels.

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	respect_bound (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, avoid crossing the boundary between the first and the last position in the wheel

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
get_position()

	Get the wheel position (starting from 1)

	
set_position(pos)

	Set the wheel position (starting from 1)

	
get_pcount()

	Get the number of wheel positions (6 or 12)

	
set_pcount(pcount)

	Set the number of wheel positions (6 or 12)

	
get_speed_mode()

	Get the motion speed mode ("low" or "high")

	
set_speed_mode(speed_mode)

	Set the motion speed mode ("low" or "high")

	
get_trigger_mode()

	Get the trigger mode ("in" to input external trigger, "out" to output trigger)

	
set_trigger_mode(trigger_mode)

	Set the trigger mode ("in" to input external trigger, "out" to output trigger)

	
get_sensor_mode()

	Get the sensor mode ("off" to turn off when idle to eliminate stray light, "on" to remain on)

	
set_sensor_mode(sensor_mode)

	Set the sensor mode ("off" to turn off when idle to eliminate stray light, "on" to remain on)

	
store_settings()

	Store current settings as default

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Thorlabs.serial.FWv1(conn, pcount=6, respect_bound=True)

	Bases: ThorlabsSerialInterface

Thorlabs FW102/212 v1.0 (older version) motorized filter wheels.

	Parameters:

	
	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	pcount – number of positions in the wheel

	respect_bound (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, avoid crossing the boundary between the first and the last position in the wheel

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
get_position()

	Get the wheel position (starting from 1)

	
set_position(pos)

	Set the wheel position (starting from 1)

	
get_pcount()

	Get the number of wheel positions (6 or 12)

	
get_trigger_mode()

	Get the trigger mode ("in" to input external trigger, "out" to output trigger)

	
set_trigger_mode(trigger_mode)

	Set the trigger mode ("in" to input external trigger, "out" to output trigger)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
class pylablib.devices.Thorlabs.serial.MDT69xA(conn)

	Bases: ThorlabsSerialInterface

Thorlabs MDT693A/4A high-voltage source.

Uses MDT693A program interface, so should be compatible with both A and B versions
(though it doesn’t support all functions of MDT693B/4B)

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
get_voltage(channel='x')

	Get the output voltage in Volts at a given channel

	
set_voltage(voltage, channel='x')

	Set the output voltage in Volts at a given channel

	
get_voltage_range()

	Get the selected voltage range in Volts (75, 100 or 150)

	
BackendError

	alias of DeviceBackendError

	
Error

	alias of ThorlabsError

	
ReraiseError

	alias of ThorlabsBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

Module contents

pylablib.devices.Toptica package

Submodules

pylablib.devices.Toptica.base module

	
exception pylablib.devices.Toptica.base.TopticaError

	Bases: DeviceError

Generic Toptica device error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Toptica.base.TopticaBackendError(exc)

	Bases: TopticaError, DeviceBackendError

Toptica backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Toptica.ibeam module

	
pylablib.devices.Toptica.ibeam.muxchan(*args, **kwargs)

	Multiplex the function over its addr argument

	
class pylablib.devices.Toptica.ibeam.TDeviceInfo(serial, version)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
serial

	

	
version

	

	
class pylablib.devices.Toptica.ibeam.TWorkHours(power_up, laser_on)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
laser_on

	

	
power_up

	

	
class pylablib.devices.Toptica.ibeam.TTemperatures(diode, baseplate)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
baseplate

	

	
diode

	

	
class pylablib.devices.Toptica.ibeam.TopticaIBeam(conn='COM1')

	Bases: ICommBackendWrapper

Toptica iBeam smart laser controller.

	Parameters:

	
	conn – connection parameters - index of the Attocube ANC350 in the system (for a single controller leave 0)

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – default operation timeout

	
Error

	alias of TopticaError

	
open()

	Open the backend

	
query(comm, multiline=False, keep_whitespace=False, check_error='FEW', reply=True)

	

	
reboot()

	Reboot the laser system

	
get_device_info()

	Get the device info of the laser system: (serial, version)

	
get_full_data(formatted=False)

	Return the comprehensive device data

	
get_work_hours()

	Get the work hours (power on time and laser on time)

	
get_channels_number()

	Get number of supported laser channels

	
is_enabled()

	Check if the output is enabled

	
enable(enabled=True)

	Turn the output on or off

	
is_channel_enabled(channel='all')

	Check if the specific channel is enabled

	
enable_channel(channel, enabled=True)

	Turn the specific channel on or off

	
get_channel_power(channel='all')

	Get specified channel power (in W)

	
set_channel_power(channel, power)

	Set channel power (in W)

	
get_output_power()

	Get current output power (in W)

	
get_drive_current()

	Get current diode drive current (in A)

	
get_current_limits()

	Get settings of all current limits (in A) as a dictionary

	
get_temperatures()

	Get settings of all current limits (in A) as a dictionary

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Trinamic package

Submodules

pylablib.devices.Trinamic.base module

	
exception pylablib.devices.Trinamic.base.TrinamicError

	Bases: DeviceError

Generic Trinamic error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Trinamic.base.TrinamicBackendError(exc)

	Bases: TrinamicError, DeviceBackendError

Generic Trinamic backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Trinamic.base.TrinamicTimeoutError

	Bases: TrinamicError

Generic Trinamic timeout error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Trinamic.base.TLimitSwitchParams(left_enable, right_enable)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
left_enable

	

	
right_enable

	

	
class pylablib.devices.Trinamic.base.TVelocityParams(speed, accel, pulse_divisor, ramp_divisor)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
accel

	

	
pulse_divisor

	

	
ramp_divisor

	

	
speed

	

	
class pylablib.devices.Trinamic.base.THomeParams(mode, search_speed, switch_speed)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
mode

	

	
search_speed

	

	
switch_speed

	

	
class pylablib.devices.Trinamic.base.TMCM1110(conn)

	Bases: ICommBackendWrapper, IStage

Trinamic stepper motor controller TMCM-1110 controlled using TMCL Firmware.

	Parameters:

	conn – serial connection parameters (usually port or a tuple containing port and baudrate)

	
Error

	alias of TrinamicError

	
open()

	Open the backend

	
class ReplyData(comm, status, value, addr, module)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
addr

	

	
comm

	

	
module

	

	
status

	

	
value

	

	
query(comm, comm_type, value, result_format='i', bank=0, addr=0)

	Send a query to the stage and return the reply.

For details, see TMCM-1110 firmware manual.

	
get_axis_parameter(parameter, result_format='i', addr=0)

	Get a given axis parameter

	
set_axis_parameter(parameter, value, addr=0)

	Set a given axis parameter (volatile; resets on power cycling)

	
store_axis_parameter(parameter, value=None, addr=0)

	Store a given axis parameter in EEPROM (by default, value is the current value)

	
get_global_parameter(parameter, result_format='i', bank=0, addr=0)

	Get a given global parameter

	
set_global_parameter(parameter, value, bank=0, addr=0)

	Set a given global parameter

	
get_general_input(port=0, bank=0, addr=0)

	Get value of an input at a given bank (0-2) and port.

Bank 0 is digital input (7 ports), bank 1 is analog input (1 port, value from 0 to 2**16-1), bank 2 is digital output (8 ports).
For port assignments, see TMCM-1110 firmware manual.

	
set_general_output(value, port=0, bank=2, addr=0)

	Set value of a digital input at a given bank (only bank 2 is available) and port.

For port assignments, see TMCM-1110 firmware manual.

	
move_to(position, addr=0)

	Move to a given position

	
move_by(steps=1, addr=0)

	Move by a given number of steps

	
get_position(addr=0)

	Get the current axis position

	
set_position_reference(pos=0, addr=0)

	Set the current axis position as a reference (the actual motor position stays the same)

	
jog(direction, speed=None, addr=0)

	Jog in a given direction with a given speed.

direction can be either "-" (negative, left) or "+" (positive, right).
The motion continues until it is explicitly stopped, or until a limit is hit.
If speed is None, use the standard speed value.

	
stop(addr=0)

	Stop motion

	
get_microstep_resolution(addr=0)

	Get the number of microsteps per full step (always a power of 2)

	
set_microstep_resolution(resolution, addr=0)

	Set the number of microsteps per full step (rounded to a nearest power of 2)

	
get_current_parameters(addr=0)

	Return diving current parameter (drive_current, standby_current).

drive_current is the maximal drive current, which is given as a fraction of the maximal generated current current
(which is either 1A or 2.8A depending on the hardware jumper).
standby_current is given as a fraction of drive_current.

	
setup_current(drive_current=None, standby_current=None, addr=0)

	Set drive and standby currents.

WARNING: too high of a setting might damage the motor.
drive_current is the maximal drive current, which is given as a fraction of the maximal generated current current
(which is either 1A or 2.8A depending on the hardware jumper).
standby_current is given as a fraction of drive_current.
Any None parameters are left unchanged.

	
get_limit_switches_parameters(addr=0)

	Return limit switch parameters (left_enable, right_enable)

	
setup_limit_switches(left_enable=None, right_enable=None, addr=0)

	Setup limit switch parameters

	
get_home_parameters(addr=0)

	Return homing parameters (mode, search_speed, switch_speed).

mode is one of 16 different values, which can start with "lim_" indicating reliance on limit switches,
or with "home_" indicating usage of home switches. Home-based switches can also be inverted (with "_inv" in the end),
indicating that the homing switch function is inverted (0 instead of 1 means that the switch is engaged). More details can be found in the manual.
search_speed and switch_speed describe, respectively, the initial speed while searching for the switch,
and the final homing speed while searching for the edge of the switch action. Both are given in internal units.

	
setup_home(home_mode=None, search_speed=None, switch_speed=None, addr=0)

	Setup homing parameters (mode, search_speed, switch_speed).

mode is one of 16 different values, which can start with "lim_" indicating reliance on limit switches,
or with "home_" indicating usage of home switches. Home-based switches can also be inverted (with "_inv" in the end),
indicating that the homing switch function is inverted (0 instead of 1 means that the switch is engaged). More details can be found in the manual.
search_speed and switch_speed describe, respectively, the initial speed while searching for the switch,
and the final homing speed while searching for the edge of the switch action. Both are given in internal units.

	
home(wait=True, timeout=30.0, addr=0)

	Home the given axis.

If wait==True, wait until the homing is complete or until timeout is passed.
Note that homing affects the velocity parameters, which need to be re-established after the homing is complete.
This is done automatically when wait==True, but needs to be done manually otherwise.

	
is_homing(addr=0)

	Check if homing is in progress at the given address

	
get_velocity_parameters(addr=0)

	Return velocity parameters (speed, accel, pulse_divisor, ramp_divisor).

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration in internal units.
pulse_divisor is the driver pulse divisor, which defines how internal velocity units translate into microsteps/s (see get_velocity_factor());
can only be a power of 2, higher values mean slower motion.
ramp_divisor is the driver ramp divisor, which, together with the pulse divisor,
defines how internal acceleration units translate into microsteps/s^2 (see get_acceleration_factor());
rounded to the nearest power of 2, higher values mean slower acceleration.

	
setup_velocity(speed=None, accel=None, pulse_divisor=None, ramp_divisor=None, addr=0)

	Setup velocity parameters (speed, accel, pulse_divisor, ramp_divisor).

speed and accel denote, correspondingly, maximal (i.e., steady regime) moving speed and acceleration in internal units.
pulse_divisor is the driver pulse divisor, which defines how internal velocity units translate into microsteps/s (see get_velocity_factor());
rounded to the nearest power of 2, higher values mean slower motion.
ramp_divisor is the driver ramp divisor, which, together with the pulse divisor,
defines how internal acceleration units translate into microsteps/s^2 (see get_acceleration_factor());
rounded to the nearest power of 2, higher values mean slower acceleration.
None values are left unchanged.

	
get_velocity_factor(addr=0)

	Get the ratio between the real speed (in microsteps/s) and the internal units

	
get_acceleration_factor(addr=0)

	Get the ratio between the real acceleration (in microsteps/s^2) and the internal units

	
get_current_speed(addr=0)

	Get the instantaneous speed in internal units

	
is_moving(addr=0)

	Check if the motor is moving

	
wait_move(addr=0)

	Wait until motion is done

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.Voltcraft package

Submodules

pylablib.devices.Voltcraft.base module

	
exception pylablib.devices.Voltcraft.base.GenericVoltcraftError

	Bases: DeviceError

Generic Voltcraft error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError(exc)

	Bases: GenericVoltcraftError, DeviceBackendError

Voltcraft backend communication error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

pylablib.devices.Voltcraft.multimeter module

	
class pylablib.devices.Voltcraft.multimeter.VC7055(addr)

	Bases: SCPIDevice

Voltcraft VC-7055BT bench-top multimeter.

	Parameters:

	addr – device connection (usually a COM-port name such as "COM1").

	
Error

	alias of GenericVoltcraftError

	
ReraiseError

	alias of GenericVoltcraftBackendError

	
get_function(channel='primary')

	Get measurement function for the given measurement channel ("primary" or "secondary", or "all" for both channels)

	
set_function(function, channel='primary', reset_secondary=True)

	Set measurement function for the given measurement channel ("primary", "secondary", or "all" for both channels).

If reset_secondary==True and the primary function is changed, set the secondary function to "none" to avoid conflicts.

	
get_range()

	Get the present measurement range

	
set_range(rng)

	Set the present measurement range

	
is_autorange_enabled()

	Check if autoscaling is enabled

	
enable_autorange(enable=True)

	Enable or disable autoscaling

	
get_measurement_rate()

	Get measurement update rate ("fast"", "med", or "slow")

	
set_measurement_rate(rate)

	Set measurement update rate ("fast"", "med", or "slow")

	
get_reading(channel='primary')

	Return the latest reading of the given measurement channel ("primary", "secondary", or "all" for both channels)

	
BackendError

	alias of DeviceBackendError

	
apply_settings(settings)

	Apply the settings.

settings is a dict {name: value} of the available device settings.
Non-applicable settings are ignored.

	
ask(msg, data_type='string', delay=0.0, timeout=None, read_echo=False)

	Write a message and read a reply.

msg is the query message, delay is the delay between write and read. Other parameters are the same as in read().
If read_echo==True, assume that the device first echoes the input and skip it.

	
close()

	Close the backend

	
flush(one_line=False)

	Flush the read buffer (read all the available data and return the number of bytes read).

If one_line==True, read only a single line.

	
static get_arg_type(arg)

	Autodetect argument type

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_esr(timeout=None)

	Get the device status register (by default, "*ESR?" command)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_id(timeout=None)

	Get the device IDN. (query SCPI '*IDN?' command)

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
static parse_array_data(data, fmt, include_header=False)

	Parse the data returned by the device. fmt is DataFormat description in numpy format (e.g., "<u2").

If include_header==True, the data is assumed to be in a (somewhat) standard SCPI format:
b'#', then a single digit s denoting length of the size block,
then s digits denoting length of the data (in bytes) followed by the actual data.
Otherwise (include_header==False), assume that the header is already removed.

	
read(data_type='string', timeout=None)

	Read data from the device.

data_type determines the type of the data. Can be 'raw' (just raw data), 'string' (with trailing and leading spaces stripped),
'int', 'float', 'bool' (interprets 0 or 'off' as False, anything else as True),
'value' (returns tuple (value, unit), where value is float),
a callable (return the result of this callable applied to the string value),
a dictionary (return the stored value corresponding to the string value, or to the value converted into integer if the string value is not present),
or a list of data types (the result is treated as a list of values with the given types separated by commas).
timeout overrides the default value.

	
read_binary_array_data(include_header=False, timeout=None, flush_term=True)

	Read a binary data in the from the device.

The data assumes the standard binary transfer header consisting of
"#" symbol, then a single digit with the size of the length string, then the length string containing the length of the binary data (in bytes).
If include_header==True, return the data with the header; otherwise, return only the content.
If flush_term==True, flush the following line to skip terminator characters after the binary data, which are added by some devices.
timeout overrides the default value.

	
reconnect(new_instrument=True, ignore_error=True)

	Remake the connection.

If new_instrument==True, create a new backend instance.
If ignore_error==True, ignore errors on closing.

	
reset()

	Reset the device (by default, "*RST" command)

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
sleep(delay)

	Wait for delay seconds

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

	
using_write_buffer()

	Context manager for using a write buffer.

While it’s active, all the consecutive write() operations are bundled together with ; delimiter.
The actual write is performed at the read()/ask() operation or at the end of the block.

	
wait(wait_type='sync', timeout=None, wait_callback=None)

	Pause execution until device overlapped commands are complete.

wait_type is either 'sync' (perform wait_sync()), 'dev' (perform wait_dev()) or 'none' (do nothing).

	
wait_dev()

	Pause execution of the device commands until device overlapped commands (e.g., taking sweeps) are complete.

Note that the code execution is not paused.

	
wait_sync(timeout=None, wait_callback=None)

	Pause execution of the script until device overlapped commands (e.g., taking sweeps) are complete.

timeout and wait_callback override default constructor parameters.

	
write(msg, arg=None, arg_type=None, unit=None, bool_selector=None, wait_sync=None, read_echo=False, read_echo_delay=0.0)

	Send a command.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text message.

	arg – Optional argument to append in the end. If a list of arguments is supplied, the result is joined with ",".

	arg_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument type. Can be 'raw' (in which case data is sent raw), 'string', 'int', 'float',
'bool', a format string (such as '{:.3f}') or a list of argument types (for an iterable argument);
if format string is used and the argument is a list or a tuple, then it is expanded as a list of arguments
(e.g., arg_type='{0};{1}' with arg=[1,2] will produce a string '1;2');
if a list of types is used, each element of arg is converted using the corresponding type, and the result is joined with ",".

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – If not None, use it as a unit to append after the value.

	bool_selector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple (false_value, true_value) of two strings to represent bool argument;
by default, use ._bool_selector attribute.

	wait_sync – if True, append the sync command (specified as ._wait_sync_comm attribute, "*OPC?" by default)
after the message and pause the execution command is complete;
useful in long set operations, where the device might ignore later inputs until the current command is complete;
if None, use the class default ._default_write_sync attribute (False by default).

	read_echo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, read a single line after write.

	read_echo_delay (float [https://docs.python.org/3/library/functions.html#float]) – The delay between write and read if read_echo==True.

	
exception pylablib.devices.Voltcraft.multimeter.VC880ParseError

	Bases: GenericVoltcraftError

Voltcraft VC880 message parse error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.Voltcraft.multimeter.TVC880Reading(func, kind, value, unit, disps, d2func)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
d2func

	

	
disps

	

	
func

	

	
kind

	

	
unit

	

	
value

	

	
class pylablib.devices.Voltcraft.multimeter.VC880(conn=0)

	Bases: ICommBackendWrapper

Voltcraft VC880/VC650BT series multimeter.

	Parameters:

	conn – device connection (usually, either a HID path, or an integer 0-based index indicating the devices among the ones connected)

	
Error

	alias of GenericVoltcraftError

	
class TMessage(typ, payload)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
payload

	

	
typ

	

	
read_message(tries=10)

	Read the oldest message in the queue

	
exhaust_messages(nmax=100000, tries=10)

	Read all messages in the queue and return them

nmax specifies the maximal number of messages to read (None means reading until available).

	
send_message(comm, data=b'', pre_exhaust=True, reps=1, post_read=0)

	Send a message containing the given command and data.

If pre_exhaust==True, empty the read queue before sending the message (improves chances of delivery).
reps specifies the number of exhaust/send cycle repetitions (improves chances of delivery).
If post_read is more than 0, it specifies the number of messages to read after the command is sent.

	
get_reading(kind='latest')

	Get the multimeter reading.

kind can be "latest" (return the most recent reading), "oldest" (return the oldest reading),
or "all" (return all readings in the read queue).
Return tuple (func, kind, val, unit, disps, d2func) with, correspondingly, specific selected function (e.g., "DCuA" or "res"),
function kind (e.g., "curr_dc" or "res"), displayed value (in SI units), value units (e.g., "V" or "Ohm"),
values of the other 3 auxiliary displays (upper right min/max/avg/rel display, upper left memory display, bottom linear scale display),
and the kind of function on the upper right display ("min", "max", "avg", or "rel").

	
enable_autorange(enable=True)

	Enable or disable autorange

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the backend

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
lock(timeout=None)

	Lock the access to the device from other threads/processes (isn’t necessarily implemented)

	
locking(timeout=None)

	Context manager for lock & unlock

	
open()

	Open the backend

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
unlock()

	Unlock the access to the device from other threads/processes (isn’t necessarily implemented)

Module contents

pylablib.devices.interface package

Submodules

pylablib.devices.interface.camera module

	
exception pylablib.devices.interface.camera.DefaultFrameTransferError

	Bases: DeviceError

Generic frame transfer error

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class pylablib.devices.interface.camera.TFramesStatus(acquired, unread, skipped, buffer_size)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acquired

	

	
buffer_size

	

	
skipped

	

	
unread

	

	
class pylablib.devices.interface.camera.TFrameSize(width, height)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
height

	

	
width

	

	
class pylablib.devices.interface.camera.TFramePosition(left, top)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
left

	

	
top

	

	
class pylablib.devices.interface.camera.TFrameInfo(frame_index)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
frame_index

	

	
class pylablib.devices.interface.camera.ICamera(*args, **kwargs)

	Bases: IDevice

Generic camera class.

Provides a consistent common interface for the most frequently encountered camera functions.

	
Error

	alias of DeviceError

	
TimeoutError

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
pylablib.devices.interface.camera.acqstopped(*args, **kwargs)

	Decorator which temporarily stops acquisition for the function call

	
pylablib.devices.interface.camera.acqcleared(*args, **kwargs)

	Decorator which temporarily clears acquisition for the function call

	
pylablib.devices.interface.camera.trim_frames(frames, l, info=None, chunks='auto')

	Trim frames in different formats to the desired length

	
class pylablib.devices.interface.camera.FrameCounter

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Frame counter.

Keeps track of the buffer occupation, acquired/missed frames, last read and wait buffers, etc.

	
reset(buffer_size=None)

	Reset the counters.

If buffer_size is None, assume the the buffer is deallocated.
Otherwise, it specifies the frame buffer size (in frames).

	
update_acquired_frames(acquired_frames)

	Update the counter of acquired frames (needs to be called by the camera whenever necessary)

	
wait_start(acquired_frames)

	Set up waiting routine (called in the beginning of ICamera.wait_for_frame())

	
is_wait_done(acquired_frames=None, since='lastread', nframes=1)

	Check if the waiting condition is satisfied based on the counter values:

If not None, acquired_frames specifies the most recent number of acquired frames (the internal counters is automatically updated).
since and nframes have the same meaning as in ICamera.wait_for_frame().

	
wait_done()

	Clean up waiting routine (called in the end of ICamera.wait_for_frame())

	
get_frames_status(acquired_frames=None)

	Get status of the internal counters.

Return tuple (acquired, unread, skipped, buffer_size).
If the buffer is not allocated, all counters are 0.

	
get_new_frames_range(acquired_frames=None)

	Get the range of the new frames (acquired but not read)

	
trim_frames_range(rng)

	Trim the given frames range to only contains frames which are still in the buffer (i.e., remove the frames which are too old and have been overwritten)

	
advance_read_frames(rng)

	Mark the specified frames range as read and advance the last read counter

	
set_first_valid_frame(first_valid_frame)

	Set the first valid frame; all frames older than it are considered invalid when calculating skipped frames and trimming ranges

	
class pylablib.devices.interface.camera.FrameNotifier(strict=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Notifier for a new available frame.

Used when the camera runs a separate polling thread or a callback, which needs to notify the main thread that a new frame has been acquired.

	Parameters:

	strict – determines whether wait() waits for a specified frame index, or just for any new frame (which is checked later)

	
reset()

	Reset the internal frame counter

	
inc()

	Increment the internal frame counter, notify the waiting threads, and return the counter value

	
wait(idx=None, timeout=None)

	Wait for a new frame with a given index (if None, for the next acquired frame)

	
class pylablib.devices.interface.camera.ChunkBufferManager(chunk_size=67108864)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Buffer manager, which takes care of creating and removing the buffer chunks, and reading out some parts of them.

	Parameters:

	chunk_size – the minimal size of a single buffer chunk (continuous memory segment potentially containing several frames).

	
get_ctypes_frames_list(ctype=<class 'ctypes.c_char_p'>)

	Get stored buffers as a ctypes array with pointer of the given type

	
get_frames_data(idx, nframes=1)

	Get frames data starting from idx and spanning nframes frames.

Return a list of tuples (nread, chunk_data), where nread is the number of frames in the chunk,
and chunk_data is the raw buffer pointer as a ctypes.c_char_p object.

	
allocate(nframes, frame_size)

	Allocate buffers for the given number of frames and frame size (in bytes)

	
deallocate()

	Deallocate the buffers

	
class pylablib.devices.interface.camera.IAttributeCamera(*args, **kwargs)

	Bases: ICamera

Camera class which supports camera attributes.

The method _list_attributes must be defined in a subclass;
it should produce a list of camera attributes, which have name attribute for placing them into a dictionary.
Attributes can also have readable and writable attributes, which are used in
get_all_attribute_values() and set_all_attribute_values() to determine if the attribute values should be collected or set.
Method _update_attributes should be called on opening to populate the dictionary of available attributes.

One can also define _normalize_attribute_name, which normalizes the attribute name into a dictionary name
(e.g., replaces separators, removes spaces, or normalizes case).

	
get_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_all_attributes(copy=False)

	Return a dictionary of all available attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_attribute_value(name, error_on_missing=True, default=None, **kwargs)

	Get value of an attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default.
If default is not None, automatically assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
Additional arguments are passed to get_value methods of the individual attribute.

	
set_attribute_value(name, value, error_on_missing=True, **kwargs)

	Set value of an attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
Additional arguments are passed to set_value methods of the individual attribute.

	
get_all_attribute_values(root='', **kwargs)

	Get values of all attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

	
set_all_attribute_values(settings, root='', **kwargs)

	Set values of all attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

	
Error

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.interface.camera.IGrabberAttributeCamera(*args, **kwargs)

	Bases: ICamera

Camera class which supports frame grabber attributes.

Essentially the same as IAttributeCamera, but with relevant methods and attributes renamed
to support both frame grabber and camera attributes handling simultaneously.

The method _list_grabber_attributes must be defined in a subclass;
it should produce a list of camera attributes, which have name attribute for placing them into a dictionary.
Attributes can also have readable and writable attributes, which are used in
get_all_grabber_attribute_values() and set_all_grabber_attribute_values() to determine if the attribute values should be collected or set.
Method _update_grabber_attributes should be called on opening to populate the dictionary of available attributes.

One can also define _normalize_grabber_attribute_name, which normalizes the attribute name into a dictionary name
(e.g., replaces separators, removes spaces, or normalizes case).

	
get_grabber_attribute(name, error_on_missing=True)

	Get the camera attribute with the given name

	
get_all_grabber_attributes(copy=False)

	Return a dictionary of all available frame grabber grabber_attributes.

If copy==True, copy the dictionary; otherwise, return the internal dictionary structure (should not be modified).

	
get_grabber_attribute_value(name, error_on_missing=True, default=None, **kwargs)

	Get value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, return default.
If default is not None, automatically assume that error_on_missing==False.
If name points at a dictionary branch, return a dictionary with all values in this branch.
Additional arguments are passed to get_value methods of the individual attribute.

	
set_grabber_attribute_value(name, value, error_on_missing=True, **kwargs)

	Set value of a frame grabber attribute with the given name.

If the value doesn’t exist and error_on_missing==True, raise error; otherwise, do nothing.
If name points at a dictionary branch, set all values in this branch (in this case value must be a dictionary).
Additional arguments are passed to set_value methods of the individual attribute.

	
get_all_grabber_attribute_values(root='', **kwargs)

	Get values of all frame grabber attributes with the given root.

Additional arguments are passed to get_value methods of individual attributes.

	
set_all_grabber_attribute_values(settings, root='', **kwargs)

	Set values of all frame grabber attributes with the given root.

Additional arguments are passed to set_value methods of individual attributes.

	
Error

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.interface.camera.TAcqTimings(exposure, frame_period)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
exposure

	

	
frame_period

	

	
class pylablib.devices.interface.camera.IExposureCamera(*args, **kwargs)

	Bases: ICamera

	
get_exposure()

	Get current exposure

	
set_exposure(exposure)

	Set camera exposure

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
Error

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.interface.camera.TAxisROILimit(min, max, pstep, sstep, maxbin)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
max

	

	
maxbin

	

	
min

	

	
pstep

	

	
sstep

	

	
pylablib.devices.interface.camera.truncate_roi_axis(roi, lim, symmetric=False)

	Truncate ROI to conform to the given ROI limits.

roi is a tuple (start, stop, bin),
and lim is a tuple (min, max, pstep, sstep, maxbin).
Assume that pstep and sstep divide min and max,
and that either pstep divides sstep or the other way around.
If symmetric==True, then max should be even.

	
class pylablib.devices.interface.camera.IROICamera(*args, **kwargs)

	Bases: ICamera

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0).
By default, all non-supplied parameters take extreme values (0 for start, maximal for end).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning (fixed to 1 if not binning is allowed).
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
Error

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.interface.camera.IBinROICamera(*args, **kwargs)

	Bases: ICamera

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).
hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start is inclusive, stop is exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values (0 for start, maximal for end, 1 for binning).

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
Error

	alias of DeviceError

	
FrameTransferError

	alias of DefaultFrameTransferError

	
TimeoutError

	alias of DeviceError

	
acquisition_in_progress()

	Check if acquisition is in progress

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
clear_acquisition()

	Clear acquisition settings

	
close()

	Close the connection

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent, by default, only the frame index);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
setup_acquisition(**kwargs)

	Setup acquisition.

Any non-specified acquisition parameters are assumed to be the same as previously set (or default, if not explicitly set before).
Return the new acquisition parameters.

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
class pylablib.devices.interface.camera.TStatusLineDescription(kind, roi, framestamp_checker)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
framestamp_checker

	

	
kind

	

	
roi

	

	
class pylablib.devices.interface.camera.StatusLineChecker

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class responsible for checking status line consistency

	
get_framestamp(frames)

	Get framestamps from status lines in the given frames

	
check_indices(indices, step=1)

	Check if indices are consistent with the given step

	
pylablib.devices.interface.camera.remove_status_line(frame, status_line, policy='duplicate', copy=True, value=0)

	Remove status line, if present.

	Parameters:

	
	frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame number)

	status_line – status line descriptor (from the frames message)

	policy – determines way to deal with the status line;
can be "keep" (keep as is), "cut" (cut off the status-line-containing row/column), "zero" (set it to zero), "value" (set it to a given value),
"median" (set it to the image median), or "duplicate" (set it equal to the previous row; default)
"cut" is only possible of the status line is on the edge of the image.

	copy – if True, make copy of the original frames; otherwise, attempt to remove the line in-place

	
pylablib.devices.interface.camera.extract_status_line(frame, status_line, copy=True)

	Extract status line, if present.

	Parameters:

	
	frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame number)

	status_line – status line descriptor (from the frames message)

	copy – if True, make copy of the original status line data.

	
pylablib.devices.interface.camera.insert_status_line(frame, status_line, value, copy=True)

	Insert status line, if present.

	Parameters:

	
	frame – a frame to process (2D or 3D numpy array; if 3D, the first axis is the frame number)

	status_line – status line descriptor (from the frames message)

	value – status line value

	copy – if True, make copy of the original status line data.

	
pylablib.devices.interface.camera.get_status_line_roi(frame, status_line)

	Return ROI taken by the status line in the given frame

pylablib.devices.interface.stage module

	
class pylablib.devices.interface.stage.IStage

	Bases: IDevice

Generic stage class

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
pylablib.devices.interface.stage.muxaxis(*args, argname='axis', **kwargs)

	Multiplex the function over its axis argument

	
class pylablib.devices.interface.stage.IMultiaxisStage(*args, default_axis='all', **kwargs)

	Bases: IStage

Generic multiaxis stage class.

Has methods to assign and map axes and the axis device parameter.

	Parameters:

	default_axis – default axis parameter value used when axis=None is provided

	
get_all_axes()

	Get the list of all available axes (taking mapping into account)

	
remap_axes(mapping, accept_original=True)

	Rename axes to the new labels.

mapping is the new axes mapping, which can be a list of new axes name (corresponding to the old axes in order returned by get_all_axes()),
or a dictionary {alias: original} of the new axes aliases.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
close()

	Close the connection

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
is_opened()

	Check if the device is connected

	
open()

	Open the connection

	
set_device_variable(key, value)

	Set the value of a settings parameter

Module contents

pylablib.devices.uc480 package

Submodules

pylablib.devices.uc480.uc480 module

	
class pylablib.devices.uc480.uc480.TCameraInfo(cam_id, dev_id, sens_id, model, serial_number, in_use, status)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cam_id

	

	
dev_id

	

	
in_use

	

	
model

	

	
sens_id

	

	
serial_number

	

	
status

	

	
pylablib.devices.uc480.uc480.list_cameras(backend='uc480')

	List all uc480/uEye camera connections (interface kind and camera index).

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for IDS uEye-associated cameras

	
pylablib.devices.uc480.uc480.get_cameras_number(backend='uc480')

	Get the total number of connected uc480/uEye cameras.

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for IDS uEye-associated cameras

	
pylablib.devices.uc480.uc480.find_by_serial(serial_number, backend='uc480')

	Find device ID using its serial number.

backend is the camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for IDS uEye-associated cameras

	
class pylablib.devices.uc480.uc480.TDeviceInfo(cam_id, model, manufacturer, serial_number, usb_version, date, dll_version, camera_type)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
cam_id

	

	
camera_type

	

	
date

	

	
dll_version

	

	
manufacturer

	

	
model

	

	
serial_number

	

	
usb_version

	

	
class pylablib.devices.uc480.uc480.TAcquiredFramesStatus(acquired, transfer_missed, frameskip_events)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
acquired

	

	
frameskip_events

	

	
transfer_missed

	

	
class pylablib.devices.uc480.uc480.TTimestamp(year, month, day, hour, minute, second, millisecond)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
day

	

	
hour

	

	
millisecond

	

	
minute

	

	
month

	

	
second

	

	
year

	

	
class pylablib.devices.uc480.uc480.TFrameInfo(frame_index, framestamp, timestamp, timestamp_dev, size, io_status, flags)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
flags

	

	
frame_index

	

	
framestamp

	

	
io_status

	

	
size

	

	
timestamp

	

	
timestamp_dev

	

	
class pylablib.devices.uc480.uc480.UC480Camera(cam_id=0, roi_binning_mode='auto', dev_id=None, backend='uc480')

	Bases: IBinROICamera, IExposureCamera

Thorlabs uc480 / IDS uEye camera.

	Parameters:

	
	cam_id (int [https://docs.python.org/3/library/functions.html#int]) – camera ID; use 0 to get the first available camera

	roi_binning_mode – determines whether binning in ROI refers to binning or subsampling;
can be "bin", "subsample", or "auto" (since most cameras only support one, it will pick the one which has non-trivial value, or "bin" if both are available).

	dev_id (int [https://docs.python.org/3/library/functions.html#int]) – if None use cam_id as a camera id (cam_id field of the camera info returned by list_cameras());
otherwise, ignore value of cam_id and use dev_id as device id (dev_id field of the camera info).
The first method requires assigning camera IDs beforehand (otherwise IDs might overlap, in which case only one camera can be accessed),
but the assigned IDs are permanent; the second method always has unique IDs, but they might change if the cameras are disconnected and reconnected.
For a more reliable assignment, one can use find_by_serial() function to find device ID based on the camera serial number.

	backend – camera DLL backend; can be either "uc480" for Thorlabs-associated cameras, or "ueye" for IDS uEye-associated cameras

	
Error = <Mock name='mock.uc480Error' id='139821970632784'>

	

	
TimeoutError = <Mock spec='str' id='139821970858960'>

	

	
FrameTransferError = <Mock spec='str' id='139821970884112'>

	

	
static find_by_serial(serial_number, backend='uc480')

	

	
open()

	Open connection to the camera

	
close()

	Close connection to the camera

	
is_opened()

	Check if the device is connected

	
get_device_info()

	Get camera model data.

Return tuple (model, manufacturer, serial_number, usb_version, date, dll_version, camera_type).

	
get_camera_id()

	Get the current camera id

	
set_camera_id(cam_id)

	Set the new camera id (stored in non-volatile memory, i.e., survives power cycling)

	
get_frame_timings()

	Get acquisition timing.

Return tuple (exposure, frame_period).

	
set_exposure(exposure)

	Set camera exposure

	
set_frame_period(frame_time)

	Set frame period (time between two consecutive frames in the internal trigger mode)

	
get_pixel_rate()

	Get camera pixel rate (in Hz)

	
get_available_pixel_rates()

	Get all available pixel rates (in Hz)

	
get_pixel_rates_range()

	Get range of allowed pixel rates (in Hz).

Return tuple (min, max, step) if minimal and maximal value, and a step.

	
set_pixel_rate(rate=None)

	Set camera pixel rate (in Hz)

The rate is always rounded to the closest available.
If rate is None, set the maximal possible rate.

	
get_all_color_modes()

	Get a list of all available color modes

	
get_color_mode()

	Get current color mode.

For possible modes, see get_all_color_modes().

	
set_color_mode(mode)

	Set current color mode.

For possible modes, see get_all_color_modes().

	
get_gains()

	Get current gains.

Return tuple (master, red, green, blue) of corresponding gain factors.

	
get_max_gains()

	Get maximal gains.

Return tuple (master, red, green, blue) of corresponding maximal gain factors.

	
set_gains(master=None, red=None, green=None, blue=None)

	Set current gains.

If supplied value is None, keep it unchanged.

	
get_gain_boost()

	Check if gain boost is enabled

	
set_gain_boost(enabled)

	Enable or disable gain boost

	
setup_acquisition(nframes=100)

	Setup acquisition.

nframes determines number of size of the ring buffer (by default, 100).

	
clear_acquisition()

	Clear acquisition settings

	
start_acquisition(*args, **kwargs)

	Start acquisition.

Can take the same keyword parameters as :meth:``setup_acquisition.
If the acquisition is not set up yet, set it up using the supplied parameters (use default of setup_acquisition(),if the parameter is None).
Otherwise, if any supplied parameters are different from the current ones, change them and reset the acquisition.

	
stop_acquisition()

	Stop acquisition

	
acquisition_in_progress()

	Check if acquisition is in progress

	
get_frames_status()

	Get acquisition and buffer status.

Return tuple (acquired, unread, skipped, size), where acquired is the total number of acquired frames,
unread is the number of acquired but not read frames, skipped is the number of skipped (not read and then written over) frames,
and buffer_size is the total buffer size (in frames).

	
get_acquired_frame_status()

	

	
set_frameskip_behavior(behavior)

	Choose the camera behavior if frame skip event is encountered when waiting for a new frame, reading frames, getting buffer status, etc.

Can be "error" (raise uc480FrameTransferError), "ignore" (continue acquisition, ignore the gap),
or "skip" (mark some number of frames as skipped, but keep the frame counters consistent).

	
get_supported_subsampling_modes()

	Get all supported subsampling modes.

Return tuple (horizontal, vertical) of lists with all possible supported subsampling factors.

	
get_subsampling()

	Get current subsampling

	
set_subsampling(hsub=1, vsub=1)

	Set subsampling.

If values are not supported, get the closest value below the requested.
Automatically turns off binning.

	
get_supported_binning_modes()

	Get all supported binning modes.

Return tuple (horizontal, vertical) of lists with all possible supported binning factors.

	
get_binning()

	Get current binning

	
set_binning(hbin=1, vbin=1)

	Set binning.

If values are not supported, get the closest value below the requested.
Automatically turns off subsampling.

	
get_detector_size()

	Get camera detector size (in pixels) as a tuple (width, height)

	
get_roi()

	Get current ROI.

Return tuple (hstart, hend, vstart, vend, hbin, vbin).

	
set_roi(hstart=0, hend=None, vstart=0, vend=None, hbin=1, vbin=1)

	Setup camera ROI.

hstart and hend specify horizontal image extent, vstart and vend specify vertical image extent
(start are inclusive, stop are exclusive, starting from 0), hbin and vbin specify binning.
By default, all non-supplied parameters take extreme values.

	
get_roi_limits(hbin=1, vbin=1)

	Get the minimal and maximal ROI parameters.

Return tuple (hlim, vlim), where each element is in turn a limit 5-tuple
(min, max, pstep, sstep, maxbin) with, correspondingly, minimal and maximal size,
position and size step, and the maximal binning.
In some cameras, the step and the minimal size depend on the binning, which can be supplied.

	
apply_settings(settings)

	Apply the settings.

settings is the dict {name: value} of the device available settings.
Non-applicable settings are ignored.

	
get_acquisition_parameters()

	Get acquisition parameters.

Return dictionary {name: value}

	
get_data_dimensions()

	Get readout data dimensions (in pixels) as a tuple (width, height); take indexing mode into account

	
get_device_variable(key)

	Get the value of a settings, status, or full info parameter

	
get_exposure()

	Get current exposure

	
get_frame_format()

	Get format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
or "chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance).

	
get_frame_info_fields()

	Get the names of frame info fields.

Applicable when frame info format (set by set_frame_info_format()) is "list" or "array".

	
get_frame_info_format()

	Get format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)

	
get_frame_info_period()

	Get period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
get_frame_period()

	Get frame period (time between two consecutive frames in the internal trigger mode)

	
get_full_info(include=0)

	Get dict {name: value} containing full device information (including status and settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_full_status(include=0)

	Get dict {name: value} containing the device status (including settings).

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
get_image_indexing()

	Get indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
get_new_images_range()

	Get the range of the new images.

Return tuple (first, last) with images range (first inclusive).
If no images are available, return None.
If some images were in the buffer were overwritten, exclude them from the range.

	
get_settings(include=0)

	Get dict {name: value} containing all the device settings.

include specifies either a list of variables (only these variables are returned),
a priority threshold (only values with the priority equal or higher are returned), or "all" (all available variables).
Since the lowest priority is -10, setting include=-10 queries all available variables, which is equivalent to include="all".

	
grab(nframes=1, frame_timeout=5.0, missing_frame='skip', return_info=False, buff_size=None)

	Snap nframes images (with preset image read mode parameters)

buff_size determines buffer size (if None, use the default size).
Timeout is specified for a single-frame acquisition, not for the whole acquisition time.
missing_frame determines what to do with frames which have been lost:
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame),
or "skip" (skipping them, while still keeping total returned frames number to n).
If return_info==True, return tuple (frames, infos), where infos is a list of frame info tuples (camera-dependent);
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.

	
is_acquisition_setup()

	Check if acquisition is set up.

If the camera does not support separate acquisition setup, always return True.

	
pausing_acquisition(clear=None, stop=True, setup_after=None, start_after=True, combine_nested=True)

	Context manager which temporarily pauses acquisition during execution of with block.

Useful for applying certain settings which can’t be changed during the acquisition.
If clear==True, clear acquisition in addition to stopping (by default, use the class default specified as _clear_pausing_acquisition attribute).
If stop==True, stop the acquisition (if clear==True, stop regardless).
If setup_after==True, setup the acquisition after pause if necessary (None means setup only if clearing was required).
If start_after==True, start the acquisition after pause if necessary (None means start only if stopping was required).
If combine_nested==True, then any nested pausing_acquisition calls will stop/clear acquisition as necessary,
but won’t setup/start it again until this pausing_acquisition call is complete.

Yields tuple (acq_in_progress, acq_params), which indicates whether acquisition is currently in progress, and what are the current acquisition parameters.

	
read_newest_image(peek=False, return_info=False)

	Read the newest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
read_oldest_image(peek=False, return_info=False)

	Read the oldest un-read image.

If no un-read frames are available, return None.
If peek==True, return the image but not mark it as read.
If return_info==True, return tuple (frame, info), where info is an info tuples (camera-dependent, see read_multiple_images()).

	
set_device_variable(key, value)

	Set the value of a settings parameter

	
set_frame_format(fmt)

	Set format for the returned images.

Can be "list" (list of 2D arrays), "array" (a single 3D array),
"chunks" (list of 3D “chunk” arrays; supported for some cameras and provides the best performance),
or "try_chunks" (same as "chunks", but if chunks are not supported, set to "list" instead).
If format is "chunks" and chunks are not supported by the camera, it results in one frame per chunk.
Note that if the format is set to "array" or "chunks", the frame info format is also automatically set to "array".
If the format is set to "chunks", then the image info is also returned in chunks form (list of 2D info arrays with the same length as the corresponding frame chunks).

	
set_frame_info_format(fmt, include_fields=None)

	Set format of the frame info.

Can be "namedtuple" (potentially nested named tuples; convenient to get particular values),
"list" (flat list of values, with field names are given by get_frame_info_fields(); convenient for building a table),
"array" (same as "list", but with a numpy array, which is easier to use for "chunks" frame format),
or "dict" (flat dictionary with the same fields as the "list" format; more resilient to future format changes)
If include_fields is not None, it specifies the fields included for non-"tuple" formats;
note that order or include_fields is ignored, and the resulting fields are always ordered same as in the original.

	
set_frame_info_period(period=1)

	Set period of frame info acquisition.

Frame info might be skipped (set to None) except for frames which indices are divisible by period.
Useful for certain cameras where acquiring frame info takes a lot of time and can reduce performance at higher frame rates.
Note that this parameter can still be ignored (i.e., always set to 1) if the performance is not an issue for a given camera class.

	
set_image_indexing(indexing)

	Set up indexing for the returned images.

Can be "rct" (first index row, second index column, rows counted from the top), "rcb" (same as "rc", rows counted from the bottom),
"xyt" (first index column, second index row, rows counted from the top), or "xyb" (same as "xyt", rows counted from the bottom)

	
snap(timeout=5.0, return_info=False)

	Snap a single frame

	
wait_for_frame(since='lastread', nframes=1, timeout=20.0, error_on_stopped=False)

	Wait for one or several new camera frames.

since specifies the reference point for waiting to acquire nframes frames;
can be “lastread”`` (from the last read frame), "lastwait" (wait for the last successful wait_for_frame() call),
"now" (from the start of the current call), or "start" (from the acquisition start, i.e., wait until nframes frames have been acquired).
timeout can be either a number, None (infinite timeout), or a tuple (timeout, frame_timeout),
in which case the call times out if the total time exceeds timeout, or a single frame wait exceeds frame_timeout.
If the call times out, raise TimeoutError.
If error_on_stopped==True and the acquisition is not running, raise Error;
otherwise, simply return False without waiting.

	
read_multiple_images(rng=None, peek=False, missing_frame='skip', return_info=False, return_rng=False)

	Read multiple images specified by rng (by default, all un-read images).

If rng is specified, it is a tuple (first, last) with images range (first inclusive).
If no new frames are available, return an empty list; if no acquisition is running, return None.
If peek==True, return images but not mark them as read.
missing_frame determines what to do with frames which are out of range (missing or lost):
can be "none" (replacing them with None), "zero" (replacing them with zero-filled frame), or "skip" (skipping them).
If return_info==True, return tuple (frames, infos), where infos is a list of TFrameInfo instances
describing frame index, framestamp, global timestamp (real time),
device timestamp (time from camera restart, in 0.1us steps), frame size, digital input state, and additional flags;
if some frames are missing and missing_frame!="skip", the corresponding frame info is None.
if return_rng==True, return the range covered resulting frames; if missing_frame=="skip", the range can be smaller
than the supplied rng if some frames are skipped.
Note that obtaining frame info might take about 2ms, so at high frame rates it will become a limiting factor.

Module contents

pylablib.devices.utils package

Submodules

pylablib.devices.utils.color module

	
pylablib.devices.utils.color.bayer_interpolate(src, off=(0, 0))

	Interpolate Bayer-filtered source image.

The algorithm is the straightforward linear nearest neighbor interpolation.
The Bayer pattern is assume to be [RG|GB], and off specifies the red pixel position with respect to the image origin.

	
pylablib.devices.utils.color.linear_to_sRGB(v, base=1, A=2.4, P=0.055)

	Convert the linear sRGB color space to the sRGB.

base specifies the full color range (e.g., 65535 for 16-bit color values), and A and P are the two conversion parameters.

	
pylablib.devices.utils.color.sRGB_to_linear(v, base=1, A=2.4, P=0.055)

	Convert the sRGB color space to the linear sRGB.

base specifies the full color range (e.g., 65535 for 16-bit color values), and A and P are the two conversion parameters.

pylablib.devices.utils.load_lib module

	
pylablib.devices.utils.load_lib.get_os_lib_folder()

	Get default Windows DLL folder (System32 or SysWOW64, depending on Python and Windows bitness)

	
pylablib.devices.utils.load_lib.get_program_files_folder(subfolder='', arch=None)

	Get default Windows Program Files folder or a subfolder within it.

If arch is None, use the current Python architecture to determine the folder;
otherwise, it specifies the architecture ("32bit" for Program Files (x86), "64bit" for Program Files)

	
pylablib.devices.utils.load_lib.get_appdata_folder(subfolder='', kind='roaming')

	Get user AppData folder (used to install software only for specific users).

kind can be "roaming" (return Roaming AppData folder) or "local" (return Local AppData folder).

	
pylablib.devices.utils.load_lib.get_environ_folder(var, subfolder='', error_missing=False)

	Get subfolder of a folder based on the environment variable.

If the environment variable is missing and error_missing==True, raise an error; otherwise, return None.

	
pylablib.devices.utils.load_lib.load_lib(name, locations=('global',), call_conv='cdecl', locally=False, depends=None, depends_required=True, error_message=None, check_order='location', return_location=False)

	Load DLL.

	Parameters:

	
	name – name or path of the library (can also be a list or a tuple with several names, which are tried in that order).

	locations – list or tuple of locations to search for a library; the function tries locations in order and returns the first successfully loaded library
a location is a string which can be a path to the containing folder,
"parameter/*" (the remaining part is a subpath inside "devices/dlls" library parameters; if this parameter is defined, it names folder or file for the dll),
or "global" (load path as is; also searches in the standard OS specified locations determined by PATH variable, e.g., System32 folder).

	depends – if specified, it is a list of dependency libraries which need to be loaded first before the main DLL; they are assumed to be in the same location as the main file

	depends_required – if False, ignore errors during dependency loads

	locally (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, prepend path to the DLL containing folder to the environment PATH folders;
this is usually required, if the loaded DLL imports other DLLs in the same folder

	call_conv (str [https://docs.python.org/3/library/stdtypes.html#str]) – DLL call convention; can be either "cdecl" (corresponds to ctypes.cdll) or "stdcall" (corresponds to ctypes.windll)

	error_message (str [https://docs.python.org/3/library/stdtypes.html#str]) – error message to add in addition to the default error message shown when the DLL is not found

	check_order (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines the order in which possible combinations of names and locations are looped over;
can be "location" (loop over locations, and for each location loop over names), "name" (loop over names, and for each name loop over locations),
or a list of tuples [(loc,name)] specifying order of checking
(in the latter case, name and location arguments are ignored, except for generating error message).

	return_location (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, return a tuple (dll, location, folder) instead of a single dll.

	
class pylablib.devices.utils.load_lib.TLibraryOpenResult(init_result, open_result, opid)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
init_result

	

	
open_result

	

	
opid

	

	
class pylablib.devices.utils.load_lib.TLibraryCloseResult(close_result, uninit_result)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
close_result

	

	
uninit_result

	

	
class pylablib.devices.utils.load_lib.LibraryController(lib)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple wrapper to control libraries which require initialization when a new device is opened
or shutdown when all devices are closed.

	Parameters:

	lib – controlled library

	
preinit()

	Pre-initialize the library, if it hasn’t been done already

	
open()

	Mark device opening.

Return tuple (init_result, open_result, opid) with the results of the initialization and the opening,
and the opening ID which should afterwards be used for closing.
If library is already initialized, set init_result=None

	
close(opid)

	Mark device closing.

Return tuple (close_result, uninit_result) with the results of the closing and the shutdown.
If library does not need to be shut down yet, set uninit_result=None

	
temp_open()

	Context for temporarily opening a new device connection

	
shutdown()

	Close all opened connections and shutdown the library

	
get_opened_num()

	Get number of opened devices

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pylablib	

 	
 	
 pylablib.core	

 	
 	
 pylablib.core.dataproc	

 	
 	
 pylablib.core.dataproc.callable	

 	
 	
 pylablib.core.dataproc.ctransform_fallback	

 	
 	
 pylablib.core.dataproc.feature	

 	
 	
 pylablib.core.dataproc.filters	

 	
 	
 pylablib.core.dataproc.fitting	

 	
 	
 pylablib.core.dataproc.fourier	

 	
 	
 pylablib.core.dataproc.iir_transform	

 	
 	
 pylablib.core.dataproc.image	

 	
 	
 pylablib.core.dataproc.interpolate	

 	
 	
 pylablib.core.dataproc.specfunc	

 	
 	
 pylablib.core.dataproc.table_wrap	

 	
 	
 pylablib.core.dataproc.transform	

 	
 	
 pylablib.core.dataproc.utils	

 	
 	
 pylablib.core.devio	

 	
 	
 pylablib.core.devio.backend_logger	

 	
 	
 pylablib.core.devio.base	

 	
 	
 pylablib.core.devio.comm_backend	

 	
 	
 pylablib.core.devio.data_format	

 	
 	
 pylablib.core.devio.hid	

 	
 	
 pylablib.core.devio.hid_base	

 	
 	
 pylablib.core.devio.interface	

 	
 	
 pylablib.core.devio.SCPI	

 	
 	
 pylablib.core.fileio	

 	
 	
 pylablib.core.fileio.datafile	

 	
 	
 pylablib.core.fileio.dict_entry	

 	
 	
 pylablib.core.fileio.loadfile	

 	
 	
 pylablib.core.fileio.loadfile_utils	

 	
 	
 pylablib.core.fileio.location	

 	
 	
 pylablib.core.fileio.parse_csv	

 	
 	
 pylablib.core.fileio.savefile	

 	
 	
 pylablib.core.fileio.table_stream	

 	
 	
 pylablib.core.gui	

 	
 	
 pylablib.core.gui.formatter	

 	
 	
 pylablib.core.gui.limiter	

 	
 	
 pylablib.core.gui.utils	

 	
 	
 pylablib.core.gui.value_handling	

 	
 	
 pylablib.core.gui.widgets	

 	
 	
 pylablib.core.gui.widgets.button	

 	
 	
 pylablib.core.gui.widgets.combo_box	

 	
 	
 pylablib.core.gui.widgets.container	

 	
 	
 pylablib.core.gui.widgets.edit	

 	
 	
 pylablib.core.gui.widgets.label	

 	
 	
 pylablib.core.gui.widgets.layout_manager	

 	
 	
 pylablib.core.gui.widgets.param_table	

 	
 	
 pylablib.core.thread	

 	
 	
 pylablib.core.thread.callsync	

 	
 	
 pylablib.core.thread.controller	

 	
 	
 pylablib.core.thread.multicast_pool	

 	
 	
 pylablib.core.thread.notifier	

 	
 	
 pylablib.core.thread.profile	

 	
 	
 pylablib.core.thread.synchronizing	

 	
 	
 pylablib.core.thread.threadprop	

 	
 	
 pylablib.core.thread.utils	

 	
 	
 pylablib.core.utils	

 	
 	
 pylablib.core.utils.array_utils	

 	
 	
 pylablib.core.utils.cext_tools	

 	
 	
 pylablib.core.utils.crc	

 	
 	
 pylablib.core.utils.ctypes_wrap	

 	
 	
 pylablib.core.utils.dictionary	

 	
 	
 pylablib.core.utils.files	

 	
 	
 pylablib.core.utils.funcargparse	

 	
 	
 pylablib.core.utils.functions	

 	
 	
 pylablib.core.utils.general	

 	
 	
 pylablib.core.utils.indexing	

 	
 	
 pylablib.core.utils.ipc	

 	
 	
 pylablib.core.utils.library_parameters	

 	
 	
 pylablib.core.utils.module	

 	
 	
 pylablib.core.utils.nbtools	

 	
 	
 pylablib.core.utils.net	

 	
 	
 pylablib.core.utils.numerical	

 	
 	
 pylablib.core.utils.observer_pool	

 	
 	
 pylablib.core.utils.py3	

 	
 	
 pylablib.core.utils.rpyc_utils	

 	
 	
 pylablib.core.utils.strdump	

 	
 	
 pylablib.core.utils.string	

 	
 	
 pylablib.core.utils.strpack	

 	
 	
 pylablib.core.utils.units	

 	
 	
 pylablib.devices	

 	
 	
 pylablib.devices.AlliedVision	

 	
 	
 pylablib.devices.AlliedVision.Bonito	

 	
 	
 pylablib.devices.Andor	

 	
 	
 pylablib.devices.Andor.AndorSDK2	

 	
 	
 pylablib.devices.Andor.AndorSDK3	

 	
 	
 pylablib.devices.Andor.atcore_features	

 	
 	
 pylablib.devices.Andor.base	

 	
 	
 pylablib.devices.Andor.Shamrock	

 	
 	
 pylablib.devices.Arcus	

 	
 	
 pylablib.devices.Arcus.base	

 	
 	
 pylablib.devices.Arcus.performax	

 	
 	
 pylablib.devices.Arduino	

 	
 	
 pylablib.devices.Arduino.base	

 	
 	
 pylablib.devices.Attocube	

 	
 	
 pylablib.devices.Attocube.anc300	

 	
 	
 pylablib.devices.Attocube.anc350	

 	
 	
 pylablib.devices.Attocube.base	

 	
 	
 pylablib.devices.AWG	

 	
 	
 pylablib.devices.AWG.generic	

 	
 	
 pylablib.devices.AWG.specific	

 	
 	
 pylablib.devices.Basler	

 	
 	
 pylablib.devices.Basler.pylon	

 	
 	
 pylablib.devices.BitFlow	

 	
 	
 pylablib.devices.BitFlow.BitFlow	

 	
 	
 pylablib.devices.Conrad	

 	
 	
 pylablib.devices.Conrad.base	

 	
 	
 pylablib.devices.Cryocon	

 	
 	
 pylablib.devices.Cryocon.base	

 	
 	
 pylablib.devices.Cryomagnetics	

 	
 	
 pylablib.devices.Cryomagnetics.base	

 	
 	
 pylablib.devices.DCAM	

 	
 	
 pylablib.devices.DCAM.DCAM	

 	
 	
 pylablib.devices.ElektroAutomatik	

 	
 	
 pylablib.devices.ElektroAutomatik.base	

 	
 	
 pylablib.devices.HighFinesse	

 	
 	
 pylablib.devices.HighFinesse.wlm	

 	
 	
 pylablib.devices.IMAQ	

 	
 	
 pylablib.devices.IMAQ.IMAQ	

 	
 	
 pylablib.devices.IMAQ.niimaq_attrtypes	

 	
 	
 pylablib.devices.IMAQdx	

 	
 	
 pylablib.devices.IMAQdx.IMAQdx	

 	
 	
 pylablib.devices.interface	

 	
 	
 pylablib.devices.interface.camera	

 	
 	
 pylablib.devices.interface.stage	

 	
 	
 pylablib.devices.Keithley	

 	
 	
 pylablib.devices.Keithley.base	

 	
 	
 pylablib.devices.Keithley.multimeter	

 	
 	
 pylablib.devices.KJL	

 	
 	
 pylablib.devices.KJL.base	

 	
 	
 pylablib.devices.Lakeshore	

 	
 	
 pylablib.devices.Lakeshore.base	

 	
 	
 pylablib.devices.LaserQuantum	

 	
 	
 pylablib.devices.LaserQuantum.base	

 	
 	
 pylablib.devices.Leybold	

 	
 	
 pylablib.devices.Leybold.base	

 	
 	
 pylablib.devices.LighthousePhotonics	

 	
 	
 pylablib.devices.LighthousePhotonics.base	

 	
 	
 pylablib.devices.Lumel	

 	
 	
 pylablib.devices.Lumel.base	

 	
 	
 pylablib.devices.M2	

 	
 	
 pylablib.devices.M2.base	

 	
 	
 pylablib.devices.M2.emm	

 	
 	
 pylablib.devices.M2.solstis	

 	
 	
 pylablib.devices.Mightex	

 	
 	
 pylablib.devices.Mightex.base	

 	
 	
 pylablib.devices.Mightex.MightexSSeries	

 	
 	
 pylablib.devices.Modbus	

 	
 	
 pylablib.devices.Modbus.modbus	

 	
 	
 pylablib.devices.Newport	

 	
 	
 pylablib.devices.Newport.base	

 	
 	
 pylablib.devices.Newport.picomotor	

 	
 	
 pylablib.devices.NI	

 	
 	
 pylablib.devices.NI.daq	

 	
 	
 pylablib.devices.NKT	

 	
 	
 pylablib.devices.NKT.interbus	

 	
 	
 pylablib.devices.Ophir	

 	
 	
 pylablib.devices.Ophir.base	

 	
 	
 pylablib.devices.OZOptics	

 	
 	
 pylablib.devices.OZOptics.base	

 	
 	
 pylablib.devices.PCO	

 	
 	
 pylablib.devices.PCO.SC2	

 	
 	
 pylablib.devices.Pfeiffer	

 	
 	
 pylablib.devices.Pfeiffer.base	

 	
 	
 pylablib.devices.Photometrics	

 	
 	
 pylablib.devices.Photometrics.pvcam	

 	
 	
 pylablib.devices.PhotonFocus	

 	
 	
 pylablib.devices.PhotonFocus.PhotonFocus	

 	
 	
 pylablib.devices.PhysikInstrumente	

 	
 	
 pylablib.devices.PhysikInstrumente.base	

 	
 	
 pylablib.devices.PrincetonInstruments	

 	
 	
 pylablib.devices.PrincetonInstruments.picam	

 	
 	
 pylablib.devices.Rigol	

 	
 	
 pylablib.devices.Rigol.base	

 	
 	
 pylablib.devices.Rigol.power_supply	

 	
 	
 pylablib.devices.SiliconSoftware	

 	
 	
 pylablib.devices.SiliconSoftware.fgrab	

 	
 	
 pylablib.devices.Sirah	

 	
 	
 pylablib.devices.Sirah.base	

 	
 	
 pylablib.devices.Sirah.Matisse	

 	
 	
 pylablib.devices.Sirah.tuner	

 	
 	
 pylablib.devices.SmarAct	

 	
 	
 pylablib.devices.SmarAct.base	

 	
 	
 pylablib.devices.SmarAct.MCS2	

 	
 	
 pylablib.devices.SmarAct.scu3d	

 	
 	
 pylablib.devices.Standa	

 	
 	
 pylablib.devices.Standa.base	

 	
 	
 pylablib.devices.Tektronix	

 	
 	
 pylablib.devices.Tektronix.base	

 	
 	
 pylablib.devices.Thorlabs	

 	
 	
 pylablib.devices.Thorlabs.base	

 	
 	
 pylablib.devices.Thorlabs.elliptec	

 	
 	
 pylablib.devices.Thorlabs.kinesis	

 	
 	
 pylablib.devices.Thorlabs.misc	

 	
 	
 pylablib.devices.Thorlabs.serial	

 	
 	
 pylablib.devices.Thorlabs.TLCamera	

 	
 	
 pylablib.devices.Toptica	

 	
 	
 pylablib.devices.Toptica.base	

 	
 	
 pylablib.devices.Toptica.ibeam	

 	
 	
 pylablib.devices.Trinamic	

 	
 	
 pylablib.devices.Trinamic.base	

 	
 	
 pylablib.devices.uc480	

 	
 	
 pylablib.devices.uc480.uc480	

 	
 	
 pylablib.devices.utils	

 	
 	
 pylablib.devices.utils.color	

 	
 	
 pylablib.devices.utils.load_lib	

 	
 	
 pylablib.devices.Voltcraft	

 	
 	
 pylablib.devices.Voltcraft.base	

 	
 	
 pylablib.devices.Voltcraft.multimeter	

 	
 	
 pylablib.widgets	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	accel (pylablib.devices.Standa.base.TMoveParams attribute)

 	(pylablib.devices.Trinamic.base.TVelocityParams attribute)

 	acceleration (pylablib.devices.SmarAct.MCS2.TCLMoveParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TVelocityParams attribute)

 	access (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	AccessIterator (class in pylablib.core.utils.general)

 	accum_cycle_time (pylablib.devices.Andor.AndorSDK2.TCycleTimings attribute)

 	acknowledge() (pylablib.core.utils.general.Timer method)

 	acqcleared() (in module pylablib.devices.interface.camera)

 	acqstopped() (in module pylablib.devices.interface.camera)

 	acquire() (pylablib.core.thread.synchronizing.QLockNotifier method)

 	acquired (pylablib.devices.interface.camera.TFramesStatus attribute)

 	(pylablib.devices.uc480.uc480.TAcquiredFramesStatus attribute)

 	acquisition_in_progress() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	activation_control (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings attribute)

 	add() (pylablib.core.dataproc.filters.RunningDebounceFilter method)

 	(pylablib.core.dataproc.filters.RunningDecimationFilter method)

 	add_all_children() (pylablib.core.gui.value_handling.GUIValues method)

 	add_attribute() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	add_background_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	add_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	add_button() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_callback() (pylablib.core.thread.callsync.QScheduledCall method)

 	add_check_box() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_child() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_child_values() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_chunk() (pylablib.core.fileio.parse_csv.ChunksAccumulator method)

 	add_class() (pylablib.core.utils.strdump.StrDumper method)

 	add_clock_period_input() (pylablib.devices.NI.daq.NIDAQ method)

 	add_columns() (pylablib.core.fileio.parse_csv.ChunksAccumulator method)

 	add_combo_box() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_command() (pylablib.core.thread.controller.QTaskThread method)

 	add_conversion_class() (in module pylablib.core.utils.string)

 	add_counter_input() (pylablib.devices.NI.daq.NIDAQ method)

 	add_custom_widget() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_decoration_label() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_dict_entry_builder() (in module pylablib.core.fileio.dict_entry)

 	add_dict_entry_class() (in module pylablib.core.fileio.dict_entry)

 	add_dict_entry_parser() (in module pylablib.core.fileio.dict_entry)

 	add_digital_input() (pylablib.devices.NI.daq.NIDAQ method)

 	add_digital_output() (pylablib.devices.NI.daq.NIDAQ method)

 	add_direct_call_command() (pylablib.core.thread.controller.QTaskThread method)

 	add_dropdown_button() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_entry() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	add_enum_label() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_exception_hook() (in module pylablib.core.thread.controller)

 	add_file_format() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry static method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry static method)

 	add_frame() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_group_box() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_handler() (pylablib.core.gui.value_handling.GUIValues method)

 	add_indicator_handler() (pylablib.core.gui.value_handling.GUIValues method)

 	add_job() (pylablib.core.thread.controller.QTaskThread method)

 	add_label_indicator() (pylablib.core.gui.value_handling.GUIValues method)

 	add_namedtuple_class() (in module pylablib.core.utils.string)

 	add_nested() (pylablib.core.gui.value_handling.GUIValues method)

 	add_note() (pylablib.core.devio.base.DeviceError method)

 	(pylablib.core.devio.comm_backend.DeviceBackendError method)

 	(pylablib.core.devio.comm_backend.DeviceFT232Error method)

 	(pylablib.core.devio.comm_backend.DeviceHIDError method)

 	(pylablib.core.devio.comm_backend.DeviceNetworkError method)

 	(pylablib.core.devio.comm_backend.DeviceRecordedError method)

 	(pylablib.core.devio.comm_backend.DeviceSerialError method)

 	(pylablib.core.devio.comm_backend.DeviceUSBError method)

 	(pylablib.core.devio.comm_backend.DeviceVisaError method)

 	(pylablib.core.devio.hid_base.HIDError method)

 	(pylablib.core.devio.hid_base.HIDLibError method)

 	(pylablib.core.devio.hid_base.HIDTimeoutError method)

 	(pylablib.core.gui.limiter.LimitError method)

 	(pylablib.core.gui.value_handling.MissingGUIHandlerError method)

 	(pylablib.core.gui.value_handling.NoParameterError method)

 	(pylablib.core.thread.threadprop.DuplicateControllerThreadError method)

 	(pylablib.core.thread.threadprop.InterruptException method)

 	(pylablib.core.thread.threadprop.InterruptExceptionStop method)

 	(pylablib.core.thread.threadprop.NoControllerThreadError method)

 	(pylablib.core.thread.threadprop.NoMessageThreadError method)

 	(pylablib.core.thread.threadprop.SkippedCallError method)

 	(pylablib.core.thread.threadprop.ThreadError method)

 	(pylablib.core.thread.threadprop.TimeoutThreadError method)

 	(pylablib.core.utils.net.SocketError method)

 	(pylablib.core.utils.net.SocketTimeout method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoError method)

 	(pylablib.devices.Andor.base.AndorError method)

 	(pylablib.devices.Andor.base.AndorFrameTransferError method)

 	(pylablib.devices.Andor.base.AndorNotSupportedError method)

 	(pylablib.devices.Andor.base.AndorTimeoutError method)

 	(pylablib.devices.Arcus.base.ArcusBackendError method)

 	(pylablib.devices.Arcus.base.ArcusError method)

 	(pylablib.devices.Arduino.base.ArduinoBackendError method)

 	(pylablib.devices.Arduino.base.ArduinoError method)

 	(pylablib.devices.Attocube.base.AttocubeBackendError method)

 	(pylablib.devices.Attocube.base.AttocubeError method)

 	(pylablib.devices.AWG.generic.GenericAWGBackendError method)

 	(pylablib.devices.AWG.generic.GenericAWGError method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowError method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError method)

 	(pylablib.devices.Conrad.base.ConradBackendError method)

 	(pylablib.devices.Conrad.base.ConradError method)

 	(pylablib.devices.Cryocon.base.CryoconBackendError method)

 	(pylablib.devices.Cryocon.base.CryoconError method)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError method)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsError method)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError method)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError method)

 	(pylablib.devices.interface.camera.DefaultFrameTransferError method)

 	(pylablib.devices.Keithley.base.GenericKeithleyBackendError method)

 	(pylablib.devices.Keithley.base.GenericKeithleyError method)

 	(pylablib.devices.KJL.base.KJLBackendError method)

 	(pylablib.devices.KJL.base.KJLError method)

 	(pylablib.devices.Lakeshore.base.LakeshoreBackendError method)

 	(pylablib.devices.Lakeshore.base.LakeshoreError method)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumBackendError method)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumError method)

 	(pylablib.devices.Leybold.base.LeyboldBackendError method)

 	(pylablib.devices.Leybold.base.LeyboldError method)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError method)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError method)

 	(pylablib.devices.M2.base.M2CommunicationError method)

 	(pylablib.devices.M2.base.M2Error method)

 	(pylablib.devices.M2.base.M2ParseError method)

 	(pylablib.devices.Mightex.base.MightexError method)

 	(pylablib.devices.Mightex.base.MightexTimeoutError method)

 	(pylablib.devices.Modbus.modbus.ModbusBackendError method)

 	(pylablib.devices.Modbus.modbus.ModbusError method)

 	(pylablib.devices.Newport.base.NewportBackendError method)

 	(pylablib.devices.Newport.base.NewportError method)

 	(pylablib.devices.NI.daq.NIDAQmxError method)

 	(pylablib.devices.NI.daq.NIError method)

 	(pylablib.devices.NKT.interbus.InterbusBackendError method)

 	(pylablib.devices.NKT.interbus.InterbusError method)

 	(pylablib.devices.Ophir.base.OphirBackendError method)

 	(pylablib.devices.Ophir.base.OphirError method)

 	(pylablib.devices.OZOptics.base.OZOpticsBackendError method)

 	(pylablib.devices.OZOptics.base.OZOpticsError method)

 	(pylablib.devices.Pfeiffer.base.PfeifferBackendError method)

 	(pylablib.devices.Pfeiffer.base.PfeifferError method)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError method)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError method)

 	(pylablib.devices.Rigol.base.GenericRigolBackendError method)

 	(pylablib.devices.Rigol.base.GenericRigolError method)

 	(pylablib.devices.Sirah.base.GenericSirahBackendError method)

 	(pylablib.devices.Sirah.base.GenericSirahError method)

 	(pylablib.devices.Sirah.tuner.FrequencyReadSirahError method)

 	(pylablib.devices.SmarAct.base.SmarActError method)

 	(pylablib.devices.Standa.base.StandaBackendError method)

 	(pylablib.devices.Standa.base.StandaError method)

 	(pylablib.devices.Tektronix.base.TektronixBackendError method)

 	(pylablib.devices.Tektronix.base.TektronixError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsBackendError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsTimeoutError method)

 	(pylablib.devices.Toptica.base.TopticaBackendError method)

 	(pylablib.devices.Toptica.base.TopticaError method)

 	(pylablib.devices.Trinamic.base.TrinamicBackendError method)

 	(pylablib.devices.Trinamic.base.TrinamicError method)

 	(pylablib.devices.Trinamic.base.TrinamicTimeoutError method)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError method)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftError method)

 	(pylablib.devices.Voltcraft.multimeter.VC880ParseError method)

 	add_num_edit() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_num_label() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_observer() (pylablib.core.utils.observer_pool.ObserverPool method)

 	add_padding() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_path() (pylablib.core.utils.general.StreamFileLogger method)

 	add_progress_bar() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_property_element() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_pulse_output() (pylablib.devices.NI.daq.NIDAQ method)

 	add_shortcut() (pylablib.core.utils.dictionary.PrefixShortcutTree method)

 	add_shortcuts() (pylablib.core.utils.dictionary.PrefixShortcutTree method)

 	add_simple_widget() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_spacer() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_status_line() (pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_stop_notifier() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	add_stream() (pylablib.core.utils.general.StreamFileLogger method)

 	add_sublayout() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_tab() (pylablib.core.gui.widgets.container.QTabContainer method)

 	add_text_edit() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_text_label() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_thread_method() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	add_time() (pylablib.core.utils.general.Countdown method)

 	add_timer() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_timer_event() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_to_layout() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_toggle_button() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_variable() (pylablib.core.utils.ipc.SharedMemIPCTable method)

 	add_virtual_element() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	add_voltage_input() (pylablib.devices.NI.daq.NIDAQ method)

 	add_voltage_output() (pylablib.devices.NI.daq.NIDAQ method)

 	add_widget() (pylablib.core.gui.value_handling.GUIValues method)

 	add_widget_indicator() (pylablib.core.gui.value_handling.GUIValues method)

 	added (pylablib.core.utils.dictionary.DictionaryDiff attribute), [1]

 	addr (pylablib.devices.Conrad.base.RelayBoard.TMessage attribute)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData attribute)

 	(pylablib.devices.Trinamic.base.TMCM1110.ReplyData attribute)

 	
 	address (pylablib.devices.Attocube.anc350.ANC350.Reply attribute)

 	(pylablib.devices.Attocube.anc350.ANC350.Telegram attribute)

 	(pylablib.devices.Modbus.modbus.TModbusFrame attribute)

 	advance_read_frames() (pylablib.devices.interface.camera.FrameCounter method)

 	Agilent33220A (class in pylablib.devices.AWG.specific)

 	Agilent33500 (class in pylablib.devices.AWG.specific)

 	ai1() (in module pylablib.core.utils.nbtools)

 	ai2() (in module pylablib.core.utils.nbtools)

 	ai4() (in module pylablib.core.utils.nbtools)

 	ai8() (in module pylablib.core.utils.nbtools)

 	allocate() (pylablib.devices.interface.camera.ChunkBufferManager method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	allocate_buffers() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	allowing_toploop() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	ampl (pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters attribute)

 	amplitude (pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters attribute)

 	(pylablib.devices.SmarAct.MCS2.TStepMoveParams attribute)

 	ANC300 (class in pylablib.devices.Attocube.anc300)

 	ANC350 (class in pylablib.devices.Attocube.anc350)

 	ANC350.Reply (class in pylablib.devices.Attocube.anc350)

 	ANC350.Telegram (class in pylablib.devices.Attocube.anc350)

 	AndorError

 	AndorFrameTransferError

 	AndorNotSupportedError

 	AndorSDK2Camera (class in pylablib.devices.Andor.AndorSDK2)

 	AndorSDK3Attribute (class in pylablib.devices.Andor.AndorSDK3)

 	AndorSDK3Camera (class in pylablib.devices.Andor.AndorSDK3)

 	AndorSDK3Camera.BufferManager (class in pylablib.devices.Andor.AndorSDK3)

 	AndorTimeoutError

 	angular_deviation (pylablib.devices.Andor.Shamrock.TOpticalParameters attribute)

 	antiplay (pylablib.devices.Standa.base.TMoveParams attribute)

 	any_item() (in module pylablib.core.utils.general)

 	aperture (pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters attribute)

 	append() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor method)

 	applet_info (pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo attribute)

 	apply_calibration() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	apply_settings() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	apply_window() (in module pylablib.core.dataproc.fourier)

 	ArcusBackendError

 	ArcusError

 	ArduinoBackendError

 	ArduinoError

 	area() (pylablib.core.dataproc.image.ROI method)

 	arg_value() (pylablib.core.utils.functions.FunctionSignature method)

 	args (pylablib.core.devio.base.DeviceError attribute)

 	(pylablib.core.devio.comm_backend.DeviceBackendError attribute)

 	(pylablib.core.devio.comm_backend.DeviceFT232Error attribute)

 	(pylablib.core.devio.comm_backend.DeviceHIDError attribute)

 	(pylablib.core.devio.comm_backend.DeviceNetworkError attribute)

 	(pylablib.core.devio.comm_backend.DeviceRecordedError attribute)

 	(pylablib.core.devio.comm_backend.DeviceSerialError attribute)

 	(pylablib.core.devio.comm_backend.DeviceUSBError attribute)

 	(pylablib.core.devio.comm_backend.DeviceVisaError attribute)

 	(pylablib.core.devio.hid_base.HIDError attribute)

 	(pylablib.core.devio.hid_base.HIDLibError attribute)

 	(pylablib.core.devio.hid_base.HIDTimeoutError attribute)

 	(pylablib.core.gui.limiter.LimitError attribute)

 	(pylablib.core.gui.value_handling.MissingGUIHandlerError attribute)

 	(pylablib.core.gui.value_handling.NoParameterError attribute)

 	(pylablib.core.thread.threadprop.DuplicateControllerThreadError attribute)

 	(pylablib.core.thread.threadprop.InterruptException attribute)

 	(pylablib.core.thread.threadprop.InterruptExceptionStop attribute)

 	(pylablib.core.thread.threadprop.NoControllerThreadError attribute)

 	(pylablib.core.thread.threadprop.NoMessageThreadError attribute)

 	(pylablib.core.thread.threadprop.SkippedCallError attribute)

 	(pylablib.core.thread.threadprop.ThreadError attribute)

 	(pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	(pylablib.devices.AlliedVision.Bonito.BonitoError attribute)

 	(pylablib.devices.Andor.base.AndorError attribute)

 	(pylablib.devices.Andor.base.AndorFrameTransferError attribute)

 	(pylablib.devices.Andor.base.AndorNotSupportedError attribute)

 	(pylablib.devices.Andor.base.AndorTimeoutError attribute)

 	(pylablib.devices.Arcus.base.ArcusBackendError attribute)

 	(pylablib.devices.Arcus.base.ArcusError attribute)

 	(pylablib.devices.Arduino.base.ArduinoBackendError attribute)

 	(pylablib.devices.Arduino.base.ArduinoError attribute)

 	(pylablib.devices.Attocube.base.AttocubeBackendError attribute)

 	(pylablib.devices.Attocube.base.AttocubeError attribute)

 	(pylablib.devices.AWG.generic.GenericAWGBackendError attribute)

 	(pylablib.devices.AWG.generic.GenericAWGError attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowError attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError attribute)

 	(pylablib.devices.Conrad.base.ConradBackendError attribute)

 	(pylablib.devices.Conrad.base.ConradError attribute)

 	(pylablib.devices.Cryocon.base.CryoconBackendError attribute)

 	(pylablib.devices.Cryocon.base.CryoconError attribute)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError attribute)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsError attribute)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError attribute)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError attribute)

 	(pylablib.devices.interface.camera.DefaultFrameTransferError attribute)

 	(pylablib.devices.Keithley.base.GenericKeithleyBackendError attribute)

 	(pylablib.devices.Keithley.base.GenericKeithleyError attribute)

 	(pylablib.devices.KJL.base.KJLBackendError attribute)

 	(pylablib.devices.KJL.base.KJLError attribute)

 	(pylablib.devices.Lakeshore.base.LakeshoreBackendError attribute)

 	(pylablib.devices.Lakeshore.base.LakeshoreError attribute)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumBackendError attribute)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumError attribute)

 	(pylablib.devices.Leybold.base.LeyboldBackendError attribute)

 	(pylablib.devices.Leybold.base.LeyboldError attribute)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError attribute)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError attribute)

 	(pylablib.devices.M2.base.M2CommunicationError attribute)

 	(pylablib.devices.M2.base.M2Error attribute)

 	(pylablib.devices.M2.base.M2ParseError attribute)

 	(pylablib.devices.Mightex.base.MightexError attribute)

 	(pylablib.devices.Mightex.base.MightexTimeoutError attribute)

 	(pylablib.devices.Modbus.modbus.ModbusBackendError attribute)

 	(pylablib.devices.Modbus.modbus.ModbusError attribute)

 	(pylablib.devices.Newport.base.NewportBackendError attribute)

 	(pylablib.devices.Newport.base.NewportError attribute)

 	(pylablib.devices.NI.daq.NIDAQmxError attribute)

 	(pylablib.devices.NI.daq.NIError attribute)

 	(pylablib.devices.NKT.interbus.InterbusBackendError attribute)

 	(pylablib.devices.NKT.interbus.InterbusError attribute)

 	(pylablib.devices.Ophir.base.OphirBackendError attribute)

 	(pylablib.devices.Ophir.base.OphirError attribute)

 	(pylablib.devices.OZOptics.base.OZOpticsBackendError attribute)

 	(pylablib.devices.OZOptics.base.OZOpticsError attribute)

 	(pylablib.devices.Pfeiffer.base.PfeifferBackendError attribute)

 	(pylablib.devices.Pfeiffer.base.PfeifferError attribute)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError attribute)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError attribute)

 	(pylablib.devices.Rigol.base.GenericRigolBackendError attribute)

 	(pylablib.devices.Rigol.base.GenericRigolError attribute)

 	(pylablib.devices.Sirah.base.GenericSirahBackendError attribute)

 	(pylablib.devices.Sirah.base.GenericSirahError attribute)

 	(pylablib.devices.Sirah.tuner.FrequencyReadSirahError attribute)

 	(pylablib.devices.SmarAct.base.SmarActError attribute)

 	(pylablib.devices.Standa.base.StandaBackendError attribute)

 	(pylablib.devices.Standa.base.StandaError attribute)

 	(pylablib.devices.Tektronix.base.TektronixBackendError attribute)

 	(pylablib.devices.Tektronix.base.TektronixError attribute)

 	(pylablib.devices.Thorlabs.base.ThorlabsBackendError attribute)

 	(pylablib.devices.Thorlabs.base.ThorlabsError attribute)

 	(pylablib.devices.Thorlabs.base.ThorlabsTimeoutError attribute)

 	(pylablib.devices.Toptica.base.TopticaBackendError attribute)

 	(pylablib.devices.Toptica.base.TopticaError attribute)

 	(pylablib.devices.Trinamic.base.TrinamicBackendError attribute)

 	(pylablib.devices.Trinamic.base.TrinamicError attribute)

 	(pylablib.devices.Trinamic.base.TrinamicTimeoutError attribute)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError attribute)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftError attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC880ParseError attribute)

 	Array1DWrapper (class in pylablib.core.dataproc.table_wrap)

 	Array1DWrapper.Accessor (class in pylablib.core.dataproc.table_wrap)

 	Array2DWrapper (class in pylablib.core.dataproc.table_wrap)

 	Array2DWrapper.ColumnAccessor (class in pylablib.core.dataproc.table_wrap)

 	Array2DWrapper.RowAccessor (class in pylablib.core.dataproc.table_wrap)

 	Array2DWrapper.TableAccessor (class in pylablib.core.dataproc.table_wrap)

 	array_replaced() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	article_no (pylablib.devices.ElektroAutomatik.base.TDeviceInfo attribute)

 	as_addr_port() (in module pylablib.core.utils.net)

 	as_array() (in module pylablib.core.utils.array_utils)

 	as_builtin_bytes() (in module pylablib.core.utils.py3)

 	as_bytes() (in module pylablib.core.utils.py3)

 	as_container() (in module pylablib.core.utils.general)

 	as_datatype() (in module pylablib.core.utils.py3)

 	as_dict() (in module pylablib.core.utils.dictionary)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	as_dictionary() (in module pylablib.core.utils.dictionary)

 	(pylablib.core.utils.dictionary.Dictionary static method)

 	(pylablib.core.utils.dictionary.DictionaryPointer static method)

 	(pylablib.core.utils.dictionary.FilterTree static method)

 	(pylablib.core.utils.dictionary.PrefixTree static method)

 	as_formatter() (in module pylablib.core.gui.formatter)

 	as_json() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	as_kwargs() (pylablib.core.utils.functions.FunctionSignature method)

 	as_limiter() (in module pylablib.core.gui.limiter)

 	as_obj_prop() (in module pylablib.core.utils.functions)

 	as_pandas() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	as_sequence() (in module pylablib.core.utils.funcargparse)

 	as_simple_func() (pylablib.core.utils.functions.FunctionSignature method)

 	as_str() (in module pylablib.core.utils.py3)

 	as_text() (pylablib.devices.DCAM.DCAM.DCAMAttribute method)

 	asdict() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	ask() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	atm_adj (pylablib.devices.Leybold.base.TITR90Status attribute)

 	AttocubeBackendError

 	AttocubeError

 	attr (pylablib.core.utils.observer_pool.ObserverPool.Observer attribute)

 	attr_url (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	AttrObjectCall (class in pylablib.core.utils.functions)

 	AttrObjectProperty (class in pylablib.core.utils.functions)

 	au1() (in module pylablib.core.utils.nbtools)

 	au2() (in module pylablib.core.utils.nbtools)

 	au4() (in module pylablib.core.utils.nbtools)

 	au8() (in module pylablib.core.utils.nbtools)

 	autodetect_backend() (in module pylablib.core.devio.comm_backend)

 	autodetect_motors() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	autoloop (pylablib.devices.NI.daq.TVoltageOutputClockParameters attribute)

 	autorange (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings attribute)

 	autorng (pylablib.devices.Keithley.multimeter.TGenericFunctionParameters attribute)

 	available (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	available_samples() (pylablib.devices.NI.daq.NIDAQ method)

 	average_interpolate_1D() (in module pylablib.core.dataproc.interpolate)

 	avg (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TThinetCtlParameters attribute)

B

 	
 	backend_error() (in module pylablib.core.devio.comm_backend)

 	BackendError (pylablib.core.devio.comm_backend.FT232DeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend attribute)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend attribute)

 	(pylablib.core.devio.SCPI.SCPIDevice attribute)

 	(pylablib.devices.AWG.generic.GenericAWG attribute)

 	(pylablib.devices.AWG.specific.Agilent33220A attribute)

 	(pylablib.devices.AWG.specific.Agilent33500 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2000 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2225 attribute)

 	(pylablib.devices.AWG.specific.RigolDG1000 attribute)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 attribute)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 attribute)

 	(pylablib.devices.Cryocon.base.Cryocon1x attribute)

 	(pylablib.devices.Cryomagnetics.base.LM500 attribute)

 	(pylablib.devices.Cryomagnetics.base.LM510 attribute)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 attribute)

 	(pylablib.devices.M2.base.ICEBlocDevice attribute)

 	(pylablib.devices.M2.emm.EMM attribute)

 	(pylablib.devices.M2.solstis.Solstis attribute)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 attribute)

 	(pylablib.devices.Rigol.power_supply.DP1116A attribute)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse attribute)

 	(pylablib.devices.Tektronix.base.DPO2000 attribute)

 	(pylablib.devices.Tektronix.base.ITektronixScope attribute)

 	(pylablib.devices.Tektronix.base.TDS2000 attribute)

 	(pylablib.devices.Thorlabs.misc.GenericPM attribute)

 	(pylablib.devices.Thorlabs.misc.PM160 attribute)

 	(pylablib.devices.Thorlabs.serial.FW attribute)

 	(pylablib.devices.Thorlabs.serial.FWv1 attribute)

 	(pylablib.devices.Thorlabs.serial.MDT69xA attribute)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 attribute)

 	BackendLogger (class in pylablib.core.devio.backend_logger)

 	backlash_distance (pylablib.devices.Thorlabs.kinesis.TGenMoveParams attribute)

 	Baseline (class in pylablib.core.dataproc.feature)

 	baseplate (pylablib.devices.Toptica.ibeam.TTemperatures attribute)

 	BasicKinesisDevice (class in pylablib.devices.Thorlabs.kinesis)

 	BasicKinesisDevice.CommData (class in pylablib.devices.Thorlabs.kinesis)

 	BasicKinesisDevice.CommShort (class in pylablib.devices.Thorlabs.kinesis)

 	BaslerPylonAttribute (class in pylablib.devices.Basler.pylon)

 	BaslerPylonCamera (class in pylablib.devices.Basler.pylon)

 	BaslerPylonCamera.BufferManager (class in pylablib.devices.Basler.pylon)

 	BaslerPylonCamera.ScheduleLooper (class in pylablib.devices.Basler.pylon)

 	bayer_interpolate() (in module pylablib.devices.utils.color)

 	bifi_clear_errors() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_get_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_get_range() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_get_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_get_status_n() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_home() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_is_moving() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_move_to() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_stop() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	bifi_wait_move() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	BinaryTableInputFileFormatter (class in pylablib.core.fileio.loadfile)

 	bind() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	
 	bind_namelist() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	binning_average() (in module pylablib.core.dataproc.filters)

 	binv() (in module pylablib.core.utils.crc)

 	bipolar (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	bit_depth (pylablib.devices.Thorlabs.TLCamera.TSensorInfo attribute)

 	BitFlowCamera (class in pylablib.devices.BitFlow.BitFlow)

 	BitFlowCamera.BufferManager (class in pylablib.devices.BitFlow.BitFlow)

 	BitFlowError

 	BitFlowFrameGrabber (class in pylablib.devices.BitFlow.BitFlow)

 	BitFlowFrameGrabber.BufferManager (class in pylablib.devices.BitFlow.BitFlow)

 	BitFlowTimeoutError

 	bits2int() (in module pylablib.core.utils.strpack)

 	bk_freq (pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	blaze_wavelength (pylablib.devices.Andor.Shamrock.TGratingInfo attribute)

 	blink() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	blocking_control_signals() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	BonitoError

 	BonitoIMAQCamera (class in pylablib.devices.AlliedVision.Bonito)

 	BonitoStatusLineChecker (class in pylablib.devices.AlliedVision.Bonito)

 	branch_copy() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	branch_pointer() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	buffconv() (in module pylablib.core.utils.ctypes_wrap)

 	buffer_size (pylablib.devices.interface.camera.TFramesStatus attribute)

 	buffprep() (in module pylablib.core.utils.ctypes_wrap)

 	build_call() (pylablib.core.thread.callsync.QDirectCallScheduler method)

 	(pylablib.core.thread.callsync.QMulticastThreadCallScheduler method)

 	(pylablib.core.thread.callsync.QMultiQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	(pylablib.core.thread.callsync.QScheduler method)

 	(pylablib.core.thread.callsync.QThreadCallScheduler method)

 	build_call_info() (pylablib.core.thread.callsync.QDirectCallScheduler method)

 	(pylablib.core.thread.callsync.QMulticastThreadCallScheduler method)

 	(pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	(pylablib.core.thread.callsync.QScheduler method)

 	(pylablib.core.thread.callsync.QThreadCallScheduler method)

 	build_children_tree() (in module pylablib.core.gui.value_handling)

 	build_file_format() (in module pylablib.core.fileio.loadfile)

 	bus (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	bus_type (pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo attribute)

 	byref() (pylablib.core.utils.ctypes_wrap.CFunctionWrapper method)

 	bytes2int() (in module pylablib.core.utils.strpack)

C

 	
 	c2xy() (in module pylablib.core.dataproc.utils)

 	c_array() (in module pylablib.core.utils.nbtools)

 	ca (pylablib.core.thread.controller.QTaskThread attribute)

 	cacheable (pylablib.core.utils.observer_pool.ObserverPool.Observer attribute)

 	cad (pylablib.core.thread.controller.QTaskThread attribute)

 	cai (pylablib.core.thread.controller.QTaskThread attribute)

 	cal_date (pylablib.devices.LaserQuantum.base.TDeviceInfo attribute)

 	calc_table() (in module pylablib.core.utils.crc)

 	calibrate() (pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.Sirah.tuner.MatisseTuner method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	calibration (pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

 	call_added() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	call_command() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	call_command_direct() (pylablib.core.thread.controller.QTaskThread method)

 	call_cut_args() (in module pylablib.core.utils.functions)

 	call_in_gui_thread() (in module pylablib.core.thread.controller)

 	call_in_thread() (in module pylablib.core.thread.controller)

 	call_in_thread_callback() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	call_in_thread_commsync() (pylablib.core.thread.controller.QTaskThread method)

 	call_in_thread_sync() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	call_limit() (in module pylablib.core.utils.general)

 	call_on_exception (pylablib.core.thread.callsync.QScheduledCall.Callback attribute)

 	call_on_unschedule (pylablib.core.thread.callsync.QScheduledCall.Callback attribute)

 	call_popped() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	call_thread_method() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	call_time (pylablib.core.thread.callsync.TDefaultCallInfo attribute)

 	callback (pylablib.core.utils.observer_pool.ObserverPool.Observer attribute)

 	cam_id (pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	(pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	camera_file (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	camera_model (pylablib.devices.Andor.AndorSDK3.TDeviceInfo attribute)

 	camera_name (pylablib.devices.Andor.AndorSDK3.TDeviceInfo attribute)

 	camera_type (pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	camera_version (pylablib.devices.DCAM.DCAM.TDeviceInfo attribute)

 	CameraFileEditor (class in pylablib.devices.BitFlow.BitFlow)

 	camerastamp (pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	can_change() (pylablib.core.thread.utils.ReadChangeLock method)

 	can_read() (pylablib.core.thread.utils.ReadChangeLock method)

 	can_schedule() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	can_set_online (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	can_set_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	capabilities (pylablib.devices.Ophir.base.THeadInfo attribute)

 	case_sensitive_path() (in module pylablib.core.utils.files)

 	cast() (pylablib.core.gui.limiter.NumberLimit method)

 	category (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	center() (pylablib.core.dataproc.image.ROI method)

 	CFunctionWrapper (class in pylablib.core.utils.ctypes_wrap)

 	change_addr() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	change_batch_job_parameters() (pylablib.core.thread.controller.QTaskThread method)

 	change_job_period() (pylablib.core.thread.controller.QTaskThread method)

 	change_max_len() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	change_max_size() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	change_period() (pylablib.core.thread.controller.QTaskThread.Job method)

 	(pylablib.core.utils.general.Timer method)

 	changed_from (pylablib.core.utils.dictionary.DictionaryDiff attribute), [1]

 	changed_to (pylablib.core.utils.dictionary.DictionaryDiff attribute), [1]

 	changing() (pylablib.core.thread.utils.ReadChangeLock method)

 	channel (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	(pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings attribute)

 	characters_written (pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	check_alias() (pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	check_background_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	check_fast_scan_start_report() (pylablib.devices.M2.solstis.Solstis method)

 	check_fine_tuning_report() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	check_grabber_association() (in module pylablib.devices.AlliedVision.Bonito)

 	(in module pylablib.devices.PhotonFocus.PhotonFocus)

 	check_indices() (pylablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker method)

 	(pylablib.devices.interface.camera.StatusLineChecker method)

 	(pylablib.devices.PCO.SC2.StatusLineChecker method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker method)

 	check_limit() (pylablib.devices.Attocube.anc350.ANC350 method)

 	check_limit_error() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	check_messages() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	check_parameter_range() (in module pylablib.core.utils.funcargparse)

 	check_report() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	check_tell() (pylablib.devices.Attocube.anc350.ANC350 method)

 	check_terascan_start_report() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	check_terascan_update() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	check_value() (pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	CheckboxValueHandler (class in pylablib.core.gui.value_handling)

 	chip (pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	ChunkBufferManager (class in pylablib.devices.interface.camera)

 	ChunksAccumulator (class in pylablib.core.fileio.parse_csv)

 	class_tuple_to_dict() (in module pylablib.core.utils.ctypes_wrap)

 	clean_dir() (in module pylablib.core.utils.files)

 	clean_layout() (in module pylablib.core.gui.utils)

 	clean_modes() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor method)

 	cleanup (pylablib.core.thread.controller.QTaskThread.TBatchJob attribute)

 	cleanup() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	clear() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.core.thread.callsync.QDirectCallScheduler method)

 	(pylablib.core.thread.callsync.QMulticastThreadCallScheduler method)

 	(pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	(pylablib.core.thread.callsync.QScheduler method)

 	(pylablib.core.thread.callsync.QThreadCallScheduler method)

 	(pylablib.core.thread.controller.QTaskThread.Job method)

 	clear_acquisition() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	clear_all_triggers() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	clear_limit_error() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	clicked (pylablib.core.gui.widgets.label.EnumLabel attribute)

 	(pylablib.core.gui.widgets.label.NumLabel attribute)

 	(pylablib.core.gui.widgets.label.TextLabel attribute)

 	ClientSocket (class in pylablib.core.utils.net)

 	CLinear2DTransform (class in pylablib.core.dataproc.ctransform_fallback)

 	close() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.LocationFile method)

 	(pylablib.core.fileio.location.OpenedFileLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	(pylablib.core.utils.net.ClientSocket method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	
 	close_connection() (pylablib.core.utils.ipc.SharedMemIPCTable method)

 	close_result (pylablib.devices.utils.load_lib.TLibraryCloseResult attribute)

 	cls (pylablib.core.utils.string.TConversionClass attribute)

 	cmp_dirs() (in module pylablib.core.utils.files)

 	cmp_package_version() (in module pylablib.core.utils.module)

 	cmp_versions() (in module pylablib.core.utils.module)

 	coarse_tune_wavelength() (pylablib.devices.M2.solstis.Solstis method)

 	coeff (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader attribute)

 	collect() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	collect_into_bins() (in module pylablib.core.dataproc.filters)

 	color_format (pylablib.devices.Thorlabs.TLCamera.TColorFormat attribute)

 	color_space (pylablib.devices.Thorlabs.TLCamera.TColorFormat attribute)

 	column() (pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	columns_replaced() (pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	columns_to_table() (in module pylablib.core.fileio.parse_csv)

 	combine_conn() (pylablib.core.devio.comm_backend.FT232DeviceBackend class method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend class method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend class method)

 	combine_dictionaries() (in module pylablib.core.utils.dictionary)

 	combine_diff() (in module pylablib.core.utils.files)

 	CombinedParameterClass (class in pylablib.core.devio.interface)

 	ComboBox (class in pylablib.core.gui.widgets.combo_box)

 	ComboBoxValueHandler (class in pylablib.core.gui.value_handling)

 	comm (pylablib.devices.Conrad.base.RelayBoard.TMessage attribute)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData attribute)

 	(pylablib.devices.Trinamic.base.TMCM1110.ReplyData attribute)

 	comm() (pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	comm_paused() (pylablib.core.thread.controller.QTaskThread method)

 	command (pylablib.core.thread.controller.QTaskThread.TCommand attribute)

 	common (pylablib.core.utils.dictionary.DictionaryIntersection attribute), [1]

 	compare_lists() (in module pylablib.core.utils.general)

 	compilation_number (pylablib.devices.HighFinesse.wlm.TDeviceInfo attribute)

 	complex_lorentzian_k() (in module pylablib.core.dataproc.specfunc)

 	compress_grid_layout() (in module pylablib.core.gui.utils)

 	configuration (pylablib.devices.LighthousePhotonics.base.TDeviceInfo attribute)

 	configure_trigger_in() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	configure_trigger_out() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	connect() (pylablib.core.utils.net.ClientSocket method)

 	connect_device_service() (in module pylablib.core.utils.rpyc_utils)

 	connect_value_changed_handler() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	connect_wavemeter() (pylablib.devices.M2.solstis.Solstis method)

 	ConradBackendError

 	ConradError

 	cons_error (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	cons_excluded (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	cons_included (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	cons_novalid (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	cons_permanent (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	cons_type (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	constant() (in module pylablib.core.utils.numerical)

 	contained_value_changed (pylablib.core.gui.widgets.container.IQContainer attribute)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer attribute)

 	(pylablib.core.gui.widgets.container.QContainer attribute)

 	(pylablib.core.gui.widgets.container.QDialogContainer attribute)

 	(pylablib.core.gui.widgets.container.QFrameContainer attribute)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer attribute)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer attribute)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget attribute)

 	(pylablib.core.gui.widgets.container.QTabContainer attribute)

 	(pylablib.core.gui.widgets.container.QWidgetContainer attribute)

 	(pylablib.core.gui.widgets.param_table.ParamTable attribute)

 	(pylablib.core.gui.widgets.param_table.StatusTable attribute)

 	contains() (pylablib.core.dataproc.utils.Range method)

 	continuous (pylablib.devices.NI.daq.TVoltageOutputClockParameters attribute)

 	controller (pylablib.devices.LighthousePhotonics.base.TWorkHours attribute)

 	controller_model (pylablib.devices.Andor.AndorSDK2.TDeviceInfo attribute)

 	conv (pylablib.core.utils.string.TConversionClass attribute)

 	conv() (pylablib.core.utils.ctypes_wrap.CStructWrapper method)

 	convert_columns() (pylablib.core.fileio.parse_csv.ChunksAccumulator method)

 	convert_frequency_units() (in module pylablib.core.utils.units)

 	convert_from_str() (pylablib.core.devio.data_format.DataFormat method)

 	convert_image_indexing() (in module pylablib.core.dataproc.image)

 	convert_length_units() (in module pylablib.core.utils.units)

 	convert_power_units() (in module pylablib.core.utils.units)

 	convert_shape_indexing() (in module pylablib.core.dataproc.image)

 	convert_time_units() (in module pylablib.core.utils.units)

 	convert_to_str() (pylablib.core.devio.data_format.DataFormat method)

 	convolution_filter() (in module pylablib.core.dataproc.filters)

 	convolve1d() (in module pylablib.core.dataproc.filters)

 	cooldown() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	copy() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	(pylablib.core.dataproc.image.ROI method)

 	(pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.IGenWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	(pylablib.core.fileio.location.LocationName method)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixShortcutTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	(pylablib.core.utils.functions.FunctionSignature method)

 	copy_array_chunks() (in module pylablib.core.utils.nbtools)

 	copy_array_strided() (in module pylablib.core.utils.nbtools)

 	copy_dir() (in module pylablib.core.utils.files)

 	copy_file() (in module pylablib.core.utils.files)

 	corr_number (pylablib.devices.Attocube.anc350.ANC350.Telegram attribute)

 	correction_matrix (pylablib.devices.Thorlabs.TLCamera.TColorInfo attribute)

 	corrupted_number() (pylablib.core.fileio.parse_csv.ChunksAccumulator method)

 	count (pylablib.devices.Keithley.multimeter.TAveragingParameters attribute)

 	Countdown (class in pylablib.core.utils.general)

 	coupling (pylablib.devices.Tektronix.base.TTriggerParameters attribute)

 	covers_all() (in module pylablib.core.utils.indexing)

 	crc() (in module pylablib.core.utils.crc)

 	create_indicator_handler() (in module pylablib.core.gui.value_handling)

 	create_value_handler() (in module pylablib.core.gui.value_handling)

 	Cryocon1x (class in pylablib.devices.Cryocon.base)

 	CryoconBackendError

 	CryoconError

 	CryomagneticsBackendError

 	CryomagneticsError

 	cs (pylablib.core.thread.controller.QTaskThread attribute)

 	csi (pylablib.core.thread.controller.QTaskThread attribute)

 	css (pylablib.core.thread.controller.QTaskThread attribute)

 	CStructWrapper (class in pylablib.core.utils.ctypes_wrap)

 	CSVTableInputFileFormat (class in pylablib.core.fileio.loadfile)

 	CSVTableOutputFileFormat (class in pylablib.core.fileio.savefile)

 	curr_idx (pylablib.devices.Ophir.base.TRangeInfo attribute)

 	(pylablib.devices.Ophir.base.TWavelengthInfo attribute)

 	curr_range (pylablib.devices.Ophir.base.TRangeInfo attribute)

 	curr_wavelength (pylablib.devices.Ophir.base.TWavelengthInfo attribute)

 	current (pylablib.devices.ElektroAutomatik.base.TOutputLimits attribute)

 	(pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	current_controller() (in module pylablib.core.thread.threadprop)

 	cut_out_regions() (in module pylablib.core.dataproc.utils)

 	cut_to_range() (in module pylablib.core.dataproc.utils)

 	cycles_done (pylablib.devices.Andor.AndorSDK2.TAcqProgress attribute)

D

 	
 	d (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams attribute)

 	d2func (pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	data (pylablib.core.utils.ipc.TPipeMsg attribute)

 	(pylablib.devices.Attocube.anc350.ANC350.Reply attribute)

 	(pylablib.devices.Attocube.anc350.ANC350.Telegram attribute)

 	(pylablib.devices.Conrad.base.RelayBoard.TMessage attribute)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram attribute)

 	(pylablib.devices.Modbus.modbus.TModbusFrame attribute)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor.CommData attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData attribute)

 	DataFile (class in pylablib.core.fileio.datafile)

 	DataFormat (class in pylablib.core.devio.data_format)

 	DataFrame2DWrapper (class in pylablib.core.dataproc.table_wrap)

 	DataFrame2DWrapper.ColumnAccessor (class in pylablib.core.dataproc.table_wrap)

 	DataFrame2DWrapper.RowAccessor (class in pylablib.core.dataproc.table_wrap)

 	DataFrame2DWrapper.TableAccessor (class in pylablib.core.dataproc.table_wrap)

 	date (pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	day (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	DCAMAttribute (class in pylablib.devices.DCAM.DCAM)

 	DCAMCamera (class in pylablib.devices.DCAM.DCAM)

 	DD100 (class in pylablib.devices.OZOptics.base)

 	deactivation_control (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings attribute)

 	deallocate() (pylablib.devices.interface.camera.ChunkBufferManager method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	deallocate_buffers() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	decel (pylablib.devices.Standa.base.TMoveParams attribute)

 	decimate() (in module pylablib.core.dataproc.filters)

 	decimate_datasets() (in module pylablib.core.dataproc.filters)

 	decimate_full() (in module pylablib.core.dataproc.filters)

 	decllen_bo (pylablib.core.utils.net.ClientSocket attribute)

 	decllen_ll (pylablib.core.utils.net.ClientSocket attribute)

 	default (pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	default_white_balance_matrix (pylablib.devices.Thorlabs.TLCamera.TColorInfo attribute)

 	DefaultFrameTransferError

 	del_entry() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	del_fit_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	del_fixed_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	delattr_call() (in module pylablib.core.utils.functions)

 	delaydef() (in module pylablib.core.utils.functions)

 	delete_layout_item() (in module pylablib.core.gui.utils)

 	delete_thread_method() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	delete_variable() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	delete_widget() (in module pylablib.core.gui.utils)

 	deregister() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	desc (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	description (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	dest (pylablib.devices.NKT.interbus.TInterbusTelegram attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort attribute)

 	detach() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	detect_binary_file() (in module pylablib.core.fileio.loadfile_utils)

 	detect_file_format() (pylablib.core.fileio.loadfile.BinaryTableInputFileFormatter static method)

 	(pylablib.core.fileio.loadfile.CSVTableInputFileFormat static method)

 	(pylablib.core.fileio.loadfile.DictionaryInputFileFormat static method)

 	(pylablib.core.fileio.loadfile.IInputFileFormat static method)

 	(pylablib.core.fileio.loadfile.ITextInputFileFormat static method)

 	detect_textfile_type() (in module pylablib.core.fileio.loadfile_utils)

 	dev_id (pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	devclass (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	
 	device (pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	device_id (pylablib.devices.SmarAct.scu3d.TDeviceInfo attribute)

 	device_info (pylablib.devices.Leybold.base.TUpdateValue attribute)

 	DeviceBackendError

 	DeviceError

 	DeviceFT232Error

 	DeviceHIDError

 	DeviceNetworkError

 	DeviceRecordedError

 	DeviceSerialError

 	DeviceService (class in pylablib.core.utils.rpyc_utils)

 	DeviceUSBError

 	DeviceVisaError

 	devversion (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	dict_to_object_local() (in module pylablib.core.utils.dictionary)

 	DictEntryBuilder (class in pylablib.core.fileio.dict_entry)

 	DictEntryParser (class in pylablib.core.fileio.dict_entry)

 	Dictionary (class in pylablib.core.utils.dictionary)

 	DictionaryDiff (class in pylablib.core.utils.dictionary)

 	DictionaryInputFileFormat (class in pylablib.core.fileio.loadfile)

 	DictionaryIntersection (class in pylablib.core.utils.dictionary)

 	DictionaryNode (class in pylablib.core.utils.dictionary)

 	DictionaryOutputFileFormat (class in pylablib.core.fileio.savefile)

 	DictionaryPointer (class in pylablib.core.utils.dictionary)

 	diff() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	diff_flatdict() (pylablib.core.utils.dictionary.Dictionary static method)

 	(pylablib.core.utils.dictionary.DictionaryPointer static method)

 	(pylablib.core.utils.dictionary.FilterTree static method)

 	(pylablib.core.utils.dictionary.PrefixTree static method)

 	differentiate() (in module pylablib.core.dataproc.filters)

 	diode (pylablib.devices.Toptica.ibeam.TTemperatures attribute)

 	dir_empty() (in module pylablib.core.utils.files)

 	disable_axis() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	disable_callback() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	disconnect_wavemeter() (pylablib.devices.M2.solstis.Solstis method)

 	display_name (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	display_units (pylablib.devices.Leybold.base.TUpdateValue attribute)

 	disps (pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	dll_version (pylablib.devices.SmarAct.scu3d.TDeviceInfo attribute)

 	(pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	dnode (pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram attribute)

 	doc_inherit() (in module pylablib.core.utils.general)

 	docstring() (pylablib.core.devio.interface.CombinedParameterClass method)

 	(pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.IParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	done_notify() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	done_wait() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	DP1116A (class in pylablib.devices.Rigol.power_supply)

 	DPG202 (class in pylablib.devices.Pfeiffer.base)

 	DPO2000 (class in pylablib.devices.Tektronix.base)

 	driver (pylablib.devices.Standa.base.TEngineType attribute)

 	DummyResource (class in pylablib.core.utils.general)

 	dump() (in module pylablib.core.utils.strdump)

 	(pylablib.core.utils.strdump.StrDumper method)

 	dumper (in module pylablib.core.utils.strdump)

 	dumps() (in module pylablib.core.utils.strdump)

 	(pylablib.core.utils.strdump.StrDumper method)

 	DuplicateControllerThreadError

E

 	
 	ElektroAutomatikBackendError

 	ElektroAutomatikError

 	ElliptecMotor (class in pylablib.devices.Thorlabs.elliptec)

 	ElliptecMotor.CommData (class in pylablib.devices.Thorlabs.elliptec)

 	emission (pylablib.devices.Leybold.base.TITR90Status attribute)

 	EMM (class in pylablib.devices.M2.emm)

 	empty_object_property() (in module pylablib.core.utils.functions)

 	enable (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings attribute)

 	enable() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	enable_absolute_mode() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	enable_autorange() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	enable_axis() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	enable_burst() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	enable_callback() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	enable_CFR() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	enable_channel() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	enable_channels() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	enable_cooling() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	enable_drift_compensation() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	enable_frame_transfer_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	enable_led() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	enable_limit_errors() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	enable_metadata() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	enable_nir_boost() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	enable_ocp() (pylablib.devices.Rigol.power_supply.DP1116A method)

 	enable_online() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	enable_output() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	enable_ovp() (pylablib.devices.Rigol.power_supply.DP1116A method)

 	enable_pixel_correction() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	enable_raw_readout() (pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	enable_remote() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	enable_servo() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	enable_status_line() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	enable_switcher_channel() (pylablib.devices.HighFinesse.wlm.WLM method)

 	enable_sync_output() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	enable_terascan_updates() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	enable_trigger_output() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	enable_updates() (pylablib.devices.Attocube.anc350.ANC350 method)

 	enable_velocity_control() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	enabled (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	(pylablib.devices.Keithley.multimeter.TAveragingParameters attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings attribute)

 	encoder (pylablib.devices.Standa.base.TFullState attribute)

 	engine (pylablib.devices.Standa.base.TEngineType attribute)

 	ensure_dir() (in module pylablib.core.utils.files)

 	ensure_dir_singlelevel() (in module pylablib.core.utils.files)

 	EnumLabel (class in pylablib.core.gui.widgets.label)

 	EnumParameterClass (class in pylablib.core.devio.interface)

 	eof() (in module pylablib.core.utils.files)

 	EPC04 (class in pylablib.devices.OZOptics.base)

 	errno (pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	Error (pylablib.core.devio.comm_backend.FT232DeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend attribute)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend attribute)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend attribute)

 	(pylablib.core.devio.SCPI.SCPIDevice attribute)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera attribute)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera attribute)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera attribute)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera attribute)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage attribute)

 	(pylablib.devices.Arcus.performax.Performax2EXStage attribute)

 	(pylablib.devices.Arcus.performax.Performax4EXStage attribute)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage attribute)

 	(pylablib.devices.Arduino.base.IArduinoDevice attribute)

 	(pylablib.devices.Attocube.anc300.ANC300 attribute)

 	(pylablib.devices.Attocube.anc350.ANC350 attribute)

 	(pylablib.devices.AWG.generic.GenericAWG attribute)

 	(pylablib.devices.AWG.specific.Agilent33220A attribute)

 	(pylablib.devices.AWG.specific.Agilent33500 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2000 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2225 attribute)

 	(pylablib.devices.AWG.specific.RigolDG1000 attribute)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 attribute)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber attribute)

 	(pylablib.devices.Conrad.base.RelayBoard attribute)

 	(pylablib.devices.Cryocon.base.Cryocon1x attribute)

 	(pylablib.devices.Cryomagnetics.base.LM500 attribute)

 	(pylablib.devices.Cryomagnetics.base.LM510 attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera attribute)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B attribute)

 	(pylablib.devices.HighFinesse.wlm.WLM attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera attribute)

 	(pylablib.devices.interface.camera.IAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IBinROICamera attribute)

 	(pylablib.devices.interface.camera.ICamera attribute)

 	(pylablib.devices.interface.camera.IExposureCamera attribute)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IROICamera attribute)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 attribute)

 	(pylablib.devices.KJL.base.KJL300 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 attribute)

 	(pylablib.devices.LaserQuantum.base.Finesse attribute)

 	(pylablib.devices.Leybold.base.GenericITR attribute)

 	(pylablib.devices.Leybold.base.ITR90 attribute)

 	
 	error (pylablib.devices.Leybold.base.TUpdateValue attribute)

 	Error (pylablib.devices.LighthousePhotonics.base.SproutG attribute)

 	(pylablib.devices.Lumel.base.LumelRE72Controller attribute)

 	(pylablib.devices.M2.base.ICEBlocDevice attribute)

 	(pylablib.devices.M2.emm.EMM attribute)

 	(pylablib.devices.M2.solstis.Solstis attribute)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera attribute)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice attribute)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 attribute)

 	(pylablib.devices.NI.daq.NIDAQ attribute)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice attribute)

 	(pylablib.devices.NKT.interbus.InterbusSystem attribute)

 	(pylablib.devices.Ophir.base.OphirDevice attribute)

 	(pylablib.devices.Ophir.base.VegaPowerMeter attribute)

 	(pylablib.devices.OZOptics.base.DD100 attribute)

 	(pylablib.devices.OZOptics.base.EPC04 attribute)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice attribute)

 	(pylablib.devices.OZOptics.base.TF100 attribute)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera attribute)

 	(pylablib.devices.Pfeiffer.base.DPG202 attribute)

 	(pylablib.devices.Pfeiffer.base.TPG260 attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera attribute)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController attribute)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 attribute)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera attribute)

 	(pylablib.devices.Rigol.power_supply.DP1116A attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber attribute)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse attribute)

 	(pylablib.devices.SmarAct.MCS2.MCS2 attribute)

 	(pylablib.devices.SmarAct.scu3d.SCU3D attribute)

 	(pylablib.devices.Standa.base.Standa8SMC attribute)

 	(pylablib.devices.Tektronix.base.DPO2000 attribute)

 	(pylablib.devices.Tektronix.base.ITektronixScope attribute)

 	(pylablib.devices.Tektronix.base.TDS2000 attribute)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector attribute)

 	(pylablib.devices.Thorlabs.kinesis.MFF attribute)

 	(pylablib.devices.Thorlabs.misc.GenericPM attribute)

 	(pylablib.devices.Thorlabs.misc.PM160 attribute)

 	(pylablib.devices.Thorlabs.serial.FW attribute)

 	(pylablib.devices.Thorlabs.serial.FWv1 attribute)

 	(pylablib.devices.Thorlabs.serial.MDT69xA attribute)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface attribute)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera attribute)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam attribute)

 	(pylablib.devices.Trinamic.base.TMCM1110 attribute)

 	(pylablib.devices.uc480.uc480.UC480Camera attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC880 attribute)

 	errors (pylablib.devices.PCO.SC2.TCameraStatus attribute)

 	escape_string() (in module pylablib.core.utils.string)

 	EthernetIMAQdxCamera (class in pylablib.devices.IMAQdx.IMAQdx)

 	EthernetIMAQdxCamera.CallbackManager (class in pylablib.devices.IMAQdx.IMAQdx)

 	exc_mode (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings attribute)

 	exc_range (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings attribute)

 	execute() (pylablib.core.thread.callsync.QScheduledCall method)

 	exhaust_messages() (pylablib.devices.Voltcraft.multimeter.VC880 method)

 	exint() (in module pylablib.core.thread.controller)

 	exists (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	exp_decay_k() (in module pylablib.core.dataproc.specfunc)

 	expand_relative_path() (in module pylablib.core.utils.module)

 	ExpandedContainerDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	export_clock() (pylablib.devices.NI.daq.NIDAQ method)

 	exposure (pylablib.devices.Andor.AndorSDK2.TCycleTimings attribute)

 	(pylablib.devices.interface.camera.TAcqTimings attribute)

 	exposure_ns (pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	exsafe() (in module pylablib.core.thread.controller)

 	exsafeSlot() (in module pylablib.core.thread.controller)

 	ExternalBinTableDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	ExternalNumpyDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	ExternalTextTableDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	extract_escaped_string() (in module pylablib.core.utils.string)

 	extract_status_line() (in module pylablib.devices.interface.camera)

F

 	
 	f (pylablib.core.utils.files.TempFile attribute)

 	fail() (pylablib.core.thread.callsync.QScheduledCall method)

 	(pylablib.core.thread.synchronizing.QMultiThreadNotifier method)

 	fail_exec_point() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	failed() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	fall_speed (pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	falling (pylablib.devices.Sirah.Matisse.TScanMode attribute)

 	fast_shift_roi() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	FGrabAttribute (class in pylablib.devices.SiliconSoftware.fgrab)

 	file (pylablib.devices.SiliconSoftware.fgrab.TAppletInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	file_format (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry attribute)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry attribute)

 	filename (pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	filename2 (pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	files (pylablib.core.utils.files.FolderList attribute)

 	fill_voltage_output_buffer() (pylablib.devices.NI.daq.NIDAQ method)

 	filt (pylablib.core.utils.observer_pool.ObserverPool.Observer attribute)

 	filter_args_dict() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	filter_array_phase (pylablib.devices.Thorlabs.TLCamera.TColorInfo attribute)

 	filter_by() (in module pylablib.core.dataproc.utils)

 	filter_dict() (in module pylablib.core.utils.general)

 	filter_limiter() (in module pylablib.core.gui.limiter)

 	filter_self() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	filter_string_list() (in module pylablib.core.utils.string)

 	FilterTree (class in pylablib.core.utils.dictionary)

 	finalize_task() (pylablib.core.thread.controller.QTaskThread method)

 	finalized (pylablib.core.thread.controller.QThreadControllerThread attribute)

 	find_all_first_locations() (in module pylablib.core.utils.string)

 	find_all_prefixes() (pylablib.core.utils.dictionary.PrefixTree method)

 	find_by_serial() (in module pylablib.devices.uc480.uc480)

 	(pylablib.devices.uc480.uc480.UC480Camera static method)

 	find_closest_arg() (in module pylablib.core.dataproc.utils)

 	find_closest_value() (in module pylablib.core.dataproc.utils)

 	find_columns_lines() (in module pylablib.core.fileio.loadfile_utils)

 	find_dict_string() (in module pylablib.core.utils.string)

 	find_discrete_step() (in module pylablib.core.dataproc.utils)

 	find_first_entry() (in module pylablib.core.utils.string)

 	find_intersection() (pylablib.core.utils.dictionary.Dictionary static method)

 	(pylablib.core.utils.dictionary.DictionaryPointer static method)

 	(pylablib.core.utils.dictionary.FilterTree static method)

 	(pylablib.core.utils.dictionary.PrefixTree static method)

 	find_largest_prefix() (pylablib.core.utils.dictionary.PrefixTree method)

 	find_layout_element() (in module pylablib.core.gui.utils)

 	find_list_string() (in module pylablib.core.utils.string)

 	find_local_extrema() (in module pylablib.core.dataproc.feature)

 	find_observers() (pylablib.core.utils.observer_pool.ObserverPool method)

 	find_peaks_cutoff() (in module pylablib.core.dataproc.feature)

 	find_savetime_comment() (in module pylablib.core.fileio.loadfile_utils)

 	find_skipped_frames() (in module pylablib.devices.PhotonFocus.PhotonFocus)

 	fine_sweep_start() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	fine_sweep_stop() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	fine_tune_to() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	fine_tune_to_gen() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	fine_tune_wavelength() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	Finesse (class in pylablib.devices.LaserQuantum.base)

 	finished (pylablib.core.thread.controller.QTaskThread attribute)

 	(pylablib.core.thread.controller.QThreadController attribute)

 	finishing() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	firmware (pylablib.devices.Thorlabs.misc.TPMDeviceInfo attribute)

 	firmware_version (pylablib.devices.Andor.AndorSDK3.TDeviceInfo attribute)

 	(pylablib.devices.SmarAct.scu3d.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TDeviceInfo attribute)

 	fit() (pylablib.core.dataproc.fitting.Fitter method)

 	Fitter (class in pylablib.core.dataproc.fitting)

 	fixed_size (pylablib.core.utils.ipc.TShmemVarDesc attribute)

 	flags (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	(pylablib.devices.Standa.base.TFullState attribute)

 	(pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	flatten_list() (in module pylablib.core.utils.general)

 	flip_byteorder() (pylablib.core.devio.data_format.DataFormat method)

 	flip_fourier_transform() (in module pylablib.core.dataproc.fourier)

 	float_to_str_SI() (in module pylablib.core.gui.formatter)

 	FloatFormatter (class in pylablib.core.gui.formatter)

 	flush() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.utils.general.StreamFileLogger method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	flush_comm() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	flush_read() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	
 	fmt (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader attribute)

 	FmtStringFormatter (class in pylablib.core.gui.formatter)

 	focal_length (pylablib.devices.Andor.Shamrock.TOpticalParameters attribute)

 	focal_tilt (pylablib.devices.Andor.Shamrock.TOpticalParameters attribute)

 	focusInEvent() (pylablib.core.gui.widgets.edit.TextEdit method)

 	focusOutEvent() (pylablib.core.gui.widgets.edit.TextEdit method)

 	FolderFileSystemDataLocation (class in pylablib.core.fileio.location)

 	FolderList (class in pylablib.core.utils.files)

 	folders (pylablib.core.utils.files.FolderList attribute)

 	follow() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	followed() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	force_trigger() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	fourier_filter() (in module pylablib.core.dataproc.filters)

 	fourier_filter_bandpass() (in module pylablib.core.dataproc.filters)

 	fourier_filter_bandstop() (in module pylablib.core.dataproc.filters)

 	fourier_make_response_real() (in module pylablib.core.dataproc.filters)

 	fourier_transform() (in module pylablib.core.dataproc.fourier)

 	frame_index (pylablib.devices.Andor.AndorSDK3.TFrameInfo attribute)

 	(pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	(pylablib.devices.interface.camera.TFrameInfo attribute)

 	(pylablib.devices.PCO.SC2.TFrameInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TFrameInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFrameInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TFrameInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	frame_period (pylablib.devices.interface.camera.TAcqTimings attribute)

 	FrameCounter (class in pylablib.devices.interface.camera)

 	FrameNotifier (class in pylablib.devices.interface.camera)

 	frames_done (pylablib.devices.Andor.AndorSDK2.TAcqProgress attribute)

 	frameskip_events (pylablib.devices.uc480.uc480.TAcquiredFramesStatus attribute)

 	framestamp (pylablib.devices.AlliedVision.Bonito.TStatusLine attribute)

 	(pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	(pylablib.devices.PCO.SC2.TStatusLine attribute)

 	(pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TFrameInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFrameInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TFrameInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	framestamp_checker (pylablib.devices.interface.camera.TStatusLineDescription attribute)

 	FrameTransferError (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera attribute)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera attribute)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera attribute)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera attribute)

 	(pylablib.devices.interface.camera.IAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IBinROICamera attribute)

 	(pylablib.devices.interface.camera.ICamera attribute)

 	(pylablib.devices.interface.camera.IExposureCamera attribute)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IROICamera attribute)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera attribute)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber attribute)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera attribute)

 	(pylablib.devices.uc480.uc480.UC480Camera attribute)

 	freeP (pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters attribute)

 	frequency (pylablib.devices.SmarAct.MCS2.TStepMoveParams attribute)

 	FrequencyReadSirahError

 	friendly_name (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	from_args() (pylablib.core.utils.ipc.IIPCChannel class method)

 	(pylablib.core.utils.ipc.PipeIPCChannel class method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel class method)

 	(pylablib.core.utils.ipc.SharedMemIPCTable class method)

 	from_array() (pylablib.core.dataproc.table_wrap.Array1DWrapper static method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper static method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper static method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper static method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper static method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper static method)

 	from_centersize() (pylablib.core.dataproc.image.ROI class method)

 	from_columns() (pylablib.core.dataproc.table_wrap.Array1DWrapper class method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper class method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper class method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper class method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper class method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper class method)

 	from_data() (in module pylablib.core.fileio.dict_entry)

 	(pylablib.core.fileio.dict_entry.DictEntryBuilder method)

 	from_desc() (pylablib.core.devio.data_format.DataFormat static method)

 	from_desc_SCPI() (pylablib.core.devio.data_format.DataFormat static method)

 	from_dict() (in module pylablib.core.fileio.dict_entry)

 	(pylablib.core.fileio.dict_entry.DictEntryParser method)

 	(pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ITableDictionaryEntry class method)

 	from_function() (pylablib.core.utils.functions.FunctionSignature static method)

 	from_json() (pylablib.core.utils.dictionary.Dictionary class method)

 	(pylablib.core.utils.dictionary.DictionaryPointer class method)

 	(pylablib.core.utils.dictionary.FilterTree class method)

 	(pylablib.core.utils.dictionary.PrefixTree class method)

 	from_matr_shift() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform class method)

 	from_object() (pylablib.core.fileio.location.LocationName static method)

 	from_Pa() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	from_row_string() (in module pylablib.core.utils.string)

 	from_string() (in module pylablib.core.utils.string)

 	(pylablib.core.fileio.location.LocationName static method)

 	from_string_partial() (in module pylablib.core.utils.string)

 	FT232DeviceBackend (class in pylablib.core.devio.comm_backend)

 	full_exit() (in module pylablib.core.utils.general)

 	full_name (pylablib.core.utils.files.TempFile attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TBoardInfo attribute)

 	fullsplit() (in module pylablib.core.utils.files)

 	func (pylablib.core.thread.callsync.QScheduledCall.Callback attribute)

 	(pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	funcsig() (in module pylablib.core.utils.functions)

 	function (pylablib.devices.Keithley.multimeter.TConfigurationParameters attribute)

 	(pylablib.devices.Modbus.modbus.TModbusFrame attribute)

 	FunctionCallable (class in pylablib.core.dataproc.callable)

 	FunctionCallable.NamesBoundCall (class in pylablib.core.dataproc.callable)

 	FunctionParameterClass (class in pylablib.core.devio.interface)

 	FunctionSignature (class in pylablib.core.utils.functions)

 	FW (class in pylablib.devices.Thorlabs.serial)

 	fw_freq (pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	fw_ver (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	FWv1 (class in pylablib.devices.Thorlabs.serial)

G

 	
 	gain_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	gain_name (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	gaussian_filter() (in module pylablib.core.dataproc.filters)

 	gaussian_filter_nd() (in module pylablib.core.dataproc.filters)

 	gaussian_k() (in module pylablib.core.dataproc.specfunc)

 	gcd() (in module pylablib.core.utils.numerical)

 	gcd_approx() (in module pylablib.core.utils.numerical)

 	gen_hamming_w() (in module pylablib.core.dataproc.specfunc)

 	gen_hamming_w_ft() (in module pylablib.core.dataproc.specfunc)

 	generate_indexed_filename() (in module pylablib.core.utils.files)

 	generate_new_name() (pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.OpenedFileLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	generate_prefixed_filename() (in module pylablib.core.utils.files)

 	generate_temp_filename() (in module pylablib.core.utils.files)

 	GenericAWG (class in pylablib.devices.AWG.generic)

 	GenericAWGBackendError

 	GenericAWGError

 	GenericInterbusDevice (class in pylablib.devices.NKT.interbus)

 	GenericInterbusModule (class in pylablib.devices.NKT.interbus)

 	GenericITR (class in pylablib.devices.Leybold.base)

 	GenericKeithleyBackendError

 	GenericKeithleyError

 	GenericModbusRTUDevice (class in pylablib.devices.Modbus.modbus)

 	GenericPerformaxStage (class in pylablib.devices.Arcus.performax)

 	GenericPIController (class in pylablib.devices.PhysikInstrumente.base)

 	GenericPM (class in pylablib.devices.Thorlabs.misc)

 	GenericRigolBackendError

 	GenericRigolError

 	GenericSirahBackendError

 	GenericSirahError

 	GenericVoltcraftBackendError

 	GenericVoltcraftError

 	get() (pylablib.core.dataproc.filters.RunningDebounceFilter method)

 	(pylablib.core.dataproc.filters.RunningDecimationFilter method)

 	(pylablib.core.fileio.datafile.DataFile method)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.ItemAccessor method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	(pylablib.core.utils.functions.AttrObjectProperty method)

 	(pylablib.core.utils.functions.IObjectProperty method)

 	(pylablib.core.utils.functions.MethodObjectProperty method)

 	get_acceleration_factor() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_accessory_state() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_accum_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_acquired_frame_status() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_acquisition_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_acquisition_parameters() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_acquisition_progress() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_active_channel() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_addr() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	get_addr_map() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	get_all_amp_modes() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_all_attribute_values() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	get_all_attributes() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	get_all_axes() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_all_channels() (pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_all_color_modes() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_all_grabber_attribute_values() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_all_grabber_attributes() (pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_all_handles() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	get_all_indicators() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_all_layout_containers() (in module pylablib.core.gui.utils)

 	get_all_local_addr() (in module pylablib.core.utils.net)

 	get_all_module_registers() (pylablib.devices.NKT.interbus.InterbusSystem method)

 	get_all_properties() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_all_readout_modes() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_all_readout_speeds() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_all_registers() (pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	get_all_relays() (pylablib.devices.Conrad.base.RelayBoard method)

 	get_all_remote_addr() (in module pylablib.core.utils.net)

 	get_all_sensor_kinds() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	get_all_sensor_readings() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_all_temperatures() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_all_trigger_modes() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_all_values() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_all_vsspeeds() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_amp_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_amplitude() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_analog_input() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	get_analog_output() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_analog_output_settings() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_app() (in module pylablib.core.thread.threadprop)

 	get_appdata_folder() (in module pylablib.devices.utils.load_lib)

 	get_appended() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	get_applet_info() (in module pylablib.devices.SiliconSoftware.fgrab)

 	get_arg_default() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	get_arg_type() (pylablib.core.devio.SCPI.SCPIDevice static method)

 	(pylablib.devices.AWG.generic.GenericAWG static method)

 	(pylablib.devices.AWG.specific.Agilent33220A static method)

 	(pylablib.devices.AWG.specific.Agilent33500 static method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 static method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 static method)

 	(pylablib.devices.AWG.specific.RigolDG1000 static method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 static method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 static method)

 	(pylablib.devices.Cryocon.base.Cryocon1x static method)

 	(pylablib.devices.Cryomagnetics.base.LM500 static method)

 	(pylablib.devices.Cryomagnetics.base.LM510 static method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 static method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 static method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 static method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 static method)

 	(pylablib.devices.Rigol.power_supply.DP1116A static method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse static method)

 	(pylablib.devices.Tektronix.base.DPO2000 static method)

 	(pylablib.devices.Tektronix.base.ITektronixScope static method)

 	(pylablib.devices.Tektronix.base.TDS2000 static method)

 	(pylablib.devices.Thorlabs.misc.GenericPM static method)

 	(pylablib.devices.Thorlabs.misc.PM160 static method)

 	(pylablib.devices.Thorlabs.serial.FW static method)

 	(pylablib.devices.Thorlabs.serial.FWv1 static method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA static method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface static method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 static method)

 	get_attenuation() (pylablib.devices.OZOptics.base.DD100 method)

 	get_attribute() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	get_attribute_range() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_attribute_value() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	get_autocalibration_parameters() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_available_camlink_pixel_formats() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_available_pixel_rates() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_averaging_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_axis_correction() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_axis_dir() (pylablib.devices.SmarAct.scu3d.SCU3D method)

 	get_axis_parameter() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_axis_serial() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_axis_speed() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_backend_name() (pylablib.core.devio.comm_backend.FT232DeviceBackend class method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend class method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend class method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend class method)

 	get_baseline_simple() (in module pylablib.core.dataproc.feature)

 	get_battery_condition() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_baudrate() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	get_best_fit() (in module pylablib.core.dataproc.fitting)

 	get_binning() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_bit_alignment() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_black_level() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_black_level_offset() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	get_black_level_range() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_board_info() (in module pylablib.devices.SiliconSoftware.fgrab)

 	get_boards_number() (in module pylablib.devices.SiliconSoftware.fgrab)

 	get_buffer() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	get_buffer_ptr() (pylablib.devices.PCO.SC2.PCOSC2Camera.BufferManager method)

 	get_buffer_size() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	get_burst_mode() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_burst_ncycles() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_calibration() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_calibration_factor() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_callback_ptr() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	get_camera_id() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_camera_status() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_cameras_number() (in module pylablib.devices.Andor.AndorSDK2)

 	(in module pylablib.devices.Andor.AndorSDK3)

 	(in module pylablib.devices.Basler.pylon)

 	(in module pylablib.devices.BitFlow.BitFlow)

 	(in module pylablib.devices.DCAM.DCAM)

 	(in module pylablib.devices.IMAQ.IMAQ)

 	(in module pylablib.devices.IMAQdx.IMAQdx)

 	(in module pylablib.devices.Mightex.MightexSSeries)

 	(in module pylablib.devices.PCO.SC2)

 	(in module pylablib.devices.Photometrics.pvcam)

 	(in module pylablib.devices.PhotonFocus.PhotonFocus)

 	(in module pylablib.devices.PrincetonInstruments.picam)

 	(in module pylablib.devices.Thorlabs.TLCamera)

 	(in module pylablib.devices.uc480.uc480)

 	get_camlink_pixel_format() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_cap_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_capabilities() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_capacitance() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	get_channel() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_channel_bitdepth() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_channel_power() (pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_channel_range_settings() (pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_channel_status() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_channels() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_channels_number() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_child() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_cl_move_parameters() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_clear_cycles() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_clear_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_clearing_time() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_clock_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_clock_period_input_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_coarse_tuning_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_coarse_wavelength() (pylablib.devices.M2.solstis.Solstis method)

 	get_color_format() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_color_info() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_color_mode() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_column_index() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	get_columns_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	get_config() (pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	get_configuration() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_connected_addrs() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_cont_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_controller() (in module pylablib.core.thread.controller)

 	get_conversion_factor() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_correlations_ft() (in module pylablib.core.dataproc.fourier)

 	get_counter_input_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_coupling() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_ctypes_frames_list() (pylablib.devices.interface.camera.ChunkBufferManager method)

 	get_current() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_current_axis() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	get_current_axis_speed() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	get_current_channel() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_current_errors() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_current_len() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	get_current_limits() (pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_current_name() (pylablib.core.gui.widgets.container.QTabContainer method)

 	get_current_parameters() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_current_setpoint() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_current_size() (pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	get_current_speed() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_cursor_order() (pylablib.core.gui.widgets.edit.NumEdit method)

 	get_curve() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_curve_header() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_cycle_timings() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_data_dimensions() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_data_format() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_data_pts_range() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_default_addr() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_default_axis() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_default_channel() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_defaults_list() (pylablib.core.utils.functions.FunctionSignature method)

 	get_defect_correct_mode() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_deleted() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	get_description() (pylablib.core.devio.hid.HIDevice method)

 	get_detector_offset() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_detector_size() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_device() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	get_device_class() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	get_device_info() (in module pylablib.devices.Basler.pylon)

 	(in module pylablib.devices.NI.daq)

 	(in module pylablib.devices.SmarAct.scu3d)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_device_name() (pylablib.devices.Pfeiffer.base.DPG202 method)

 	get_device_number() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_device_status() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_device_status_n() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_device_variable() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	get_devices_number() (in module pylablib.devices.SmarAct.MCS2)

 	(in module pylablib.devices.SmarAct.scu3d)

 	get_dictionary_line() (pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	get_digital_gain() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	get_digital_input() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_digital_input_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_digital_input_register() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_digital_output() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_digital_output_channels() (pylablib.devices.NI.daq.NIDAQ method)

 	get_digital_output_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_digital_output_register() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	get_digital_outputs() (pylablib.devices.NI.daq.NIDAQ method)

 	get_diode_power() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_diode_power_lowlevel() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_diode_power_waveform() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_display_channel() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_display_resolution() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_display_units() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	get_double_image_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_drive_current() (pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_drive_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	get_dtype() (pylablib.core.fileio.savefile.TableBinaryOutputFileFormat method)

 	get_duty_cycle() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_edge_trigger_coupling() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_edge_trigger_slope() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_edge_trigger_source() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_element_position() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_EMCCD_gain() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_enabled_channels() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	get_encoder() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	get_energy() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_engine_type() (pylablib.devices.Standa.base.Standa8SMC method)

 	get_entry() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	get_environ_folder() (in module pylablib.devices.utils.load_lib)

 	get_error_code() (pylablib.devices.Pfeiffer.base.DPG202 method)

 	get_esr() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	get_etalon_lock_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_ethernet_parameters() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	get_exec_counter() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	get_executable() (in module pylablib.core.utils.module)

 	get_export_clock_terminal() (pylablib.devices.NI.daq.NIDAQ method)

 	get_exposure() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_exposure_control_mode() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	get_exposure_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_ext() (pylablib.core.fileio.location.LocationName method)

 	get_ext_trigger_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_external_input_modes() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_fan_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_fast_kinetic_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_fast_scan_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_fastpiezo_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_fastpiezo_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_fastpiezo_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_file_creation_time() (in module pylablib.core.utils.files)

 	get_file_modification_time() (in module pylablib.core.utils.files)

 	get_filesystem_path() (pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	get_fill_status() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_filter_info() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_filter_settings() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_fine_tuning_status() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	get_fine_wavelength() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	get_first_empty_column() (in module pylablib.core.gui.utils)

 	get_first_empty_row() (in module pylablib.core.gui.utils)

 	get_flipper_parameters() (pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_flipper_port() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_frame() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	get_frame_delay() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_frame_format() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frame_info_fields() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frame_info_format() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frame_info_period() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frame_period() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frame_period_range() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_frame_readout_time() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_frame_timings() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_frames_data() (pylablib.devices.interface.camera.ChunkBufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	get_frames_status() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.FrameCounter method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_framestamp() (pylablib.devices.AlliedVision.Bonito.BonitoStatusLineChecker method)

 	(pylablib.devices.interface.camera.StatusLineChecker method)

 	(pylablib.devices.PCO.SC2.StatusLineChecker method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.StatusLineChecker method)

 	get_freq_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_frequencies() (pylablib.devices.OZOptics.base.EPC04 method)

 	get_frequency() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.Sirah.tuner.MatisseTuner method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_full_camera_data() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_full_coarse_tuning_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_full_data() (pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_full_fine_tuning_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_full_info() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	get_full_status() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	
 	get_full_web_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_function() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	get_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_gain() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_gain_boost() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_gain_range() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_gains() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_gate_polarity() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_gauge_control_settings() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_gauge_kind() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_gen_move_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_general_input() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_genicam_info_xml() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_global_parameter() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_global_speed() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	get_grabber_attribute() (pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_grabber_attribute_value() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_grabber_detector_size() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_grabber_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_grabber_roi_limits() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_grating() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_grating_info() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_grating_offset() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_gratings_number() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_gui_controller() (in module pylablib.core.thread.controller)

 	get_gui_thread() (in module pylablib.core.thread.threadprop)

 	get_gui_values() (in module pylablib.core.gui.value_handling)

 	get_handle() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	get_handler() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_hardware_id() (pylablib.devices.Attocube.anc350.ANC350 method)

 	get_hblanking() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	get_head_info() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_help() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	get_high_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_home_offset() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_home_parameters() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_homing_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_horizontal_offset() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_horizontal_span() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_hsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_hsspeed_frequency() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_id() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	get_imag_part_ft() (in module pylablib.core.dataproc.fourier)

 	get_image_indexing() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_image_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_imported_modules() (in module pylablib.core.utils.module)

 	get_index() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	get_index_values() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	get_indicator() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_indicator_widget() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_input_channels() (pylablib.devices.NI.daq.NIDAQ method)

 	get_inserted() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	get_interlock_status() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	get_internal_buffer_status() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_interval() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_jog_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	get_kcube_trigio_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_kcube_trigpos_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_keepclean_time() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_kernel() (in module pylablib.core.dataproc.feature)

 	get_kernel_func() (in module pylablib.core.dataproc.specfunc)

 	get_kinetic_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_label_widget() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_laser_status() (pylablib.devices.M2.emm.EMM method)

 	get_last_filled_column() (in module pylablib.core.gui.utils)

 	get_last_filled_row() (in module pylablib.core.gui.utils)

 	get_last_read_frequency() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	get_last_report() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	get_layout_container() (in module pylablib.core.gui.utils)

 	get_layout_shape() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_library_name() (in module pylablib.core.utils.module)

 	get_library_path() (in module pylablib.core.utils.module)

 	get_limit_switch_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_limit_switches_parameters() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_load() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_loaded_package_modules() (in module pylablib.core.utils.module)

 	get_local_addr() (in module pylablib.core.utils.net)

 	get_local_hostname() (in module pylablib.core.utils.net)

 	get_local_name() (pylablib.core.utils.net.ClientSocket method)

 	get_location() (in module pylablib.core.fileio.location)

 	get_low_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_mandatory_args() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	get_manual_output() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	get_matching_paths() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	get_matching_subtree() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	get_max_attenuation() (pylablib.devices.OZOptics.base.DD100 method)

 	get_max_gains() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_max_prefix() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	get_max_vsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_measurement_filter() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_measurement_interval() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_measurement_rate() (pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	get_measurementf() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_measurementi() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_metadata_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_method_kind() (in module pylablib.core.gui.value_handling)

 	get_microstep_resolution() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_min_attenuation() (pylablib.devices.OZOptics.base.DD100 method)

 	get_min_shutter_times() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_missed_frames_status() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	get_mode() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	get_mode_parameters() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor method)

 	get_module_status() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_module_status_n() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_motor_info() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_motor_type() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	get_move_parameters() (pylablib.devices.Standa.base.Standa8SMC method)

 	get_multi_track_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_names() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	get_nbuff() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	get_new_frames_range() (pylablib.devices.interface.camera.FrameCounter method)

 	get_new_images_range() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_noise_filter_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_number_of_channels() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_number_pixels() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_oamp() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_oamp_desc() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_ocp_threshold() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_offset() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_opened_num() (pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	get_operation_mode() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	get_optical_parameters() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_options() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	get_options_dict() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	get_os_lib_folder() (in module pylablib.devices.utils.load_lib)

 	get_output() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_output_format() (in module pylablib.core.fileio.savefile)

 	get_output_limits() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	get_output_mode() (pylablib.devices.LighthousePhotonics.base.SproutG method)

 	get_output_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	get_output_polarity() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_output_power() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_output_range() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_output_setpoint() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	get_output_status() (pylablib.devices.LaserQuantum.base.Finesse method)

 	get_output_trigger_slope() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_outputf() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_ovp_threshold() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_package_version() (in module pylablib.core.utils.module)

 	get_path() (pylablib.core.fileio.location.LocationName method)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	get_pcount() (pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	get_peakdet_kernel() (in module pylablib.core.dataproc.feature)

 	get_peer_args() (pylablib.core.utils.ipc.IIPCChannel method)

 	(pylablib.core.utils.ipc.PipeIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCTable method)

 	get_peer_name() (pylablib.core.utils.net.ClientSocket method)

 	get_pending() (pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.hid.HIDevice.Reader method)

 	get_phase() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_pid_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	get_piezoet_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_piezoet_drive_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_piezoet_feedback_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_piezoet_feedforward_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_piezoet_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_pixel_clock() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	get_pixel_correction_parameters() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_pixel_distance() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_pixel_rate() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_pixel_rates_range() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_pixel_size() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	get_pixel_width() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_points_number() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_polctl_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_port_index() (in module pylablib.devices.PhotonFocus.PhotonFocus)

 	get_position() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_position_lower_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	get_position_upper_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	get_power() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	get_power_parameters() (pylablib.devices.Standa.base.Standa8SMC method)

 	get_preamble() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry method)

 	(pylablib.core.fileio.savefile.IBinaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.TableBinaryOutputFileFormat method)

 	get_preamp() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_preamp_gain() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_precision() (pylablib.devices.Attocube.anc350.ANC350 method)

 	get_precision_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_pressure() (pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_prev_len() (in module pylablib.core.dataproc.fourier)

 	get_probe_attenuation() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_program_files_folder() (in module pylablib.devices.utils.load_lib)

 	get_progress() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	get_property() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_props() (in module pylablib.core.utils.general)

 	get_pulse_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_pulse_output_channels() (pylablib.devices.NI.daq.NIDAQ method)

 	get_pulse_output_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_pulse_width() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_python_folder() (in module pylablib.core.utils.module)

 	get_ramp_symmetry() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_random_track_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_range() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	get_range_idx() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_range_indices() (in module pylablib.core.dataproc.utils)

 	get_range_info() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_range_limit() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_read_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	get_reading() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	get_readings() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	get_readout_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_readout_speed() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_readout_time() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_real_part_ft() (in module pylablib.core.dataproc.fourier)

 	get_refcell_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_refcell_waveform() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_refcell_waveform_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_reference_cavity_lock_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_reg() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_region() (in module pylablib.core.dataproc.image)

 	get_region_sum() (in module pylablib.core.dataproc.image)

 	get_register() (pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	get_relative_position() (in module pylablib.core.gui.utils)

 	get_relative_rectangle() (in module pylablib.core.gui.utils)

 	get_relay() (pylablib.devices.Conrad.base.RelayBoard method)

 	get_relay_setpoints() (pylablib.devices.KJL.base.KJL300 method)

 	get_reload_order() (in module pylablib.core.utils.module)

 	get_remote_hostname() (in module pylablib.core.utils.net)

 	get_resistance() (pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_roi_limits() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_roi_parameters() (in module pylablib.devices.Photometrics.pvcam)

 	get_scale() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_scale_units() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_scan_move_parameters() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_scan_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_scan_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_scan_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_screenshot() (in module pylablib.core.gui.utils)

 	get_SDK_version() (in module pylablib.devices.Andor.AndorSDK2)

 	(in module pylablib.devices.SmarAct.MCS2)

 	get_selected_channel() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_sensor_curve_index() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_sensor_info() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_sensor_kind() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	get_sensor_mode() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	get_sensor_power() (pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	get_sensor_reading() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_sensor_type() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	get_sensor_voltage() (pylablib.devices.Attocube.anc350.ANC350 method)

 	get_serial_parameter() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	get_serial_params() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	get_setpointf() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_setpointi() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	get_settings() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	get_shape() (in module pylablib.core.utils.array_utils)

 	get_shutter() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_shutter_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_shutter_status() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	get_single_track_mode_parameters() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_single_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	get_slit_width() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_slowpiezo_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_slowpiezo_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_slowpiezo_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_software_version() (pylablib.devices.Pfeiffer.base.DPG202 method)

 	get_spectrographs_number() (in module pylablib.devices.Andor.Shamrock)

 	get_speed_mode() (pylablib.devices.Thorlabs.serial.FW method)

 	get_stage() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	get_state() (pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_stats() (in module pylablib.core.thread.profile)

 	get_status() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	get_status_line() (in module pylablib.devices.PCO.SC2)

 	get_status_line_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	get_status_line_position() (in module pylablib.devices.PhotonFocus.PhotonFocus)

 	get_status_line_roi() (in module pylablib.devices.interface.camera)

 	get_status_lines() (in module pylablib.devices.AlliedVision.Bonito)

 	(in module pylablib.devices.PCO.SC2)

 	(in module pylablib.devices.PhotonFocus.PhotonFocus)

 	get_status_n() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	get_step_move_parameters() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_stepper_motor_calibration() (pylablib.devices.Standa.base.Standa8SMC method)

 	get_string_filter() (in module pylablib.core.utils.string)

 	get_sublayout() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_sublayout_kind() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_subsampling() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_supported_baudrates() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_supported_binning_modes() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	get_supported_sensor_modes() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	get_supported_subsampling_modes() (pylablib.devices.uc480.uc480.UC480Camera method)

 	get_switch_settings() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_switch_status() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_switcher_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	get_system_info() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	get_system_status() (pylablib.devices.M2.solstis.Solstis method)

 	get_table_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	get_target_position() (pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	get_temperature() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_temperature_range() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_temperature_setpoint() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	get_temperature_status() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_temperatures() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_terascan_status() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	get_thinet_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_thinet_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_thinet_error_signal() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_thinet_power() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	get_timeout() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.utils.net.ClientSocket method)

 	get_timestamp_clock_frequency() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_top_parent() (in module pylablib.core.gui.utils)

 	get_transfer_info() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	get_trigger_input() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_trigger_interleave() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	get_trigger_level() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_trigger_level_limits() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_trigger_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_trigger_slope() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_trigger_source() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	get_trigger_state() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_turret() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_type() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.IGenWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	get_units() (pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	get_update() (pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	get_usb_device_info() (in module pylablib.devices.Arcus.performax)

 	get_usb_devices_number() (in module pylablib.devices.Attocube.anc350)

 	(in module pylablib.devices.Newport.picomotor)

 	get_value() (in module pylablib.core.utils.ctypes_wrap)

 	(pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.IIndicatorHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelIndicatorHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardIndicatorHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	(pylablib.core.gui.widgets.button.ToggleButton method)

 	(pylablib.core.gui.widgets.combo_box.ComboBox method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.edit.TextEdit method)

 	(pylablib.core.gui.widgets.label.EnumLabel method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	(pylablib.core.gui.widgets.label.TextLabel method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute method)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute method)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute method)

 	get_value_changed_signal() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_value_sync() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	get_variable() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.utils.ipc.SharedMemIPCTable method)

 	get_vcr_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	get_velocity() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	get_velocity_factor() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_velocity_parameters() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	get_vertical_position() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_vertical_span() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_voltage() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	get_voltage_input_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_lower_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	get_voltage_output_buffer_fill() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_output_channels() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_output_clock_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_output_parameters() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_outputs() (pylablib.devices.NI.daq.NIDAQ method)

 	get_voltage_pattern() (pylablib.devices.Attocube.anc300.ANC300 method)

 	get_voltage_range() (pylablib.devices.Thorlabs.serial.MDT69xA method)

 	get_voltage_setpoint() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	get_voltage_upper_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	get_voltages() (pylablib.devices.OZOptics.base.EPC04 method)

 	get_vsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_vsspeed_period() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	get_warning_status() (pylablib.devices.LighthousePhotonics.base.SproutG method)

 	get_waveform() (pylablib.devices.OZOptics.base.EPC04 method)

 	get_wavelength() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	get_wavelength_correction() (pylablib.devices.OZOptics.base.TF100 method)

 	get_wavelength_info() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	get_wavelength_limits() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	get_wavelength_range() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	get_wfmpre() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	get_white_balance_matrix() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	get_widget() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	get_widget_location() (in module pylablib.core.gui.utils)

 	get_window_ft_func() (in module pylablib.core.dataproc.specfunc)

 	get_window_func() (in module pylablib.core.dataproc.specfunc)

 	get_work_hours() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	get_x_column() (in module pylablib.core.dataproc.utils)

 	get_y_column() (in module pylablib.core.dataproc.utils)

 	getargsfrom() (in module pylablib.core.utils.functions)

 	getattr_call() (in module pylablib.core.utils.functions)

 	getattr_multivar() (in module pylablib.core.utils.general)

 	getdefault() (in module pylablib.core.utils.funcargparse)

 	goto_zero_order() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	gpio (pylablib.devices.Standa.base.TFullState attribute)

 	grab() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	grab_continuous() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	grab_single() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	grabber_info (pylablib.devices.AlliedVision.Bonito.TDeviceInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo attribute)

 	GrabberClass (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera attribute)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera attribute)

 	gui_thread_method() (in module pylablib.core.thread.controller)

 	gui_values_path (pylablib.core.gui.widgets.container.TChild attribute)

 	GUIValues (class in pylablib.core.gui.value_handling)

 	GUIValues.IndicatorsSet (class in pylablib.core.gui.value_handling)

H

 	
 	hamming_w() (in module pylablib.core.dataproc.specfunc)

 	hamming_w_ft() (in module pylablib.core.dataproc.specfunc)

 	hann_w() (in module pylablib.core.dataproc.specfunc)

 	hann_w_ft() (in module pylablib.core.dataproc.specfunc)

 	has_arg() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	has_calls() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	has_entry() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	has_methods() (in module pylablib.core.gui.value_handling)

 	head (pylablib.devices.LaserQuantum.base.TTemperatures attribute)

 	head_model (pylablib.devices.Andor.AndorSDK2.TDeviceInfo attribute)

 	height (pylablib.core.dataproc.feature.Peak attribute)

 	(pylablib.devices.interface.camera.TFrameSize attribute)

 	HIDError

 	HIDevice (class in pylablib.core.devio.hid)

 	HIDevice.Reader (class in pylablib.core.devio.hid)

 	HIDeviceBackend (class in pylablib.core.devio.comm_backend)

 	HIDLibError

 	HIDTimeoutError

 	
 	high_pass_filter() (in module pylablib.core.dataproc.filters)

 	high_thresh (pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings attribute)

 	high_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	hold_current (pylablib.devices.Standa.base.TPowerParams attribute)

 	hold_time (pylablib.devices.SmarAct.MCS2.TCLMoveParams attribute)

 	home (pylablib.devices.Andor.Shamrock.TGratingInfo attribute)

 	home() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	home_direction (pylablib.devices.Thorlabs.kinesis.THomeParams attribute)

 	home_position (pylablib.devices.Thorlabs.kinesis.TPolCtlParams attribute)

 	hour (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	hrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	huge_error() (in module pylablib.core.dataproc.fitting)

 	hw_kind_ccw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	hw_kind_cw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	hw_swapped (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	hw_type (pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	hw_ver (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

I

 	
 	i (pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule attribute)

 	I (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TThinetCtlParameters attribute)

 	i (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams attribute)

 	i() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	(pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	(pylablib.core.devio.interface.CombinedParameterClass method)

 	(pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.IParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	I1DWrapper (class in pylablib.core.dataproc.table_wrap)

 	I1DWrapper.Accessor (class in pylablib.core.dataproc.table_wrap)

 	I2DWrapper (class in pylablib.core.dataproc.table_wrap)

 	IArduinoDevice (class in pylablib.devices.Arduino.base)

 	IAttributeCamera (class in pylablib.devices.interface.camera)

 	ib_get_default_address() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	ib_get_reg() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	ib_scan_devices() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	ib_set_default_address() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	ib_set_reg() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	ib_using_address() (pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	IBinaryOutputFileFormat (class in pylablib.core.fileio.savefile)

 	IBinROICamera (class in pylablib.devices.interface.camera)

 	IBonitoCamera (class in pylablib.devices.AlliedVision.Bonito)

 	IBoolValueHandler (class in pylablib.core.gui.value_handling)

 	ICallable (class in pylablib.core.dataproc.callable)

 	ICallable.NamesBoundCall (class in pylablib.core.dataproc.callable)

 	ICamera (class in pylablib.devices.interface.camera)

 	ICEBlocDevice (class in pylablib.devices.M2.base)

 	ICheckingParameterClass (class in pylablib.core.devio.interface)

 	ICommBackendWrapper (class in pylablib.core.devio.comm_backend)

 	id (pylablib.core.utils.ipc.TPipeMsg attribute)

 	(pylablib.devices.Newport.picomotor.TDeviceInfo attribute)

 	(pylablib.devices.Ophir.base.TDeviceInfo attribute)

 	IDataLocation (class in pylablib.core.fileio.location)

 	IDevice (class in pylablib.core.devio.interface)

 	IDeviceCommBackend (class in pylablib.core.devio.comm_backend)

 	IDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	idreg (pylablib.devices.BitFlow.BitFlow.TDeviceInfo attribute)

 	idx (pylablib.devices.BitFlow.BitFlow.TDeviceInfo attribute)

 	(pylablib.devices.Mightex.MightexSSeries.TCameraInfo attribute)

 	IEnumParameterClass (class in pylablib.core.devio.interface)

 	IExposureCamera (class in pylablib.devices.interface.camera)

 	IExternalFileDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	IExternalTableDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	IFileSystemDataLocation (class in pylablib.core.fileio.location)

 	IGenWrapper (class in pylablib.core.dataproc.table_wrap)

 	IGrabberAttributeCamera (class in pylablib.devices.interface.camera)

 	IIndex (class in pylablib.core.utils.indexing)

 	IIndicatorHandler (class in pylablib.core.gui.value_handling)

 	IInputFileFormat (class in pylablib.core.fileio.loadfile)

 	IInterbusModule (class in pylablib.devices.NKT.interbus)

 	IIPCChannel (class in pylablib.core.utils.ipc)

 	iir_apply_complex() (in module pylablib.core.dataproc.iir_transform)

 	ilabels (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	IMAQCamera (class in pylablib.devices.IMAQ.IMAQ)

 	IMAQdxAttribute (class in pylablib.devices.IMAQdx.IMAQdx)

 	IMAQdxCamera (class in pylablib.devices.IMAQdx.IMAQdx)

 	IMAQdxCamera.CallbackManager (class in pylablib.devices.IMAQdx.IMAQdx)

 	IMAQFrameGrabber (class in pylablib.devices.IMAQ.IMAQ)

 	implemented (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	IMultiaxisStage (class in pylablib.devices.interface.stage)

 	in_use (pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	inc (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	inc() (pylablib.devices.interface.camera.FrameNotifier method)

 	ind (pylablib.core.gui.value_handling.GUIValues.IndicatorsSet attribute)

 	index (pylablib.devices.Attocube.anc350.ANC350.Reply attribute)

 	(pylablib.devices.Attocube.anc350.ANC350.Telegram attribute)

 	index_to_value() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	Indexed2DTransform (class in pylablib.core.dataproc.transform)

 	indicator (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow attribute)

 	indicator_handler (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow attribute)

 	individual (pylablib.core.utils.dictionary.DictionaryIntersection attribute), [1]

 	infinite_list (class in pylablib.core.utils.numerical)

 	infinite_list.counter (class in pylablib.core.utils.numerical)

 	info (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	init_amp_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	init_result (pylablib.devices.utils.load_lib.TLibraryOpenResult attribute)

 	initial_guess() (pylablib.core.dataproc.fitting.Fitter method)

 	InlineTable (class in pylablib.core.fileio.loadfile_utils)

 	InlineTableDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	insert() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper.RowAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.RowAccessor method)

 	insert_column() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	insert_layout_column() (in module pylablib.core.gui.utils)

 	insert_layout_row() (in module pylablib.core.gui.utils)

 	insert_option() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	insert_row() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	insert_status_line() (in module pylablib.devices.interface.camera)

 	install_if_older() (in module pylablib.core.utils.module)

 	InstekAFG2000 (class in pylablib.devices.AWG.specific)

 	InstekAFG2225 (class in pylablib.devices.AWG.specific)

 	int2bits() (in module pylablib.core.utils.strpack)

 	int2bytes() (in module pylablib.core.utils.strpack)

 	integer_distance() (in module pylablib.core.utils.numerical)

 	IntegerFormatter (class in pylablib.core.gui.formatter)

 	integrate() (in module pylablib.core.dataproc.filters)

 	InterbusBackendError

 	InterbusError

 	InterbusSystem (class in pylablib.devices.NKT.interbus)

 	interface (pylablib.devices.IMAQ.IMAQ.TDeviceInfo attribute)

 	(pylablib.devices.PCO.SC2.TDeviceInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TCameraInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TDeviceInfo attribute)

 	interpolate1D() (in module pylablib.core.dataproc.interpolate)

 	interpolate1D_func() (in module pylablib.core.dataproc.interpolate)

 	interpolate2D() (in module pylablib.core.dataproc.interpolate)

 	interpolate_trace() (in module pylablib.core.dataproc.interpolate)

 	interpolateND() (in module pylablib.core.dataproc.interpolate)

 	InterruptException

 	InterruptExceptionStop

 	intersect() (pylablib.core.dataproc.image.ROI class method)

 	(pylablib.core.dataproc.utils.Range method)

 	inverse_fourier_transform() (in module pylablib.core.dataproc.fourier)

 	invert() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	invert_dict() (in module pylablib.core.utils.general)

 	inverted() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	io1_oper_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io1_pulse_width (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io1_sig_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io2_oper_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io2_pulse_width (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io2_sig_mode (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	io_status (pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	IObjectCall (class in pylablib.core.utils.functions)

 	IObjectProperty (class in pylablib.core.utils.functions)

 	IOutputFileFormat (class in pylablib.core.fileio.savefile)

 	IParameterClass (class in pylablib.core.devio.interface)

 	IPhotonFocusCamera (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	IQContainer (class in pylablib.core.gui.widgets.container)

 	IQLayoutManagedWidget (class in pylablib.core.gui.widgets.layout_manager)

 	IQWidgetContainer (class in pylablib.core.gui.widgets.container)

 	IROICamera (class in pylablib.devices.interface.camera)

 	is_accessory_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_acquisition_setup() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	is_ascending() (in module pylablib.core.dataproc.utils)

 	is_ascii() (pylablib.core.devio.data_format.DataFormat method)

 	is_at_zero_order() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_autorange_enabled() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	is_batch_job_running() (pylablib.core.thread.controller.QTaskThread method)

 	is_bool_array() (in module pylablib.core.utils.indexing)

 	is_branch_path() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	is_branch_valid() (pylablib.core.fileio.dict_entry.DictEntryParser method)

 	(pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ITableDictionaryEntry class method)

 	is_burst_enabled() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	is_call_done() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	is_CFR_enabled() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	is_channel_enabled() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	is_command (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	is_connected() (pylablib.core.utils.net.ClientSocket method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	is_continuous() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	is_convertible() (in module pylablib.core.utils.string)

 	is_cooler_on() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	is_cooling_enabled() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	is_data_valid() (pylablib.core.fileio.dict_entry.DictEntryBuilder method)

 	(pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.ITableDictionaryEntry class method)

 	is_descending() (in module pylablib.core.dataproc.utils)

 	is_dict_entry_branch() (in module pylablib.core.fileio.dict_entry)

 	is_dictionary() (in module pylablib.core.utils.dictionary)

 	(pylablib.core.utils.dictionary.Dictionary static method)

 	(pylablib.core.utils.dictionary.DictionaryPointer static method)

 	(pylablib.core.utils.dictionary.FilterTree static method)

 	(pylablib.core.utils.dictionary.PrefixTree static method)

 	is_diffuser_in() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	is_drift_compensation_enabled() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	is_enabled() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	is_fastpiezo_locked() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	is_filter_in() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	is_filter_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_fine_tuning() (pylablib.devices.M2.emm.EMM method)

 	is_flipper_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_frame_transfer_enabled() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	is_free() (pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.OpenedFileLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	is_grabbing() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	is_gui_running() (in module pylablib.core.thread.threadprop)

 	is_gui_thread() (in module pylablib.core.thread.threadprop)

 	is_handled_widget() (in module pylablib.core.gui.value_handling)

 	is_homed() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	is_homing() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	is_in_controlled() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	
 	is_integer() (in module pylablib.core.gui.formatter)

 	is_layout_column_empty() (in module pylablib.core.gui.utils)

 	is_layout_row_empty() (in module pylablib.core.gui.utils)

 	is_leaf_path() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	is_led_enabled() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	is_linear() (in module pylablib.core.dataproc.utils)

 	is_looping() (pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera.ReceiveLooper method)

 	is_mandatory_arg() (pylablib.core.dataproc.callable.FunctionCallable method)

 	(pylablib.core.dataproc.callable.ICallable method)

 	(pylablib.core.dataproc.callable.JoinedCallable method)

 	(pylablib.core.dataproc.callable.MethodCallable method)

 	(pylablib.core.dataproc.callable.MultiplexedCallable method)

 	is_measurement_running() (pylablib.devices.HighFinesse.wlm.WLM method)

 	is_metadata_enabled() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	is_moving() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	is_nir_boost_enabled() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	is_ocp_enabled() (pylablib.devices.Rigol.power_supply.DP1116A method)

 	is_online_enabled() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	is_opened() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	is_ordered() (in module pylablib.core.dataproc.utils)

 	is_output_enabled() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	is_ovp_enabled() (pylablib.devices.Rigol.power_supply.DP1116A method)

 	is_path_valid() (in module pylablib.core.utils.files)

 	is_peer_closed() (pylablib.core.utils.ipc.SharedMemIPCTable method)

 	is_peer_connected() (pylablib.core.utils.ipc.SharedMemIPCTable method)

 	is_pixel_correction_enabled() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	is_pulse_output_running() (pylablib.devices.NI.daq.NIDAQ method)

 	is_range() (in module pylablib.core.utils.indexing)

 	is_remote_enabled() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	is_running() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager method)

 	is_sequence() (in module pylablib.core.utils.funcargparse)

 	is_servo_enabled() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	is_shutter_mode_possible() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_shutter_opened() (pylablib.devices.LaserQuantum.base.Finesse method)

 	is_shutter_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_slice() (in module pylablib.core.utils.indexing)

 	is_slit_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_status_line_enabled() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	is_stopping() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	is_switcher_channel_enabled() (pylablib.devices.HighFinesse.wlm.WLM method)

 	is_switcher_channel_shown() (pylablib.devices.HighFinesse.wlm.WLM method)

 	is_sync_output_enabled() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	is_target_reached() (pylablib.devices.Attocube.anc350.ANC350 method)

 	is_timer_running() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	is_trigger_output_enabled() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	is_unprintable_character() (in module pylablib.core.fileio.loadfile_utils)

 	is_velocity_control_enabled() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	is_wait_done() (pylablib.devices.interface.camera.FrameCounter method)

 	is_wavelength_control_present() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	is_wavemeter_connected() (pylablib.devices.M2.solstis.Solstis method)

 	is_wavemeter_lock_on() (pylablib.devices.M2.solstis.Solstis method)

 	ISingleValueHandler (class in pylablib.core.gui.value_handling)

 	ISkippableNotifier (class in pylablib.core.thread.notifier)

 	ispan() (pylablib.core.dataproc.image.ROI method)

 	IStage (class in pylablib.devices.interface.stage)

 	ITableDictionaryEntry (class in pylablib.core.fileio.dict_entry)

 	ITektronixScope (class in pylablib.devices.Tektronix.base)

 	ItemAccessor (class in pylablib.core.utils.dictionary)

 	items() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	iter_sublayout_items() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	iteritems() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	iterkeys() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	iternodes() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	itervalues() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	ITextInputFileFormat (class in pylablib.core.fileio.loadfile)

 	ITextOutputFileFormat (class in pylablib.core.fileio.savefile)

 	ITR90 (class in pylablib.devices.Leybold.base)

 	IValueHandler (class in pylablib.core.gui.value_handling)

 	ivalues (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	ivpwr (pylablib.devices.Standa.base.TFullState attribute)

 	ivusb (pylablib.devices.Standa.base.TFullState attribute)

J

 	
 	job (pylablib.core.thread.controller.QTaskThread.TBatchJob attribute)

 	jog() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	
 	jog1 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams attribute)

 	jog2 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams attribute)

 	jog3 (pylablib.devices.Thorlabs.kinesis.TPolCtlParams attribute)

 	JoinedCallable (class in pylablib.core.dataproc.callable)

 	JoinedCallable.NamesBoundCall (class in pylablib.core.dataproc.callable)

 	jspan() (pylablib.core.dataproc.image.ROI method)

K

 	
 	Keithley2110 (class in pylablib.devices.Keithley.multimeter)

 	kernel (pylablib.core.dataproc.feature.Peak attribute)

 	keyPressEvent() (pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.edit.TextEdit method)

 	keys() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	kind (pylablib.core.utils.ipc.TShmemVarDesc attribute)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.interface.camera.TStatusLineDescription attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	(pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	
 	KinesisDevice (class in pylablib.devices.Thorlabs.kinesis)

 	KinesisMotor (class in pylablib.devices.Thorlabs.kinesis)

 	KinesisPiezoMotor (class in pylablib.devices.Thorlabs.kinesis)

 	KinesisQuadDetector (class in pylablib.devices.Thorlabs.kinesis)

 	kinetic_cycle_time (pylablib.devices.Andor.AndorSDK2.TCycleTimings attribute)

 	KJL300 (class in pylablib.devices.KJL.base)

 	KJLBackendError

 	KJLError

L

 	
 	label (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow attribute)

 	(pylablib.core.utils.string.TConversionClass attribute)

 	LabelIndicatorHandler (class in pylablib.core.gui.value_handling)

 	labels (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	LabelValueHandler (class in pylablib.core.gui.value_handling)

 	Lakeshore218 (class in pylablib.devices.Lakeshore.base)

 	Lakeshore370 (class in pylablib.devices.Lakeshore.base)

 	LakeshoreBackendError

 	LakeshoreError

 	laser (pylablib.devices.LighthousePhotonics.base.TWorkHours attribute)

 	laser_enabled (pylablib.devices.LaserQuantum.base.TWorkHours attribute)

 	laser_on (pylablib.devices.Toptica.ibeam.TWorkHours attribute)

 	laser_threshold (pylablib.devices.LaserQuantum.base.TWorkHours attribute)

 	LaserQuantumBackendError

 	LaserQuantumError

 	latching_trigger() (in module pylablib.core.dataproc.feature)

 	layout (pylablib.core.gui.utils.TWidgetLocation attribute)

 	left (pylablib.devices.interface.camera.TFramePosition attribute)

 	left_enable (pylablib.devices.Trinamic.base.TLimitSwitchParams attribute)

 	level (pylablib.devices.Tektronix.base.TTriggerParameters attribute)

 	LeyboldBackendError

 	LeyboldError

 	LibraryController (class in pylablib.devices.Andor.AndorSDK2)

 	(class in pylablib.devices.Andor.AndorSDK3)

 	(class in pylablib.devices.Andor.Shamrock)

 	(class in pylablib.devices.Basler.pylon)

 	(class in pylablib.devices.DCAM.DCAM)

 	(class in pylablib.devices.Mightex.MightexSSeries)

 	(class in pylablib.devices.Photometrics.pvcam)

 	(class in pylablib.devices.PhotonFocus.PhotonFocus)

 	(class in pylablib.devices.PrincetonInstruments.picam)

 	(class in pylablib.devices.SmarAct.MCS2)

 	(class in pylablib.devices.SmarAct.scu3d)

 	(class in pylablib.devices.Thorlabs.TLCamera)

 	(class in pylablib.devices.utils.load_lib)

 	LighthousePhotonicsBackendError

 	LighthousePhotonicsError

 	limit (pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader attribute)

 	limit() (pylablib.core.dataproc.image.ROI method)

 	limit_errors_enabled() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	limit_switch (pylablib.devices.Thorlabs.kinesis.THomeParams attribute)

 	limit_to_range() (in module pylablib.core.utils.numerical)

 	LimitError

 	linear_to_sRGB() (in module pylablib.devices.utils.color)

 	LinearTransform (class in pylablib.core.dataproc.transform)

 	LineEditValueHandler (class in pylablib.core.gui.value_handling)

 	lines (pylablib.devices.Andor.Shamrock.TGratingInfo attribute)

 	list_applets() (in module pylablib.devices.SiliconSoftware.fgrab)

 	list_backend_resources() (in module pylablib.core.devio.comm_backend)

 	list_boards() (in module pylablib.devices.SiliconSoftware.fgrab)

 	list_cameras() (in module pylablib.devices.Basler.pylon)

 	(in module pylablib.devices.BitFlow.BitFlow)

 	(in module pylablib.devices.IMAQ.IMAQ)

 	(in module pylablib.devices.IMAQdx.IMAQdx)

 	(in module pylablib.devices.Mightex.MightexSSeries)

 	(in module pylablib.devices.PCO.SC2)

 	(in module pylablib.devices.Photometrics.pvcam)

 	(in module pylablib.devices.PhotonFocus.PhotonFocus)

 	(in module pylablib.devices.PrincetonInstruments.picam)

 	(in module pylablib.devices.Thorlabs.TLCamera)

 	(in module pylablib.devices.uc480.uc480)

 	list_devices() (in module pylablib.core.devio.hid)

 	(in module pylablib.devices.NI.daq)

 	(in module pylablib.devices.SmarAct.MCS2)

 	(in module pylablib.devices.SmarAct.scu3d)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice static method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice static method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor static method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor static method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector static method)

 	(pylablib.devices.Thorlabs.kinesis.MFF static method)

 	list_dir() (in module pylablib.core.utils.files)

 	list_dir_recursive() (in module pylablib.core.utils.files)

 	list_kinesis_devices() (in module pylablib.devices.Thorlabs.kinesis)

 	list_opened_files() (pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.OpenedFileLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	list_resources() (pylablib.core.devio.comm_backend.FT232DeviceBackend static method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend static method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend static method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend static method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend static method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend static method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend static method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend static method)

 	list_spectrographs() (in module pylablib.devices.Andor.Shamrock)

 	list_usb_performax_devices() (in module pylablib.devices.Arcus.performax)

 	listen() (in module pylablib.core.utils.net)

 	ListIndex (class in pylablib.core.utils.indexing)

 	ListIndexNoSlice (class in pylablib.core.utils.indexing)

 	LM500 (class in pylablib.devices.Cryomagnetics.base)

 	LM510 (class in pylablib.devices.Cryomagnetics.base)

 	load() (in module pylablib.core.utils.strdump)

 	(pylablib.core.utils.strdump.StrDumper method)

 	(pylablib.devices.BitFlow.BitFlow.CameraFileEditor method)

 	load_bin() (in module pylablib.core.fileio.loadfile)

 	load_bin_desc() (in module pylablib.core.fileio.loadfile)

 	load_csv() (in module pylablib.core.fileio.loadfile)

 	load_csv_desc() (in module pylablib.core.fileio.loadfile)

 	load_dict() (in module pylablib.core.fileio.loadfile)

 	load_file() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry class method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry class method)

 	load_generic() (in module pylablib.core.fileio.loadfile)

 	load_lib() (in module pylablib.devices.utils.load_lib)

 	load_logfile() (in module pylablib.core.devio.backend_logger)

 	load_par() (in module pylablib)

 	loads() (in module pylablib.core.utils.strdump)

 	(pylablib.core.utils.strdump.StrDumper method)

 	loc (pylablib.core.fileio.location.LocationFile attribute)

 	LocationFile (class in pylablib.core.fileio.location)

 	LocationName (class in pylablib.core.fileio.location)

 	lock() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	
 	lock_etalon() (pylablib.devices.M2.solstis.Solstis method)

 	lock_reference_cavity() (pylablib.devices.M2.solstis.Solstis method)

 	lock_wavemeter() (pylablib.devices.M2.solstis.Solstis method)

 	locking() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	lockpoint (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters attribute)

 	log() (pylablib.core.devio.backend_logger.BackendLogger method)

 	logerror() (in module pylablib.core.devio.comm_backend)

 	loop (pylablib.core.gui.widgets.container.TTimerEvent attribute)

 	(pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	loop() (pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper method)

 	loop_read() (pylablib.core.devio.hid.HIDevice.Reader method)

 	lorentzian_k() (in module pylablib.core.dataproc.specfunc)

 	low_pass_filter() (in module pylablib.core.dataproc.filters)

 	low_thresh (pylablib.devices.Pfeiffer.base.TTPG260SwitchSettings attribute)

 	low_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	lower_limit (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	lowlevel_calibrate() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	lowlevel_move() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	lowlevel_reference() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	LumelRE72Controller (class in pylablib.devices.Lumel.base)

M

 	
 	m (pylablib.core.thread.controller.QTaskThread attribute)

 	(pylablib.devices.NKT.interbus.InterbusSystem attribute)

 	M2CommunicationError

 	M2Error

 	M2ParseError

 	make_comment_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	make_flat_namedtuple() (in module pylablib.core.utils.general)

 	make_prop_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	make_savetime_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	make_sequence() (in module pylablib.core.utils.funcargparse)

 	man_value (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	mandatory_args_num() (pylablib.core.utils.functions.FunctionSignature method)

 	manufacturer (pylablib.core.devio.hid.TDeviceDescription attribute)

 	(pylablib.devices.ElektroAutomatik.base.TDeviceInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMDeviceInfo attribute)

 	(pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	map_container() (in module pylablib.core.utils.general)

 	map_dict_keys() (in module pylablib.core.utils.general)

 	map_dict_values() (in module pylablib.core.utils.general)

 	map_self() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	mark_unscheduled() (pylablib.core.thread.controller.QTaskThread.Job method)

 	match() (pylablib.core.utils.dictionary.FilterTree method)

 	MatisseTuner (class in pylablib.devices.Sirah.tuner)

 	max (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.interface.camera.TAxisROILimit attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	max_args_num() (pylablib.core.utils.functions.FunctionSignature method)

 	max_step_frequency (pylablib.devices.SmarAct.MCS2.TCLMoveParams attribute)

 	max_velocity (pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TVelocityParams attribute)

 	max_voltage (pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams attribute)

 	maxbin (pylablib.devices.interface.camera.TAxisROILimit attribute)

 	mb_get_default_address() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_get_device_id() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_read_coils() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_read_discrete_inputs() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_read_holding_registers() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_read_input_registers() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_scan_devices() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_set_default_address() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_using_address() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_write_multiple_coils() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_write_multiple_holding_registers() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_write_single_coil() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	mb_write_single_holding_register() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	MCS2 (class in pylablib.devices.SmarAct.MCS2)

 	MDT69xA (class in pylablib.devices.Thorlabs.serial)

 	measure_capacitance() (pylablib.devices.Attocube.anc300.ANC300 method)

 	measure_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	median_filter() (in module pylablib.core.dataproc.filters)

 	merge() (in module pylablib.core.dataproc.utils)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	(pylablib.core.utils.functions.FunctionSignature static method)

 	merge_dicts() (in module pylablib.core.utils.general)

 	messageID (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort attribute)

 	MethodCallable (class in pylablib.core.dataproc.callable)

 	MethodCallable.NamesBoundCall (class in pylablib.core.dataproc.callable)

 	MethodObjectCall (class in pylablib.core.utils.functions)

 	MethodObjectProperty (class in pylablib.core.utils.functions)

 	MFF (class in pylablib.devices.Thorlabs.kinesis)

 	MightexError

 	MightexSSeriesCamera (class in pylablib.devices.Mightex.MightexSSeries)

 	MightexSSeriesCamera.ReceiveLooper (class in pylablib.devices.Mightex.MightexSSeries)

 	MightexTimeoutError

 	millisecond (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	min (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.interface.camera.TAxisROILimit attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	min_run_time (pylablib.core.thread.controller.QTaskThread.TBatchJob attribute)

 	min_velocity (pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TVelocityParams attribute)

 	minute (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	MissingGUIHandlerError

 	mod_state (pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	ModbusBackendError

 	ModbusError

 	mode (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	(pylablib.devices.Keithley.multimeter.TAveragingParameters attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	(pylablib.devices.Ophir.base.TWavelengthInfo attribute)

 	(pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	(pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams attribute)

 	(pylablib.devices.Trinamic.base.THomeParams attribute)

 	model (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	(pylablib.devices.BitFlow.BitFlow.TDeviceInfo attribute)

 	(pylablib.devices.DCAM.DCAM.TDeviceInfo attribute)

 	(pylablib.devices.ElektroAutomatik.base.TDeviceInfo attribute)

 	(pylablib.devices.HighFinesse.wlm.TDeviceInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo attribute)

 	(pylablib.devices.Lumel.base.TDeviceInfo attribute)

 	(pylablib.devices.Mightex.MightexSSeries.TCameraInfo attribute)

 	(pylablib.devices.Mightex.MightexSSeries.TDeviceInfo attribute)

 	(pylablib.devices.NI.daq.TDeviceInfo attribute)

 	(pylablib.devices.PCO.SC2.TDeviceInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TCameraInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TDeviceInfo attribute)

 	(pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	(pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	model_no (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	
 module

 	pylablib

 	pylablib.core

 	pylablib.core.dataproc

 	pylablib.core.dataproc.callable

 	pylablib.core.dataproc.ctransform_fallback

 	pylablib.core.dataproc.feature

 	pylablib.core.dataproc.filters

 	pylablib.core.dataproc.fitting

 	pylablib.core.dataproc.fourier

 	pylablib.core.dataproc.iir_transform

 	pylablib.core.dataproc.image

 	pylablib.core.dataproc.interpolate

 	pylablib.core.dataproc.specfunc

 	pylablib.core.dataproc.table_wrap

 	pylablib.core.dataproc.transform

 	pylablib.core.dataproc.utils

 	pylablib.core.devio

 	pylablib.core.devio.backend_logger

 	pylablib.core.devio.base

 	pylablib.core.devio.comm_backend

 	pylablib.core.devio.data_format

 	pylablib.core.devio.hid

 	pylablib.core.devio.hid_base

 	pylablib.core.devio.interface

 	pylablib.core.devio.SCPI

 	pylablib.core.fileio

 	pylablib.core.fileio.datafile

 	pylablib.core.fileio.dict_entry

 	pylablib.core.fileio.loadfile

 	pylablib.core.fileio.loadfile_utils

 	pylablib.core.fileio.location

 	pylablib.core.fileio.parse_csv

 	pylablib.core.fileio.savefile

 	pylablib.core.fileio.table_stream

 	pylablib.core.gui

 	pylablib.core.gui.formatter

 	pylablib.core.gui.limiter

 	pylablib.core.gui.utils

 	pylablib.core.gui.value_handling

 	pylablib.core.gui.widgets

 	pylablib.core.gui.widgets.button

 	pylablib.core.gui.widgets.combo_box

 	pylablib.core.gui.widgets.container

 	pylablib.core.gui.widgets.edit

 	pylablib.core.gui.widgets.label

 	pylablib.core.gui.widgets.layout_manager

 	pylablib.core.gui.widgets.param_table

 	pylablib.core.thread

 	pylablib.core.thread.callsync

 	pylablib.core.thread.controller

 	pylablib.core.thread.multicast_pool

 	pylablib.core.thread.notifier

 	pylablib.core.thread.profile

 	pylablib.core.thread.synchronizing

 	pylablib.core.thread.threadprop

 	pylablib.core.thread.utils

 	pylablib.core.utils

 	pylablib.core.utils.array_utils

 	pylablib.core.utils.cext_tools

 	pylablib.core.utils.crc

 	pylablib.core.utils.ctypes_wrap

 	pylablib.core.utils.dictionary

 	pylablib.core.utils.files

 	pylablib.core.utils.funcargparse

 	pylablib.core.utils.functions

 	pylablib.core.utils.general

 	pylablib.core.utils.indexing

 	pylablib.core.utils.ipc

 	pylablib.core.utils.library_parameters

 	pylablib.core.utils.module

 	pylablib.core.utils.nbtools

 	pylablib.core.utils.net

 	pylablib.core.utils.numerical

 	pylablib.core.utils.observer_pool

 	pylablib.core.utils.py3

 	pylablib.core.utils.rpyc_utils

 	pylablib.core.utils.strdump

 	pylablib.core.utils.string

 	pylablib.core.utils.strpack

 	pylablib.core.utils.units

 	pylablib.devices

 	pylablib.devices.AlliedVision

 	pylablib.devices.AlliedVision.Bonito

 	pylablib.devices.Andor

 	pylablib.devices.Andor.AndorSDK2

 	pylablib.devices.Andor.AndorSDK3

 	pylablib.devices.Andor.atcore_features

 	pylablib.devices.Andor.base

 	pylablib.devices.Andor.Shamrock

 	pylablib.devices.Arcus

 	pylablib.devices.Arcus.base

 	pylablib.devices.Arcus.performax

 	pylablib.devices.Arduino

 	pylablib.devices.Arduino.base

 	pylablib.devices.Attocube

 	pylablib.devices.Attocube.anc300

 	pylablib.devices.Attocube.anc350

 	pylablib.devices.Attocube.base

 	pylablib.devices.AWG

 	pylablib.devices.AWG.generic

 	pylablib.devices.AWG.specific

 	pylablib.devices.Basler

 	pylablib.devices.Basler.pylon

 	pylablib.devices.BitFlow

 	pylablib.devices.BitFlow.BitFlow

 	pylablib.devices.Conrad

 	pylablib.devices.Conrad.base

 	pylablib.devices.Cryocon

 	pylablib.devices.Cryocon.base

 	pylablib.devices.Cryomagnetics

 	pylablib.devices.Cryomagnetics.base

 	pylablib.devices.DCAM

 	pylablib.devices.DCAM.DCAM

 	pylablib.devices.ElektroAutomatik

 	pylablib.devices.ElektroAutomatik.base

 	pylablib.devices.HighFinesse

 	pylablib.devices.HighFinesse.wlm

 	pylablib.devices.IMAQ

 	pylablib.devices.IMAQ.IMAQ

 	pylablib.devices.IMAQ.niimaq_attrtypes

 	pylablib.devices.IMAQdx

 	pylablib.devices.IMAQdx.IMAQdx

 	pylablib.devices.interface

 	pylablib.devices.interface.camera

 	pylablib.devices.interface.stage

 	pylablib.devices.Keithley

 	pylablib.devices.Keithley.base

 	pylablib.devices.Keithley.multimeter

 	pylablib.devices.KJL

 	pylablib.devices.KJL.base

 	pylablib.devices.Lakeshore

 	pylablib.devices.Lakeshore.base

 	pylablib.devices.LaserQuantum

 	pylablib.devices.LaserQuantum.base

 	pylablib.devices.Leybold

 	pylablib.devices.Leybold.base

 	pylablib.devices.LighthousePhotonics

 	pylablib.devices.LighthousePhotonics.base

 	pylablib.devices.Lumel

 	pylablib.devices.Lumel.base

 	pylablib.devices.M2

 	pylablib.devices.M2.base

 	pylablib.devices.M2.emm

 	pylablib.devices.M2.solstis

 	pylablib.devices.Mightex

 	pylablib.devices.Mightex.base

 	pylablib.devices.Mightex.MightexSSeries

 	pylablib.devices.Modbus

 	pylablib.devices.Modbus.modbus

 	pylablib.devices.Newport

 	pylablib.devices.Newport.base

 	pylablib.devices.Newport.picomotor

 	pylablib.devices.NI

 	pylablib.devices.NI.daq

 	pylablib.devices.NKT

 	pylablib.devices.NKT.interbus

 	pylablib.devices.Ophir

 	pylablib.devices.Ophir.base

 	pylablib.devices.OZOptics

 	pylablib.devices.OZOptics.base

 	pylablib.devices.PCO

 	pylablib.devices.PCO.SC2

 	pylablib.devices.Pfeiffer

 	pylablib.devices.Pfeiffer.base

 	pylablib.devices.Photometrics

 	pylablib.devices.Photometrics.pvcam

 	pylablib.devices.PhotonFocus

 	pylablib.devices.PhotonFocus.PhotonFocus

 	pylablib.devices.PhysikInstrumente

 	pylablib.devices.PhysikInstrumente.base

 	pylablib.devices.PrincetonInstruments

 	pylablib.devices.PrincetonInstruments.picam

 	pylablib.devices.Rigol

 	pylablib.devices.Rigol.base

 	pylablib.devices.Rigol.power_supply

 	pylablib.devices.SiliconSoftware

 	pylablib.devices.SiliconSoftware.fgrab

 	pylablib.devices.Sirah

 	pylablib.devices.Sirah.base

 	pylablib.devices.Sirah.Matisse

 	pylablib.devices.Sirah.tuner

 	pylablib.devices.SmarAct

 	pylablib.devices.SmarAct.base

 	pylablib.devices.SmarAct.MCS2

 	pylablib.devices.SmarAct.scu3d

 	pylablib.devices.Standa

 	pylablib.devices.Standa.base

 	pylablib.devices.Tektronix

 	pylablib.devices.Tektronix.base

 	pylablib.devices.Thorlabs

 	pylablib.devices.Thorlabs.base

 	pylablib.devices.Thorlabs.elliptec

 	pylablib.devices.Thorlabs.kinesis

 	pylablib.devices.Thorlabs.misc

 	pylablib.devices.Thorlabs.serial

 	pylablib.devices.Thorlabs.TLCamera

 	pylablib.devices.Toptica

 	pylablib.devices.Toptica.base

 	pylablib.devices.Toptica.ibeam

 	pylablib.devices.Trinamic

 	pylablib.devices.Trinamic.base

 	pylablib.devices.uc480

 	pylablib.devices.uc480.uc480

 	pylablib.devices.utils

 	pylablib.devices.utils.color

 	pylablib.devices.utils.load_lib

 	pylablib.devices.Voltcraft

 	pylablib.devices.Voltcraft.base

 	pylablib.devices.Voltcraft.multimeter

 	pylablib.widgets

 	
 	module (pylablib.devices.Trinamic.base.TMCM1110.ReplyData attribute)

 	month (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	motor (pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	mousePressEvent() (pylablib.core.gui.widgets.label.EnumLabel method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	(pylablib.core.gui.widgets.label.TextLabel method)

 	move_by() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	move_by_steps() (pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	move_dir() (in module pylablib.core.utils.files)

 	move_file() (in module pylablib.core.utils.files)

 	move_macrostep() (pylablib.devices.SmarAct.scu3d.SCU3D method)

 	move_scan_by() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	move_scan_to() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	move_to() (pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	move_to_state() (pylablib.devices.Thorlabs.kinesis.MFF method)

 	move_up() (pylablib.core.utils.dictionary.DictionaryPointer method)

 	multi_scale_peakdet() (in module pylablib.core.dataproc.feature)

 	MulticastPool (class in pylablib.core.thread.multicast_pool)

 	MultiplexedCallable (class in pylablib.core.dataproc.callable)

 	MultiplexedCallable.NamesBoundCall (class in pylablib.core.dataproc.callable)

 	multiplied() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	multiply() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	muxaddr() (in module pylablib.devices.Newport.picomotor)

 	(in module pylablib.devices.Thorlabs.elliptec)

 	muxaxis() (in module pylablib.devices.Attocube.anc300)

 	(in module pylablib.devices.interface.stage)

 	muxcall() (in module pylablib.core.utils.general)

 	muxchan() (in module pylablib.devices.Toptica.ibeam)

 	muxchannel() (in module pylablib.devices.HighFinesse.wlm)

 	(in module pylablib.devices.Tektronix.base)

 	(in module pylablib.devices.Thorlabs.kinesis)

N

 	
 	name (pylablib.core.fileio.location.LocationFile attribute)

 	(pylablib.core.gui.widgets.container.TChild attribute)

 	(pylablib.core.gui.widgets.container.TTimer attribute)

 	(pylablib.core.utils.files.TempFile attribute)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader attribute)

 	(pylablib.devices.NI.daq.TDeviceInfo attribute)

 	(pylablib.devices.Ophir.base.TDeviceInfo attribute)

 	(pylablib.devices.Ophir.base.THeadInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TCameraInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TDeviceInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TAppletInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TBoardInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	(pylablib.devices.SmarAct.MCS2.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TDeviceInfo attribute)

 	NamedUIDGenerator (class in pylablib.core.utils.general)

 	nchannels (pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	ncycles (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	ndim() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.IGenWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	NetworkDeviceBackend (class in pylablib.core.devio.comm_backend)

 	new_backend() (in module pylablib.core.devio.comm_backend)

 	new_frame() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	new_messages_number() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	new_overflow() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	NewportBackendError

 	NewportError

 	
 	next() (pylablib.core.utils.general.AccessIterator method)

 	(pylablib.core.utils.numerical.infinite_list.counter method)

 	NIDAQ (class in pylablib.devices.NI.daq)

 	NIDAQmxError

 	NIError

 	no_stopping() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	NoControllerThreadError

 	nodes() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	NoMessageThreadError

 	NoParameterError

 	noreply() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	normalize_channel_name() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	normalize_fourier_transform() (in module pylablib.core.dataproc.fourier)

 	normalize_path() (in module pylablib.core.utils.dictionary)

 	(in module pylablib.core.utils.files)

 	normalize_path_entry() (in module pylablib.core.utils.dictionary)

 	notes (pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	notify() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDummyResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QMultiThreadNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	(pylablib.core.utils.observer_pool.ObserverPool method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper method)

 	notify_exec_point() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	notifying_state() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	nrois (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	num_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	num_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	NumberLimit (class in pylablib.core.gui.limiter)

 	NumEdit (class in pylablib.core.gui.widgets.edit)

 	NumLabel (class in pylablib.core.gui.widgets.label)

 	NumpyIndex (class in pylablib.core.utils.indexing)

O

 	
 	obj (pylablib.devices.ElektroAutomatik.base.PS2000B.TTelegram attribute)

 	obj_prop() (in module pylablib.core.utils.functions)

 	ObserverPool (class in pylablib.core.utils.observer_pool)

 	ObserverPool.Observer (class in pylablib.core.utils.observer_pool)

 	obtain() (in module pylablib.core.utils.rpyc_utils)

 	(pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	ocp (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	off_delay (pylablib.devices.Standa.base.TPowerParams attribute)

 	off_enabled (pylablib.devices.Standa.base.TPowerParams attribute)

 	off_thresh (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings attribute)

 	offset (pylablib.core.utils.ipc.TShmemVarDesc attribute)

 	(pylablib.devices.Andor.Shamrock.TGratingInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TFrameInfo attribute)

 	offset_distance (pylablib.devices.Thorlabs.kinesis.THomeParams attribute)

 	on_connect() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	on_disconnect() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	on_finish() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	on_overflow() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	on_start() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	on_thresh (pylablib.devices.Pfeiffer.base.TTPG260GaugeControlSettings attribute)

 	opcode (pylablib.devices.Attocube.anc350.ANC350.Telegram attribute)

 	open() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.fileio.location.FolderFileSystemDataLocation method)

 	(pylablib.core.fileio.location.IDataLocation method)

 	(pylablib.core.fileio.location.IFileSystemDataLocation method)

 	(pylablib.core.fileio.location.LocationFile method)

 	(pylablib.core.fileio.location.OpenedFileLocation method)

 	(pylablib.core.fileio.location.PrefixedFileSystemDataLocation method)

 	(pylablib.core.fileio.location.SingleFileSystemDataLocation method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	
 	open_loop_out (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	open_result (pylablib.devices.utils.load_lib.TLibraryOpenResult attribute)

 	opened (pylablib.core.fileio.location.LocationFile attribute)

 	OpenedFileLocation (class in pylablib.core.fileio.location)

 	OphirBackendError

 	OphirDevice (class in pylablib.devices.Ophir.base)

 	OphirError

 	opid (pylablib.devices.utils.load_lib.TLibraryOpenResult attribute)

 	opp (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	order_to_pos() (in module pylablib.core.gui.formatter)

 	otp (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	overflows (pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus attribute)

 	overruns (pylablib.devices.PCO.SC2.TInternalBufferStatus attribute)

 	oversamp (pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters attribute)

 	ovp (pylablib.devices.ElektroAutomatik.base.TStatus attribute)

 	OZOpticsBackendError

 	OZOpticsDevice (class in pylablib.devices.OZOptics.base)

 	OZOpticsError

P

 	
 	P (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TThinetCtlParameters attribute)

 	p (pylablib.devices.Thorlabs.kinesis.TQuadDetectorPIDParams attribute)

 	pack_int() (in module pylablib.core.utils.strpack)

 	pack_uint() (in module pylablib.core.utils.strpack)

 	pad_borders() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	pad_trace() (in module pylablib.core.dataproc.utils)

 	page (pylablib.devices.Leybold.base.TDeviceInfo attribute)

 	param1 (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort attribute)

 	param2 (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort attribute)

 	parameter_range_error() (in module pylablib.core.utils.funcargparse)

 	parameter_value_error() (in module pylablib.core.utils.funcargparse)

 	ParamTable (class in pylablib.core.gui.widgets.param_table)

 	ParamTable.ParamRow (class in pylablib.core.gui.widgets.param_table)

 	parse_array_data() (pylablib.core.devio.SCPI.SCPIDevice static method)

 	(pylablib.devices.AWG.generic.GenericAWG static method)

 	(pylablib.devices.AWG.specific.Agilent33220A static method)

 	(pylablib.devices.AWG.specific.Agilent33500 static method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 static method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 static method)

 	(pylablib.devices.AWG.specific.RigolDG1000 static method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 static method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 static method)

 	(pylablib.devices.Cryocon.base.Cryocon1x static method)

 	(pylablib.devices.Cryomagnetics.base.LM500 static method)

 	(pylablib.devices.Cryomagnetics.base.LM510 static method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 static method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 static method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 static method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 static method)

 	(pylablib.devices.Rigol.power_supply.DP1116A static method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse static method)

 	(pylablib.devices.Tektronix.base.DPO2000 static method)

 	(pylablib.devices.Tektronix.base.ITektronixScope static method)

 	(pylablib.devices.Tektronix.base.TDS2000 static method)

 	(pylablib.devices.Thorlabs.misc.GenericPM static method)

 	(pylablib.devices.Thorlabs.misc.PM160 static method)

 	(pylablib.devices.Thorlabs.serial.FW static method)

 	(pylablib.devices.Thorlabs.serial.FWv1 static method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA static method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface static method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 static method)

 	parse_dict_line() (in module pylablib.core.fileio.loadfile_utils)

 	parse_float() (in module pylablib.core.gui.formatter)

 	parse_metainfo_v1() (in module pylablib.devices.Photometrics.pvcam)

 	parse_metainfo_v3() (in module pylablib.devices.Photometrics.pvcam)

 	parse_stored_table_data() (in module pylablib.core.fileio.dict_entry)

 	part (pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	partition_list() (in module pylablib.core.utils.general)

 	pass_result (pylablib.core.thread.callsync.QScheduledCall.Callback attribute)

 	passed() (pylablib.core.utils.general.Countdown method)

 	(pylablib.core.utils.general.Timer method)

 	path (pylablib.core.devio.hid.TDeviceDescription attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	paths() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	paths_equal() (in module pylablib.core.utils.files)

 	pause() (pylablib.core.thread.controller.QTaskThread.Job method)

 	pausing() (pylablib.core.devio.hid.HIDevice.Reader method)

 	pausing_acquisition() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	payload (pylablib.devices.NKT.interbus.TInterbusTelegram attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC880.TMessage attribute)

 	PCOSC2Camera (class in pylablib.devices.PCO.SC2)

 	PCOSC2Camera.BufferManager (class in pylablib.devices.PCO.SC2)

 	PCOSC2Camera.ScheduleLooper (class in pylablib.devices.PCO.SC2)

 	Peak (class in pylablib.core.dataproc.feature)

 	peaks_sum_func() (in module pylablib.core.dataproc.feature)

 	Performax2EXStage (class in pylablib.devices.Arcus.performax)

 	Performax4EXStage (class in pylablib.devices.Arcus.performax)

 	PerformaxDMXJSAStage (class in pylablib.devices.Arcus.performax)

 	period (pylablib.core.gui.widgets.container.TTimer attribute)

 	PFCamAttribute (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PfeifferBackendError

 	PfeifferError

 	phase (pylablib.devices.Sirah.Matisse.TPiezoetFeedbackParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TPiezoetFeedforwardParameters attribute)

 	PhotonFocusBitFlowCamera (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PhotonFocusBitFlowCamera.BufferManager (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PhotonFocusIMAQCamera (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PhotonFocusSiSoCamera (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PhotonFocusSiSoCamera.BufferManager (class in pylablib.devices.PhotonFocus.PhotonFocus)

 	PhysikInstrumenteBackendError

 	PhysikInstrumenteError

 	PicamAttribute (class in pylablib.devices.PrincetonInstruments.picam)

 	PicamCamera (class in pylablib.devices.PrincetonInstruments.picam)

 	Picomotor8742 (class in pylablib.devices.Newport.picomotor)

 	PIE515 (class in pylablib.devices.PhysikInstrumente.base)

 	PIE516 (class in pylablib.devices.PhysikInstrumente.base)

 	pip_install() (in module pylablib.core.utils.module)

 	PipeIPCChannel (class in pylablib.core.utils.ipc)

 	pixelclock (pylablib.devices.Thorlabs.TLCamera.TFrameInfo attribute)

 	pixeltype (pylablib.devices.Andor.AndorSDK3.TFrameInfo attribute)

 	(pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TFrameInfo attribute)

 	place_widget_at_location() (in module pylablib.core.gui.utils)

 	platform (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	PM160 (class in pylablib.devices.Thorlabs.misc)

 	points (pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings attribute)

 	poke() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	polynomial() (in module pylablib.core.utils.numerical)

 	pop() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	pop_call() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	pop_message() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	port (pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo attribute)

 	port_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	port_name (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	pos_to_order() (in module pylablib.core.gui.formatter)

 	position (pylablib.core.dataproc.feature.Baseline attribute)

 	(pylablib.core.dataproc.feature.Peak attribute)

 	(pylablib.core.gui.utils.TWidgetLocation attribute)

 	(pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	(pylablib.devices.Standa.base.TFullState attribute)

 	post_open() (pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	power (pylablib.devices.ElektroAutomatik.base.TOutputLimits attribute)

 	power_off() (pylablib.devices.Standa.base.Standa8SMC method)

 	power_spectral_density() (in module pylablib.core.dataproc.fourier)

 	power_up (pylablib.devices.Toptica.ibeam.TWorkHours attribute)

 	pquery() (pylablib.devices.Standa.base.Standa8SMC method)

 	precede() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	preceded() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	PrefixedFileSystemDataLocation (class in pylablib.core.fileio.location)

 	PrefixShortcutTree (class in pylablib.core.utils.dictionary)

 	PrefixTree (class in pylablib.core.utils.dictionary)

 	preinit() (pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	prep() (pylablib.core.utils.ctypes_wrap.CStructWrapper method)

 	prep_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper class method)

 	prep_struct_args() (pylablib.core.utils.ctypes_wrap.CStructWrapper class method)

 	presets (pylablib.devices.Ophir.base.TWavelengthInfo attribute)

 	print_stats() (in module pylablib.core.thread.profile)

 	priority (pylablib.core.thread.controller.QTaskThread.TBatchJob attribute)

 	(pylablib.core.thread.controller.QTaskThread.TCommand attribute)

 	(pylablib.core.utils.observer_pool.ObserverPool.Observer attribute)

 	process_interrupt() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	process_message() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	product (pylablib.core.devio.hid.TDeviceDescription attribute)

 	(pylablib.devices.LighthousePhotonics.base.TDeviceInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	product_id (pylablib.core.devio.hid.TDeviceDescription attribute)

 	ProgressBarValueHandler (class in pylablib.core.gui.value_handling)

 	PropertyValueHandler (class in pylablib.core.gui.value_handling)

 	props (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	PS2000B (class in pylablib.devices.ElektroAutomatik.base)

 	PS2000B.TTelegram (class in pylablib.devices.ElektroAutomatik.base)

 	pstep (pylablib.devices.interface.camera.TAxisROILimit attribute)

 	psu (pylablib.devices.LaserQuantum.base.TTemperatures attribute)

 	(pylablib.devices.LaserQuantum.base.TWorkHours attribute)

 	pulse (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	pulse_divisor (pylablib.devices.Trinamic.base.TVelocityParams attribute)

 	PushButtonValueHandler (class in pylablib.core.gui.value_handling)

 	pval() (in module pylablib.core.devio.interface)

 	PvcamAttribute (class in pylablib.devices.Photometrics.pvcam)

 	PvcamCamera (class in pylablib.devices.Photometrics.pvcam)

 	
 pylablib

 	module

 	
 pylablib.core

 	module

 	
 pylablib.core.dataproc

 	module

 	
 pylablib.core.dataproc.callable

 	module

 	
 pylablib.core.dataproc.ctransform_fallback

 	module

 	
 pylablib.core.dataproc.feature

 	module

 	
 pylablib.core.dataproc.filters

 	module

 	
 pylablib.core.dataproc.fitting

 	module

 	
 pylablib.core.dataproc.fourier

 	module

 	
 pylablib.core.dataproc.iir_transform

 	module

 	
 pylablib.core.dataproc.image

 	module

 	
 pylablib.core.dataproc.interpolate

 	module

 	
 pylablib.core.dataproc.specfunc

 	module

 	
 pylablib.core.dataproc.table_wrap

 	module

 	
 pylablib.core.dataproc.transform

 	module

 	
 pylablib.core.dataproc.utils

 	module

 	
 pylablib.core.devio

 	module

 	
 pylablib.core.devio.backend_logger

 	module

 	
 pylablib.core.devio.base

 	module

 	
 pylablib.core.devio.comm_backend

 	module

 	
 pylablib.core.devio.data_format

 	module

 	
 pylablib.core.devio.hid

 	module

 	
 pylablib.core.devio.hid_base

 	module

 	
 pylablib.core.devio.interface

 	module

 	
 pylablib.core.devio.SCPI

 	module

 	
 pylablib.core.fileio

 	module

 	
 pylablib.core.fileio.datafile

 	module

 	
 pylablib.core.fileio.dict_entry

 	module

 	
 pylablib.core.fileio.loadfile

 	module

 	
 pylablib.core.fileio.loadfile_utils

 	module

 	
 pylablib.core.fileio.location

 	module

 	
 pylablib.core.fileio.parse_csv

 	module

 	
 pylablib.core.fileio.savefile

 	module

 	
 pylablib.core.fileio.table_stream

 	module

 	
 pylablib.core.gui

 	module

 	
 pylablib.core.gui.formatter

 	module

 	
 pylablib.core.gui.limiter

 	module

 	
 pylablib.core.gui.utils

 	module

 	
 pylablib.core.gui.value_handling

 	module

 	
 pylablib.core.gui.widgets

 	module

 	
 pylablib.core.gui.widgets.button

 	module

 	
 pylablib.core.gui.widgets.combo_box

 	module

 	
 pylablib.core.gui.widgets.container

 	module

 	
 pylablib.core.gui.widgets.edit

 	module

 	
 pylablib.core.gui.widgets.label

 	module

 	
 pylablib.core.gui.widgets.layout_manager

 	module

 	
 pylablib.core.gui.widgets.param_table

 	module

 	
 pylablib.core.thread

 	module

 	
 pylablib.core.thread.callsync

 	module

 	
 pylablib.core.thread.controller

 	module

 	
 pylablib.core.thread.multicast_pool

 	module

 	
 pylablib.core.thread.notifier

 	module

 	
 pylablib.core.thread.profile

 	module

 	
 	
 pylablib.core.thread.synchronizing

 	module

 	
 pylablib.core.thread.threadprop

 	module

 	
 pylablib.core.thread.utils

 	module

 	
 pylablib.core.utils

 	module

 	
 pylablib.core.utils.array_utils

 	module

 	
 pylablib.core.utils.cext_tools

 	module

 	
 pylablib.core.utils.crc

 	module

 	
 pylablib.core.utils.ctypes_wrap

 	module

 	
 pylablib.core.utils.dictionary

 	module

 	
 pylablib.core.utils.files

 	module

 	
 pylablib.core.utils.funcargparse

 	module

 	
 pylablib.core.utils.functions

 	module

 	
 pylablib.core.utils.general

 	module

 	
 pylablib.core.utils.indexing

 	module

 	
 pylablib.core.utils.ipc

 	module

 	
 pylablib.core.utils.library_parameters

 	module

 	
 pylablib.core.utils.module

 	module

 	
 pylablib.core.utils.nbtools

 	module

 	
 pylablib.core.utils.net

 	module

 	
 pylablib.core.utils.numerical

 	module

 	
 pylablib.core.utils.observer_pool

 	module

 	
 pylablib.core.utils.py3

 	module

 	
 pylablib.core.utils.rpyc_utils

 	module

 	
 pylablib.core.utils.strdump

 	module

 	
 pylablib.core.utils.string

 	module

 	
 pylablib.core.utils.strpack

 	module

 	
 pylablib.core.utils.units

 	module

 	
 pylablib.devices

 	module

 	
 pylablib.devices.AlliedVision

 	module

 	
 pylablib.devices.AlliedVision.Bonito

 	module

 	
 pylablib.devices.Andor

 	module

 	
 pylablib.devices.Andor.AndorSDK2

 	module

 	
 pylablib.devices.Andor.AndorSDK3

 	module

 	
 pylablib.devices.Andor.atcore_features

 	module

 	
 pylablib.devices.Andor.base

 	module

 	
 pylablib.devices.Andor.Shamrock

 	module

 	
 pylablib.devices.Arcus

 	module

 	
 pylablib.devices.Arcus.base

 	module

 	
 pylablib.devices.Arcus.performax

 	module

 	
 pylablib.devices.Arduino

 	module

 	
 pylablib.devices.Arduino.base

 	module

 	
 pylablib.devices.Attocube

 	module

 	
 pylablib.devices.Attocube.anc300

 	module

 	
 pylablib.devices.Attocube.anc350

 	module

 	
 pylablib.devices.Attocube.base

 	module

 	
 pylablib.devices.AWG

 	module

 	
 pylablib.devices.AWG.generic

 	module

 	
 pylablib.devices.AWG.specific

 	module

 	
 pylablib.devices.Basler

 	module

 	
 pylablib.devices.Basler.pylon

 	module

 	
 pylablib.devices.BitFlow

 	module

 	
 pylablib.devices.BitFlow.BitFlow

 	module

 	
 pylablib.devices.Conrad

 	module

 	
 pylablib.devices.Conrad.base

 	module

 	
 pylablib.devices.Cryocon

 	module

 	
 pylablib.devices.Cryocon.base

 	module

 	
 pylablib.devices.Cryomagnetics

 	module

 	
 pylablib.devices.Cryomagnetics.base

 	module

 	
 pylablib.devices.DCAM

 	module

 	
 pylablib.devices.DCAM.DCAM

 	module

 	
 pylablib.devices.ElektroAutomatik

 	module

 	
 pylablib.devices.ElektroAutomatik.base

 	module

 	
 pylablib.devices.HighFinesse

 	module

 	
 pylablib.devices.HighFinesse.wlm

 	module

 	
 pylablib.devices.IMAQ

 	module

 	
 pylablib.devices.IMAQ.IMAQ

 	module

 	
 pylablib.devices.IMAQ.niimaq_attrtypes

 	module

 	
 pylablib.devices.IMAQdx

 	module

 	
 pylablib.devices.IMAQdx.IMAQdx

 	module

 	
 pylablib.devices.interface

 	module

 	
 pylablib.devices.interface.camera

 	module

 	
 pylablib.devices.interface.stage

 	module

 	
 pylablib.devices.Keithley

 	module

 	
 pylablib.devices.Keithley.base

 	module

 	
 pylablib.devices.Keithley.multimeter

 	module

 	
 pylablib.devices.KJL

 	module

 	
 pylablib.devices.KJL.base

 	module

 	
 pylablib.devices.Lakeshore

 	module

 	
 pylablib.devices.Lakeshore.base

 	module

 	
 pylablib.devices.LaserQuantum

 	module

 	
 pylablib.devices.LaserQuantum.base

 	module

 	
 pylablib.devices.Leybold

 	module

 	
 pylablib.devices.Leybold.base

 	module

 	
 pylablib.devices.LighthousePhotonics

 	module

 	
 pylablib.devices.LighthousePhotonics.base

 	module

 	
 pylablib.devices.Lumel

 	module

 	
 pylablib.devices.Lumel.base

 	module

 	
 pylablib.devices.M2

 	module

 	
 pylablib.devices.M2.base

 	module

 	
 pylablib.devices.M2.emm

 	module

 	
 pylablib.devices.M2.solstis

 	module

 	
 pylablib.devices.Mightex

 	module

 	
 pylablib.devices.Mightex.base

 	module

 	
 pylablib.devices.Mightex.MightexSSeries

 	module

 	
 pylablib.devices.Modbus

 	module

 	
 pylablib.devices.Modbus.modbus

 	module

 	
 pylablib.devices.Newport

 	module

 	
 pylablib.devices.Newport.base

 	module

 	
 pylablib.devices.Newport.picomotor

 	module

 	
 pylablib.devices.NI

 	module

 	
 pylablib.devices.NI.daq

 	module

 	
 pylablib.devices.NKT

 	module

 	
 pylablib.devices.NKT.interbus

 	module

 	
 pylablib.devices.Ophir

 	module

 	
 pylablib.devices.Ophir.base

 	module

 	
 pylablib.devices.OZOptics

 	module

 	
 pylablib.devices.OZOptics.base

 	module

 	
 pylablib.devices.PCO

 	module

 	
 pylablib.devices.PCO.SC2

 	module

 	
 pylablib.devices.Pfeiffer

 	module

 	
 pylablib.devices.Pfeiffer.base

 	module

 	
 pylablib.devices.Photometrics

 	module

 	
 pylablib.devices.Photometrics.pvcam

 	module

 	
 pylablib.devices.PhotonFocus

 	module

 	
 pylablib.devices.PhotonFocus.PhotonFocus

 	module

 	
 pylablib.devices.PhysikInstrumente

 	module

 	
 pylablib.devices.PhysikInstrumente.base

 	module

 	
 pylablib.devices.PrincetonInstruments

 	module

 	
 pylablib.devices.PrincetonInstruments.picam

 	module

 	
 pylablib.devices.Rigol

 	module

 	
 pylablib.devices.Rigol.base

 	module

 	
 pylablib.devices.Rigol.power_supply

 	module

 	
 pylablib.devices.SiliconSoftware

 	module

 	
 pylablib.devices.SiliconSoftware.fgrab

 	module

 	
 pylablib.devices.Sirah

 	module

 	
 pylablib.devices.Sirah.base

 	module

 	
 pylablib.devices.Sirah.Matisse

 	module

 	
 pylablib.devices.Sirah.tuner

 	module

 	
 pylablib.devices.SmarAct

 	module

 	
 pylablib.devices.SmarAct.base

 	module

 	
 pylablib.devices.SmarAct.MCS2

 	module

 	
 pylablib.devices.SmarAct.scu3d

 	module

 	
 pylablib.devices.Standa

 	module

 	
 pylablib.devices.Standa.base

 	module

 	
 pylablib.devices.Tektronix

 	module

 	
 pylablib.devices.Tektronix.base

 	module

 	
 pylablib.devices.Thorlabs

 	module

 	
 pylablib.devices.Thorlabs.base

 	module

 	
 pylablib.devices.Thorlabs.elliptec

 	module

 	
 pylablib.devices.Thorlabs.kinesis

 	module

 	
 pylablib.devices.Thorlabs.misc

 	module

 	
 pylablib.devices.Thorlabs.serial

 	module

 	
 pylablib.devices.Thorlabs.TLCamera

 	module

 	
 pylablib.devices.Toptica

 	module

 	
 pylablib.devices.Toptica.base

 	module

 	
 pylablib.devices.Toptica.ibeam

 	module

 	
 pylablib.devices.Trinamic

 	module

 	
 pylablib.devices.Trinamic.base

 	module

 	
 pylablib.devices.uc480

 	module

 	
 pylablib.devices.uc480.uc480

 	module

 	
 pylablib.devices.utils

 	module

 	
 pylablib.devices.utils.color

 	module

 	
 pylablib.devices.utils.load_lib

 	module

 	
 pylablib.devices.Voltcraft

 	module

 	
 pylablib.devices.Voltcraft.base

 	module

 	
 pylablib.devices.Voltcraft.multimeter

 	module

 	
 pylablib.widgets

 	module

 	PyUSBDeviceBackend (class in pylablib.core.devio.comm_backend)

Q

 	
 	QCallResultSynchronizer (class in pylablib.core.thread.callsync)

 	QContainer (class in pylablib.core.gui.widgets.container)

 	QDialogContainer (class in pylablib.core.gui.widgets.container)

 	QDirectCallScheduler (class in pylablib.core.thread.callsync)

 	QDirectResultSynchronizer (class in pylablib.core.thread.callsync)

 	QDummyResultSynchronizer (class in pylablib.core.thread.callsync)

 	QFrameContainer (class in pylablib.core.gui.widgets.container)

 	QGroupBoxContainer (class in pylablib.core.gui.widgets.container)

 	QLayoutManagedWidget (class in pylablib.core.gui.widgets.layout_manager)

 	QLockNotifier (class in pylablib.core.thread.synchronizing)

 	QMulticastThreadCallScheduler (class in pylablib.core.thread.callsync)

 	QMultiQueueScheduler (class in pylablib.core.thread.callsync)

 	QMultiThreadNotifier (class in pylablib.core.thread.synchronizing)

 	QQueueLengthLimitScheduler (class in pylablib.core.thread.callsync)

 	QQueueScheduler (class in pylablib.core.thread.callsync)

 	QQueueSizeLimitScheduler (class in pylablib.core.thread.callsync)

 	QScheduledCall (class in pylablib.core.thread.callsync)

 	QScheduledCall.Callback (class in pylablib.core.thread.callsync)

 	QScheduler (class in pylablib.core.thread.callsync)

 	QScrollAreaContainer (class in pylablib.core.gui.widgets.container)

 	QScrollAreaContainer.QContainedWidget (class in pylablib.core.gui.widgets.container)

 	QTabContainer (class in pylablib.core.gui.widgets.container)

 	QTaskThread (class in pylablib.core.thread.controller)

 	QTaskThread.CommandAccess (class in pylablib.core.thread.controller)

 	QTaskThread.Job (class in pylablib.core.thread.controller)

 	QTaskThread.TBatchJob (class in pylablib.core.thread.controller)

 	QTaskThread.TCommand (class in pylablib.core.thread.controller)

 	QThreadCallScheduler (class in pylablib.core.thread.callsync)

 	QThreadController (class in pylablib.core.thread.controller)

 	QThreadControllerThread (class in pylablib.core.thread.controller)

 	QThreadNotifier (class in pylablib.core.thread.synchronizing)

 	query() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	
 	query_axis() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	query_camera_name() (in module pylablib.devices.PhotonFocus.PhotonFocus)

 	queue() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	quit_sync() (pylablib.core.thread.controller.QThreadControllerThread method)

 	QWidgetContainer (class in pylablib.core.gui.widgets.container)

R

 	
 	ramp_divisor (pylablib.devices.Trinamic.base.TVelocityParams attribute)

 	ramp_down (pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	ramp_enabled (pylablib.devices.Standa.base.TPowerParams attribute)

 	ramp_time (pylablib.devices.Standa.base.TPowerParams attribute)

 	ramp_up (pylablib.devices.Thorlabs.elliptec.TMotorInfo attribute)

 	Range (class in pylablib.core.dataproc.utils)

 	RangeParameterClass (class in pylablib.core.devio.interface)

 	ranges (pylablib.devices.Ophir.base.TRangeInfo attribute)

 	rate (pylablib.devices.NI.daq.TVoltageOutputClockParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TPiezoetDriveParameters attribute)

 	read() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.hid.HIDevice.Reader method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.fileio.loadfile.BinaryTableInputFileFormatter method)

 	(pylablib.core.fileio.loadfile.CSVTableInputFileFormat method)

 	(pylablib.core.fileio.loadfile.DictionaryInputFileFormat method)

 	(pylablib.core.fileio.loadfile.IInputFileFormat method)

 	(pylablib.core.fileio.loadfile.ITextInputFileFormat method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	read_binary_array_data() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	read_columns() (in module pylablib.core.fileio.parse_csv)

 	read_dict_and_comments() (in module pylablib.core.fileio.loadfile_utils)

 	read_directly (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	read_in_aux_port() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	read_message() (pylablib.devices.Voltcraft.multimeter.VC880 method)

 	read_multichar_term() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	read_multiple_images() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	read_multiple_sweeps() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	read_newest_image() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	read_oldest_image() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	read_raw_data() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	read_sweep() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	read_table() (in module pylablib.core.fileio.parse_csv)

 	read_trigger() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	readable (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	ReadChangeLock (class in pylablib.core.thread.utils)

 	reading() (pylablib.core.thread.utils.ReadChangeLock method)

 	readline() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	readlines() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	readn() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	reason (pylablib.devices.Attocube.anc350.ANC350.Reply attribute)

 	reboot() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	reconnect() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	RecordedDeviceBackend (class in pylablib.core.devio.comm_backend)

 	rectangle_k() (in module pylablib.core.dataproc.specfunc)

 	rectangle_w() (in module pylablib.core.dataproc.specfunc)

 	rectangle_w_ft() (in module pylablib.core.dataproc.specfunc)

 	recursive_map() (in module pylablib.core.utils.general)

 	recv() (pylablib.core.utils.ipc.IIPCChannel method)

 	(pylablib.core.utils.ipc.PipeIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel method)

 	(pylablib.core.utils.net.ClientSocket method)

 	recv_ack() (pylablib.core.utils.net.ClientSocket method)

 	recv_all() (pylablib.core.utils.net.ClientSocket method)

 	recv_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	recv_decllen() (pylablib.core.utils.net.ClientSocket method)

 	recv_delimiter() (pylablib.core.utils.net.ClientSocket method)

 	
 	recv_fixedlen() (pylablib.core.utils.net.ClientSocket method)

 	recv_JSON() (in module pylablib.core.utils.net)

 	recv_numpy() (pylablib.core.utils.ipc.IIPCChannel method)

 	(pylablib.core.utils.ipc.PipeIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel method)

 	reduct_delay (pylablib.devices.Standa.base.TPowerParams attribute)

 	reduct_enabled (pylablib.devices.Standa.base.TPowerParams attribute)

 	refresh_acquisition() (pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	register() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	regular_grid_from_scatter() (in module pylablib.core.dataproc.interpolate)

 	relative_path() (in module pylablib.core.utils.files)

 	RelayBoard (class in pylablib.devices.Conrad.base)

 	RelayBoard.TMessage (class in pylablib.devices.Conrad.base)

 	release() (pylablib.core.thread.synchronizing.QLockNotifier method)

 	relevant (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	reload_all() (in module pylablib)

 	reload_package_modules() (in module pylablib.core.utils.module)

 	rem() (pylablib.core.utils.functions.AttrObjectProperty method)

 	(pylablib.core.utils.functions.IObjectProperty method)

 	(pylablib.core.utils.functions.MethodObjectProperty method)

 	remap_axes() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	remote_call() (in module pylablib.core.thread.controller)

 	remove_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	remove_child() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	remove_dir() (in module pylablib.core.utils.files)

 	remove_dir_if_empty() (in module pylablib.core.utils.files)

 	remove_exception_hook() (in module pylablib.core.thread.controller)

 	remove_handler() (pylablib.core.gui.value_handling.GUIValues method)

 	remove_indicator_handler() (pylablib.core.gui.value_handling.GUIValues method)

 	remove_job() (pylablib.core.thread.controller.QTaskThread method)

 	remove_layout_element() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	remove_longest_term() (in module pylablib.core.devio.comm_backend)

 	remove_observer() (pylablib.core.utils.observer_pool.ObserverPool method)

 	remove_path() (pylablib.core.utils.general.StreamFileLogger method)

 	remove_shortcut() (pylablib.core.utils.dictionary.PrefixShortcutTree method)

 	remove_status_line() (in module pylablib.devices.interface.camera)

 	(in module pylablib.devices.PhotonFocus.PhotonFocus)

 	remove_stop_notifier() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	remove_tab() (pylablib.core.gui.widgets.container.QTabContainer method)

 	remove_widget() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	removed (pylablib.core.utils.dictionary.DictionaryDiff attribute), [1]

 	reopen() (pylablib.devices.Arduino.base.IArduinoDevice method)

 	rep (pylablib.core.utils.string.TConversionClass attribute)

 	repr (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	repr_single_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	repr_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelIndicatorHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	(pylablib.core.gui.widgets.button.ToggleButton method)

 	(pylablib.core.gui.widgets.combo_box.ComboBox method)

 	(pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.label.EnumLabel method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	request_stop() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	requires_symmetric_roi() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	reraise() (in module pylablib.core.devio.comm_backend)

 	(pylablib.core.utils.general.RetryOnException.ExceptionCatcher method)

 	ReraiseError (pylablib.core.devio.SCPI.SCPIDevice attribute)

 	(pylablib.devices.AWG.generic.GenericAWG attribute)

 	(pylablib.devices.AWG.specific.Agilent33220A attribute)

 	(pylablib.devices.AWG.specific.Agilent33500 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2000 attribute)

 	(pylablib.devices.AWG.specific.InstekAFG2225 attribute)

 	(pylablib.devices.AWG.specific.RigolDG1000 attribute)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 attribute)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 attribute)

 	(pylablib.devices.Cryocon.base.Cryocon1x attribute)

 	(pylablib.devices.Cryomagnetics.base.LM500 attribute)

 	(pylablib.devices.Cryomagnetics.base.LM510 attribute)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 attribute)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 attribute)

 	(pylablib.devices.M2.base.ICEBlocDevice attribute)

 	(pylablib.devices.M2.emm.EMM attribute)

 	(pylablib.devices.M2.solstis.Solstis attribute)

 	(pylablib.devices.NI.daq.NIDAQ attribute)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 attribute)

 	(pylablib.devices.Rigol.power_supply.DP1116A attribute)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse attribute)

 	(pylablib.devices.Tektronix.base.DPO2000 attribute)

 	(pylablib.devices.Tektronix.base.ITektronixScope attribute)

 	(pylablib.devices.Tektronix.base.TDS2000 attribute)

 	(pylablib.devices.Thorlabs.misc.GenericPM attribute)

 	(pylablib.devices.Thorlabs.misc.PM160 attribute)

 	(pylablib.devices.Thorlabs.serial.FW attribute)

 	(pylablib.devices.Thorlabs.serial.FWv1 attribute)

 	(pylablib.devices.Thorlabs.serial.MDT69xA attribute)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 attribute)

 	res_range (pylablib.devices.Lakeshore.base.TLakeshore370RangeSettings attribute)

 	rescale() (pylablib.core.dataproc.utils.Range method)

 	rescale_peak() (in module pylablib.core.dataproc.feature)

 	reset() (in module pylablib.core.thread.profile)

 	(pylablib.core.dataproc.filters.RunningDebounceFilter method)

 	(pylablib.core.dataproc.filters.RunningDecimationFilter method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.utils.general.Countdown method)

 	(pylablib.core.utils.general.Timer method)

 	(pylablib.core.utils.general.TimeTracker method)

 	(pylablib.core.utils.general.UIDGenerator method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	(pylablib.devices.interface.camera.FrameCounter method)

 	(pylablib.devices.interface.camera.FrameNotifier method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera.ScheduleLooper method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	reset_api() (in module pylablib.devices.PCO.SC2)

 	reset_board() (pylablib.devices.Arduino.base.IArduinoDevice method)

 	reset_error() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	reset_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	reset_flipper() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	reset_overflows_counter() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	reset_slit() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	reset_wavelength() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	resizeEvent() (pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	resolution (pylablib.devices.Keithley.multimeter.TConfigurationParameters attribute)

 	(pylablib.devices.Keithley.multimeter.TGenericFunctionParameters attribute)

 	restart() (in module pylablib.core.utils.general)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	restart_app() (in module pylablib.core.thread.controller)

 	restart_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	restart_lib() (in module pylablib.devices.Andor.AndorSDK2)

 	(in module pylablib.devices.Andor.AndorSDK3)

 	(in module pylablib.devices.Andor.Shamrock)

 	(in module pylablib.devices.Basler.pylon)

 	(in module pylablib.devices.DCAM.DCAM)

 	(in module pylablib.devices.Mightex.MightexSSeries)

 	restore_parameters() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	retrieve() (pylablib.devices.Basler.pylon.BaslerPylonCamera.BufferManager method)

 	retry_clean_dir() (in module pylablib.core.utils.files)

 	retry_copy() (in module pylablib.core.utils.files)

 	retry_copy_dir() (in module pylablib.core.utils.files)

 	retry_ensure_dir() (in module pylablib.core.utils.files)

 	retry_move() (in module pylablib.core.utils.files)

 	retry_move_dir() (in module pylablib.core.utils.files)

 	retry_remove() (in module pylablib.core.utils.files)

 	retry_remove_dir() (in module pylablib.core.utils.files)

 	retry_remove_dir_if_empty() (in module pylablib.core.utils.files)

 	retry_wait() (in module pylablib.core.utils.general)

 	RetryOnException (class in pylablib.core.utils.general)

 	RetryOnException.ExceptionCatcher (class in pylablib.core.utils.general)

 	revision_number (pylablib.devices.HighFinesse.wlm.TDeviceInfo attribute)

 	right_enable (pylablib.devices.Trinamic.base.TLimitSwitchParams attribute)

 	RigolDG1000 (class in pylablib.devices.AWG.specific)

 	rise_speed (pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	rng (pylablib.devices.Keithley.multimeter.TConfigurationParameters attribute)

 	(pylablib.devices.Keithley.multimeter.TFrequencyFunctionParameters attribute)

 	(pylablib.devices.Keithley.multimeter.TGenericFunctionParameters attribute)

 	(pylablib.devices.Ophir.base.TWavelengthInfo attribute)

 	ROI (class in pylablib.core.dataproc.image)

 	roi (pylablib.devices.interface.camera.TStatusLineDescription attribute)

 	rom_version (pylablib.devices.Ophir.base.TDeviceInfo attribute)

 	rotated2d() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	round_significant() (in module pylablib.core.utils.numerical)

 	route (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	RSInstekAFG21000 (class in pylablib.devices.AWG.specific)

 	run() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.thread.controller.QThreadControllerThread method)

 	run_as_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	run_device_service() (in module pylablib.core.utils.rpyc_utils)

 	running() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.utils.general.Countdown method)

 	RunningDebounceFilter (class in pylablib.core.dataproc.filters)

 	RunningDecimationFilter (class in pylablib.core.dataproc.filters)

S

 	
 	same (pylablib.core.utils.dictionary.DictionaryDiff attribute), [1]

 	samps_per_chan (pylablib.devices.NI.daq.TVoltageOutputClockParameters attribute)

 	save() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor method)

 	save_bin() (in module pylablib.core.fileio.savefile)

 	save_bin_desc() (in module pylablib.core.fileio.savefile)

 	save_csv() (in module pylablib.core.fileio.savefile)

 	save_csv_desc() (in module pylablib.core.fileio.savefile)

 	save_dict() (in module pylablib.core.fileio.savefile)

 	save_file() (pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry method)

 	save_generic() (in module pylablib.core.fileio.savefile)

 	save_parameters() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	save_preset() (pylablib.devices.OZOptics.base.EPC04 method)

 	scale() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	scan_both_motors() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_both_motors_quick() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_centered() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_coarse_gen() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_devices() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	scan_quick() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_quick_centered() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	scan_steps() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	schedule() (pylablib.core.thread.callsync.QDirectCallScheduler method)

 	(pylablib.core.thread.callsync.QMulticastThreadCallScheduler method)

 	(pylablib.core.thread.callsync.QMultiQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	(pylablib.core.thread.callsync.QScheduler method)

 	(pylablib.core.thread.callsync.QThreadCallScheduler method)

 	(pylablib.core.thread.controller.QTaskThread.Job method)

 	schedule_multiple_queues() (in module pylablib.core.thread.callsync)

 	scheduled (pylablib.devices.PCO.SC2.TInternalBufferStatus attribute)

 	scheduled_max (pylablib.devices.PCO.SC2.TInternalBufferStatus attribute)

 	scheduler (pylablib.core.thread.controller.QTaskThread.TCommand attribute)

 	scmd (pylablib.devices.Standa.base.TFullState attribute)

 	SCPIDevice (class in pylablib.core.devio.SCPI)

 	SCPIDevice.NoParameterCaller (class in pylablib.core.devio.SCPI)

 	SCU3D (class in pylablib.devices.SmarAct.scu3d)

 	search_frequency() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	search_speed (pylablib.devices.Trinamic.base.THomeParams attribute)

 	second (pylablib.devices.uc480.uc480.TTimestamp attribute)

 	section() (pylablib.core.devio.backend_logger.BackendLogger method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	select_axis() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	select_channel() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	select_current_channel() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	senc (pylablib.devices.Standa.base.TFullState attribute)

 	send() (pylablib.core.thread.multicast_pool.MulticastPool method)

 	(pylablib.core.utils.ipc.IIPCChannel method)

 	(pylablib.core.utils.ipc.PipeIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel method)

 	(pylablib.core.utils.net.ClientSocket method)

 	send_ack() (pylablib.core.utils.net.ClientSocket method)

 	send_comm() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	send_comm_data() (pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	send_command() (pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	send_decllen() (pylablib.core.utils.net.ClientSocket method)

 	send_delimiter() (pylablib.core.utils.net.ClientSocket method)

 	send_fixedlen() (pylablib.core.utils.net.ClientSocket method)

 	send_interrupt() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	send_message() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	send_multicast() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	send_multicast_sync() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	send_numpy() (pylablib.core.utils.ipc.IIPCChannel method)

 	(pylablib.core.utils.ipc.PipeIPCChannel method)

 	(pylablib.core.utils.ipc.SharedMemIPCChannel method)

 	send_software_trigger() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	send_sync() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	sens_id (pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	sensor (pylablib.devices.Leybold.base.TDeviceInfo attribute)

 	(pylablib.devices.PCO.SC2.TDeviceInfo attribute)

 	sensor_type (pylablib.devices.Thorlabs.TLCamera.TSensorInfo attribute)

 	serial (pylablib.core.devio.hid.TDeviceDescription attribute)

 	(pylablib.devices.Attocube.anc300.TDeviceInfo attribute)

 	(pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore218CurveHeader attribute)

 	(pylablib.devices.LaserQuantum.base.TDeviceInfo attribute)

 	(pylablib.devices.LighthousePhotonics.base.TDeviceInfo attribute)

 	(pylablib.devices.Mightex.MightexSSeries.TCameraInfo attribute)

 	(pylablib.devices.Mightex.MightexSSeries.TDeviceInfo attribute)

 	(pylablib.devices.Ophir.base.TDeviceInfo attribute)

 	(pylablib.devices.Ophir.base.THeadInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TBoardInfo attribute)

 	(pylablib.devices.SmarAct.MCS2.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

 	(pylablib.devices.Toptica.ibeam.TDeviceInfo attribute)

 	serial_flush() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	serial_no (pylablib.devices.ElektroAutomatik.base.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.kinesis.TDeviceInfo attribute)

 	serial_number (pylablib.devices.AlliedVision.Bonito.TDeviceInfo attribute)

 	(pylablib.devices.Andor.AndorSDK2.TDeviceInfo attribute)

 	(pylablib.devices.Andor.AndorSDK3.TDeviceInfo attribute)

 	(pylablib.devices.Andor.Shamrock.TDeviceInfo attribute)

 	(pylablib.devices.DCAM.DCAM.TDeviceInfo attribute)

 	(pylablib.devices.HighFinesse.wlm.TDeviceInfo attribute)

 	(pylablib.devices.IMAQ.IMAQ.TDeviceInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo attribute)

 	(pylablib.devices.NI.daq.TDeviceInfo attribute)

 	(pylablib.devices.PCO.SC2.TDeviceInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TDeviceInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TCameraInfo attribute)

 	(pylablib.devices.PrincetonInstruments.picam.TDeviceInfo attribute)

 	(pylablib.devices.Thorlabs.TLCamera.TDeviceInfo attribute)

 	(pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	(pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	serial_query() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	serial_read() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	serial_readline() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	serial_write() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	SerialDeviceBackend (class in pylablib.core.devio.comm_backend)

 	Series1DWrapper (class in pylablib.core.dataproc.table_wrap)

 	Series1DWrapper.Accessor (class in pylablib.core.dataproc.table_wrap)

 	set() (pylablib.core.utils.functions.AttrObjectProperty method)

 	(pylablib.core.utils.functions.IObjectProperty method)

 	(pylablib.core.utils.functions.MethodObjectProperty method)

 	set_accessory_state() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_acquisition_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	set_active_channel() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_addr() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	set_all_attribute_values() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	set_all_frequencies() (pylablib.devices.OZOptics.base.EPC04 method)

 	set_all_grabber_attribute_values() (pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	set_all_indicators() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_all_relays() (pylablib.devices.Conrad.base.RelayBoard method)

 	set_all_values() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_all_voltages() (pylablib.devices.OZOptics.base.EPC04 method)

 	set_amp_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	set_amplitude() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_analog_output_value() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	set_attenuation() (pylablib.devices.OZOptics.base.DD100 method)

 	set_attribute_value() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	set_axis() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	set_axis_correction() (pylablib.devices.Attocube.anc300.ANC300 method)

 	set_axis_dir() (pylablib.devices.SmarAct.scu3d.SCU3D method)

 	set_axis_parameter() (pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	set_axis_speed() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	set_baudrate() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	set_binning() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_bit_alignment() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_black_level() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	set_black_level_offset() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	set_burst_mode() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_burst_ncycles() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_by_name() (pylablib.core.gui.widgets.container.QTabContainer method)

 	set_calibration_factor() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	set_camera_id() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_cap_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	set_channel_power() (pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	set_clear_cycles() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	set_clear_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	set_color_format() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	set_color_mode() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_column_stretch() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_configuration() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	set_container() (pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	set_control_mode() (pylablib.devices.Cryomagnetics.base.LM510 method)

 	set_cooler() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	set_coupling() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_current() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	set_cursor_order() (pylablib.core.gui.widgets.edit.NumEdit method)

 	set_curve() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	set_curve_header() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	set_custom_steps() (pylablib.core.gui.widgets.edit.NumEdit method)

 	set_data_format() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_data_pts_range() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_default_addr() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	set_default_axis() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	set_default_channel() (pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	set_defect_correct_mode() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	set_detector_offset() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_device_number() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	set_device_variable() (pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.interface.IDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.interface.stage.IMultiaxisStage method)

 	(pylablib.devices.interface.stage.IStage method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	set_diffuser() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	set_digital_gain() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	set_digital_output() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	set_digital_output_register() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	set_digital_outputs() (pylablib.devices.NI.daq.NIDAQ method)

 	set_diode_power_lowlevel() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_direct_index_action() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	set_display_channel() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	set_display_resolution() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	set_display_units() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	set_double_image_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_duty_cycle() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_edge_trigger_coupling() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_edge_trigger_slope() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_edge_trigger_source() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_EMCCD_gain() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	set_enabled() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	set_encoder_reference() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	set_expandable() (pylablib.core.gui.widgets.edit.TextEdit method)

 	set_exposure() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_exposure_control_mode() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	set_exposure_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_external_input_modes() (pylablib.devices.Attocube.anc300.ANC300 method)

 	set_fan_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	set_fastpiezo_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_fastpiezo_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_fastpiezo_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_filter() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	set_fine_lock() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	set_first_valid_frame() (pylablib.devices.interface.camera.FrameCounter method)

 	set_fit_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	set_fixed_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	set_flipper_port() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_float_formatter() (pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	set_formatter() (pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	set_frame_delay() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_frame_format() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_frame_info_format() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_frame_info_period() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_frame_merge() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	set_frame_period() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_frameskip_behavior() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_freq_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	set_frequency() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	set_frequency_average_time() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	set_func_variable() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	set_function() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	set_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	set_gain() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	set_gain_boost() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_gains() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_gate_polarity() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_general_output() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	set_global_parameter() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	set_global_speed() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	set_grabber_attribute_value() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	set_grabber_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	set_grating() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_grating_offset() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_hardware_id() (pylablib.devices.Attocube.anc350.ANC350 method)

 	set_hblanking() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	set_high_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	set_home_offset() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	set_horizontal_offset() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_horizontal_span() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_image_indexing() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_index_values() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	set_indicator() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_interval() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	set_limiter() (pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	set_load() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_low_level() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	set_manual_output() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	set_measurement_filter() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	set_measurement_interval() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_measurement_rate() (pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	set_metadata_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_microstep_resolution() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	set_mode() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	set_mode_parameters() (pylablib.devices.BitFlow.BitFlow.CameraFileEditor method)

 	set_motor_type() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	set_names() (pylablib.core.dataproc.table_wrap.Array2DWrapper.ColumnAccessor method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper.ColumnAccessor method)

 	set_noise_filter_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_number_pixels() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_ocp_threshold() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	set_offset() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_operation_mode() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	set_options() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	(pylablib.core.gui.widgets.label.EnumLabel method)

 	set_out_aux_port() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	set_out_of_range() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	(pylablib.core.gui.widgets.label.EnumLabel method)

 	set_output_mode() (pylablib.devices.LighthousePhotonics.base.SproutG method)

 	set_output_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	set_output_polarity() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_output_power() (pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	set_output_range() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	set_output_trigger_slope() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_overflow_behavior() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	set_ovp_threshold() (pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	set_pcount() (pylablib.devices.Thorlabs.serial.FW method)

 	set_phase() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_pid_parameters() (pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	set_piezoet_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_piezoet_drive_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_piezoet_feedback_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_piezoet_feedforward_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_piezoet_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_pixel_clock() (pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	set_pixel_rate() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_pixel_width() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_points_number() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_position() (pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	set_position_lower_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	
 	set_position_reference() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	set_position_upper_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	set_precision() (pylablib.devices.Attocube.anc350.ANC350 method)

 	set_precision_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_probe_attenuation() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_property() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	set_props() (in module pylablib.core.utils.general)

 	set_pulse_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_pulse_output() (pylablib.devices.NI.daq.NIDAQ method)

 	set_pulse_width() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_ramp_symmetry() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_range() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	set_range_idx() (pylablib.devices.Ophir.base.VegaPowerMeter method)

 	set_range_limit() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	set_read_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	set_readout_mode() (pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	set_readout_speed() (pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	set_refcell_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_refcell_waveform_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_reg() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	set_register() (pylablib.devices.NKT.interbus.GenericInterbusModule method)

 	(pylablib.devices.NKT.interbus.IInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKExtremeInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKFrontPanelInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectDriverInterbusModule method)

 	(pylablib.devices.NKT.interbus.SuperKSelectInterbusModule method)

 	set_relay() (pylablib.devices.Conrad.base.RelayBoard method)

 	set_relay_setpoints() (pylablib.devices.KJL.base.KJL300 method)

 	set_roi() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	set_row_stretch() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_scale() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	set_scan_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_scan_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_scan_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_sensor_curve_index() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	set_sensor_kind() (pylablib.devices.Cryocon.base.Cryocon1x method)

 	set_sensor_mode() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	set_sensor_type() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	set_sensor_voltage() (pylablib.devices.Attocube.anc350.ANC350 method)

 	set_serial_parameter() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	set_setpointi() (pylablib.devices.Lumel.base.LumelRE72Controller method)

 	set_shutter() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	set_single_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	set_slit_width() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_slowpiezo_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_slowpiezo_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_slowpiezo_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_span() (pylablib.devices.KJL.base.KJL300 method)

 	set_speed_mode() (pylablib.devices.Thorlabs.serial.FW method)

 	set_status_line_mode() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	set_subsampling() (pylablib.devices.uc480.uc480.UC480Camera method)

 	set_supported_channels() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	set_switcher_mode() (pylablib.devices.HighFinesse.wlm.WLM method)

 	set_temperature() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	set_thinet_ctl_params() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_thinet_ctl_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	set_timeout() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.utils.general.Countdown method)

 	(pylablib.core.utils.net.ClientSocket method)

 	(pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	set_trigger_input() (pylablib.devices.Attocube.anc300.ANC300 method)

 	set_trigger_interleave() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	set_trigger_level() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_trigger_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	set_trigger_slope() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_trigger_source() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	set_tune_units() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	set_turret() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	set_units() (pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	set_value() (pylablib.core.gui.value_handling.CheckboxValueHandler method)

 	(pylablib.core.gui.value_handling.ComboBoxValueHandler method)

 	(pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.value_handling.IBoolValueHandler method)

 	(pylablib.core.gui.value_handling.IIndicatorHandler method)

 	(pylablib.core.gui.value_handling.ISingleValueHandler method)

 	(pylablib.core.gui.value_handling.IValueHandler method)

 	(pylablib.core.gui.value_handling.LabelIndicatorHandler method)

 	(pylablib.core.gui.value_handling.LabelValueHandler method)

 	(pylablib.core.gui.value_handling.LineEditValueHandler method)

 	(pylablib.core.gui.value_handling.ProgressBarValueHandler method)

 	(pylablib.core.gui.value_handling.PropertyValueHandler method)

 	(pylablib.core.gui.value_handling.PushButtonValueHandler method)

 	(pylablib.core.gui.value_handling.StandardIndicatorHandler method)

 	(pylablib.core.gui.value_handling.StandardValueHandler method)

 	(pylablib.core.gui.value_handling.ToolButtonValueHandler method)

 	(pylablib.core.gui.value_handling.VirtualValueHandler method)

 	(pylablib.core.gui.widgets.button.ToggleButton method)

 	(pylablib.core.gui.widgets.combo_box.ComboBox method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.edit.TextEdit method)

 	(pylablib.core.gui.widgets.label.EnumLabel method)

 	(pylablib.core.gui.widgets.label.NumLabel method)

 	(pylablib.core.gui.widgets.label.TextLabel method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute method)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute method)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute method)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute method)

 	set_value_labels() (pylablib.core.gui.widgets.button.ToggleButton method)

 	set_variable() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.utils.ipc.SharedMemIPCTable method)

 	set_vcr_function_parameters() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	set_velocity() (pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	set_vertical_position() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_vertical_span() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	set_visible() (pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	set_voltage() (pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	set_voltage_lower_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	set_voltage_outputs() (pylablib.devices.NI.daq.NIDAQ method)

 	set_voltage_pattern() (pylablib.devices.Attocube.anc300.ANC300 method)

 	set_voltage_upper_limit() (pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	set_vsspeed() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	set_wait_callback() (pylablib.core.utils.net.ClientSocket method)

 	set_waveform() (pylablib.devices.OZOptics.base.EPC04 method)

 	set_wavelength() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	set_wavelength_correction() (pylablib.devices.OZOptics.base.TF100 method)

 	set_white_balance_matrix() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	set_xarg_name() (pylablib.core.dataproc.fitting.Fitter method)

 	set_zero() (pylablib.devices.KJL.base.KJL300 method)

 	setattr_call() (in module pylablib.core.utils.functions)

 	setbp() (in module pylablib)

 	(in module pylablib.core.utils.general)

 	setdefault() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.ItemAccessor method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	setpoint (pylablib.devices.Sirah.Matisse.TFastpiezoCtlParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TSlowpiezoCtlParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TThinetCtlParameters attribute)

 	settle_time (pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings attribute)

 	setup() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	setup_accum_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_acquisition() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	setup_analog_output() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	setup_autocalibration() (pylablib.devices.HighFinesse.wlm.WLM method)

 	setup_averaging() (pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	setup_camlink_pixel_format() (pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	setup_channel_range() (pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	setup_cl_move() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	setup_clock() (pylablib.devices.NI.daq.NIDAQ method)

 	setup_cont_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_cooldown() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	setup_current() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	setup_drive() (pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	setup_edge_trigger() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	setup_ethernet() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	setup_ext_trigger() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	setup_fast_kinetic_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_filter() (pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	setup_flipper() (pylablib.devices.Thorlabs.kinesis.MFF method)

 	setup_func() (in module pylablib.core.utils.ctypes_wrap)

 	setup_gauge_control() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	setup_gen_move() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_home() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	setup_homing() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_image_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_jog() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	setup_kcube_trigio() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_kcube_trigpos() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_kinetic_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_limit_switch() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_limit_switches() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	setup_max_baudrate() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	setup_move() (pylablib.devices.Standa.base.Standa8SMC method)

 	setup_multi_track_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_name() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	setup_pixel_correction() (pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	setup_pixels_from_camera() (pylablib.devices.Andor.Shamrock.ShamrockSpectrograph method)

 	setup_polctl() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	setup_power() (pylablib.devices.Standa.base.Standa8SMC method)

 	setup_random_track_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_scan_move() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	setup_serial_params() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	setup_shutter() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_single_track_mode() (pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	setup_step_move() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	setup_switch() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	setup_task() (pylablib.core.thread.controller.QTaskThread method)

 	setup_terascan() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	setup_velocity() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	setup_voltage_output_clock() (pylablib.devices.NI.daq.NIDAQ method)

 	sfglob() (in module pylablib.core.utils.string)

 	sfregex() (in module pylablib.core.utils.string)

 	ShamrockSpectrograph (class in pylablib.devices.Andor.Shamrock)

 	shape() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.IGenWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	SharedMemIPCChannel (class in pylablib.core.utils.ipc)

 	SharedMemIPCTable (class in pylablib.core.utils.ipc)

 	shift() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	shifted() (pylablib.core.dataproc.transform.Indexed2DTransform method)

 	(pylablib.core.dataproc.transform.LinearTransform method)

 	show_value() (pylablib.core.gui.widgets.edit.NumEdit method)

 	(pylablib.core.gui.widgets.edit.TextEdit method)

 	shutdown() (pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	signature() (pylablib.core.utils.functions.FunctionSignature method)

 	SilenceException (class in pylablib.core.utils.general)

 	SiliconSoftwareCamera (class in pylablib.devices.SiliconSoftware.fgrab)

 	SiliconSoftwareCamera.BufferManager (class in pylablib.devices.SiliconSoftware.fgrab)

 	SiliconSoftwareFrameGrabber (class in pylablib.devices.SiliconSoftware.fgrab)

 	SiliconSoftwareFrameGrabber.BufferManager (class in pylablib.devices.SiliconSoftware.fgrab)

 	single_op() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	SingleFileSystemDataLocation (class in pylablib.core.fileio.location)

 	SirahMatisse (class in pylablib.devices.Sirah.Matisse)

 	size (pylablib.core.utils.ipc.TShmemVarDesc attribute)

 	(pylablib.devices.Andor.AndorSDK3.TFrameInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	size() (pylablib.core.dataproc.image.ROI method)

 	(pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	skip() (pylablib.core.thread.callsync.QScheduledCall method)

 	skipped (pylablib.devices.Andor.AndorSDK3.TMissedFramesStatus attribute)

 	(pylablib.devices.interface.camera.TFramesStatus attribute)

 	skipped() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	SkippedCallError

 	sleep() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	sliding_average() (in module pylablib.core.dataproc.filters)

 	sliding_filter() (in module pylablib.core.dataproc.filters)

 	slope (pylablib.devices.Tektronix.base.TTriggerParameters attribute)

 	SmarActError

 	smov (pylablib.devices.Standa.base.TFullState attribute)

 	snap() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	sock (pylablib.core.utils.net.ClientSocket attribute)

 	SocketError

 	SocketTimeout

 	SocketTunnelService (class in pylablib.core.utils.rpyc_utils)

 	software_version (pylablib.devices.Andor.AndorSDK3.TDeviceInfo attribute)

 	(pylablib.devices.LaserQuantum.base.TDeviceInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo attribute)

 	Solstis (class in pylablib.devices.M2.solstis)

 	sort_by() (in module pylablib.core.dataproc.utils)

 	sort_set_by_list() (in module pylablib.core.utils.general)

 	source (pylablib.devices.Lakeshore.base.TLakeshore218AnalogSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370AnalogSettings attribute)

 	(pylablib.devices.Tektronix.base.TTriggerParameters attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommData attribute)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice.CommShort attribute)

 	speed (pylablib.devices.Standa.base.TFullState attribute)

 	(pylablib.devices.Standa.base.TMoveParams attribute)

 	(pylablib.devices.Trinamic.base.TVelocityParams attribute)

 	speed_freq (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	speed_idx (pylablib.devices.Photometrics.pvcam.TReadoutInfo attribute)

 	split_in_groups() (in module pylablib.core.utils.general)

 	split_into_bins() (in module pylablib.core.dataproc.filters)

 	split_path() (in module pylablib.core.utils.dictionary)

 	split_units() (in module pylablib.core.utils.units)

 	SproutG (class in pylablib.devices.LighthousePhotonics.base)

 	spwr (pylablib.devices.Standa.base.TFullState attribute)

 	src (pylablib.core.thread.multicast_pool.TMulticast attribute)

 	(pylablib.devices.NKT.interbus.TInterbusTelegram attribute)

 	sRGB_to_linear() (in module pylablib.devices.utils.color)

 	sstep (pylablib.devices.interface.camera.TAxisROILimit attribute)

 	Standa8SMC (class in pylablib.devices.Standa.base)

 	StandaBackendError

 	StandaError

 	StandardIndicatorHandler (class in pylablib.core.gui.value_handling)

 	StandardValueHandler (class in pylablib.core.gui.value_handling)

 	start (pylablib.core.dataproc.utils.Range property)

 	(pylablib.core.gui.widgets.container.TTimerEvent attribute)

 	start() (in module pylablib.core.thread.profile)

 	(pylablib.core.devio.backend_logger.BackendLogger method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	start_acquisition() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	start_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	start_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	start_degas() (pylablib.devices.Leybold.base.ITR90 method)

 	start_fast_scan() (pylablib.devices.M2.solstis.Solstis method)

 	start_fill() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	start_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	start_link() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	start_loop() (pylablib.core.devio.hid.HIDevice.Reader method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	start_measurement() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.HighFinesse.wlm.WLM method)

 	start_pulse_output() (pylablib.devices.NI.daq.NIDAQ method)

 	start_terascan() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	start_timer() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	started (pylablib.core.thread.controller.QTaskThread attribute)

 	(pylablib.core.thread.controller.QThreadController attribute)

 	status (pylablib.devices.Leybold.base.TUpdateValue attribute)

 	(pylablib.devices.PCO.SC2.TCameraStatus attribute)

 	(pylablib.devices.Trinamic.base.TMCM1110.ReplyData attribute)

 	(pylablib.devices.uc480.uc480.TCameraInfo attribute)

 	status_bits (pylablib.devices.Attocube.anc350.ANC350 attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor attribute)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor attribute)

 	(pylablib.devices.Thorlabs.kinesis.MFF attribute)

 	StatusLineChecker (class in pylablib.devices.interface.camera)

 	(class in pylablib.devices.PCO.SC2)

 	(class in pylablib.devices.PhotonFocus.PhotonFocus)

 	StatusTable (class in pylablib.core.gui.widgets.param_table)

 	step (pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	step_bk (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	step_fw (pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	step_size (pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	step_size_bk (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams attribute)

 	step_size_fw (pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams attribute)

 	step_voltage() (pylablib.devices.OZOptics.base.EPC04 method)

 	steps_per_rev (pylablib.devices.Standa.base.TStepperMotorCalibration attribute)

 	stitched_scan() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	stitched_scan_gen() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	stop (pylablib.core.dataproc.utils.Range property)

 	(pylablib.core.gui.widgets.container.TTimerEvent attribute)

 	stop() (in module pylablib.core.thread.profile)

 	(pylablib.core.devio.backend_logger.BackendLogger method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	(pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.utils.general.Countdown method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera.CallbackManager method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera.CallbackManager method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NI.daq.NIDAQ method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	stop_acquisition() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	stop_all_controllers() (in module pylablib.core.thread.controller)

 	stop_all_operation() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	stop_app() (in module pylablib.core.thread.controller)

 	stop_batch_job() (pylablib.core.thread.controller.QTaskThread method)

 	stop_coarse_tuning() (pylablib.devices.M2.solstis.Solstis method)

 	stop_controller() (in module pylablib.core.thread.controller)

 	stop_degas() (pylablib.devices.Leybold.base.ITR90 method)

 	stop_fast_scan() (pylablib.devices.M2.solstis.Solstis method)

 	stop_fine_tuning() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	stop_grabbing() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	stop_loop() (pylablib.core.devio.hid.HIDevice.Reader method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera.BufferManager method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera.ScheduleLooper method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera.BufferManager method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera.BufferManager method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera.BufferManager method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber.BufferManager method)

 	stop_lower (pylablib.devices.Sirah.Matisse.TScanMode attribute)

 	stop_measurement() (pylablib.devices.HighFinesse.wlm.WLM method)

 	stop_mode (pylablib.devices.Thorlabs.kinesis.TJogParams attribute)

 	stop_pulse_output() (pylablib.devices.NI.daq.NIDAQ method)

 	stop_scan_web() (pylablib.devices.M2.solstis.Solstis method)

 	stop_terascan() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	stop_timer() (pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	stop_upper (pylablib.devices.Sirah.Matisse.TScanMode attribute)

 	store_axis_parameter() (pylablib.devices.Trinamic.base.TMCM1110 method)

 	store_defaults() (pylablib.devices.Arcus.performax.GenericPerformaxStage method)

 	(pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	store_parameters() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	store_settings() (pylablib.devices.Thorlabs.serial.FW method)

 	str_to_float() (in module pylablib.core.gui.formatter)

 	strconv() (in module pylablib.core.utils.ctypes_wrap)

 	StrDumper (class in pylablib.core.utils.strdump)

 	StreamFileLogger (class in pylablib.core.utils.general)

 	strerror (pylablib.core.thread.threadprop.TimeoutThreadError attribute)

 	(pylablib.core.utils.net.SocketError attribute)

 	(pylablib.core.utils.net.SocketTimeout attribute)

 	stride (pylablib.devices.Andor.AndorSDK3.TFrameInfo attribute)

 	string_equal() (in module pylablib.core.utils.string)

 	string_list_idx() (in module pylablib.core.utils.indexing)

 	StringFilter (class in pylablib.core.utils.string)

 	strprep() (in module pylablib.core.utils.ctypes_wrap)

 	subcolumn() (pylablib.core.dataproc.table_wrap.Array1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I1DWrapper method)

 	(pylablib.core.dataproc.table_wrap.Series1DWrapper method)

 	subscribe_commsync() (pylablib.core.thread.controller.QTaskThread method)

 	subscribe_direct() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.thread.multicast_pool.MulticastPool method)

 	subscribe_sync() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	subtable() (pylablib.core.dataproc.table_wrap.Array2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.DataFrame2DWrapper method)

 	(pylablib.core.dataproc.table_wrap.I2DWrapper method)

 	subtract_baseline() (in module pylablib.core.dataproc.feature)

 	subtype (pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

 	success_wait() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	sum (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings attribute)

 	summary() (pylablib.core.utils.general.TimeTracker method)

 	SuperKExtremeInterbusModule (class in pylablib.devices.NKT.interbus)

 	SuperKFrontPanelInterbusModule (class in pylablib.devices.NKT.interbus)

 	SuperKSelectDriverInterbusModule (class in pylablib.devices.NKT.interbus)

 	SuperKSelectInterbusModule (class in pylablib.devices.NKT.interbus)

 	svec (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform property)

 	sw_kind (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	sw_position_ccw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	sw_position_cw (pylablib.devices.Thorlabs.kinesis.TLimitSwitchParams attribute)

 	sw_ver (pylablib.devices.ElektroAutomatik.base.TDeviceInfo attribute)

 	switch_speed (pylablib.devices.Trinamic.base.THomeParams attribute)

 	swnd (pylablib.devices.Standa.base.TFullState attribute)

 	swver (pylablib.devices.KJL.base.TKJL300DeviceInfo attribute)

 	(pylablib.devices.Leybold.base.TDeviceInfo attribute)

 	sync_controller() (in module pylablib.core.thread.controller)

 	sync_exec_point() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	sync_phase() (pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	sync_stop() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	sync_variable() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	sync_with_ai (pylablib.devices.NI.daq.TVoltageOutputClockParameters attribute)

 	system (pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	system_info (pylablib.devices.SiliconSoftware.fgrab.TDeviceInfo attribute)

T

 	
 	table_entry_builder() (in module pylablib.core.fileio.dict_entry)

 	TableBinaryOutputFileFormat (class in pylablib.core.fileio.savefile)

 	TableStreamFile (class in pylablib.core.fileio.table_stream)

 	TAcqProgress (class in pylablib.devices.Andor.AndorSDK2)

 	TAcqTimings (class in pylablib.devices.interface.camera)

 	TAcquiredFramesStatus (class in pylablib.devices.uc480.uc480)

 	tag (pylablib.core.thread.multicast_pool.TMulticast attribute)

 	tags (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	TAppletInfo (class in pylablib.devices.SiliconSoftware.fgrab)

 	TAveragingParameters (class in pylablib.devices.Keithley.multimeter)

 	TAxisROILimit (class in pylablib.devices.interface.camera)

 	TBoardInfo (class in pylablib.devices.SiliconSoftware.fgrab)

 	TCameraInfo (class in pylablib.devices.Basler.pylon)

 	(class in pylablib.devices.IMAQdx.IMAQdx)

 	(class in pylablib.devices.Mightex.MightexSSeries)

 	(class in pylablib.devices.PhotonFocus.PhotonFocus)

 	(class in pylablib.devices.PrincetonInstruments.picam)

 	(class in pylablib.devices.uc480.uc480)

 	TCameraStatus (class in pylablib.devices.PCO.SC2)

 	TChild (class in pylablib.core.gui.widgets.container)

 	TCLMoveParams (class in pylablib.devices.SmarAct.MCS2)

 	TColorFormat (class in pylablib.devices.Thorlabs.TLCamera)

 	TColorInfo (class in pylablib.devices.Thorlabs.TLCamera)

 	TConfigurationParameters (class in pylablib.devices.Keithley.multimeter)

 	TConversionClass (class in pylablib.core.utils.string)

 	TCycleTimings (class in pylablib.devices.Andor.AndorSDK2)

 	TDefaultCallInfo (class in pylablib.core.thread.callsync)

 	TDeviceDescription (class in pylablib.core.devio.hid)

 	TDeviceInfo (class in pylablib.devices.AlliedVision.Bonito)

 	(class in pylablib.devices.Andor.AndorSDK2)

 	(class in pylablib.devices.Andor.AndorSDK3)

 	(class in pylablib.devices.Andor.Shamrock)

 	(class in pylablib.devices.Attocube.anc300)

 	(class in pylablib.devices.Basler.pylon)

 	(class in pylablib.devices.BitFlow.BitFlow)

 	(class in pylablib.devices.DCAM.DCAM)

 	(class in pylablib.devices.ElektroAutomatik.base)

 	(class in pylablib.devices.HighFinesse.wlm)

 	(class in pylablib.devices.IMAQ.IMAQ)

 	(class in pylablib.devices.IMAQdx.IMAQdx)

 	(class in pylablib.devices.LaserQuantum.base)

 	(class in pylablib.devices.Leybold.base)

 	(class in pylablib.devices.LighthousePhotonics.base)

 	(class in pylablib.devices.Lumel.base)

 	(class in pylablib.devices.Mightex.MightexSSeries)

 	(class in pylablib.devices.Newport.picomotor)

 	(class in pylablib.devices.NI.daq)

 	(class in pylablib.devices.Ophir.base)

 	(class in pylablib.devices.PCO.SC2)

 	(class in pylablib.devices.Photometrics.pvcam)

 	(class in pylablib.devices.PhotonFocus.PhotonFocus)

 	(class in pylablib.devices.PrincetonInstruments.picam)

 	(class in pylablib.devices.SiliconSoftware.fgrab)

 	(class in pylablib.devices.SmarAct.MCS2)

 	(class in pylablib.devices.SmarAct.scu3d)

 	(class in pylablib.devices.Thorlabs.elliptec)

 	(class in pylablib.devices.Thorlabs.kinesis)

 	(class in pylablib.devices.Thorlabs.TLCamera)

 	(class in pylablib.devices.Toptica.ibeam)

 	(class in pylablib.devices.uc480.uc480)

 	TDS2000 (class in pylablib.devices.Tektronix.base)

 	TektronixAFG1000 (class in pylablib.devices.AWG.specific)

 	TektronixBackendError

 	TektronixError

 	temp (pylablib.devices.Standa.base.TFullState attribute)

 	temp_library_parameters() (in module pylablib.core.utils.library_parameters)

 	temp_open() (pylablib.devices.Andor.AndorSDK2.LibraryController method)

 	(pylablib.devices.Andor.AndorSDK3.LibraryController method)

 	(pylablib.devices.Andor.Shamrock.LibraryController method)

 	(pylablib.devices.Basler.pylon.LibraryController method)

 	(pylablib.devices.DCAM.DCAM.LibraryController method)

 	(pylablib.devices.Mightex.MightexSSeries.LibraryController method)

 	(pylablib.devices.Photometrics.pvcam.LibraryController method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.LibraryController method)

 	(pylablib.devices.PrincetonInstruments.picam.LibraryController method)

 	(pylablib.devices.SmarAct.MCS2.LibraryController method)

 	(pylablib.devices.SmarAct.scu3d.LibraryController method)

 	(pylablib.devices.Thorlabs.TLCamera.LibraryController method)

 	(pylablib.devices.utils.load_lib.LibraryController method)

 	TempFile (class in pylablib.core.utils.files)

 	TEngineType (class in pylablib.devices.Standa.base)

 	test_columns_line() (in module pylablib.core.fileio.loadfile_utils)

 	test_row_type() (in module pylablib.core.fileio.loadfile_utils)

 	test_savetime_comment() (in module pylablib.core.fileio.loadfile_utils)

 	TextEdit (class in pylablib.core.gui.widgets.edit)

 	TextLabel (class in pylablib.core.gui.widgets.label)

 	TF100 (class in pylablib.devices.OZOptics.base)

 	TFastpiezoCtlParameters (class in pylablib.devices.Sirah.Matisse)

 	TFlipperParameters (class in pylablib.devices.Thorlabs.kinesis)

 	TFrameInfo (class in pylablib.devices.Andor.AndorSDK3)

 	(class in pylablib.devices.DCAM.DCAM)

 	(class in pylablib.devices.interface.camera)

 	(class in pylablib.devices.PCO.SC2)

 	(class in pylablib.devices.Photometrics.pvcam)

 	(class in pylablib.devices.PrincetonInstruments.picam)

 	(class in pylablib.devices.SiliconSoftware.fgrab)

 	(class in pylablib.devices.Thorlabs.TLCamera)

 	(class in pylablib.devices.uc480.uc480)

 	TFramePosition (class in pylablib.devices.interface.camera)

 	TFrameSize (class in pylablib.devices.interface.camera)

 	TFramesStatus (class in pylablib.devices.interface.camera)

 	TFrequencyFunctionParameters (class in pylablib.devices.Keithley.multimeter)

 	TFullAppletInfo (class in pylablib.devices.SiliconSoftware.fgrab)

 	TFullBoardInfo (in module pylablib.devices.SiliconSoftware.fgrab)

 	TFullState (class in pylablib.devices.Standa.base)

 	TGenericFunctionParameters (class in pylablib.devices.Keithley.multimeter)

 	TGenMoveParams (class in pylablib.devices.Thorlabs.kinesis)

 	TGratingInfo (class in pylablib.devices.Andor.Shamrock)

 	THeadInfo (class in pylablib.devices.Ophir.base)

 	thinet_clear_errors() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_get_position() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_get_range() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_get_status() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_get_status_n() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_home() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_is_moving() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_move_to() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_stop() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	thinet_wait_move() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	THomeParams (class in pylablib.devices.Thorlabs.kinesis)

 	(class in pylablib.devices.Trinamic.base)

 	ThorlabsBackendError

 	ThorlabsError

 	ThorlabsSerialInterface (class in pylablib.devices.Thorlabs.serial)

 	ThorlabsTimeoutError

 	ThorlabsTLCamera (class in pylablib.devices.Thorlabs.TLCamera)

 	ThorlabsTLCamera.RingBuffer (class in pylablib.devices.Thorlabs.TLCamera)

 	ThreadError

 	time_left() (pylablib.core.thread.controller.QTaskThread.Job method)

 	(pylablib.core.utils.general.Countdown method)

 	(pylablib.core.utils.general.Timer method)

 	time_passed() (pylablib.core.utils.general.Countdown method)

 	TimeoutError (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera attribute)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera attribute)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera attribute)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera attribute)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera attribute)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera attribute)

 	(pylablib.devices.interface.camera.IAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IBinROICamera attribute)

 	(pylablib.devices.interface.camera.ICamera attribute)

 	(pylablib.devices.interface.camera.IExposureCamera attribute)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera attribute)

 	(pylablib.devices.interface.camera.IROICamera attribute)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera attribute)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber attribute)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera attribute)

 	(pylablib.devices.uc480.uc480.UC480Camera attribute)

 	TimeoutThreadError

 	Timer (class in pylablib.core.utils.general)

 	timer (pylablib.core.gui.widgets.container.TTimer attribute)

 	(pylablib.core.gui.widgets.container.TTimerEvent attribute)

 	TimerUIDGenerator (pylablib.core.gui.widgets.container.IQContainer attribute)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer attribute)

 	(pylablib.core.gui.widgets.container.QContainer attribute)

 	(pylablib.core.gui.widgets.container.QDialogContainer attribute)

 	(pylablib.core.gui.widgets.container.QFrameContainer attribute)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer attribute)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer attribute)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget attribute)

 	(pylablib.core.gui.widgets.container.QTabContainer attribute)

 	(pylablib.core.gui.widgets.container.QWidgetContainer attribute)

 	(pylablib.core.gui.widgets.param_table.ParamTable attribute)

 	(pylablib.core.gui.widgets.param_table.StatusTable attribute)

 	timestamp (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	timestamp_dev (pylablib.devices.Andor.AndorSDK3.TFrameInfo attribute)

 	(pylablib.devices.uc480.uc480.TFrameInfo attribute)

 	
 	timestamp_end (pylablib.devices.PrincetonInstruments.picam.TFrameInfo attribute)

 	timestamp_end_ns (pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	timestamp_long (pylablib.devices.SiliconSoftware.fgrab.TFrameInfo attribute)

 	timestamp_start (pylablib.devices.PrincetonInstruments.picam.TFrameInfo attribute)

 	timestamp_start_ns (pylablib.devices.Photometrics.pvcam.TFrameInfo attribute)

 	timestamp_us (pylablib.devices.DCAM.DCAM.TFrameInfo attribute)

 	TimeTracker (class in pylablib.core.utils.general)

 	timing() (in module pylablib.core.utils.general)

 	TInterbusTelegram (class in pylablib.devices.NKT.interbus)

 	TInternalBufferStatus (class in pylablib.devices.PCO.SC2)

 	TITR90Status (class in pylablib.devices.Leybold.base)

 	TJogParams (class in pylablib.devices.Thorlabs.kinesis)

 	TKCubeTrigIOParams (class in pylablib.devices.Thorlabs.kinesis)

 	TKCubeTrigPosParams (class in pylablib.devices.Thorlabs.kinesis)

 	TKJL300DeviceInfo (class in pylablib.devices.KJL.base)

 	TLakeshore218AnalogSettings (class in pylablib.devices.Lakeshore.base)

 	TLakeshore218CurveHeader (class in pylablib.devices.Lakeshore.base)

 	TLakeshore218FilterSettings (class in pylablib.devices.Lakeshore.base)

 	TLakeshore370AnalogSettings (class in pylablib.devices.Lakeshore.base)

 	TLakeshore370FilterSettings (class in pylablib.devices.Lakeshore.base)

 	TLakeshore370RangeSettings (class in pylablib.devices.Lakeshore.base)

 	TLibraryCloseResult (class in pylablib.devices.utils.load_lib)

 	TLibraryOpenResult (class in pylablib.devices.utils.load_lib)

 	TLimitSwitchParams (class in pylablib.devices.Thorlabs.kinesis)

 	(class in pylablib.devices.Trinamic.base)

 	tmatr (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform property)

 	TMCM1110 (class in pylablib.devices.Trinamic.base)

 	TMCM1110.ReplyData (class in pylablib.devices.Trinamic.base)

 	TMissedFramesStatus (class in pylablib.devices.Andor.AndorSDK3)

 	TModbusFrame (class in pylablib.devices.Modbus.modbus)

 	TMotorInfo (class in pylablib.devices.Thorlabs.elliptec)

 	TMoveParams (class in pylablib.devices.Standa.base)

 	TMulticast (class in pylablib.core.thread.multicast_pool)

 	to_alias() (pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	to_callable() (in module pylablib.core.dataproc.callable)

 	to_desc() (pylablib.core.devio.data_format.DataFormat method)

 	to_dict() (in module pylablib.core.utils.general)

 	(pylablib.core.fileio.dict_entry.ExpandedContainerDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.ExternalBinTableDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.ExternalNumpyDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.ExternalTextTableDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.IDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.IExternalFileDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.IExternalTableDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.InlineTableDictionaryEntry method)

 	(pylablib.core.fileio.dict_entry.ITableDictionaryEntry method)

 	to_double_index() (in module pylablib.core.utils.indexing)

 	to_Pa() (pylablib.devices.Pfeiffer.base.TPG260 method)

 	to_pairs_list() (in module pylablib.core.utils.general)

 	to_path() (pylablib.core.fileio.location.LocationName method)

 	to_predicate() (in module pylablib.core.utils.general)

 	to_range() (in module pylablib.core.utils.indexing)

 	(in module pylablib.core.utils.string)

 	to_string() (in module pylablib.core.utils.string)

 	(pylablib.core.fileio.location.LocationName method)

 	to_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper method)

 	to_value() (pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	ToggleButton (class in pylablib.core.gui.widgets.button)

 	ToolButtonValueHandler (class in pylablib.core.gui.value_handling)

 	tooltip (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	top (pylablib.devices.interface.camera.TFramePosition attribute)

 	toploopSlot() (in module pylablib.core.thread.controller)

 	topological_order() (in module pylablib.core.utils.general)

 	TopticaBackendError

 	TopticaError

 	TopticaIBeam (class in pylablib.devices.Toptica.ibeam)

 	TOpticalParameters (class in pylablib.devices.Andor.Shamrock)

 	touch() (in module pylablib.core.utils.files)

 	TOutputLimits (class in pylablib.devices.ElektroAutomatik.base)

 	TPG260 (class in pylablib.devices.Pfeiffer.base)

 	TPiezoetDriveParameters (class in pylablib.devices.Sirah.Matisse)

 	TPiezoetFeedbackParameters (class in pylablib.devices.Sirah.Matisse)

 	TPiezoetFeedforwardParameters (class in pylablib.devices.Sirah.Matisse)

 	TPipeMsg (class in pylablib.core.utils.ipc)

 	TPMDeviceInfo (class in pylablib.devices.Thorlabs.misc)

 	TPMSensorInfo (class in pylablib.devices.Thorlabs.misc)

 	TPolCtlParams (class in pylablib.devices.Thorlabs.kinesis)

 	TPowerParams (class in pylablib.devices.Standa.base)

 	TPZMotorDriveParams (class in pylablib.devices.Thorlabs.kinesis)

 	TPZMotorJogParams (class in pylablib.devices.Thorlabs.kinesis)

 	TQuadDetectorOutputParams (class in pylablib.devices.Thorlabs.kinesis)

 	TQuadDetectorPIDParams (class in pylablib.devices.Thorlabs.kinesis)

 	TQuadDetectorReadings (class in pylablib.devices.Thorlabs.kinesis)

 	TQuadDetectorSetpoint (class in pylablib.devices.Thorlabs.kinesis)

 	TRangeInfo (class in pylablib.devices.Ophir.base)

 	transfer() (in module pylablib.core.utils.rpyc_utils)

 	(pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	transfer_missed (pylablib.devices.uc480.uc480.TAcquiredFramesStatus attribute)

 	transit_time (pylablib.devices.Thorlabs.kinesis.TFlipperParameters attribute)

 	translate_string_filter() (in module pylablib.core.utils.string)

 	transpose() (pylablib.core.dataproc.ctransform_fallback.CLinear2DTransform method)

 	travel (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	TRawParameterValue (class in pylablib.core.devio.interface)

 	TReadoutInfo (class in pylablib.devices.Photometrics.pvcam)

 	TRefcellWaveformParameters (class in pylablib.devices.Sirah.Matisse)

 	trig1_mode (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams attribute)

 	trig1_pol (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams attribute)

 	trig2_mode (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams attribute)

 	trig2_pol (pylablib.devices.Thorlabs.kinesis.TKCubeTrigIOParams attribute)

 	trigger() (pylablib.core.utils.general.Countdown method)

 	trim_frames() (in module pylablib.devices.interface.camera)

 	trim_frames_range() (pylablib.devices.interface.camera.FrameCounter method)

 	TrinamicBackendError

 	TrinamicError

 	TrinamicTimeoutError

 	TROIConstraints (class in pylablib.devices.PrincetonInstruments.picam)

 	truncate_roi_axis() (in module pylablib.devices.interface.camera)

 	truncate_trace() (in module pylablib.core.dataproc.fourier)

 	truncate_value() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute method)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute method)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute method)

 	try_import_cext() (in module pylablib.core.utils.cext_tools)

 	TScanMode (class in pylablib.devices.Sirah.Matisse)

 	TScanMoveParams (class in pylablib.devices.SmarAct.MCS2)

 	TScanParameters (class in pylablib.devices.Sirah.Matisse)

 	TSensorInfo (class in pylablib.devices.Thorlabs.TLCamera)

 	TShmemVarDesc (class in pylablib.core.utils.ipc)

 	TSlowpiezoCtlParameters (class in pylablib.devices.Sirah.Matisse)

 	TStatus (class in pylablib.devices.ElektroAutomatik.base)

 	TStatusLine (class in pylablib.devices.AlliedVision.Bonito)

 	(class in pylablib.devices.PCO.SC2)

 	TStatusLineDescription (class in pylablib.devices.interface.camera)

 	TStepMoveParams (class in pylablib.devices.SmarAct.MCS2)

 	TStepperMotorCalibration (class in pylablib.devices.Standa.base)

 	TTemperatures (class in pylablib.devices.LaserQuantum.base)

 	(class in pylablib.devices.Toptica.ibeam)

 	TThinetCtlParameters (class in pylablib.devices.Sirah.Matisse)

 	TTimer (class in pylablib.core.gui.widgets.container)

 	TTimerEvent (class in pylablib.core.gui.widgets.container)

 	TTimestamp (class in pylablib.devices.uc480.uc480)

 	TTPG260GaugeControlSettings (class in pylablib.devices.Pfeiffer.base)

 	TTPG260SwitchSettings (class in pylablib.devices.Pfeiffer.base)

 	TTriggerParameters (class in pylablib.devices.Tektronix.base)

 	tune_etalon() (pylablib.devices.M2.solstis.Solstis method)

 	tune_laser_resonator() (pylablib.devices.M2.solstis.Solstis method)

 	tune_reference_cavity() (pylablib.devices.M2.solstis.Solstis method)

 	tune_to() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	tune_to_gen() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	tunnel_recv() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	tunnel_send() (pylablib.core.utils.rpyc_utils.DeviceService method)

 	(pylablib.core.utils.rpyc_utils.SocketTunnelService method)

 	tup() (pylablib.core.dataproc.image.ROI method)

 	(pylablib.core.dataproc.utils.Range method)

 	(pylablib.core.utils.ctypes_wrap.CStructWrapper method)

 	(pylablib.core.utils.indexing.IIndex method)

 	(pylablib.core.utils.indexing.ListIndex method)

 	(pylablib.core.utils.indexing.ListIndexNoSlice method)

 	(pylablib.core.utils.indexing.NumpyIndex method)

 	tup_struct() (pylablib.core.utils.ctypes_wrap.CStructWrapper class method)

 	TUpdateValue (class in pylablib.devices.Leybold.base)

 	TVC880Reading (class in pylablib.devices.Voltcraft.multimeter)

 	TVelocityParams (class in pylablib.devices.Thorlabs.kinesis)

 	(class in pylablib.devices.Trinamic.base)

 	TVoltageOutputClockParameters (class in pylablib.devices.NI.daq)

 	TWavelengthInfo (class in pylablib.devices.Ophir.base)

 	TWidgetLocation (class in pylablib.core.gui.utils)

 	TWorkHours (class in pylablib.devices.LaserQuantum.base)

 	(class in pylablib.devices.LighthousePhotonics.base)

 	(class in pylablib.devices.Toptica.ibeam)

 	typ (pylablib.devices.NKT.interbus.TInterbusTelegram attribute)

 	(pylablib.devices.Voltcraft.multimeter.VC880.TMessage attribute)

 	type (pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.Ophir.base.THeadInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo attribute)

 	(pylablib.devices.Thorlabs.misc.TPMSensorInfo attribute)

U

 	
 	UC480Camera (class in pylablib.devices.uc480.uc480)

 	uid (pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	UIDGenerator (class in pylablib.core.utils.general)

 	unescape_string() (in module pylablib.core.utils.string)

 	uninit_result (pylablib.devices.utils.load_lib.TLibraryCloseResult attribute)

 	unique_slices() (in module pylablib.core.dataproc.utils)

 	unit (pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	units (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	unity() (in module pylablib.core.utils.numerical)

 	unload_all() (in module pylablib)

 	unload_package_modules() (in module pylablib.core.utils.module)

 	unlock() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.ICommBackendWrapper method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.Arduino.base.IArduinoDevice method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Conrad.base.RelayBoard method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.ElektroAutomatik.base.PS2000B method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.KJL.base.KJL300 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.LaserQuantum.base.Finesse method)

 	(pylablib.devices.Leybold.base.GenericITR method)

 	(pylablib.devices.Leybold.base.ITR90 method)

 	(pylablib.devices.LighthousePhotonics.base.SproutG method)

 	(pylablib.devices.Lumel.base.LumelRE72Controller method)

 	(pylablib.devices.Modbus.modbus.GenericModbusRTUDevice method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.NKT.interbus.GenericInterbusDevice method)

 	(pylablib.devices.NKT.interbus.InterbusSystem method)

 	(pylablib.devices.Ophir.base.OphirDevice method)

 	(pylablib.devices.Ophir.base.VegaPowerMeter method)

 	(pylablib.devices.OZOptics.base.DD100 method)

 	(pylablib.devices.OZOptics.base.EPC04 method)

 	(pylablib.devices.OZOptics.base.OZOpticsDevice method)

 	(pylablib.devices.OZOptics.base.TF100 method)

 	(pylablib.devices.Pfeiffer.base.DPG202 method)

 	(pylablib.devices.Pfeiffer.base.TPG260 method)

 	(pylablib.devices.PhysikInstrumente.base.GenericPIController method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE516 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	(pylablib.devices.Thorlabs.kinesis.BasicKinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisQuadDetector method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Toptica.ibeam.TopticaIBeam method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	(pylablib.devices.Voltcraft.multimeter.VC880 method)

 	unlock_all() (pylablib.devices.Sirah.tuner.MatisseTuner method)

 	unlock_etalon() (pylablib.devices.M2.solstis.Solstis method)

 	unlock_reference_cavity() (pylablib.devices.M2.solstis.Solstis method)

 	unpack_int() (in module pylablib.core.utils.strpack)

 	unpack_numpy_u12bit() (in module pylablib.core.utils.strpack)

 	unpack_uint() (in module pylablib.core.utils.strpack)

 	unread (pylablib.devices.interface.camera.TFramesStatus attribute)

 	unschedule() (pylablib.core.thread.callsync.QQueueLengthLimitScheduler method)

 	(pylablib.core.thread.callsync.QQueueScheduler method)

 	(pylablib.core.thread.callsync.QQueueSizeLimitScheduler method)

 	(pylablib.core.thread.controller.QTaskThread.Job method)

 	unsubscribe() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.thread.multicast_pool.MulticastPool method)

 	unwrap_mod_data() (in module pylablib.core.dataproc.utils)

 	unzip_file() (in module pylablib.core.utils.files)

 	unzip_folder() (in module pylablib.core.utils.files)

 	update() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	update_acquired_frames() (pylablib.devices.interface.camera.FrameCounter method)

 	update_attribute_value() (pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	update_available_axes() (pylablib.devices.Attocube.anc300.ANC300 method)

 	update_fit_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	update_fixed_parameters() (pylablib.core.dataproc.fitting.Fitter method)

 	update_full_data() (pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	update_indicators() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	
 	update_limits() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute method)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute method)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute method)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute method)

 	update_properties() (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute method)

 	update_reports() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	update_sensor_modes() (pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	update_status() (pylablib.core.thread.controller.QTaskThread method)

 	update_status_line() (pylablib.core.gui.widgets.param_table.StatusTable method)

 	update_value() (pylablib.core.gui.value_handling.GUIValues method)

 	(pylablib.core.gui.widgets.container.IQContainer method)

 	(pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QTabContainer method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	updated() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixShortcutTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	upper_limit (pylablib.devices.Sirah.Matisse.TRefcellWaveformParameters attribute)

 	(pylablib.devices.Sirah.Matisse.TScanParameters attribute)

 	usb_version (pylablib.devices.uc480.uc480.TDeviceInfo attribute)

 	use_parameters() (in module pylablib.core.devio.interface)

 	use_xarg() (pylablib.core.dataproc.fitting.Fitter method)

 	user_name (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	using_channel() (pylablib.devices.Thorlabs.kinesis.KinesisDevice method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	using_default_addr() (pylablib.devices.Thorlabs.elliptec.ElliptecMotor method)

 	using_default_axis() (pylablib.devices.SmarAct.MCS2.MCS2 method)

 	using_device() (pylablib.core.devio.interface.CombinedParameterClass method)

 	(pylablib.core.devio.interface.EnumParameterClass method)

 	(pylablib.core.devio.interface.FunctionParameterClass method)

 	(pylablib.core.devio.interface.ICheckingParameterClass method)

 	(pylablib.core.devio.interface.IEnumParameterClass method)

 	(pylablib.core.devio.interface.IParameterClass method)

 	(pylablib.core.devio.interface.RangeParameterClass method)

 	using_layout() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	using_method() (in module pylablib.core.utils.general)

 	using_new_sublayout() (pylablib.core.gui.widgets.container.IQWidgetContainer method)

 	(pylablib.core.gui.widgets.container.QDialogContainer method)

 	(pylablib.core.gui.widgets.container.QFrameContainer method)

 	(pylablib.core.gui.widgets.container.QGroupBoxContainer method)

 	(pylablib.core.gui.widgets.container.QScrollAreaContainer.QContainedWidget method)

 	(pylablib.core.gui.widgets.container.QWidgetContainer method)

 	(pylablib.core.gui.widgets.layout_manager.IQLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.layout_manager.QLayoutManagedWidget method)

 	(pylablib.core.gui.widgets.param_table.ParamTable method)

 	(pylablib.core.gui.widgets.param_table.StatusTable method)

 	using_timeout() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.utils.net.ClientSocket method)

 	using_write_buffer() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	usteps_per_step (pylablib.devices.Standa.base.TStepperMotorCalibration attribute)

V

 	
 	value (pylablib.core.devio.interface.TRawParameterValue attribute)

 	(pylablib.core.thread.multicast_pool.TMulticast attribute)

 	(pylablib.devices.Leybold.base.TUpdateValue attribute)

 	(pylablib.devices.Trinamic.base.TMCM1110.ReplyData attribute)

 	(pylablib.devices.Voltcraft.multimeter.TVC880Reading attribute)

 	value_access (pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	value_changed (pylablib.core.gui.widgets.button.ToggleButton attribute)

 	(pylablib.core.gui.widgets.combo_box.ComboBox attribute)

 	(pylablib.core.gui.widgets.edit.NumEdit attribute)

 	(pylablib.core.gui.widgets.edit.TextEdit attribute)

 	(pylablib.core.gui.widgets.label.EnumLabel attribute)

 	(pylablib.core.gui.widgets.label.NumLabel attribute)

 	(pylablib.core.gui.widgets.label.TextLabel attribute)

 	value_entered (pylablib.core.gui.widgets.edit.NumEdit attribute)

 	(pylablib.core.gui.widgets.edit.TextEdit attribute)

 	value_handler (pylablib.core.gui.widgets.param_table.ParamTable.ParamRow attribute)

 	value_to_index() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	values (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.FGrabAttribute attribute)

 	values() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	VC7055 (class in pylablib.devices.Voltcraft.multimeter)

 	VC880 (class in pylablib.devices.Voltcraft.multimeter)

 	VC880.TMessage (class in pylablib.devices.Voltcraft.multimeter)

 	VC880ParseError

 	VegaPowerMeter (class in pylablib.devices.Ophir.base)

 	velocity (pylablib.devices.SmarAct.MCS2.TCLMoveParams attribute)

 	(pylablib.devices.SmarAct.MCS2.TScanMoveParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.THomeParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPolCtlParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPZMotorDriveParams attribute)

 	(pylablib.devices.Thorlabs.kinesis.TPZMotorJogParams attribute)

 	
 	vendor (pylablib.devices.Basler.pylon.TCameraInfo attribute)

 	(pylablib.devices.Basler.pylon.TDeviceInfo attribute)

 	(pylablib.devices.DCAM.DCAM.TDeviceInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TDeviceInfo attribute)

 	(pylablib.devices.Photometrics.pvcam.TDeviceInfo attribute)

 	vendor_id (pylablib.core.devio.hid.TDeviceDescription attribute)

 	version (pylablib.core.devio.hid.TDeviceDescription attribute)

 	(pylablib.devices.AlliedVision.Bonito.TDeviceInfo attribute)

 	(pylablib.devices.Attocube.anc300.TDeviceInfo attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.TCameraInfo attribute)

 	(pylablib.devices.LighthousePhotonics.base.TDeviceInfo attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.TCameraInfo attribute)

 	(pylablib.devices.SiliconSoftware.fgrab.TFullAppletInfo attribute)

 	(pylablib.devices.Toptica.ibeam.TDeviceInfo attribute)

 	viewitems() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	viewkeys() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	viewvalues() (pylablib.core.utils.dictionary.Dictionary method)

 	(pylablib.core.utils.dictionary.DictionaryPointer method)

 	(pylablib.core.utils.dictionary.FilterTree method)

 	(pylablib.core.utils.dictionary.PrefixTree method)

 	virtual_gui_values() (in module pylablib.core.gui.value_handling)

 	VirtualIndicatorHandler (in module pylablib.core.gui.value_handling)

 	VirtualValueHandler (class in pylablib.core.gui.value_handling)

 	VisaDeviceBackend (class in pylablib.core.devio.comm_backend)

 	visibility (pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	voltage (pylablib.devices.ElektroAutomatik.base.TOutputLimits attribute)

W

 	
 	wait() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QMultiThreadNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.interface.camera.FrameNotifier method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	wait_dev() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	wait_done() (pylablib.devices.interface.camera.FrameCounter method)

 	wait_for_any_message() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	wait_for_fine_tuning() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	wait_for_frame() (pylablib.devices.AlliedVision.Bonito.BonitoIMAQCamera method)

 	(pylablib.devices.AlliedVision.Bonito.IBonitoCamera method)

 	(pylablib.devices.Andor.AndorSDK2.AndorSDK2Camera method)

 	(pylablib.devices.Andor.AndorSDK3.AndorSDK3Camera method)

 	(pylablib.devices.Basler.pylon.BaslerPylonCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowCamera method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowFrameGrabber method)

 	(pylablib.devices.DCAM.DCAM.DCAMCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQCamera method)

 	(pylablib.devices.IMAQ.IMAQ.IMAQFrameGrabber method)

 	(pylablib.devices.IMAQdx.IMAQdx.EthernetIMAQdxCamera method)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxCamera method)

 	(pylablib.devices.interface.camera.IAttributeCamera method)

 	(pylablib.devices.interface.camera.IBinROICamera method)

 	(pylablib.devices.interface.camera.ICamera method)

 	(pylablib.devices.interface.camera.IExposureCamera method)

 	(pylablib.devices.interface.camera.IGrabberAttributeCamera method)

 	(pylablib.devices.interface.camera.IROICamera method)

 	(pylablib.devices.Mightex.MightexSSeries.MightexSSeriesCamera method)

 	(pylablib.devices.PCO.SC2.PCOSC2Camera method)

 	(pylablib.devices.Photometrics.pvcam.PvcamCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.IPhotonFocusCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusBitFlowCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusIMAQCamera method)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PhotonFocusSiSoCamera method)

 	(pylablib.devices.PrincetonInstruments.picam.PicamCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareCamera method)

 	(pylablib.devices.SiliconSoftware.fgrab.SiliconSoftwareFrameGrabber method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera method)

 	(pylablib.devices.Thorlabs.TLCamera.ThorlabsTLCamera.RingBuffer method)

 	(pylablib.devices.uc480.uc480.UC480Camera method)

 	wait_for_grabbing() (pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	wait_for_home() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	wait_for_keypress() (in module pylablib.core.utils.general)

 	wait_for_measurement() (pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	wait_for_message() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	wait_for_report() (pylablib.devices.M2.base.ICEBlocDevice method)

 	(pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	wait_for_sample() (pylablib.devices.NI.daq.NIDAQ method)

 	wait_for_scan() (pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	wait_for_status() (pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Thorlabs.kinesis.MFF method)

 	wait_for_stop() (pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	wait_for_sync() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	wait_for_terascan_update() (pylablib.devices.M2.emm.EMM method)

 	(pylablib.devices.M2.solstis.Solstis method)

 	wait_move() (pylablib.devices.Arcus.performax.Performax2EXStage method)

 	(pylablib.devices.Arcus.performax.Performax4EXStage method)

 	(pylablib.devices.Arcus.performax.PerformaxDMXJSAStage method)

 	(pylablib.devices.Attocube.anc300.ANC300 method)

 	(pylablib.devices.Attocube.anc350.ANC350 method)

 	(pylablib.devices.Newport.picomotor.Picomotor8742 method)

 	(pylablib.devices.SmarAct.MCS2.MCS2 method)

 	(pylablib.devices.SmarAct.scu3d.SCU3D method)

 	(pylablib.devices.Standa.base.Standa8SMC method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisMotor method)

 	(pylablib.devices.Thorlabs.kinesis.KinesisPiezoMotor method)

 	(pylablib.devices.Trinamic.base.TMCM1110 method)

 	wait_scan() (pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	wait_start() (pylablib.devices.interface.camera.FrameCounter method)

 	wait_sync() (pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	wait_until() (pylablib.core.thread.controller.QTaskThread method)

 	(pylablib.core.thread.controller.QThreadController method)

 	(pylablib.core.thread.synchronizing.QMultiThreadNotifier method)

 	waiting() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	waiting_state() (pylablib.core.thread.callsync.QCallResultSynchronizer method)

 	(pylablib.core.thread.callsync.QDirectResultSynchronizer method)

 	(pylablib.core.thread.notifier.ISkippableNotifier method)

 	(pylablib.core.thread.synchronizing.QThreadNotifier method)

 	walk_dir() (in module pylablib.core.utils.files)

 	warnings (pylablib.devices.PCO.SC2.TCameraStatus attribute)

 	wheelEvent() (pylablib.core.gui.widgets.combo_box.ComboBox method)

 	widget (pylablib.core.gui.widgets.container.TChild attribute)

 	(pylablib.core.gui.widgets.param_table.ParamTable.ParamRow attribute)

 	width (pylablib.core.dataproc.feature.Baseline attribute)

 	(pylablib.core.dataproc.feature.Peak attribute)

 	(pylablib.devices.interface.camera.TFrameSize attribute)

 	(pylablib.devices.Thorlabs.kinesis.TKCubeTrigPosParams attribute)

 	window (pylablib.devices.Lakeshore.base.TLakeshore218FilterSettings attribute)

 	(pylablib.devices.Lakeshore.base.TLakeshore370FilterSettings attribute)

 	with_traceback() (pylablib.core.devio.base.DeviceError method)

 	(pylablib.core.devio.comm_backend.DeviceBackendError method)

 	(pylablib.core.devio.comm_backend.DeviceFT232Error method)

 	(pylablib.core.devio.comm_backend.DeviceHIDError method)

 	(pylablib.core.devio.comm_backend.DeviceNetworkError method)

 	(pylablib.core.devio.comm_backend.DeviceRecordedError method)

 	(pylablib.core.devio.comm_backend.DeviceSerialError method)

 	(pylablib.core.devio.comm_backend.DeviceUSBError method)

 	(pylablib.core.devio.comm_backend.DeviceVisaError method)

 	(pylablib.core.devio.hid_base.HIDError method)

 	(pylablib.core.devio.hid_base.HIDLibError method)

 	(pylablib.core.devio.hid_base.HIDTimeoutError method)

 	(pylablib.core.gui.limiter.LimitError method)

 	(pylablib.core.gui.value_handling.MissingGUIHandlerError method)

 	(pylablib.core.gui.value_handling.NoParameterError method)

 	(pylablib.core.thread.threadprop.DuplicateControllerThreadError method)

 	(pylablib.core.thread.threadprop.InterruptException method)

 	(pylablib.core.thread.threadprop.InterruptExceptionStop method)

 	(pylablib.core.thread.threadprop.NoControllerThreadError method)

 	(pylablib.core.thread.threadprop.NoMessageThreadError method)

 	(pylablib.core.thread.threadprop.SkippedCallError method)

 	(pylablib.core.thread.threadprop.ThreadError method)

 	(pylablib.core.thread.threadprop.TimeoutThreadError method)

 	(pylablib.core.utils.net.SocketError method)

 	(pylablib.core.utils.net.SocketTimeout method)

 	(pylablib.devices.AlliedVision.Bonito.BonitoError method)

 	(pylablib.devices.Andor.base.AndorError method)

 	(pylablib.devices.Andor.base.AndorFrameTransferError method)

 	(pylablib.devices.Andor.base.AndorNotSupportedError method)

 	(pylablib.devices.Andor.base.AndorTimeoutError method)

 	(pylablib.devices.Arcus.base.ArcusBackendError method)

 	(pylablib.devices.Arcus.base.ArcusError method)

 	(pylablib.devices.Arduino.base.ArduinoBackendError method)

 	(pylablib.devices.Arduino.base.ArduinoError method)

 	(pylablib.devices.Attocube.base.AttocubeBackendError method)

 	(pylablib.devices.Attocube.base.AttocubeError method)

 	(pylablib.devices.AWG.generic.GenericAWGBackendError method)

 	(pylablib.devices.AWG.generic.GenericAWGError method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowError method)

 	(pylablib.devices.BitFlow.BitFlow.BitFlowTimeoutError method)

 	(pylablib.devices.Conrad.base.ConradBackendError method)

 	(pylablib.devices.Conrad.base.ConradError method)

 	(pylablib.devices.Cryocon.base.CryoconBackendError method)

 	(pylablib.devices.Cryocon.base.CryoconError method)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsBackendError method)

 	(pylablib.devices.Cryomagnetics.base.CryomagneticsError method)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikBackendError method)

 	(pylablib.devices.ElektroAutomatik.base.ElektroAutomatikError method)

 	(pylablib.devices.interface.camera.DefaultFrameTransferError method)

 	(pylablib.devices.Keithley.base.GenericKeithleyBackendError method)

 	(pylablib.devices.Keithley.base.GenericKeithleyError method)

 	(pylablib.devices.KJL.base.KJLBackendError method)

 	(pylablib.devices.KJL.base.KJLError method)

 	(pylablib.devices.Lakeshore.base.LakeshoreBackendError method)

 	(pylablib.devices.Lakeshore.base.LakeshoreError method)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumBackendError method)

 	(pylablib.devices.LaserQuantum.base.LaserQuantumError method)

 	(pylablib.devices.Leybold.base.LeyboldBackendError method)

 	(pylablib.devices.Leybold.base.LeyboldError method)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsBackendError method)

 	(pylablib.devices.LighthousePhotonics.base.LighthousePhotonicsError method)

 	(pylablib.devices.M2.base.M2CommunicationError method)

 	(pylablib.devices.M2.base.M2Error method)

 	(pylablib.devices.M2.base.M2ParseError method)

 	(pylablib.devices.Mightex.base.MightexError method)

 	(pylablib.devices.Mightex.base.MightexTimeoutError method)

 	(pylablib.devices.Modbus.modbus.ModbusBackendError method)

 	(pylablib.devices.Modbus.modbus.ModbusError method)

 	(pylablib.devices.Newport.base.NewportBackendError method)

 	(pylablib.devices.Newport.base.NewportError method)

 	(pylablib.devices.NI.daq.NIDAQmxError method)

 	(pylablib.devices.NI.daq.NIError method)

 	(pylablib.devices.NKT.interbus.InterbusBackendError method)

 	(pylablib.devices.NKT.interbus.InterbusError method)

 	(pylablib.devices.Ophir.base.OphirBackendError method)

 	(pylablib.devices.Ophir.base.OphirError method)

 	(pylablib.devices.OZOptics.base.OZOpticsBackendError method)

 	(pylablib.devices.OZOptics.base.OZOpticsError method)

 	(pylablib.devices.Pfeiffer.base.PfeifferBackendError method)

 	(pylablib.devices.Pfeiffer.base.PfeifferError method)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteBackendError method)

 	(pylablib.devices.PhysikInstrumente.base.PhysikInstrumenteError method)

 	(pylablib.devices.Rigol.base.GenericRigolBackendError method)

 	(pylablib.devices.Rigol.base.GenericRigolError method)

 	(pylablib.devices.Sirah.base.GenericSirahBackendError method)

 	(pylablib.devices.Sirah.base.GenericSirahError method)

 	(pylablib.devices.Sirah.tuner.FrequencyReadSirahError method)

 	(pylablib.devices.SmarAct.base.SmarActError method)

 	(pylablib.devices.Standa.base.StandaBackendError method)

 	(pylablib.devices.Standa.base.StandaError method)

 	(pylablib.devices.Tektronix.base.TektronixBackendError method)

 	(pylablib.devices.Tektronix.base.TektronixError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsBackendError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsError method)

 	(pylablib.devices.Thorlabs.base.ThorlabsTimeoutError method)

 	(pylablib.devices.Toptica.base.TopticaBackendError method)

 	(pylablib.devices.Toptica.base.TopticaError method)

 	(pylablib.devices.Trinamic.base.TrinamicBackendError method)

 	(pylablib.devices.Trinamic.base.TrinamicError method)

 	(pylablib.devices.Trinamic.base.TrinamicTimeoutError method)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftBackendError method)

 	(pylablib.devices.Voltcraft.base.GenericVoltcraftError method)

 	(pylablib.devices.Voltcraft.multimeter.VC880ParseError method)

 	
 	WLM (class in pylablib.devices.HighFinesse.wlm)

 	wrap() (in module pylablib.core.dataproc.table_wrap)

 	wrap1d() (in module pylablib.core.dataproc.table_wrap)

 	wrap2d() (in module pylablib.core.dataproc.table_wrap)

 	wrap_annotated() (pylablib.core.utils.ctypes_wrap.CFunctionWrapper method)

 	wrap_bare() (pylablib.core.utils.ctypes_wrap.CFunctionWrapper method)

 	wrap_function() (pylablib.core.utils.functions.FunctionSignature method)

 	writable (pylablib.devices.Andor.AndorSDK3.AndorSDK3Attribute attribute)

 	(pylablib.devices.Basler.pylon.BaslerPylonAttribute attribute)

 	(pylablib.devices.DCAM.DCAM.DCAMAttribute attribute)

 	(pylablib.devices.IMAQdx.IMAQdx.IMAQdxAttribute attribute)

 	(pylablib.devices.Photometrics.pvcam.PvcamAttribute attribute)

 	(pylablib.devices.PhotonFocus.PhotonFocus.PFCamAttribute attribute)

 	(pylablib.devices.PrincetonInstruments.picam.PicamAttribute attribute)

 	write() (pylablib.core.devio.comm_backend.FT232DeviceBackend method)

 	(pylablib.core.devio.comm_backend.HIDeviceBackend method)

 	(pylablib.core.devio.comm_backend.IDeviceCommBackend method)

 	(pylablib.core.devio.comm_backend.NetworkDeviceBackend method)

 	(pylablib.core.devio.comm_backend.PyUSBDeviceBackend method)

 	(pylablib.core.devio.comm_backend.RecordedDeviceBackend method)

 	(pylablib.core.devio.comm_backend.SerialDeviceBackend method)

 	(pylablib.core.devio.comm_backend.VisaDeviceBackend method)

 	(pylablib.core.devio.hid.HIDevice method)

 	(pylablib.core.devio.SCPI.SCPIDevice method)

 	(pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IBinaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	(pylablib.core.fileio.savefile.TableBinaryOutputFileFormat method)

 	(pylablib.core.utils.general.StreamFileLogger method)

 	(pylablib.devices.AWG.generic.GenericAWG method)

 	(pylablib.devices.AWG.specific.Agilent33220A method)

 	(pylablib.devices.AWG.specific.Agilent33500 method)

 	(pylablib.devices.AWG.specific.InstekAFG2000 method)

 	(pylablib.devices.AWG.specific.InstekAFG2225 method)

 	(pylablib.devices.AWG.specific.RigolDG1000 method)

 	(pylablib.devices.AWG.specific.RSInstekAFG21000 method)

 	(pylablib.devices.AWG.specific.TektronixAFG1000 method)

 	(pylablib.devices.Cryocon.base.Cryocon1x method)

 	(pylablib.devices.Cryomagnetics.base.LM500 method)

 	(pylablib.devices.Cryomagnetics.base.LM510 method)

 	(pylablib.devices.Keithley.multimeter.Keithley2110 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore218 method)

 	(pylablib.devices.Lakeshore.base.Lakeshore370 method)

 	(pylablib.devices.PhysikInstrumente.base.PIE515 method)

 	(pylablib.devices.Rigol.power_supply.DP1116A method)

 	(pylablib.devices.Sirah.Matisse.SirahMatisse method)

 	(pylablib.devices.Tektronix.base.DPO2000 method)

 	(pylablib.devices.Tektronix.base.ITektronixScope method)

 	(pylablib.devices.Tektronix.base.TDS2000 method)

 	(pylablib.devices.Thorlabs.misc.GenericPM method)

 	(pylablib.devices.Thorlabs.misc.PM160 method)

 	(pylablib.devices.Thorlabs.serial.FW method)

 	(pylablib.devices.Thorlabs.serial.FWv1 method)

 	(pylablib.devices.Thorlabs.serial.MDT69xA method)

 	(pylablib.devices.Thorlabs.serial.ThorlabsSerialInterface method)

 	(pylablib.devices.Voltcraft.multimeter.VC7055 method)

 	write_comments() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	write_data() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IBinaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	(pylablib.core.fileio.savefile.TableBinaryOutputFileFormat method)

 	write_file() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IBinaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.IOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	(pylablib.core.fileio.savefile.TableBinaryOutputFileFormat method)

 	write_header() (pylablib.core.utils.general.StreamFileLogger method)

 	write_line() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat static method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat static method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat static method)

 	write_multiple_rows() (pylablib.core.fileio.table_stream.TableStreamFile method)

 	write_props() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	write_row() (pylablib.core.fileio.table_stream.TableStreamFile method)

 	write_savetime() (pylablib.core.fileio.savefile.CSVTableOutputFileFormat method)

 	(pylablib.core.fileio.savefile.DictionaryOutputFileFormat method)

 	(pylablib.core.fileio.savefile.ITextOutputFileFormat method)

 	write_text_lines() (pylablib.core.fileio.table_stream.TableStreamFile method)

 	wrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

X

 	
 	xbins (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	xdiff (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings attribute)

 	xgain (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	xmax (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	
 	xmin (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	xpos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings attribute)

 	(pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint attribute)

 	xrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	xy2c() (in module pylablib.core.dataproc.utils)

Y

 	
 	ybins (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

 	ydiff (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings attribute)

 	year (pylablib.devices.Thorlabs.elliptec.TDeviceInfo attribute)

 	(pylablib.devices.uc480.uc480.TTimestamp attribute)

 	ygain (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	
 	ymax (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	ymin (pylablib.devices.Thorlabs.kinesis.TQuadDetectorOutputParams attribute)

 	ypos (pylablib.devices.Thorlabs.kinesis.TQuadDetectorReadings attribute)

 	(pylablib.devices.Thorlabs.kinesis.TQuadDetectorSetpoint attribute)

 	yrng (pylablib.devices.PrincetonInstruments.picam.TROIConstraints attribute)

Z

 	
 	zip_file() (in module pylablib.core.utils.files)

 	
 	zip_folder() (in module pylablib.core.utils.files)

 	zip_multiple_files() (in module pylablib.core.utils.files)

 nav.xhtml

 Table of Contents

 		
 PyLabLib: Python package for device control and experiment automation

 		
 Installation

 		
 Standard install

 		
 Minimal install

 		
 Anaconda install

 		
 Usage

 		
 Dependencies and requirements

 		
 Installing from GitHub

 		
 Support and feedback

 		
 Devices overview

 		
 Basics of device communication

 		
 Connection

 		
 Operation

 		
 Error handling

 		
 Getting more information

 		
 Universal settings access

 		
 Dependencies and external software

 		
 Advanced examples

 		
 Available devices

 		
 Cameras

 		
 Cameras control basics

 		
 Andor cameras

 		
 Allied Vision Bonito cameras

 		
 Basler cameras interface

 		
 BitFlow Axion frame grabbers interface

 		
 DCAM cameras interface

 		
 NI IMAQ frame grabbers interface

 		
 NI IMAQdx cameras interface

 		
 Photon Focus pfcam interface

 		
 PCO SC2 cameras interface

 		
 Princeton Instruments Picam cameras

 		
 Photometrics PVCAM cameras

 		
 Silicon Software frame grabbers interface

 		
 Thorlabs Scientific Cameras interface

 		
 Uc480/uEye camera interface

 		
 Mightex cameras interface

 		
 Stages

 		
 Stages control basics

 		
 Attocube positioners

 		
 Thorlabs APT/Kinesis devices

 		
 Standard motors

 		
 Piezo motors

 		
 Quadrature detector

 		
 Thorlabs Elliptec devices

 		
 Newport Picomotor controller

 		
 Arcus Performax positioners

 		
 Trinamic TMCM-1110 controller

 		
 SmarAct positioners

 		
 Physik Instrumente (PI) controllers

 		
 Standa motorized stages

 		
 Basic sensors

 		
 Basics of sensors communication

 		
 HighFinesse wavemeters

 		
 Ophir power meters

 		
 Thorlabs PM100/PM160 series power meters

 		
 Lakeshore temperature sensors

 		
 CryoCon temperature sensors

 		
 Cryomagnetics level monitor

 		
 Pfeiffer pressure gauges

 		
 Leybold pressure gauges

 		
 Kurt J. Lesker pressure gauges

 		
 Basic lasers

 		
 Basic example

 		
 Lighthouse Photonics Sprout

 		
 Laser Quantum Finesse

 		
 M2 Solstis laser

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 M2 external mixing module (EMM)

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Toptica iBeam Smart laser

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Sirah Matisse laser

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 NKT lasers

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Tektronix oscilloscopes

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Keithley multimeters

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Rigol laboratory power supplies

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 NI DAQmx interface

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Generic AWGs

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Andor Shamrock spectrometers

 		
 Software requirements

 		
 Connection

 		
 Miscellaneous Thorlabs devices

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 OZ Optics devices

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Elektro Automatik sources

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Voltcraft multimeters

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Lumel automation electronics

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Miscellaneous devices

 		
 Software requirements

 		
 Connection

 		
 Operation

 		
 Generic protocols

 		
 Modbus

 		
 Data processing

 		
 Fitting

 		
 Examples

 		
 Filtering and decimation

 		
 Fourier transform

 		
 Feature detection

 		
 Miscellaneous utilities

 		
 Data storage

 		
 Multi-level dictionary

 		
 File IO

 		
 Binary files

 		
 CSV files

 		
 Dictionary files

 		
 Various utilities

 		
 File system

 		
 Network

 		
 Strings

 		
 Misc utilities

 		
 Change log

 		
 Version 1.x

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.3

 		
 1.3.2

 		
 1.3.1

 		
 1.3.0

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 Version 0.x

 		
 0.4.1

 		
 0.4.0

 		
 API reference

 		
 pylablib package

 		
 Subpackages

 		
 Submodules

 		
 pylablib.widgets module

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

